Merge with rsync://fileserver/linux
[linux-2.6] / drivers / net / sk98lin / skge.c
1 /******************************************************************************
2  *
3  * Name:        skge.c
4  * Project:     GEnesis, PCI Gigabit Ethernet Adapter
5  * Version:     $Revision: 1.45 $
6  * Date:        $Date: 2004/02/12 14:41:02 $
7  * Purpose:     The main driver source module
8  *
9  ******************************************************************************/
10
11 /******************************************************************************
12  *
13  *      (C)Copyright 1998-2002 SysKonnect GmbH.
14  *      (C)Copyright 2002-2003 Marvell.
15  *
16  *      Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet 
17  *      Server Adapters.
18  *
19  *      Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20  *      SysKonnects GEnesis Solaris driver
21  *      Author: Christoph Goos (cgoos@syskonnect.de)
22  *              Mirko Lindner (mlindner@syskonnect.de)
23  *
24  *      Address all question to: linux@syskonnect.de
25  *
26  *      The technical manual for the adapters is available from SysKonnect's
27  *      web pages: www.syskonnect.com
28  *      Goto "Support" and search Knowledge Base for "manual".
29  *      
30  *      This program is free software; you can redistribute it and/or modify
31  *      it under the terms of the GNU General Public License as published by
32  *      the Free Software Foundation; either version 2 of the License, or
33  *      (at your option) any later version.
34  *
35  *      The information in this file is provided "AS IS" without warranty.
36  *
37  ******************************************************************************/
38
39 /******************************************************************************
40  *
41  * Possible compiler options (#define xxx / -Dxxx):
42  *
43  *      debugging can be enable by changing SK_DEBUG_CHKMOD and
44  *      SK_DEBUG_CHKCAT in makefile (described there).
45  *
46  ******************************************************************************/
47
48 /******************************************************************************
49  *
50  * Description:
51  *
52  *      This is the main module of the Linux GE driver.
53  *      
54  *      All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55  *      are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56  *      Those are used for drivers on multiple OS', so some thing may seem
57  *      unnecessary complicated on Linux. Please do not try to 'clean up'
58  *      them without VERY good reasons, because this will make it more
59  *      difficult to keep the Linux driver in synchronisation with the
60  *      other versions.
61  *
62  * Include file hierarchy:
63  *
64  *      <linux/module.h>
65  *
66  *      "h/skdrv1st.h"
67  *              <linux/types.h>
68  *              <linux/kernel.h>
69  *              <linux/string.h>
70  *              <linux/errno.h>
71  *              <linux/ioport.h>
72  *              <linux/slab.h>
73  *              <linux/interrupt.h>
74  *              <linux/pci.h>
75  *              <linux/bitops.h>
76  *              <asm/byteorder.h>
77  *              <asm/io.h>
78  *              <linux/netdevice.h>
79  *              <linux/etherdevice.h>
80  *              <linux/skbuff.h>
81  *          those three depending on kernel version used:
82  *              <linux/bios32.h>
83  *              <linux/init.h>
84  *              <asm/uaccess.h>
85  *              <net/checksum.h>
86  *
87  *              "h/skerror.h"
88  *              "h/skdebug.h"
89  *              "h/sktypes.h"
90  *              "h/lm80.h"
91  *              "h/xmac_ii.h"
92  *
93  *      "h/skdrv2nd.h"
94  *              "h/skqueue.h"
95  *              "h/skgehwt.h"
96  *              "h/sktimer.h"
97  *              "h/ski2c.h"
98  *              "h/skgepnmi.h"
99  *              "h/skvpd.h"
100  *              "h/skgehw.h"
101  *              "h/skgeinit.h"
102  *              "h/skaddr.h"
103  *              "h/skgesirq.h"
104  *              "h/skcsum.h"
105  *              "h/skrlmt.h"
106  *
107  ******************************************************************************/
108
109 #include        "h/skversion.h"
110
111 #include        <linux/module.h>
112 #include        <linux/moduleparam.h>
113 #include        <linux/init.h>
114 #include        <linux/proc_fs.h>
115
116 #include        "h/skdrv1st.h"
117 #include        "h/skdrv2nd.h"
118
119 /*******************************************************************************
120  *
121  * Defines
122  *
123  ******************************************************************************/
124
125 /* for debuging on x86 only */
126 /* #define BREAKPOINT() asm(" int $3"); */
127
128 /* use the transmit hw checksum driver functionality */
129 #define USE_SK_TX_CHECKSUM
130
131 /* use the receive hw checksum driver functionality */
132 #define USE_SK_RX_CHECKSUM
133
134 /* use the scatter-gather functionality with sendfile() */
135 #define SK_ZEROCOPY
136
137 /* use of a transmit complete interrupt */
138 #define USE_TX_COMPLETE
139
140 /*
141  * threshold for copying small receive frames
142  * set to 0 to avoid copying, set to 9001 to copy all frames
143  */
144 #define SK_COPY_THRESHOLD       50
145
146 /* number of adapters that can be configured via command line params */
147 #define SK_MAX_CARD_PARAM       16
148
149
150
151 /*
152  * use those defines for a compile-in version of the driver instead
153  * of command line parameters
154  */
155 // #define LINK_SPEED_A {"Auto", }
156 // #define LINK_SPEED_B {"Auto", }
157 // #define AUTO_NEG_A   {"Sense", }
158 // #define AUTO_NEG_B   {"Sense", }
159 // #define DUP_CAP_A    {"Both", }
160 // #define DUP_CAP_B    {"Both", }
161 // #define FLOW_CTRL_A  {"SymOrRem", }
162 // #define FLOW_CTRL_B  {"SymOrRem", }
163 // #define ROLE_A       {"Auto", }
164 // #define ROLE_B       {"Auto", }
165 // #define PREF_PORT    {"A", }
166 // #define CON_TYPE     {"Auto", }
167 // #define RLMT_MODE    {"CheckLinkState", }
168
169 #define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
170 #define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
171 #define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
172
173
174 /* Set blink mode*/
175 #define OEM_CONFIG_VALUE (      SK_ACT_LED_BLINK | \
176                                 SK_DUP_LED_NORMAL | \
177                                 SK_LED_LINK100_ON)
178
179
180 /* Isr return value */
181 #define SkIsrRetVar     irqreturn_t
182 #define SkIsrRetNone    IRQ_NONE
183 #define SkIsrRetHandled IRQ_HANDLED
184
185
186 /*******************************************************************************
187  *
188  * Local Function Prototypes
189  *
190  ******************************************************************************/
191
192 static void     FreeResources(struct SK_NET_DEVICE *dev);
193 static int      SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
194 static SK_BOOL  BoardAllocMem(SK_AC *pAC);
195 static void     BoardFreeMem(SK_AC *pAC);
196 static void     BoardInitMem(SK_AC *pAC);
197 static void     SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
198 static SkIsrRetVar      SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
199 static SkIsrRetVar      SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
200 static int      SkGeOpen(struct SK_NET_DEVICE *dev);
201 static int      SkGeClose(struct SK_NET_DEVICE *dev);
202 static int      SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
203 static int      SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
204 static void     SkGeSetRxMode(struct SK_NET_DEVICE *dev);
205 static struct   net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
206 static int      SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
207 static void     GetConfiguration(SK_AC*);
208 static void     ProductStr(SK_AC*);
209 static int      XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
210 static void     FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
211 static void     FillRxRing(SK_AC*, RX_PORT*);
212 static SK_BOOL  FillRxDescriptor(SK_AC*, RX_PORT*);
213 static void     ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
214 static void     ClearAndStartRx(SK_AC*, int);
215 static void     ClearTxIrq(SK_AC*, int, int);
216 static void     ClearRxRing(SK_AC*, RX_PORT*);
217 static void     ClearTxRing(SK_AC*, TX_PORT*);
218 static int      SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
219 static void     PortReInitBmu(SK_AC*, int);
220 static int      SkGeIocMib(DEV_NET*, unsigned int, int);
221 static int      SkGeInitPCI(SK_AC *pAC);
222 static void     StartDrvCleanupTimer(SK_AC *pAC);
223 static void     StopDrvCleanupTimer(SK_AC *pAC);
224 static int      XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
225
226 #ifdef SK_DIAG_SUPPORT
227 static SK_U32   ParseDeviceNbrFromSlotName(const char *SlotName);
228 static int      SkDrvInitAdapter(SK_AC *pAC, int devNbr);
229 static int      SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
230 #endif
231
232 /*******************************************************************************
233  *
234  * Extern Function Prototypes
235  *
236  ******************************************************************************/
237 static const char       SKRootName[] = "sk98lin";
238 static struct           proc_dir_entry *pSkRootDir;
239 extern struct   file_operations sk_proc_fops;
240
241 static inline void SkGeProcCreate(struct net_device *dev)
242 {
243         struct proc_dir_entry *pe;
244
245         if (pSkRootDir && 
246             (pe = create_proc_entry(dev->name, S_IRUGO, pSkRootDir))) {
247                 pe->proc_fops = &sk_proc_fops;
248                 pe->data = dev;
249                 pe->owner = THIS_MODULE;
250         }
251 }
252  
253 static inline void SkGeProcRemove(struct net_device *dev)
254 {
255         if (pSkRootDir)
256                 remove_proc_entry(dev->name, pSkRootDir);
257 }
258
259 extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);  
260 extern void SkDimDisplayModerationSettings(SK_AC *pAC);
261 extern void SkDimStartModerationTimer(SK_AC *pAC);
262 extern void SkDimModerate(SK_AC *pAC);
263 extern void SkGeBlinkTimer(unsigned long data);
264
265 #ifdef DEBUG
266 static void     DumpMsg(struct sk_buff*, char*);
267 static void     DumpData(char*, int);
268 static void     DumpLong(char*, int);
269 #endif
270
271 /* global variables *********************************************************/
272 static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
273 extern  struct ethtool_ops SkGeEthtoolOps;
274
275 /* local variables **********************************************************/
276 static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
277 static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
278
279 /*****************************************************************************
280  *
281  *      SkGeInitPCI - Init the PCI resources
282  *
283  * Description:
284  *      This function initialize the PCI resources and IO
285  *
286  * Returns: N/A
287  *      
288  */
289 int SkGeInitPCI(SK_AC *pAC)
290 {
291         struct SK_NET_DEVICE *dev = pAC->dev[0];
292         struct pci_dev *pdev = pAC->PciDev;
293         int retval;
294
295         if (pci_enable_device(pdev) != 0) {
296                 return 1;
297         }
298
299         dev->mem_start = pci_resource_start (pdev, 0);
300         pci_set_master(pdev);
301
302         if (pci_request_regions(pdev, pAC->Name) != 0) {
303                 retval = 2;
304                 goto out_disable;
305         }
306
307 #ifdef SK_BIG_ENDIAN
308         /*
309          * On big endian machines, we use the adapter's aibility of
310          * reading the descriptors as big endian.
311          */
312         {
313                 SK_U32          our2;
314                 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
315                 our2 |= PCI_REV_DESC;
316                 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
317         }
318 #endif
319
320         /*
321          * Remap the regs into kernel space.
322          */
323         pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
324
325         if (!pAC->IoBase){
326                 retval = 3;
327                 goto out_release;
328         }
329
330         return 0;
331
332  out_release:
333         pci_release_regions(pdev);
334  out_disable:
335         pci_disable_device(pdev);
336         return retval;
337 }
338
339
340 /*****************************************************************************
341  *
342  *      FreeResources - release resources allocated for adapter
343  *
344  * Description:
345  *      This function releases the IRQ, unmaps the IO and
346  *      frees the desriptor ring.
347  *
348  * Returns: N/A
349  *      
350  */
351 static void FreeResources(struct SK_NET_DEVICE *dev)
352 {
353 SK_U32 AllocFlag;
354 DEV_NET         *pNet;
355 SK_AC           *pAC;
356
357         pNet = netdev_priv(dev);
358         pAC = pNet->pAC;
359         AllocFlag = pAC->AllocFlag;
360         if (pAC->PciDev) {
361                 pci_release_regions(pAC->PciDev);
362         }
363         if (AllocFlag & SK_ALLOC_IRQ) {
364                 free_irq(dev->irq, dev);
365         }
366         if (pAC->IoBase) {
367                 iounmap(pAC->IoBase);
368         }
369         if (pAC->pDescrMem) {
370                 BoardFreeMem(pAC);
371         }
372         
373 } /* FreeResources */
374
375 MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
376 MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
377 MODULE_LICENSE("GPL");
378
379 #ifdef LINK_SPEED_A
380 static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
381 #else
382 static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
383 #endif
384
385 #ifdef LINK_SPEED_B
386 static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
387 #else
388 static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
389 #endif
390
391 #ifdef AUTO_NEG_A
392 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
393 #else
394 static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
395 #endif
396
397 #ifdef DUP_CAP_A
398 static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
399 #else
400 static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
401 #endif
402
403 #ifdef FLOW_CTRL_A
404 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
405 #else
406 static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
407 #endif
408
409 #ifdef ROLE_A
410 static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
411 #else
412 static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
413 #endif
414
415 #ifdef AUTO_NEG_B
416 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
417 #else
418 static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
419 #endif
420
421 #ifdef DUP_CAP_B
422 static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
423 #else
424 static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
425 #endif
426
427 #ifdef FLOW_CTRL_B
428 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
429 #else
430 static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
431 #endif
432
433 #ifdef ROLE_B
434 static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
435 #else
436 static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
437 #endif
438
439 #ifdef CON_TYPE
440 static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
441 #else
442 static char *ConType[SK_MAX_CARD_PARAM] = {"", };
443 #endif
444
445 #ifdef PREF_PORT
446 static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
447 #else
448 static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
449 #endif
450
451 #ifdef RLMT_MODE
452 static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
453 #else
454 static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
455 #endif
456
457 static int   IntsPerSec[SK_MAX_CARD_PARAM];
458 static char *Moderation[SK_MAX_CARD_PARAM];
459 static char *ModerationMask[SK_MAX_CARD_PARAM];
460 static char *AutoSizing[SK_MAX_CARD_PARAM];
461 static char *Stats[SK_MAX_CARD_PARAM];
462
463 module_param_array(Speed_A, charp, NULL, 0);
464 module_param_array(Speed_B, charp, NULL, 0);
465 module_param_array(AutoNeg_A, charp, NULL, 0);
466 module_param_array(AutoNeg_B, charp, NULL, 0);
467 module_param_array(DupCap_A, charp, NULL, 0);
468 module_param_array(DupCap_B, charp, NULL, 0);
469 module_param_array(FlowCtrl_A, charp, NULL, 0);
470 module_param_array(FlowCtrl_B, charp, NULL, 0);
471 module_param_array(Role_A, charp, NULL, 0);
472 module_param_array(Role_B, charp, NULL, 0);
473 module_param_array(ConType, charp, NULL, 0);
474 module_param_array(PrefPort, charp, NULL, 0);
475 module_param_array(RlmtMode, charp, NULL, 0);
476 /* used for interrupt moderation */
477 module_param_array(IntsPerSec, int, NULL, 0);
478 module_param_array(Moderation, charp, NULL, 0);
479 module_param_array(Stats, charp, NULL, 0);
480 module_param_array(ModerationMask, charp, NULL, 0);
481 module_param_array(AutoSizing, charp, NULL, 0);
482
483 /*****************************************************************************
484  *
485  *      SkGeBoardInit - do level 0 and 1 initialization
486  *
487  * Description:
488  *      This function prepares the board hardware for running. The desriptor
489  *      ring is set up, the IRQ is allocated and the configuration settings
490  *      are examined.
491  *
492  * Returns:
493  *      0, if everything is ok
494  *      !=0, on error
495  */
496 static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
497 {
498 short   i;
499 unsigned long Flags;
500 char    *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
501 char    *VerStr = VER_STRING;
502 int     Ret;                    /* return code of request_irq */
503 SK_BOOL DualNet;
504
505         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
506                 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
507         for (i=0; i<SK_MAX_MACS; i++) {
508                 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
509                 pAC->TxPort[i][0].PortIndex = i;
510                 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
511                 pAC->RxPort[i].PortIndex = i;
512         }
513
514         /* Initialize the mutexes */
515         for (i=0; i<SK_MAX_MACS; i++) {
516                 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
517                 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
518         }
519         spin_lock_init(&pAC->SlowPathLock);
520
521         /* setup phy_id blink timer */
522         pAC->BlinkTimer.function = SkGeBlinkTimer;
523         pAC->BlinkTimer.data = (unsigned long) dev;
524         init_timer(&pAC->BlinkTimer);
525
526         /* level 0 init common modules here */
527         
528         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
529         /* Does a RESET on board ...*/
530         if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
531                 printk("HWInit (0) failed.\n");
532                 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
533                 return(-EAGAIN);
534         }
535         SkI2cInit(  pAC, pAC->IoBase, SK_INIT_DATA);
536         SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
537         SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
538         SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
539         SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
540         SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
541
542         pAC->BoardLevel = SK_INIT_DATA;
543         pAC->RxBufSize  = ETH_BUF_SIZE;
544
545         SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
546         SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
547
548         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
549
550         /* level 1 init common modules here (HW init) */
551         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
552         if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
553                 printk("sk98lin: HWInit (1) failed.\n");
554                 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
555                 return(-EAGAIN);
556         }
557         SkI2cInit(  pAC, pAC->IoBase, SK_INIT_IO);
558         SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
559         SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
560         SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
561         SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
562         SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
563
564         /* Set chipset type support */
565         pAC->ChipsetType = 0;
566         if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
567                 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
568                 pAC->ChipsetType = 1;
569         }
570
571         GetConfiguration(pAC);
572         if (pAC->RlmtNets == 2) {
573                 pAC->GIni.GIPortUsage = SK_MUL_LINK;
574         }
575
576         pAC->BoardLevel = SK_INIT_IO;
577         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
578
579         if (pAC->GIni.GIMacsFound == 2) {
580                  Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
581         } else if (pAC->GIni.GIMacsFound == 1) {
582                 Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
583                         pAC->Name, dev);
584         } else {
585                 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
586                        pAC->GIni.GIMacsFound);
587                 return -EAGAIN;
588         }
589
590         if (Ret) {
591                 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
592                        dev->irq);
593                 return -EAGAIN;
594         }
595         pAC->AllocFlag |= SK_ALLOC_IRQ;
596
597         /* Alloc memory for this board (Mem for RxD/TxD) : */
598         if(!BoardAllocMem(pAC)) {
599                 printk("No memory for descriptor rings.\n");
600                 return(-EAGAIN);
601         }
602
603         SkCsSetReceiveFlags(pAC,
604                 SKCS_PROTO_IP | SKCS_PROTO_TCP | SKCS_PROTO_UDP,
605                 &pAC->CsOfs1, &pAC->CsOfs2, 0);
606         pAC->CsOfs = (pAC->CsOfs2 << 16) | pAC->CsOfs1;
607
608         BoardInitMem(pAC);
609         /* tschilling: New common function with minimum size check. */
610         DualNet = SK_FALSE;
611         if (pAC->RlmtNets == 2) {
612                 DualNet = SK_TRUE;
613         }
614         
615         if (SkGeInitAssignRamToQueues(
616                 pAC,
617                 pAC->ActivePort,
618                 DualNet)) {
619                 BoardFreeMem(pAC);
620                 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
621                 return(-EAGAIN);
622         }
623
624         return (0);
625 } /* SkGeBoardInit */
626
627
628 /*****************************************************************************
629  *
630  *      BoardAllocMem - allocate the memory for the descriptor rings
631  *
632  * Description:
633  *      This function allocates the memory for all descriptor rings.
634  *      Each ring is aligned for the desriptor alignment and no ring
635  *      has a 4 GByte boundary in it (because the upper 32 bit must
636  *      be constant for all descriptiors in one rings).
637  *
638  * Returns:
639  *      SK_TRUE, if all memory could be allocated
640  *      SK_FALSE, if not
641  */
642 static SK_BOOL BoardAllocMem(
643 SK_AC   *pAC)
644 {
645 caddr_t         pDescrMem;      /* pointer to descriptor memory area */
646 size_t          AllocLength;    /* length of complete descriptor area */
647 int             i;              /* loop counter */
648 unsigned long   BusAddr;
649
650         
651         /* rings plus one for alignment (do not cross 4 GB boundary) */
652         /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
653 #if (BITS_PER_LONG == 32)
654         AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
655 #else
656         AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
657                 + RX_RING_SIZE + 8;
658 #endif
659
660         pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
661                                          &pAC->pDescrMemDMA);
662
663         if (pDescrMem == NULL) {
664                 return (SK_FALSE);
665         }
666         pAC->pDescrMem = pDescrMem;
667         BusAddr = (unsigned long) pAC->pDescrMemDMA;
668
669         /* Descriptors need 8 byte alignment, and this is ensured
670          * by pci_alloc_consistent.
671          */
672         for (i=0; i<pAC->GIni.GIMacsFound; i++) {
673                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
674                         ("TX%d/A: pDescrMem: %lX,   PhysDescrMem: %lX\n",
675                         i, (unsigned long) pDescrMem,
676                         BusAddr));
677                 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
678                 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
679                 pDescrMem += TX_RING_SIZE;
680                 BusAddr += TX_RING_SIZE;
681         
682                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
683                         ("RX%d: pDescrMem: %lX,   PhysDescrMem: %lX\n",
684                         i, (unsigned long) pDescrMem,
685                         (unsigned long)BusAddr));
686                 pAC->RxPort[i].pRxDescrRing = pDescrMem;
687                 pAC->RxPort[i].VRxDescrRing = BusAddr;
688                 pDescrMem += RX_RING_SIZE;
689                 BusAddr += RX_RING_SIZE;
690         } /* for */
691         
692         return (SK_TRUE);
693 } /* BoardAllocMem */
694
695
696 /****************************************************************************
697  *
698  *      BoardFreeMem - reverse of BoardAllocMem
699  *
700  * Description:
701  *      Free all memory allocated in BoardAllocMem: adapter context,
702  *      descriptor rings, locks.
703  *
704  * Returns:     N/A
705  */
706 static void BoardFreeMem(
707 SK_AC           *pAC)
708 {
709 size_t          AllocLength;    /* length of complete descriptor area */
710
711         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
712                 ("BoardFreeMem\n"));
713 #if (BITS_PER_LONG == 32)
714         AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
715 #else
716         AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
717                 + RX_RING_SIZE + 8;
718 #endif
719
720         pci_free_consistent(pAC->PciDev, AllocLength,
721                             pAC->pDescrMem, pAC->pDescrMemDMA);
722         pAC->pDescrMem = NULL;
723 } /* BoardFreeMem */
724
725
726 /*****************************************************************************
727  *
728  *      BoardInitMem - initiate the descriptor rings
729  *
730  * Description:
731  *      This function sets the descriptor rings up in memory.
732  *      The adapter is initialized with the descriptor start addresses.
733  *
734  * Returns:     N/A
735  */
736 static void BoardInitMem(
737 SK_AC   *pAC)   /* pointer to adapter context */
738 {
739 int     i;              /* loop counter */
740 int     RxDescrSize;    /* the size of a rx descriptor rounded up to alignment*/
741 int     TxDescrSize;    /* the size of a tx descriptor rounded up to alignment*/
742
743         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
744                 ("BoardInitMem\n"));
745
746         RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
747         pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
748         TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
749         pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
750         
751         for (i=0; i<pAC->GIni.GIMacsFound; i++) {
752                 SetupRing(
753                         pAC,
754                         pAC->TxPort[i][0].pTxDescrRing,
755                         pAC->TxPort[i][0].VTxDescrRing,
756                         (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
757                         (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
758                         (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
759                         &pAC->TxPort[i][0].TxdRingFree,
760                         SK_TRUE);
761                 SetupRing(
762                         pAC,
763                         pAC->RxPort[i].pRxDescrRing,
764                         pAC->RxPort[i].VRxDescrRing,
765                         &pAC->RxPort[i].pRxdRingHead,
766                         &pAC->RxPort[i].pRxdRingTail,
767                         &pAC->RxPort[i].pRxdRingPrev,
768                         &pAC->RxPort[i].RxdRingFree,
769                         SK_FALSE);
770         }
771 } /* BoardInitMem */
772
773
774 /*****************************************************************************
775  *
776  *      SetupRing - create one descriptor ring
777  *
778  * Description:
779  *      This function creates one descriptor ring in the given memory area.
780  *      The head, tail and number of free descriptors in the ring are set.
781  *
782  * Returns:
783  *      none
784  */
785 static void SetupRing(
786 SK_AC           *pAC,
787 void            *pMemArea,      /* a pointer to the memory area for the ring */
788 uintptr_t       VMemArea,       /* the virtual bus address of the memory area */
789 RXD             **ppRingHead,   /* address where the head should be written */
790 RXD             **ppRingTail,   /* address where the tail should be written */
791 RXD             **ppRingPrev,   /* address where the tail should be written */
792 int             *pRingFree,     /* address where the # of free descr. goes */
793 SK_BOOL         IsTx)           /* flag: is this a tx ring */
794 {
795 int     i;              /* loop counter */
796 int     DescrSize;      /* the size of a descriptor rounded up to alignment*/
797 int     DescrNum;       /* number of descriptors per ring */
798 RXD     *pDescr;        /* pointer to a descriptor (receive or transmit) */
799 RXD     *pNextDescr;    /* pointer to the next descriptor */
800 RXD     *pPrevDescr;    /* pointer to the previous descriptor */
801 uintptr_t VNextDescr;   /* the virtual bus address of the next descriptor */
802
803         if (IsTx == SK_TRUE) {
804                 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
805                         DESCR_ALIGN;
806                 DescrNum = TX_RING_SIZE / DescrSize;
807         } else {
808                 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
809                         DESCR_ALIGN;
810                 DescrNum = RX_RING_SIZE / DescrSize;
811         }
812         
813         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
814                 ("Descriptor size: %d   Descriptor Number: %d\n",
815                 DescrSize,DescrNum));
816         
817         pDescr = (RXD*) pMemArea;
818         pPrevDescr = NULL;
819         pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
820         VNextDescr = VMemArea + DescrSize;
821         for(i=0; i<DescrNum; i++) {
822                 /* set the pointers right */
823                 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
824                 pDescr->pNextRxd = pNextDescr;
825                 pDescr->TcpSumStarts = pAC->CsOfs;
826
827                 /* advance one step */
828                 pPrevDescr = pDescr;
829                 pDescr = pNextDescr;
830                 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
831                 VNextDescr += DescrSize;
832         }
833         pPrevDescr->pNextRxd = (RXD*) pMemArea;
834         pPrevDescr->VNextRxd = VMemArea;
835         pDescr = (RXD*) pMemArea;
836         *ppRingHead = (RXD*) pMemArea;
837         *ppRingTail = *ppRingHead;
838         *ppRingPrev = pPrevDescr;
839         *pRingFree = DescrNum;
840 } /* SetupRing */
841
842
843 /*****************************************************************************
844  *
845  *      PortReInitBmu - re-initiate the descriptor rings for one port
846  *
847  * Description:
848  *      This function reinitializes the descriptor rings of one port
849  *      in memory. The port must be stopped before.
850  *      The HW is initialized with the descriptor start addresses.
851  *
852  * Returns:
853  *      none
854  */
855 static void PortReInitBmu(
856 SK_AC   *pAC,           /* pointer to adapter context */
857 int     PortIndex)      /* index of the port for which to re-init */
858 {
859         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
860                 ("PortReInitBmu "));
861
862         /* set address of first descriptor of ring in BMU */
863         SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
864                 (uint32_t)(((caddr_t)
865                 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
866                 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
867                 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
868                 0xFFFFFFFF));
869         SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
870                 (uint32_t)(((caddr_t)
871                 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
872                 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
873                 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
874         SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
875                 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
876                 pAC->RxPort[PortIndex].pRxDescrRing +
877                 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
878         SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
879                 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
880                 pAC->RxPort[PortIndex].pRxDescrRing +
881                 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
882 } /* PortReInitBmu */
883
884
885 /****************************************************************************
886  *
887  *      SkGeIsr - handle adapter interrupts
888  *
889  * Description:
890  *      The interrupt routine is called when the network adapter
891  *      generates an interrupt. It may also be called if another device
892  *      shares this interrupt vector with the driver.
893  *
894  * Returns: N/A
895  *
896  */
897 static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
898 {
899 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
900 DEV_NET         *pNet;
901 SK_AC           *pAC;
902 SK_U32          IntSrc;         /* interrupts source register contents */       
903
904         pNet = netdev_priv(dev);
905         pAC = pNet->pAC;
906         
907         /*
908          * Check and process if its our interrupt
909          */
910         SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
911         if (IntSrc == 0) {
912                 return SkIsrRetNone;
913         }
914
915         while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
916 #if 0 /* software irq currently not used */
917                 if (IntSrc & IS_IRQ_SW) {
918                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
919                                 SK_DBGCAT_DRV_INT_SRC,
920                                 ("Software IRQ\n"));
921                 }
922 #endif
923                 if (IntSrc & IS_R1_F) {
924                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
925                                 SK_DBGCAT_DRV_INT_SRC,
926                                 ("EOF RX1 IRQ\n"));
927                         ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
928                         SK_PNMI_CNT_RX_INTR(pAC, 0);
929                 }
930                 if (IntSrc & IS_R2_F) {
931                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
932                                 SK_DBGCAT_DRV_INT_SRC,
933                                 ("EOF RX2 IRQ\n"));
934                         ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
935                         SK_PNMI_CNT_RX_INTR(pAC, 1);
936                 }
937 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
938                 if (IntSrc & IS_XA1_F) {
939                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
940                                 SK_DBGCAT_DRV_INT_SRC,
941                                 ("EOF AS TX1 IRQ\n"));
942                         SK_PNMI_CNT_TX_INTR(pAC, 0);
943                         spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
944                         FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
945                         spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
946                 }
947                 if (IntSrc & IS_XA2_F) {
948                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
949                                 SK_DBGCAT_DRV_INT_SRC,
950                                 ("EOF AS TX2 IRQ\n"));
951                         SK_PNMI_CNT_TX_INTR(pAC, 1);
952                         spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
953                         FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
954                         spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
955                 }
956 #if 0 /* only if sync. queues used */
957                 if (IntSrc & IS_XS1_F) {
958                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
959                                 SK_DBGCAT_DRV_INT_SRC,
960                                 ("EOF SY TX1 IRQ\n"));
961                         SK_PNMI_CNT_TX_INTR(pAC, 1);
962                         spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
963                         FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
964                         spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
965                         ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
966                 }
967                 if (IntSrc & IS_XS2_F) {
968                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
969                                 SK_DBGCAT_DRV_INT_SRC,
970                                 ("EOF SY TX2 IRQ\n"));
971                         SK_PNMI_CNT_TX_INTR(pAC, 1);
972                         spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
973                         FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
974                         spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
975                         ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
976                 }
977 #endif
978 #endif
979
980                 /* do all IO at once */
981                 if (IntSrc & IS_R1_F)
982                         ClearAndStartRx(pAC, 0);
983                 if (IntSrc & IS_R2_F)
984                         ClearAndStartRx(pAC, 1);
985 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
986                 if (IntSrc & IS_XA1_F)
987                         ClearTxIrq(pAC, 0, TX_PRIO_LOW);
988                 if (IntSrc & IS_XA2_F)
989                         ClearTxIrq(pAC, 1, TX_PRIO_LOW);
990 #endif
991                 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
992         } /* while (IntSrc & IRQ_MASK != 0) */
993
994         IntSrc &= pAC->GIni.GIValIrqMask;
995         if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
996                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
997                         ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
998                 pAC->CheckQueue = SK_FALSE;
999                 spin_lock(&pAC->SlowPathLock);
1000                 if (IntSrc & SPECIAL_IRQS)
1001                         SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1002
1003                 SkEventDispatcher(pAC, pAC->IoBase);
1004                 spin_unlock(&pAC->SlowPathLock);
1005         }
1006         /*
1007          * do it all again is case we cleared an interrupt that
1008          * came in after handling the ring (OUTs may be delayed
1009          * in hardware buffers, but are through after IN)
1010          *
1011          * rroesler: has been commented out and shifted to
1012          *           SkGeDrvEvent(), because it is timer
1013          *           guarded now
1014          *
1015         ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1016         ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1017          */
1018
1019         if (pAC->CheckQueue) {
1020                 pAC->CheckQueue = SK_FALSE;
1021                 spin_lock(&pAC->SlowPathLock);
1022                 SkEventDispatcher(pAC, pAC->IoBase);
1023                 spin_unlock(&pAC->SlowPathLock);
1024         }
1025
1026         /* IRQ is processed - Enable IRQs again*/
1027         SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1028
1029                 return SkIsrRetHandled;
1030 } /* SkGeIsr */
1031
1032
1033 /****************************************************************************
1034  *
1035  *      SkGeIsrOnePort - handle adapter interrupts for single port adapter
1036  *
1037  * Description:
1038  *      The interrupt routine is called when the network adapter
1039  *      generates an interrupt. It may also be called if another device
1040  *      shares this interrupt vector with the driver.
1041  *      This is the same as above, but handles only one port.
1042  *
1043  * Returns: N/A
1044  *
1045  */
1046 static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
1047 {
1048 struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1049 DEV_NET         *pNet;
1050 SK_AC           *pAC;
1051 SK_U32          IntSrc;         /* interrupts source register contents */       
1052
1053         pNet = netdev_priv(dev);
1054         pAC = pNet->pAC;
1055         
1056         /*
1057          * Check and process if its our interrupt
1058          */
1059         SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1060         if (IntSrc == 0) {
1061                 return SkIsrRetNone;
1062         }
1063         
1064         while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1065 #if 0 /* software irq currently not used */
1066                 if (IntSrc & IS_IRQ_SW) {
1067                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1068                                 SK_DBGCAT_DRV_INT_SRC,
1069                                 ("Software IRQ\n"));
1070                 }
1071 #endif
1072                 if (IntSrc & IS_R1_F) {
1073                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1074                                 SK_DBGCAT_DRV_INT_SRC,
1075                                 ("EOF RX1 IRQ\n"));
1076                         ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1077                         SK_PNMI_CNT_RX_INTR(pAC, 0);
1078                 }
1079 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1080                 if (IntSrc & IS_XA1_F) {
1081                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1082                                 SK_DBGCAT_DRV_INT_SRC,
1083                                 ("EOF AS TX1 IRQ\n"));
1084                         SK_PNMI_CNT_TX_INTR(pAC, 0);
1085                         spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1086                         FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1087                         spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1088                 }
1089 #if 0 /* only if sync. queues used */
1090                 if (IntSrc & IS_XS1_F) {
1091                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1092                                 SK_DBGCAT_DRV_INT_SRC,
1093                                 ("EOF SY TX1 IRQ\n"));
1094                         SK_PNMI_CNT_TX_INTR(pAC, 0);
1095                         spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1096                         FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1097                         spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1098                         ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1099                 }
1100 #endif
1101 #endif
1102
1103                 /* do all IO at once */
1104                 if (IntSrc & IS_R1_F)
1105                         ClearAndStartRx(pAC, 0);
1106 #ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1107                 if (IntSrc & IS_XA1_F)
1108                         ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1109 #endif
1110                 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1111         } /* while (IntSrc & IRQ_MASK != 0) */
1112         
1113         IntSrc &= pAC->GIni.GIValIrqMask;
1114         if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1115                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1116                         ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1117                 pAC->CheckQueue = SK_FALSE;
1118                 spin_lock(&pAC->SlowPathLock);
1119                 if (IntSrc & SPECIAL_IRQS)
1120                         SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1121
1122                 SkEventDispatcher(pAC, pAC->IoBase);
1123                 spin_unlock(&pAC->SlowPathLock);
1124         }
1125         /*
1126          * do it all again is case we cleared an interrupt that
1127          * came in after handling the ring (OUTs may be delayed
1128          * in hardware buffers, but are through after IN)
1129          *
1130          * rroesler: has been commented out and shifted to
1131          *           SkGeDrvEvent(), because it is timer
1132          *           guarded now
1133          *
1134         ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1135          */
1136
1137         /* IRQ is processed - Enable IRQs again*/
1138         SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1139
1140                 return SkIsrRetHandled;
1141 } /* SkGeIsrOnePort */
1142
1143 #ifdef CONFIG_NET_POLL_CONTROLLER
1144 /****************************************************************************
1145  *
1146  *      SkGePollController - polling receive, for netconsole
1147  *
1148  * Description:
1149  *      Polling receive - used by netconsole and other diagnostic tools
1150  *      to allow network i/o with interrupts disabled.
1151  *
1152  * Returns: N/A
1153  */
1154 static void SkGePollController(struct net_device *dev)
1155 {
1156         disable_irq(dev->irq);
1157         SkGeIsr(dev->irq, dev, NULL);
1158         enable_irq(dev->irq);
1159 }
1160 #endif
1161
1162 /****************************************************************************
1163  *
1164  *      SkGeOpen - handle start of initialized adapter
1165  *
1166  * Description:
1167  *      This function starts the initialized adapter.
1168  *      The board level variable is set and the adapter is
1169  *      brought to full functionality.
1170  *      The device flags are set for operation.
1171  *      Do all necessary level 2 initialization, enable interrupts and
1172  *      give start command to RLMT.
1173  *
1174  * Returns:
1175  *      0 on success
1176  *      != 0 on error
1177  */
1178 static int SkGeOpen(
1179 struct SK_NET_DEVICE    *dev)
1180 {
1181         DEV_NET                 *pNet;
1182         SK_AC                   *pAC;
1183         unsigned long   Flags;          /* for spin lock */
1184         int                             i;
1185         SK_EVPARA               EvPara;         /* an event parameter union */
1186
1187         pNet = netdev_priv(dev);
1188         pAC = pNet->pAC;
1189         
1190         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1191                 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1192
1193 #ifdef SK_DIAG_SUPPORT
1194         if (pAC->DiagModeActive == DIAG_ACTIVE) {
1195                 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1196                         return (-1);   /* still in use by diag; deny actions */
1197                 } 
1198         }
1199 #endif
1200
1201         /* Set blink mode */
1202         if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1203                 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1204
1205         if (pAC->BoardLevel == SK_INIT_DATA) {
1206                 /* level 1 init common modules here */
1207                 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1208                         printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1209                         return (-1);
1210                 }
1211                 SkI2cInit       (pAC, pAC->IoBase, SK_INIT_IO);
1212                 SkEventInit     (pAC, pAC->IoBase, SK_INIT_IO);
1213                 SkPnmiInit      (pAC, pAC->IoBase, SK_INIT_IO);
1214                 SkAddrInit      (pAC, pAC->IoBase, SK_INIT_IO);
1215                 SkRlmtInit      (pAC, pAC->IoBase, SK_INIT_IO);
1216                 SkTimerInit     (pAC, pAC->IoBase, SK_INIT_IO);
1217                 pAC->BoardLevel = SK_INIT_IO;
1218         }
1219
1220         if (pAC->BoardLevel != SK_INIT_RUN) {
1221                 /* tschilling: Level 2 init modules here, check return value. */
1222                 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1223                         printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1224                         return (-1);
1225                 }
1226                 SkI2cInit       (pAC, pAC->IoBase, SK_INIT_RUN);
1227                 SkEventInit     (pAC, pAC->IoBase, SK_INIT_RUN);
1228                 SkPnmiInit      (pAC, pAC->IoBase, SK_INIT_RUN);
1229                 SkAddrInit      (pAC, pAC->IoBase, SK_INIT_RUN);
1230                 SkRlmtInit      (pAC, pAC->IoBase, SK_INIT_RUN);
1231                 SkTimerInit     (pAC, pAC->IoBase, SK_INIT_RUN);
1232                 pAC->BoardLevel = SK_INIT_RUN;
1233         }
1234
1235         for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1236                 /* Enable transmit descriptor polling. */
1237                 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1238                 FillRxRing(pAC, &pAC->RxPort[i]);
1239         }
1240         SkGeYellowLED(pAC, pAC->IoBase, 1);
1241
1242         StartDrvCleanupTimer(pAC);
1243         SkDimEnableModerationIfNeeded(pAC);     
1244         SkDimDisplayModerationSettings(pAC);
1245
1246         pAC->GIni.GIValIrqMask &= IRQ_MASK;
1247
1248         /* enable Interrupts */
1249         SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1250         SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1251
1252         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1253
1254         if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1255                 EvPara.Para32[0] = pAC->RlmtNets;
1256                 EvPara.Para32[1] = -1;
1257                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1258                         EvPara);
1259                 EvPara.Para32[0] = pAC->RlmtMode;
1260                 EvPara.Para32[1] = 0;
1261                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1262                         EvPara);
1263         }
1264
1265         EvPara.Para32[0] = pNet->NetNr;
1266         EvPara.Para32[1] = -1;
1267         SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1268         SkEventDispatcher(pAC, pAC->IoBase);
1269         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1270
1271         pAC->MaxPorts++;
1272         pNet->Up = 1;
1273
1274
1275         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1276                 ("SkGeOpen suceeded\n"));
1277
1278         return (0);
1279 } /* SkGeOpen */
1280
1281
1282 /****************************************************************************
1283  *
1284  *      SkGeClose - Stop initialized adapter
1285  *
1286  * Description:
1287  *      Close initialized adapter.
1288  *
1289  * Returns:
1290  *      0 - on success
1291  *      error code - on error
1292  */
1293 static int SkGeClose(
1294 struct SK_NET_DEVICE    *dev)
1295 {
1296         DEV_NET         *pNet;
1297         DEV_NET         *newPtrNet;
1298         SK_AC           *pAC;
1299
1300         unsigned long   Flags;          /* for spin lock */
1301         int             i;
1302         int             PortIdx;
1303         SK_EVPARA       EvPara;
1304
1305         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1306                 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1307
1308         pNet = netdev_priv(dev);
1309         pAC = pNet->pAC;
1310
1311 #ifdef SK_DIAG_SUPPORT
1312         if (pAC->DiagModeActive == DIAG_ACTIVE) {
1313                 if (pAC->DiagFlowCtrl == SK_FALSE) {
1314                         /* 
1315                         ** notify that the interface which has been closed
1316                         ** by operator interaction must not be started up 
1317                         ** again when the DIAG has finished. 
1318                         */
1319                         newPtrNet = netdev_priv(pAC->dev[0]);
1320                         if (newPtrNet == pNet) {
1321                                 pAC->WasIfUp[0] = SK_FALSE;
1322                         } else {
1323                                 pAC->WasIfUp[1] = SK_FALSE;
1324                         }
1325                         return 0; /* return to system everything is fine... */
1326                 } else {
1327                         pAC->DiagFlowCtrl = SK_FALSE;
1328                 }
1329         }
1330 #endif
1331
1332         netif_stop_queue(dev);
1333
1334         if (pAC->RlmtNets == 1)
1335                 PortIdx = pAC->ActivePort;
1336         else
1337                 PortIdx = pNet->NetNr;
1338
1339         StopDrvCleanupTimer(pAC);
1340
1341         /*
1342          * Clear multicast table, promiscuous mode ....
1343          */
1344         SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1345         SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1346                 SK_PROM_MODE_NONE);
1347
1348         if (pAC->MaxPorts == 1) {
1349                 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1350                 /* disable interrupts */
1351                 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1352                 EvPara.Para32[0] = pNet->NetNr;
1353                 EvPara.Para32[1] = -1;
1354                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1355                 SkEventDispatcher(pAC, pAC->IoBase);
1356                 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1357                 /* stop the hardware */
1358                 SkGeDeInit(pAC, pAC->IoBase);
1359                 pAC->BoardLevel = SK_INIT_DATA;
1360                 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1361         } else {
1362
1363                 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1364                 EvPara.Para32[0] = pNet->NetNr;
1365                 EvPara.Para32[1] = -1;
1366                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1367                 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1368                 SkEventDispatcher(pAC, pAC->IoBase);
1369                 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1370                 
1371                 /* Stop port */
1372                 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1373                         [TX_PRIO_LOW].TxDesRingLock, Flags);
1374                 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1375                         SK_STOP_ALL, SK_HARD_RST);
1376                 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1377                         [TX_PRIO_LOW].TxDesRingLock, Flags);
1378         }
1379
1380         if (pAC->RlmtNets == 1) {
1381                 /* clear all descriptor rings */
1382                 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1383                         ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1384                         ClearRxRing(pAC, &pAC->RxPort[i]);
1385                         ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1386                 }
1387         } else {
1388                 /* clear port descriptor rings */
1389                 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1390                 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1391                 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1392         }
1393
1394         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1395                 ("SkGeClose: done "));
1396
1397         SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1398         SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct), 
1399                         sizeof(SK_PNMI_STRUCT_DATA));
1400
1401         pAC->MaxPorts--;
1402         pNet->Up = 0;
1403
1404         return (0);
1405 } /* SkGeClose */
1406
1407
1408 /*****************************************************************************
1409  *
1410  *      SkGeXmit - Linux frame transmit function
1411  *
1412  * Description:
1413  *      The system calls this function to send frames onto the wire.
1414  *      It puts the frame in the tx descriptor ring. If the ring is
1415  *      full then, the 'tbusy' flag is set.
1416  *
1417  * Returns:
1418  *      0, if everything is ok
1419  *      !=0, on error
1420  * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1421  *      allocated skb's) !!!
1422  */
1423 static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1424 {
1425 DEV_NET         *pNet;
1426 SK_AC           *pAC;
1427 int                     Rc;     /* return code of XmitFrame */
1428
1429         pNet = netdev_priv(dev);
1430         pAC = pNet->pAC;
1431
1432         if ((!skb_shinfo(skb)->nr_frags) ||
1433                 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1434                 /* Don't activate scatter-gather and hardware checksum */
1435
1436                 if (pAC->RlmtNets == 2)
1437                         Rc = XmitFrame(
1438                                 pAC,
1439                                 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1440                                 skb);
1441                 else
1442                         Rc = XmitFrame(
1443                                 pAC,
1444                                 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1445                                 skb);
1446         } else {
1447                 /* scatter-gather and hardware TCP checksumming anabled*/
1448                 if (pAC->RlmtNets == 2)
1449                         Rc = XmitFrameSG(
1450                                 pAC,
1451                                 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1452                                 skb);
1453                 else
1454                         Rc = XmitFrameSG(
1455                                 pAC,
1456                                 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1457                                 skb);
1458         }
1459
1460         /* Transmitter out of resources? */
1461         if (Rc <= 0) {
1462                 netif_stop_queue(dev);
1463         }
1464
1465         /* If not taken, give buffer ownership back to the
1466          * queueing layer.
1467          */
1468         if (Rc < 0)
1469                 return (1);
1470
1471         dev->trans_start = jiffies;
1472         return (0);
1473 } /* SkGeXmit */
1474
1475
1476 /*****************************************************************************
1477  *
1478  *      XmitFrame - fill one socket buffer into the transmit ring
1479  *
1480  * Description:
1481  *      This function puts a message into the transmit descriptor ring
1482  *      if there is a descriptors left.
1483  *      Linux skb's consist of only one continuous buffer.
1484  *      The first step locks the ring. It is held locked
1485  *      all time to avoid problems with SWITCH_../PORT_RESET.
1486  *      Then the descriptoris allocated.
1487  *      The second part is linking the buffer to the descriptor.
1488  *      At the very last, the Control field of the descriptor
1489  *      is made valid for the BMU and a start TX command is given
1490  *      if necessary.
1491  *
1492  * Returns:
1493  *      > 0 - on succes: the number of bytes in the message
1494  *      = 0 - on resource shortage: this frame sent or dropped, now
1495  *              the ring is full ( -> set tbusy)
1496  *      < 0 - on failure: other problems ( -> return failure to upper layers)
1497  */
1498 static int XmitFrame(
1499 SK_AC           *pAC,           /* pointer to adapter context           */
1500 TX_PORT         *pTxPort,       /* pointer to struct of port to send to */
1501 struct sk_buff  *pMessage)      /* pointer to send-message              */
1502 {
1503         TXD             *pTxd;          /* the rxd to fill */
1504         TXD             *pOldTxd;
1505         unsigned long    Flags;
1506         SK_U64           PhysAddr;
1507         int              Protocol;
1508         int              IpHeaderLength;
1509         int              BytesSend = pMessage->len;
1510
1511         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1512
1513         spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1514 #ifndef USE_TX_COMPLETE
1515         FreeTxDescriptors(pAC, pTxPort);
1516 #endif
1517         if (pTxPort->TxdRingFree == 0) {
1518                 /* 
1519                 ** no enough free descriptors in ring at the moment.
1520                 ** Maybe free'ing some old one help?
1521                 */
1522                 FreeTxDescriptors(pAC, pTxPort);
1523                 if (pTxPort->TxdRingFree == 0) {
1524                         spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1525                         SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1526                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1527                                 SK_DBGCAT_DRV_TX_PROGRESS,
1528                                 ("XmitFrame failed\n"));
1529                         /* 
1530                         ** the desired message can not be sent
1531                         ** Because tbusy seems to be set, the message 
1532                         ** should not be freed here. It will be used 
1533                         ** by the scheduler of the ethernet handler 
1534                         */
1535                         return (-1);
1536                 }
1537         }
1538
1539         /*
1540         ** If the passed socket buffer is of smaller MTU-size than 60,
1541         ** copy everything into new buffer and fill all bytes between
1542         ** the original packet end and the new packet end of 60 with 0x00.
1543         ** This is to resolve faulty padding by the HW with 0xaa bytes.
1544         */
1545         if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1546                 if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
1547                         spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1548                         return 0;
1549                 }
1550                 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1551         }
1552
1553         /* 
1554         ** advance head counter behind descriptor needed for this frame, 
1555         ** so that needed descriptor is reserved from that on. The next
1556         ** action will be to add the passed buffer to the TX-descriptor
1557         */
1558         pTxd = pTxPort->pTxdRingHead;
1559         pTxPort->pTxdRingHead = pTxd->pNextTxd;
1560         pTxPort->TxdRingFree--;
1561
1562 #ifdef SK_DUMP_TX
1563         DumpMsg(pMessage, "XmitFrame");
1564 #endif
1565
1566         /* 
1567         ** First step is to map the data to be sent via the adapter onto
1568         ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1569         ** and 2.6 need to use pci_map_page() for that mapping.
1570         */
1571         PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1572                                         virt_to_page(pMessage->data),
1573                                         ((unsigned long) pMessage->data & ~PAGE_MASK),
1574                                         pMessage->len,
1575                                         PCI_DMA_TODEVICE);
1576         pTxd->VDataLow  = (SK_U32) (PhysAddr & 0xffffffff);
1577         pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1578         pTxd->pMBuf     = pMessage;
1579
1580         if (pMessage->ip_summed == CHECKSUM_HW) {
1581                 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1582                 if ((Protocol == C_PROTO_ID_UDP) && 
1583                         (pAC->GIni.GIChipRev == 0) &&
1584                         (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1585                         pTxd->TBControl = BMU_TCP_CHECK;
1586                 } else {
1587                         pTxd->TBControl = BMU_UDP_CHECK;
1588                 }
1589
1590                 IpHeaderLength  = (SK_U8)pMessage->data[C_OFFSET_IPHEADER];
1591                 IpHeaderLength  = (IpHeaderLength & 0xf) * 4;
1592                 pTxd->TcpSumOfs = 0; /* PH-Checksum already calculated */
1593                 pTxd->TcpSumSt  = C_LEN_ETHERMAC_HEADER + IpHeaderLength + 
1594                                                         (Protocol == C_PROTO_ID_UDP ?
1595                                                         C_OFFSET_UDPHEADER_UDPCS : 
1596                                                         C_OFFSET_TCPHEADER_TCPCS);
1597                 pTxd->TcpSumWr  = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1598
1599                 pTxd->TBControl |= BMU_OWN | BMU_STF | 
1600                                    BMU_SW  | BMU_EOF |
1601 #ifdef USE_TX_COMPLETE
1602                                    BMU_IRQ_EOF |
1603 #endif
1604                                    pMessage->len;
1605         } else {
1606                 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK | 
1607                                   BMU_SW  | BMU_EOF |
1608 #ifdef USE_TX_COMPLETE
1609                                    BMU_IRQ_EOF |
1610 #endif
1611                         pMessage->len;
1612         }
1613
1614         /* 
1615         ** If previous descriptor already done, give TX start cmd 
1616         */
1617         pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1618         if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1619                 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1620         }       
1621
1622         /* 
1623         ** after releasing the lock, the skb may immediately be free'd 
1624         */
1625         spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1626         if (pTxPort->TxdRingFree != 0) {
1627                 return (BytesSend);
1628         } else {
1629                 return (0);
1630         }
1631
1632 } /* XmitFrame */
1633
1634 /*****************************************************************************
1635  *
1636  *      XmitFrameSG - fill one socket buffer into the transmit ring
1637  *                (use SG and TCP/UDP hardware checksumming)
1638  *
1639  * Description:
1640  *      This function puts a message into the transmit descriptor ring
1641  *      if there is a descriptors left.
1642  *
1643  * Returns:
1644  *      > 0 - on succes: the number of bytes in the message
1645  *      = 0 - on resource shortage: this frame sent or dropped, now
1646  *              the ring is full ( -> set tbusy)
1647  *      < 0 - on failure: other problems ( -> return failure to upper layers)
1648  */
1649 static int XmitFrameSG(
1650 SK_AC           *pAC,           /* pointer to adapter context           */
1651 TX_PORT         *pTxPort,       /* pointer to struct of port to send to */
1652 struct sk_buff  *pMessage)      /* pointer to send-message              */
1653 {
1654
1655         TXD             *pTxd;
1656         TXD             *pTxdFst;
1657         TXD             *pTxdLst;
1658         int              CurrFrag;
1659         int              BytesSend;
1660         int              IpHeaderLength; 
1661         int              Protocol;
1662         skb_frag_t      *sk_frag;
1663         SK_U64           PhysAddr;
1664         unsigned long    Flags;
1665
1666         spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1667 #ifndef USE_TX_COMPLETE
1668         FreeTxDescriptors(pAC, pTxPort);
1669 #endif
1670         if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1671                 FreeTxDescriptors(pAC, pTxPort);
1672                 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1673                         spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1674                         SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1675                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1676                                 SK_DBGCAT_DRV_TX_PROGRESS,
1677                                 ("XmitFrameSG failed - Ring full\n"));
1678                                 /* this message can not be sent now */
1679                         return(-1);
1680                 }
1681         }
1682
1683         pTxd      = pTxPort->pTxdRingHead;
1684         pTxdFst   = pTxd;
1685         pTxdLst   = pTxd;
1686         BytesSend = 0;
1687         Protocol  = 0;
1688
1689         /* 
1690         ** Map the first fragment (header) into the DMA-space
1691         */
1692         PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1693                         virt_to_page(pMessage->data),
1694                         ((unsigned long) pMessage->data & ~PAGE_MASK),
1695                         skb_headlen(pMessage),
1696                         PCI_DMA_TODEVICE);
1697
1698         pTxd->VDataLow  = (SK_U32) (PhysAddr & 0xffffffff);
1699         pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1700
1701         /* 
1702         ** Does the HW need to evaluate checksum for TCP or UDP packets? 
1703         */
1704         if (pMessage->ip_summed == CHECKSUM_HW) {
1705                 pTxd->TBControl = BMU_STF | BMU_STFWD | skb_headlen(pMessage);
1706                 /* 
1707                 ** We have to use the opcode for tcp here,  because the
1708                 ** opcode for udp is not working in the hardware yet 
1709                 ** (Revision 2.0)
1710                 */
1711                 Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
1712                 if ((Protocol == C_PROTO_ID_UDP) && 
1713                         (pAC->GIni.GIChipRev == 0) &&
1714                         (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1715                         pTxd->TBControl |= BMU_TCP_CHECK;
1716                 } else {
1717                         pTxd->TBControl |= BMU_UDP_CHECK;
1718                 }
1719
1720                 IpHeaderLength  = ((SK_U8)pMessage->data[C_OFFSET_IPHEADER] & 0xf)*4;
1721                 pTxd->TcpSumOfs = 0; /* PH-Checksum already claculated */
1722                 pTxd->TcpSumSt  = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
1723                                                 (Protocol == C_PROTO_ID_UDP ?
1724                                                 C_OFFSET_UDPHEADER_UDPCS :
1725                                                 C_OFFSET_TCPHEADER_TCPCS);
1726                 pTxd->TcpSumWr  = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
1727         } else {
1728                 pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_STF |
1729                                         skb_headlen(pMessage);
1730         }
1731
1732         pTxd = pTxd->pNextTxd;
1733         pTxPort->TxdRingFree--;
1734         BytesSend += skb_headlen(pMessage);
1735
1736         /* 
1737         ** Browse over all SG fragments and map each of them into the DMA space
1738         */
1739         for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1740                 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1741                 /* 
1742                 ** we already have the proper value in entry
1743                 */
1744                 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1745                                                  sk_frag->page,
1746                                                  sk_frag->page_offset,
1747                                                  sk_frag->size,
1748                                                  PCI_DMA_TODEVICE);
1749
1750                 pTxd->VDataLow  = (SK_U32) (PhysAddr & 0xffffffff);
1751                 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1752                 pTxd->pMBuf     = pMessage;
1753                 
1754                 /* 
1755                 ** Does the HW need to evaluate checksum for TCP or UDP packets? 
1756                 */
1757                 if (pMessage->ip_summed == CHECKSUM_HW) {
1758                         pTxd->TBControl = BMU_OWN | BMU_SW | BMU_STFWD;
1759                         /* 
1760                         ** We have to use the opcode for tcp here because the 
1761                         ** opcode for udp is not working in the hardware yet 
1762                         ** (revision 2.0)
1763                         */
1764                         if ((Protocol == C_PROTO_ID_UDP) && 
1765                                 (pAC->GIni.GIChipRev == 0) &&
1766                                 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1767                                 pTxd->TBControl |= BMU_TCP_CHECK;
1768                         } else {
1769                                 pTxd->TBControl |= BMU_UDP_CHECK;
1770                         }
1771                 } else {
1772                         pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_OWN;
1773                 }
1774
1775                 /* 
1776                 ** Do we have the last fragment? 
1777                 */
1778                 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags )  {
1779 #ifdef USE_TX_COMPLETE
1780                         pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF | sk_frag->size;
1781 #else
1782                         pTxd->TBControl |= BMU_EOF | sk_frag->size;
1783 #endif
1784                         pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1785
1786                 } else {
1787                         pTxd->TBControl |= sk_frag->size;
1788                 }
1789                 pTxdLst = pTxd;
1790                 pTxd    = pTxd->pNextTxd;
1791                 pTxPort->TxdRingFree--;
1792                 BytesSend += sk_frag->size;
1793         }
1794
1795         /* 
1796         ** If previous descriptor already done, give TX start cmd 
1797         */
1798         if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1799                 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1800         }
1801
1802         pTxPort->pTxdRingPrev = pTxdLst;
1803         pTxPort->pTxdRingHead = pTxd;
1804
1805         spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1806
1807         if (pTxPort->TxdRingFree > 0) {
1808                 return (BytesSend);
1809         } else {
1810                 return (0);
1811         }
1812 }
1813
1814 /*****************************************************************************
1815  *
1816  *      FreeTxDescriptors - release descriptors from the descriptor ring
1817  *
1818  * Description:
1819  *      This function releases descriptors from a transmit ring if they
1820  *      have been sent by the BMU.
1821  *      If a descriptors is sent, it can be freed and the message can
1822  *      be freed, too.
1823  *      The SOFTWARE controllable bit is used to prevent running around a
1824  *      completely free ring for ever. If this bit is no set in the
1825  *      frame (by XmitFrame), this frame has never been sent or is
1826  *      already freed.
1827  *      The Tx descriptor ring lock must be held while calling this function !!!
1828  *
1829  * Returns:
1830  *      none
1831  */
1832 static void FreeTxDescriptors(
1833 SK_AC   *pAC,           /* pointer to the adapter context */
1834 TX_PORT *pTxPort)       /* pointer to destination port structure */
1835 {
1836 TXD     *pTxd;          /* pointer to the checked descriptor */
1837 TXD     *pNewTail;      /* pointer to 'end' of the ring */
1838 SK_U32  Control;        /* TBControl field of descriptor */
1839 SK_U64  PhysAddr;       /* address of DMA mapping */
1840
1841         pNewTail = pTxPort->pTxdRingTail;
1842         pTxd     = pNewTail;
1843         /*
1844         ** loop forever; exits if BMU_SW bit not set in start frame
1845         ** or BMU_OWN bit set in any frame
1846         */
1847         while (1) {
1848                 Control = pTxd->TBControl;
1849                 if ((Control & BMU_SW) == 0) {
1850                         /*
1851                         ** software controllable bit is set in first
1852                         ** fragment when given to BMU. Not set means that
1853                         ** this fragment was never sent or is already
1854                         ** freed ( -> ring completely free now).
1855                         */
1856                         pTxPort->pTxdRingTail = pTxd;
1857                         netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1858                         return;
1859                 }
1860                 if (Control & BMU_OWN) {
1861                         pTxPort->pTxdRingTail = pTxd;
1862                         if (pTxPort->TxdRingFree > 0) {
1863                                 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1864                         }
1865                         return;
1866                 }
1867                 
1868                 /* 
1869                 ** release the DMA mapping, because until not unmapped
1870                 ** this buffer is considered being under control of the
1871                 ** adapter card!
1872                 */
1873                 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1874                 PhysAddr |= (SK_U64) pTxd->VDataLow;
1875                 pci_unmap_page(pAC->PciDev, PhysAddr,
1876                                  pTxd->pMBuf->len,
1877                                  PCI_DMA_TODEVICE);
1878
1879                 if (Control & BMU_EOF)
1880                         DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1881
1882                 pTxPort->TxdRingFree++;
1883                 pTxd->TBControl &= ~BMU_SW;
1884                 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1885         } /* while(forever) */
1886 } /* FreeTxDescriptors */
1887
1888 /*****************************************************************************
1889  *
1890  *      FillRxRing - fill the receive ring with valid descriptors
1891  *
1892  * Description:
1893  *      This function fills the receive ring descriptors with data
1894  *      segments and makes them valid for the BMU.
1895  *      The active ring is filled completely, if possible.
1896  *      The non-active ring is filled only partial to save memory.
1897  *
1898  * Description of rx ring structure:
1899  *      head - points to the descriptor which will be used next by the BMU
1900  *      tail - points to the next descriptor to give to the BMU
1901  *      
1902  * Returns:     N/A
1903  */
1904 static void FillRxRing(
1905 SK_AC           *pAC,           /* pointer to the adapter context */
1906 RX_PORT         *pRxPort)       /* ptr to port struct for which the ring
1907                                    should be filled */
1908 {
1909 unsigned long   Flags;
1910
1911         spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1912         while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1913                 if(!FillRxDescriptor(pAC, pRxPort))
1914                         break;
1915         }
1916         spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1917 } /* FillRxRing */
1918
1919
1920 /*****************************************************************************
1921  *
1922  *      FillRxDescriptor - fill one buffer into the receive ring
1923  *
1924  * Description:
1925  *      The function allocates a new receive buffer and
1926  *      puts it into the next descriptor.
1927  *
1928  * Returns:
1929  *      SK_TRUE - a buffer was added to the ring
1930  *      SK_FALSE - a buffer could not be added
1931  */
1932 static SK_BOOL FillRxDescriptor(
1933 SK_AC           *pAC,           /* pointer to the adapter context struct */
1934 RX_PORT         *pRxPort)       /* ptr to port struct of ring to fill */
1935 {
1936 struct sk_buff  *pMsgBlock;     /* pointer to a new message block */
1937 RXD             *pRxd;          /* the rxd to fill */
1938 SK_U16          Length;         /* data fragment length */
1939 SK_U64          PhysAddr;       /* physical address of a rx buffer */
1940
1941         pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1942         if (pMsgBlock == NULL) {
1943                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1944                         SK_DBGCAT_DRV_ENTRY,
1945                         ("%s: Allocation of rx buffer failed !\n",
1946                         pAC->dev[pRxPort->PortIndex]->name));
1947                 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1948                 return(SK_FALSE);
1949         }
1950         skb_reserve(pMsgBlock, 2); /* to align IP frames */
1951         /* skb allocated ok, so add buffer */
1952         pRxd = pRxPort->pRxdRingTail;
1953         pRxPort->pRxdRingTail = pRxd->pNextRxd;
1954         pRxPort->RxdRingFree--;
1955         Length = pAC->RxBufSize;
1956         PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1957                 virt_to_page(pMsgBlock->data),
1958                 ((unsigned long) pMsgBlock->data &
1959                 ~PAGE_MASK),
1960                 pAC->RxBufSize - 2,
1961                 PCI_DMA_FROMDEVICE);
1962
1963         pRxd->VDataLow  = (SK_U32) (PhysAddr & 0xffffffff);
1964         pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1965         pRxd->pMBuf     = pMsgBlock;
1966         pRxd->RBControl = BMU_OWN       | 
1967                           BMU_STF       | 
1968                           BMU_IRQ_EOF   | 
1969                           BMU_TCP_CHECK | 
1970                           Length;
1971         return (SK_TRUE);
1972
1973 } /* FillRxDescriptor */
1974
1975
1976 /*****************************************************************************
1977  *
1978  *      ReQueueRxBuffer - fill one buffer back into the receive ring
1979  *
1980  * Description:
1981  *      Fill a given buffer back into the rx ring. The buffer
1982  *      has been previously allocated and aligned, and its phys.
1983  *      address calculated, so this is no more necessary.
1984  *
1985  * Returns: N/A
1986  */
1987 static void ReQueueRxBuffer(
1988 SK_AC           *pAC,           /* pointer to the adapter context struct */
1989 RX_PORT         *pRxPort,       /* ptr to port struct of ring to fill */
1990 struct sk_buff  *pMsg,          /* pointer to the buffer */
1991 SK_U32          PhysHigh,       /* phys address high dword */
1992 SK_U32          PhysLow)        /* phys address low dword */
1993 {
1994 RXD             *pRxd;          /* the rxd to fill */
1995 SK_U16          Length;         /* data fragment length */
1996
1997         pRxd = pRxPort->pRxdRingTail;
1998         pRxPort->pRxdRingTail = pRxd->pNextRxd;
1999         pRxPort->RxdRingFree--;
2000         Length = pAC->RxBufSize;
2001
2002         pRxd->VDataLow  = PhysLow;
2003         pRxd->VDataHigh = PhysHigh;
2004         pRxd->pMBuf     = pMsg;
2005         pRxd->RBControl = BMU_OWN       | 
2006                           BMU_STF       |
2007                           BMU_IRQ_EOF   | 
2008                           BMU_TCP_CHECK | 
2009                           Length;
2010         return;
2011 } /* ReQueueRxBuffer */
2012
2013 /*****************************************************************************
2014  *
2015  *      ReceiveIrq - handle a receive IRQ
2016  *
2017  * Description:
2018  *      This function is called when a receive IRQ is set.
2019  *      It walks the receive descriptor ring and sends up all
2020  *      frames that are complete.
2021  *
2022  * Returns:     N/A
2023  */
2024 static void ReceiveIrq(
2025         SK_AC           *pAC,                   /* pointer to adapter context */
2026         RX_PORT         *pRxPort,               /* pointer to receive port struct */
2027         SK_BOOL         SlowPathLock)   /* indicates if SlowPathLock is needed */
2028 {
2029 RXD                             *pRxd;                  /* pointer to receive descriptors */
2030 SK_U32                  Control;                /* control field of descriptor */
2031 struct sk_buff  *pMsg;                  /* pointer to message holding frame */
2032 struct sk_buff  *pNewMsg;               /* pointer to a new message for copying frame */
2033 int                             FrameLength;    /* total length of received frame */
2034 int                             IpFrameLength;
2035 SK_MBUF                 *pRlmtMbuf;             /* ptr to a buffer for giving a frame to rlmt */
2036 SK_EVPARA               EvPara;                 /* an event parameter union */  
2037 unsigned long   Flags;                  /* for spin lock */
2038 int                             PortIndex = pRxPort->PortIndex;
2039 unsigned int    Offset;
2040 unsigned int    NumBytes;
2041 unsigned int    ForRlmt;
2042 SK_BOOL                 IsBc;
2043 SK_BOOL                 IsMc;
2044 SK_BOOL  IsBadFrame;                    /* Bad frame */
2045
2046 SK_U32                  FrameStat;
2047 unsigned short  Csum1;
2048 unsigned short  Csum2;
2049 unsigned short  Type;
2050 int                             Result;
2051 SK_U64                  PhysAddr;
2052
2053 rx_start:       
2054         /* do forever; exit if BMU_OWN found */
2055         for ( pRxd = pRxPort->pRxdRingHead ;
2056                   pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2057                   pRxd = pRxd->pNextRxd,
2058                   pRxPort->pRxdRingHead = pRxd,
2059                   pRxPort->RxdRingFree ++) {
2060
2061                 /*
2062                  * For a better understanding of this loop
2063                  * Go through every descriptor beginning at the head
2064                  * Please note: the ring might be completely received so the OWN bit
2065                  * set is not a good crirteria to leave that loop.
2066                  * Therefore the RingFree counter is used.
2067                  * On entry of this loop pRxd is a pointer to the Rxd that needs
2068                  * to be checked next.
2069                  */
2070
2071                 Control = pRxd->RBControl;
2072         
2073                 /* check if this descriptor is ready */
2074                 if ((Control & BMU_OWN) != 0) {
2075                         /* this descriptor is not yet ready */
2076                         /* This is the usual end of the loop */
2077                         /* We don't need to start the ring again */
2078                         FillRxRing(pAC, pRxPort);
2079                         return;
2080                 }
2081                 pAC->DynIrqModInfo.NbrProcessedDescr++;
2082
2083                 /* get length of frame and check it */
2084                 FrameLength = Control & BMU_BBC;
2085                 if (FrameLength > pAC->RxBufSize) {
2086                         goto rx_failed;
2087                 }
2088
2089                 /* check for STF and EOF */
2090                 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2091                         goto rx_failed;
2092                 }
2093
2094                 /* here we have a complete frame in the ring */
2095                 pMsg = pRxd->pMBuf;
2096
2097                 FrameStat = pRxd->FrameStat;
2098
2099                 /* check for frame length mismatch */
2100 #define XMR_FS_LEN_SHIFT        18
2101 #define GMR_FS_LEN_SHIFT        16
2102                 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2103                         if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2104                                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2105                                         SK_DBGCAT_DRV_RX_PROGRESS,
2106                                         ("skge: Frame length mismatch (%u/%u).\n",
2107                                         FrameLength,
2108                                         (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2109                                 goto rx_failed;
2110                         }
2111                 }
2112                 else {
2113                         if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2114                                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2115                                         SK_DBGCAT_DRV_RX_PROGRESS,
2116                                         ("skge: Frame length mismatch (%u/%u).\n",
2117                                         FrameLength,
2118                                         (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2119                                 goto rx_failed;
2120                         }
2121                 }
2122
2123                 /* Set Rx Status */
2124                 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2125                         IsBc = (FrameStat & XMR_FS_BC) != 0;
2126                         IsMc = (FrameStat & XMR_FS_MC) != 0;
2127                         IsBadFrame = (FrameStat &
2128                                 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2129                 } else {
2130                         IsBc = (FrameStat & GMR_FS_BC) != 0;
2131                         IsMc = (FrameStat & GMR_FS_MC) != 0;
2132                         IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2133                                                         ((FrameStat & GMR_FS_RX_OK) == 0));
2134                 }
2135
2136                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2137                         ("Received frame of length %d on port %d\n",
2138                         FrameLength, PortIndex));
2139                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2140                         ("Number of free rx descriptors: %d\n",
2141                         pRxPort->RxdRingFree));
2142 /* DumpMsg(pMsg, "Rx"); */
2143
2144                 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2145 #if 0
2146                         (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2147 #endif
2148                         /* there is a receive error in this frame */
2149                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2150                                 SK_DBGCAT_DRV_RX_PROGRESS,
2151                                 ("skge: Error in received frame, dropped!\n"
2152                                 "Control: %x\nRxStat: %x\n",
2153                                 Control, FrameStat));
2154
2155                         ReQueueRxBuffer(pAC, pRxPort, pMsg,
2156                                 pRxd->VDataHigh, pRxd->VDataLow);
2157
2158                         continue;
2159                 }
2160
2161                 /*
2162                  * if short frame then copy data to reduce memory waste
2163                  */
2164                 if ((FrameLength < SK_COPY_THRESHOLD) &&
2165                         ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2166                         /*
2167                          * Short frame detected and allocation successfull
2168                          */
2169                         /* use new skb and copy data */
2170                         skb_reserve(pNewMsg, 2);
2171                         skb_put(pNewMsg, FrameLength);
2172                         PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2173                         PhysAddr |= (SK_U64) pRxd->VDataLow;
2174
2175                         pci_dma_sync_single_for_cpu(pAC->PciDev,
2176                                                     (dma_addr_t) PhysAddr,
2177                                                     FrameLength,
2178                                                     PCI_DMA_FROMDEVICE);
2179                         eth_copy_and_sum(pNewMsg, pMsg->data,
2180                                 FrameLength, 0);
2181                         pci_dma_sync_single_for_device(pAC->PciDev,
2182                                                        (dma_addr_t) PhysAddr,
2183                                                        FrameLength,
2184                                                        PCI_DMA_FROMDEVICE);
2185                         ReQueueRxBuffer(pAC, pRxPort, pMsg,
2186                                 pRxd->VDataHigh, pRxd->VDataLow);
2187
2188                         pMsg = pNewMsg;
2189
2190                 }
2191                 else {
2192                         /*
2193                          * if large frame, or SKB allocation failed, pass
2194                          * the SKB directly to the networking
2195                          */
2196
2197                         PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2198                         PhysAddr |= (SK_U64) pRxd->VDataLow;
2199
2200                         /* release the DMA mapping */
2201                         pci_unmap_single(pAC->PciDev,
2202                                          PhysAddr,
2203                                          pAC->RxBufSize - 2,
2204                                          PCI_DMA_FROMDEVICE);
2205
2206                         /* set length in message */
2207                         skb_put(pMsg, FrameLength);
2208                         /* hardware checksum */
2209                         Type = ntohs(*((short*)&pMsg->data[12]));
2210
2211 #ifdef USE_SK_RX_CHECKSUM
2212                         if (Type == 0x800) {
2213                                 Csum1=le16_to_cpu(pRxd->TcpSums & 0xffff);
2214                                 Csum2=le16_to_cpu((pRxd->TcpSums >> 16) & 0xffff);
2215                                 IpFrameLength = (int) ntohs((unsigned short)
2216                                                                 ((unsigned short *) pMsg->data)[8]);
2217
2218                                 /*
2219                                  * Test: If frame is padded, a check is not possible!
2220                                  * Frame not padded? Length difference must be 14 (0xe)!
2221                                  */
2222                                 if ((FrameLength - IpFrameLength) != 0xe) {
2223                                 /* Frame padded => TCP offload not possible! */
2224                                         pMsg->ip_summed = CHECKSUM_NONE;
2225                                 } else {
2226                                 /* Frame not padded => TCP offload! */
2227                                         if ((((Csum1 & 0xfffe) && (Csum2 & 0xfffe)) &&
2228                                                 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) ||
2229                                                 (pAC->ChipsetType)) {
2230                                                 Result = SkCsGetReceiveInfo(pAC,
2231                                                         &pMsg->data[14],
2232                                                         Csum1, Csum2, pRxPort->PortIndex);
2233                                                 if (Result ==
2234                                                         SKCS_STATUS_IP_FRAGMENT ||
2235                                                         Result ==
2236                                                         SKCS_STATUS_IP_CSUM_OK ||
2237                                                         Result ==
2238                                                         SKCS_STATUS_TCP_CSUM_OK ||
2239                                                         Result ==
2240                                                         SKCS_STATUS_UDP_CSUM_OK) {
2241                                                                 pMsg->ip_summed =
2242                                                                 CHECKSUM_UNNECESSARY;
2243                                                 }
2244                                                 else if (Result ==
2245                                                         SKCS_STATUS_TCP_CSUM_ERROR ||
2246                                                         Result ==
2247                                                         SKCS_STATUS_UDP_CSUM_ERROR ||
2248                                                         Result ==
2249                                                         SKCS_STATUS_IP_CSUM_ERROR_UDP ||
2250                                                         Result ==
2251                                                         SKCS_STATUS_IP_CSUM_ERROR_TCP ||
2252                                                         Result ==
2253                                                         SKCS_STATUS_IP_CSUM_ERROR ) {
2254                                                         /* HW Checksum error */
2255                                                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2256                                                         SK_DBGCAT_DRV_RX_PROGRESS,
2257                                                         ("skge: CRC error. Frame dropped!\n"));
2258                                                         goto rx_failed;
2259                                                 } else {
2260                                                                 pMsg->ip_summed =
2261                                                                 CHECKSUM_NONE;
2262                                                 }
2263                                         }/* checksumControl calculation valid */
2264                                 } /* Frame length check */
2265                         } /* IP frame */
2266 #else
2267                         pMsg->ip_summed = CHECKSUM_NONE;        
2268 #endif
2269                 } /* frame > SK_COPY_TRESHOLD */
2270                 
2271                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2272                 ForRlmt = SK_RLMT_RX_PROTOCOL;
2273 #if 0
2274                 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2275 #endif
2276                 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2277                         IsBc, &Offset, &NumBytes);
2278                 if (NumBytes != 0) {
2279 #if 0
2280                         IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2281 #endif
2282                         SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2283                                 &pMsg->data[Offset],
2284                                 IsBc, IsMc, &ForRlmt);
2285                 }
2286                 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2287                                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2288                         /* send up only frames from active port */
2289                         if ((PortIndex == pAC->ActivePort) ||
2290                                 (pAC->RlmtNets == 2)) {
2291                                 /* frame for upper layer */
2292                                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2293 #ifdef xDEBUG
2294                                 DumpMsg(pMsg, "Rx");
2295 #endif
2296                                 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2297                                         FrameLength, pRxPort->PortIndex);
2298
2299                                 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2300                                 pMsg->protocol = eth_type_trans(pMsg,
2301                                         pAC->dev[pRxPort->PortIndex]);
2302                                 netif_rx(pMsg);
2303                                 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2304                         }
2305                         else {
2306                                 /* drop frame */
2307                                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2308                                         SK_DBGCAT_DRV_RX_PROGRESS,
2309                                         ("D"));
2310                                 DEV_KFREE_SKB(pMsg);
2311                         }
2312                         
2313                 } /* if not for rlmt */
2314                 else {
2315                         /* packet for rlmt */
2316                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2317                                 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2318                         pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2319                                 pAC->IoBase, FrameLength);
2320                         if (pRlmtMbuf != NULL) {
2321                                 pRlmtMbuf->pNext = NULL;
2322                                 pRlmtMbuf->Length = FrameLength;
2323                                 pRlmtMbuf->PortIdx = PortIndex;
2324                                 EvPara.pParaPtr = pRlmtMbuf;
2325                                 memcpy((char*)(pRlmtMbuf->pData),
2326                                            (char*)(pMsg->data),
2327                                            FrameLength);
2328
2329                                 /* SlowPathLock needed? */
2330                                 if (SlowPathLock == SK_TRUE) {
2331                                         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2332                                         SkEventQueue(pAC, SKGE_RLMT,
2333                                                 SK_RLMT_PACKET_RECEIVED,
2334                                                 EvPara);
2335                                         pAC->CheckQueue = SK_TRUE;
2336                                         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2337                                 } else {
2338                                         SkEventQueue(pAC, SKGE_RLMT,
2339                                                 SK_RLMT_PACKET_RECEIVED,
2340                                                 EvPara);
2341                                         pAC->CheckQueue = SK_TRUE;
2342                                 }
2343
2344                                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2345                                         SK_DBGCAT_DRV_RX_PROGRESS,
2346                                         ("Q"));
2347                         }
2348                         if ((pAC->dev[pRxPort->PortIndex]->flags &
2349                                 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2350                                 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2351                                 SK_RLMT_RX_PROTOCOL) {
2352                                 pMsg->dev = pAC->dev[pRxPort->PortIndex];
2353                                 pMsg->protocol = eth_type_trans(pMsg,
2354                                         pAC->dev[pRxPort->PortIndex]);
2355                                 netif_rx(pMsg);
2356                                 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2357                         }
2358                         else {
2359                                 DEV_KFREE_SKB(pMsg);
2360                         }
2361
2362                 } /* if packet for rlmt */
2363         } /* for ... scanning the RXD ring */
2364
2365         /* RXD ring is empty -> fill and restart */
2366         FillRxRing(pAC, pRxPort);
2367         /* do not start if called from Close */
2368         if (pAC->BoardLevel > SK_INIT_DATA) {
2369                 ClearAndStartRx(pAC, PortIndex);
2370         }
2371         return;
2372
2373 rx_failed:
2374         /* remove error frame */
2375         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2376                 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2377
2378         /* release the DMA mapping */
2379
2380         PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2381         PhysAddr |= (SK_U64) pRxd->VDataLow;
2382         pci_unmap_page(pAC->PciDev,
2383                          PhysAddr,
2384                          pAC->RxBufSize - 2,
2385                          PCI_DMA_FROMDEVICE);
2386         DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2387         pRxd->pMBuf = NULL;
2388         pRxPort->RxdRingFree++;
2389         pRxPort->pRxdRingHead = pRxd->pNextRxd;
2390         goto rx_start;
2391
2392 } /* ReceiveIrq */
2393
2394
2395 /*****************************************************************************
2396  *
2397  *      ClearAndStartRx - give a start receive command to BMU, clear IRQ
2398  *
2399  * Description:
2400  *      This function sends a start command and a clear interrupt
2401  *      command for one receive queue to the BMU.
2402  *
2403  * Returns: N/A
2404  *      none
2405  */
2406 static void ClearAndStartRx(
2407 SK_AC   *pAC,           /* pointer to the adapter context */
2408 int     PortIndex)      /* index of the receive port (XMAC) */
2409 {
2410         SK_OUT8(pAC->IoBase,
2411                 RxQueueAddr[PortIndex]+Q_CSR,
2412                 CSR_START | CSR_IRQ_CL_F);
2413 } /* ClearAndStartRx */
2414
2415
2416 /*****************************************************************************
2417  *
2418  *      ClearTxIrq - give a clear transmit IRQ command to BMU
2419  *
2420  * Description:
2421  *      This function sends a clear tx IRQ command for one
2422  *      transmit queue to the BMU.
2423  *
2424  * Returns: N/A
2425  */
2426 static void ClearTxIrq(
2427 SK_AC   *pAC,           /* pointer to the adapter context */
2428 int     PortIndex,      /* index of the transmit port (XMAC) */
2429 int     Prio)           /* priority or normal queue */
2430 {
2431         SK_OUT8(pAC->IoBase, 
2432                 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2433                 CSR_IRQ_CL_F);
2434 } /* ClearTxIrq */
2435
2436
2437 /*****************************************************************************
2438  *
2439  *      ClearRxRing - remove all buffers from the receive ring
2440  *
2441  * Description:
2442  *      This function removes all receive buffers from the ring.
2443  *      The receive BMU must be stopped before calling this function.
2444  *
2445  * Returns: N/A
2446  */
2447 static void ClearRxRing(
2448 SK_AC   *pAC,           /* pointer to adapter context */
2449 RX_PORT *pRxPort)       /* pointer to rx port struct */
2450 {
2451 RXD             *pRxd;  /* pointer to the current descriptor */
2452 unsigned long   Flags;
2453 SK_U64          PhysAddr;
2454
2455         if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2456                 return;
2457         }
2458         spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2459         pRxd = pRxPort->pRxdRingHead;
2460         do {
2461                 if (pRxd->pMBuf != NULL) {
2462
2463                         PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2464                         PhysAddr |= (SK_U64) pRxd->VDataLow;
2465                         pci_unmap_page(pAC->PciDev,
2466                                          PhysAddr,
2467                                          pAC->RxBufSize - 2,
2468                                          PCI_DMA_FROMDEVICE);
2469                         DEV_KFREE_SKB(pRxd->pMBuf);
2470                         pRxd->pMBuf = NULL;
2471                 }
2472                 pRxd->RBControl &= BMU_OWN;
2473                 pRxd = pRxd->pNextRxd;
2474                 pRxPort->RxdRingFree++;
2475         } while (pRxd != pRxPort->pRxdRingTail);
2476         pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2477         spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2478 } /* ClearRxRing */
2479
2480 /*****************************************************************************
2481  *
2482  *      ClearTxRing - remove all buffers from the transmit ring
2483  *
2484  * Description:
2485  *      This function removes all transmit buffers from the ring.
2486  *      The transmit BMU must be stopped before calling this function
2487  *      and transmitting at the upper level must be disabled.
2488  *      The BMU own bit of all descriptors is cleared, the rest is
2489  *      done by calling FreeTxDescriptors.
2490  *
2491  * Returns: N/A
2492  */
2493 static void ClearTxRing(
2494 SK_AC   *pAC,           /* pointer to adapter context */
2495 TX_PORT *pTxPort)       /* pointer to tx prt struct */
2496 {
2497 TXD             *pTxd;          /* pointer to the current descriptor */
2498 int             i;
2499 unsigned long   Flags;
2500
2501         spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2502         pTxd = pTxPort->pTxdRingHead;
2503         for (i=0; i<pAC->TxDescrPerRing; i++) {
2504                 pTxd->TBControl &= ~BMU_OWN;
2505                 pTxd = pTxd->pNextTxd;
2506         }
2507         FreeTxDescriptors(pAC, pTxPort);
2508         spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2509 } /* ClearTxRing */
2510
2511 /*****************************************************************************
2512  *
2513  *      SkGeSetMacAddr - Set the hardware MAC address
2514  *
2515  * Description:
2516  *      This function sets the MAC address used by the adapter.
2517  *
2518  * Returns:
2519  *      0, if everything is ok
2520  *      !=0, on error
2521  */
2522 static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2523 {
2524
2525 DEV_NET *pNet = netdev_priv(dev);
2526 SK_AC   *pAC = pNet->pAC;
2527
2528 struct sockaddr *addr = p;
2529 unsigned long   Flags;
2530         
2531         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2532                 ("SkGeSetMacAddr starts now...\n"));
2533         if(netif_running(dev))
2534                 return -EBUSY;
2535
2536         memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2537         
2538         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2539
2540         if (pAC->RlmtNets == 2)
2541                 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2542                         (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2543         else
2544                 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2545                         (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2546
2547         
2548         
2549         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2550         return 0;
2551 } /* SkGeSetMacAddr */
2552
2553
2554 /*****************************************************************************
2555  *
2556  *      SkGeSetRxMode - set receive mode
2557  *
2558  * Description:
2559  *      This function sets the receive mode of an adapter. The adapter
2560  *      supports promiscuous mode, allmulticast mode and a number of
2561  *      multicast addresses. If more multicast addresses the available
2562  *      are selected, a hash function in the hardware is used.
2563  *
2564  * Returns:
2565  *      0, if everything is ok
2566  *      !=0, on error
2567  */
2568 static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2569 {
2570
2571 DEV_NET         *pNet;
2572 SK_AC           *pAC;
2573
2574 struct dev_mc_list      *pMcList;
2575 int                     i;
2576 int                     PortIdx;
2577 unsigned long           Flags;
2578
2579         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2580                 ("SkGeSetRxMode starts now... "));
2581
2582         pNet = netdev_priv(dev);
2583         pAC = pNet->pAC;
2584         if (pAC->RlmtNets == 1)
2585                 PortIdx = pAC->ActivePort;
2586         else
2587                 PortIdx = pNet->NetNr;
2588
2589         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2590         if (dev->flags & IFF_PROMISC) {
2591                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2592                         ("PROMISCUOUS mode\n"));
2593                 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2594                         SK_PROM_MODE_LLC);
2595         } else if (dev->flags & IFF_ALLMULTI) {
2596                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2597                         ("ALLMULTI mode\n"));
2598                 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2599                         SK_PROM_MODE_ALL_MC);
2600         } else {
2601                 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2602                         SK_PROM_MODE_NONE);
2603                 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2604
2605                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2606                         ("Number of MC entries: %d ", dev->mc_count));
2607                 
2608                 pMcList = dev->mc_list;
2609                 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2610                         SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2611                                 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2612                         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2613                                 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2614                                 pMcList->dmi_addr[0],
2615                                 pMcList->dmi_addr[1],
2616                                 pMcList->dmi_addr[2],
2617                                 pMcList->dmi_addr[3],
2618                                 pMcList->dmi_addr[4],
2619                                 pMcList->dmi_addr[5]));
2620                 }
2621                 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2622         }
2623         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2624         
2625         return;
2626 } /* SkGeSetRxMode */
2627
2628
2629 /*****************************************************************************
2630  *
2631  *      SkGeChangeMtu - set the MTU to another value
2632  *
2633  * Description:
2634  *      This function sets is called whenever the MTU size is changed
2635  *      (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2636  *      ethernet MTU size, long frame support is activated.
2637  *
2638  * Returns:
2639  *      0, if everything is ok
2640  *      !=0, on error
2641  */
2642 static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2643 {
2644 DEV_NET         *pNet;
2645 DEV_NET         *pOtherNet;
2646 SK_AC           *pAC;
2647 unsigned long   Flags;
2648 int             i;
2649 SK_EVPARA       EvPara;
2650
2651         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2652                 ("SkGeChangeMtu starts now...\n"));
2653
2654         pNet = netdev_priv(dev);
2655         pAC  = pNet->pAC;
2656
2657         if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2658                 return -EINVAL;
2659         }
2660
2661         if(pAC->BoardLevel != SK_INIT_RUN) {
2662                 return -EINVAL;
2663         }
2664
2665 #ifdef SK_DIAG_SUPPORT
2666         if (pAC->DiagModeActive == DIAG_ACTIVE) {
2667                 if (pAC->DiagFlowCtrl == SK_FALSE) {
2668                         return -1; /* still in use, deny any actions of MTU */
2669                 } else {
2670                         pAC->DiagFlowCtrl = SK_FALSE;
2671                 }
2672         }
2673 #endif
2674
2675         pNet->Mtu = NewMtu;
2676         pOtherNet = netdev_priv(pAC->dev[1 - pNet->NetNr]);
2677         if ((pOtherNet->Mtu>1500) && (NewMtu<=1500) && (pOtherNet->Up==1)) {
2678                 return(0);
2679         }
2680
2681         pAC->RxBufSize = NewMtu + 32;
2682         dev->mtu = NewMtu;
2683
2684         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2685                 ("New MTU: %d\n", NewMtu));
2686
2687         /* 
2688         ** Prevent any reconfiguration while changing the MTU 
2689         ** by disabling any interrupts 
2690         */
2691         SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2692         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2693
2694         /* 
2695         ** Notify RLMT that any ports are to be stopped
2696         */
2697         EvPara.Para32[0] =  0;
2698         EvPara.Para32[1] = -1;
2699         if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2700                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2701                 EvPara.Para32[0] =  1;
2702                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2703         } else {
2704                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2705         }
2706
2707         /*
2708         ** After calling the SkEventDispatcher(), RLMT is aware about
2709         ** the stopped ports -> configuration can take place!
2710         */
2711         SkEventDispatcher(pAC, pAC->IoBase);
2712
2713         for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2714                 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2715                 netif_stop_queue(pAC->dev[i]);
2716
2717         }
2718
2719         /*
2720         ** Depending on the desired MTU size change, a different number of 
2721         ** RX buffers need to be allocated
2722         */
2723         if (NewMtu > 1500) {
2724             /* 
2725             ** Use less rx buffers 
2726             */
2727             for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2728                 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2729                     pAC->RxPort[i].RxFillLimit =  pAC->RxDescrPerRing -
2730                                                  (pAC->RxDescrPerRing / 4);
2731                 } else {
2732                     if (i == pAC->ActivePort) {
2733                         pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing - 
2734                                                     (pAC->RxDescrPerRing / 4);
2735                     } else {
2736                         pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing - 
2737                                                     (pAC->RxDescrPerRing / 10);
2738                     }
2739                 }
2740             }
2741         } else {
2742             /* 
2743             ** Use the normal amount of rx buffers 
2744             */
2745             for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2746                 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2747                     pAC->RxPort[i].RxFillLimit = 1;
2748                 } else {
2749                     if (i == pAC->ActivePort) {
2750                         pAC->RxPort[i].RxFillLimit = 1;
2751                     } else {
2752                         pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2753                                                     (pAC->RxDescrPerRing / 4);
2754                     }
2755                 }
2756             }
2757         }
2758         
2759         SkGeDeInit(pAC, pAC->IoBase);
2760
2761         /*
2762         ** enable/disable hardware support for long frames
2763         */
2764         if (NewMtu > 1500) {
2765 // pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2766                 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2767         } else {
2768             if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2769                 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2770             } else {
2771                 pAC->GIni.GIPortUsage = SK_RED_LINK;
2772             }
2773         }
2774
2775         SkGeInit(   pAC, pAC->IoBase, SK_INIT_IO);
2776         SkI2cInit(  pAC, pAC->IoBase, SK_INIT_IO);
2777         SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2778         SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2779         SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2780         SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2781         SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2782         
2783         /*
2784         ** tschilling:
2785         ** Speed and others are set back to default in level 1 init!
2786         */
2787         GetConfiguration(pAC);
2788         
2789         SkGeInit(   pAC, pAC->IoBase, SK_INIT_RUN);
2790         SkI2cInit(  pAC, pAC->IoBase, SK_INIT_RUN);
2791         SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2792         SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2793         SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2794         SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2795         SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2796
2797         /*
2798         ** clear and reinit the rx rings here
2799         */
2800         for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2801                 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2802                 ClearRxRing(pAC, &pAC->RxPort[i]);
2803                 FillRxRing(pAC, &pAC->RxPort[i]);
2804
2805                 /* 
2806                 ** Enable transmit descriptor polling
2807                 */
2808                 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2809                 FillRxRing(pAC, &pAC->RxPort[i]);
2810         };
2811
2812         SkGeYellowLED(pAC, pAC->IoBase, 1);
2813         SkDimEnableModerationIfNeeded(pAC);     
2814         SkDimDisplayModerationSettings(pAC);
2815
2816         netif_start_queue(pAC->dev[pNet->PortNr]);
2817         for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2818                 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2819         }
2820
2821         /* 
2822         ** Enable Interrupts again 
2823         */
2824         SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2825         SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2826
2827         SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2828         SkEventDispatcher(pAC, pAC->IoBase);
2829
2830         /* 
2831         ** Notify RLMT about the changing and restarting one (or more) ports
2832         */
2833         if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2834                 EvPara.Para32[0] = pAC->RlmtNets;
2835                 EvPara.Para32[1] = -1;
2836                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2837                 EvPara.Para32[0] = pNet->PortNr;
2838                 EvPara.Para32[1] = -1;
2839                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2840                         
2841                 if (pOtherNet->Up) {
2842                         EvPara.Para32[0] = pOtherNet->PortNr;
2843                         SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2844                 }
2845         } else {
2846                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2847         }
2848
2849         SkEventDispatcher(pAC, pAC->IoBase);
2850         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2851         
2852         /*
2853         ** While testing this driver with latest kernel 2.5 (2.5.70), it 
2854         ** seems as if upper layers have a problem to handle a successful
2855         ** return value of '0'. If such a zero is returned, the complete 
2856         ** system hangs for several minutes (!), which is in acceptable.
2857         **
2858         ** Currently it is not clear, what the exact reason for this problem
2859         ** is. The implemented workaround for 2.5 is to return the desired 
2860         ** new MTU size if all needed changes for the new MTU size where 
2861         ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2862         ** which indicates the successful change of the mtu-size.
2863         */
2864         return NewMtu;
2865
2866 } /* SkGeChangeMtu */
2867
2868
2869 /*****************************************************************************
2870  *
2871  *      SkGeStats - return ethernet device statistics
2872  *
2873  * Description:
2874  *      This function return statistic data about the ethernet device
2875  *      to the operating system.
2876  *
2877  * Returns:
2878  *      pointer to the statistic structure.
2879  */
2880 static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2881 {
2882 DEV_NET *pNet = netdev_priv(dev);
2883 SK_AC   *pAC = pNet->pAC;
2884 SK_PNMI_STRUCT_DATA *pPnmiStruct;       /* structure for all Pnmi-Data */
2885 SK_PNMI_STAT    *pPnmiStat;             /* pointer to virtual XMAC stat. data */
2886 SK_PNMI_CONF    *pPnmiConf;             /* pointer to virtual link config. */
2887 unsigned int    Size;                   /* size of pnmi struct */
2888 unsigned long   Flags;                  /* for spin lock */
2889
2890         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2891                 ("SkGeStats starts now...\n"));
2892         pPnmiStruct = &pAC->PnmiStruct;
2893
2894 #ifdef SK_DIAG_SUPPORT
2895         if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2896                 (pAC->BoardLevel == SK_INIT_RUN)) {
2897 #endif
2898         SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2899         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2900         Size = SK_PNMI_STRUCT_SIZE;
2901                 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2902         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2903 #ifdef SK_DIAG_SUPPORT
2904         }
2905 #endif
2906
2907         pPnmiStat = &pPnmiStruct->Stat[0];
2908         pPnmiConf = &pPnmiStruct->Conf[0];
2909
2910         pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2911         pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2912         pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2913         pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2914         
2915         if (pNet->Mtu <= 1500) {
2916                 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2917         } else {
2918                 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2919                         pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2920         }
2921
2922
2923         if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2924                 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2925
2926         pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2927         pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2928         pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2929         pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2930         pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2931
2932         /* detailed rx_errors: */
2933         pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2934         pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2935         pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2936         pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2937         pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2938         pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2939
2940         /* detailed tx_errors */
2941         pAC->stats.tx_aborted_errors = (SK_U32) 0;
2942         pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2943         pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2944         pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2945         pAC->stats.tx_window_errors = (SK_U32) 0;
2946
2947         return(&pAC->stats);
2948 } /* SkGeStats */
2949
2950
2951 /*****************************************************************************
2952  *
2953  *      SkGeIoctl - IO-control function
2954  *
2955  * Description:
2956  *      This function is called if an ioctl is issued on the device.
2957  *      There are three subfunction for reading, writing and test-writing
2958  *      the private MIB data structure (usefull for SysKonnect-internal tools).
2959  *
2960  * Returns:
2961  *      0, if everything is ok
2962  *      !=0, on error
2963  */
2964 static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2965 {
2966 DEV_NET         *pNet;
2967 SK_AC           *pAC;
2968 void            *pMemBuf;
2969 struct pci_dev  *pdev = NULL;
2970 SK_GE_IOCTL     Ioctl;
2971 unsigned int    Err = 0;
2972 int             Size = 0;
2973 int             Ret = 0;
2974 unsigned int    Length = 0;
2975 int             HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2976
2977         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2978                 ("SkGeIoctl starts now...\n"));
2979
2980         pNet = netdev_priv(dev);
2981         pAC = pNet->pAC;
2982         
2983         if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
2984                 return -EFAULT;
2985         }
2986
2987         switch(cmd) {
2988         case SK_IOCTL_SETMIB:
2989         case SK_IOCTL_PRESETMIB:
2990                 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2991         case SK_IOCTL_GETMIB:
2992                 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
2993                         Ioctl.Len<sizeof(pAC->PnmiStruct)?
2994                         Ioctl.Len : sizeof(pAC->PnmiStruct))) {
2995                         return -EFAULT;
2996                 }
2997                 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
2998                 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
2999                         Ioctl.Len<Size? Ioctl.Len : Size)) {
3000                         return -EFAULT;
3001                 }
3002                 Ioctl.Len = Size;
3003                 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3004                         return -EFAULT;
3005                 }
3006                 break;
3007         case SK_IOCTL_GEN:
3008                 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3009                         Length = Ioctl.Len;
3010                 } else {
3011                         Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3012                 }
3013                 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3014                         return -ENOMEM;
3015                 }
3016                 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3017                         Err = -EFAULT;
3018                         goto fault_gen;
3019                 }
3020                 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
3021                         Err = -EFAULT;
3022                         goto fault_gen;
3023                 }
3024                 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3025                         Err = -EFAULT;
3026                         goto fault_gen;
3027                 }
3028                 Ioctl.Len = Length;
3029                 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3030                         Err = -EFAULT;
3031                         goto fault_gen;
3032                 }
3033 fault_gen:
3034                 kfree(pMemBuf); /* cleanup everything */
3035                 break;
3036 #ifdef SK_DIAG_SUPPORT
3037        case SK_IOCTL_DIAG:
3038                 if (!capable(CAP_NET_ADMIN)) return -EPERM;
3039                 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
3040                         Length = Ioctl.Len;
3041                 } else {
3042                         Length = sizeof(pAC->PnmiStruct) + HeaderLength;
3043                 }
3044                 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
3045                         return -ENOMEM;
3046                 }
3047                 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
3048                         Err = -EFAULT;
3049                         goto fault_diag;
3050                 }
3051                 pdev = pAC->PciDev;
3052                 Length = 3 * sizeof(SK_U32);  /* Error, Bus and Device */
3053                 /* 
3054                 ** While coding this new IOCTL interface, only a few lines of code
3055                 ** are to to be added. Therefore no dedicated function has been 
3056                 ** added. If more functionality is added, a separate function 
3057                 ** should be used...
3058                 */
3059                 * ((SK_U32 *)pMemBuf) = 0;
3060                 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
3061                 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
3062                 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3063                         Err = -EFAULT;
3064                         goto fault_diag;
3065                 }
3066                 Ioctl.Len = Length;
3067                 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3068                         Err = -EFAULT;
3069                         goto fault_diag;
3070                 }
3071 fault_diag:
3072                 kfree(pMemBuf); /* cleanup everything */
3073                 break;
3074 #endif
3075         default:
3076                 Err = -EOPNOTSUPP;
3077         }
3078
3079         return(Err);
3080
3081 } /* SkGeIoctl */
3082
3083
3084 /*****************************************************************************
3085  *
3086  *      SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
3087  *
3088  * Description:
3089  *      This function reads/writes the MIB data using PNMI (Private Network
3090  *      Management Interface).
3091  *      The destination for the data must be provided with the
3092  *      ioctl call and is given to the driver in the form of
3093  *      a user space address.
3094  *      Copying from the user-provided data area into kernel messages
3095  *      and back is done by copy_from_user and copy_to_user calls in
3096  *      SkGeIoctl.
3097  *
3098  * Returns:
3099  *      returned size from PNMI call
3100  */
3101 static int SkGeIocMib(
3102 DEV_NET         *pNet,  /* pointer to the adapter context */
3103 unsigned int    Size,   /* length of ioctl data */
3104 int             mode)   /* flag for set/preset */
3105 {
3106 unsigned long   Flags;  /* for spin lock */
3107 SK_AC           *pAC;
3108
3109         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3110                 ("SkGeIocMib starts now...\n"));
3111         pAC = pNet->pAC;
3112         /* access MIB */
3113         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3114         switch(mode) {
3115         case SK_IOCTL_GETMIB:
3116                 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3117                         pNet->NetNr);
3118                 break;
3119         case SK_IOCTL_PRESETMIB:
3120                 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3121                         pNet->NetNr);
3122                 break;
3123         case SK_IOCTL_SETMIB:
3124                 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3125                         pNet->NetNr);
3126                 break;
3127         default:
3128                 break;
3129         }
3130         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3131         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3132                 ("MIB data access succeeded\n"));
3133         return (Size);
3134 } /* SkGeIocMib */
3135
3136
3137 /*****************************************************************************
3138  *
3139  *      GetConfiguration - read configuration information
3140  *
3141  * Description:
3142  *      This function reads per-adapter configuration information from
3143  *      the options provided on the command line.
3144  *
3145  * Returns:
3146  *      none
3147  */
3148 static void GetConfiguration(
3149 SK_AC   *pAC)   /* pointer to the adapter context structure */
3150 {
3151 SK_I32  Port;           /* preferred port */
3152 SK_BOOL AutoSet;
3153 SK_BOOL DupSet;
3154 int     LinkSpeed          = SK_LSPEED_AUTO;    /* Link speed */
3155 int     AutoNeg            = 1;                 /* autoneg off (0) or on (1) */
3156 int     DuplexCap          = 0;                 /* 0=both,1=full,2=half */
3157 int     FlowCtrl           = SK_FLOW_MODE_SYM_OR_REM;   /* FlowControl  */
3158 int     MSMode             = SK_MS_MODE_AUTO;   /* master/slave mode    */
3159
3160 SK_BOOL IsConTypeDefined   = SK_TRUE;
3161 SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3162 SK_BOOL IsFlowCtrlDefined  = SK_TRUE;
3163 SK_BOOL IsRoleDefined      = SK_TRUE;
3164 SK_BOOL IsModeDefined      = SK_TRUE;
3165 /*
3166  *      The two parameters AutoNeg. and DuplexCap. map to one configuration
3167  *      parameter. The mapping is described by this table:
3168  *      DuplexCap ->    |       both    |       full    |       half    |
3169  *      AutoNeg         |               |               |               |
3170  *      -----------------------------------------------------------------
3171  *      Off             |    illegal    |       Full    |       Half    |
3172  *      -----------------------------------------------------------------
3173  *      On              |   AutoBoth    |   AutoFull    |   AutoHalf    |
3174  *      -----------------------------------------------------------------
3175  *      Sense           |   AutoSense   |   AutoSense   |   AutoSense   |
3176  */
3177 int     Capabilities[3][3] =
3178                 { {                -1, SK_LMODE_FULL     , SK_LMODE_HALF     },
3179                   {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3180                   {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3181
3182 #define DC_BOTH 0
3183 #define DC_FULL 1
3184 #define DC_HALF 2
3185 #define AN_OFF  0
3186 #define AN_ON   1
3187 #define AN_SENS 2
3188 #define M_CurrPort pAC->GIni.GP[Port]
3189
3190
3191         /*
3192         ** Set the default values first for both ports!
3193         */
3194         for (Port = 0; Port < SK_MAX_MACS; Port++) {
3195                 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3196                 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3197                 M_CurrPort.PMSMode       = SK_MS_MODE_AUTO;
3198                 M_CurrPort.PLinkSpeed    = SK_LSPEED_AUTO;
3199         }
3200
3201         /*
3202         ** Check merged parameter ConType. If it has not been used,
3203         ** verify any other parameter (e.g. AutoNeg) and use default values. 
3204         **
3205         ** Stating both ConType and other lowlevel link parameters is also
3206         ** possible. If this is the case, the passed ConType-parameter is 
3207         ** overwritten by the lowlevel link parameter.
3208         **
3209         ** The following settings are used for a merged ConType-parameter:
3210         **
3211         ** ConType   DupCap   AutoNeg   FlowCtrl      Role      Speed
3212         ** -------   ------   -------   --------   ----------   -----
3213         **  Auto      Both      On      SymOrRem      Auto       Auto
3214         **  100FD     Full      Off       None      <ignored>    100
3215         **  100HD     Half      Off       None      <ignored>    100
3216         **  10FD      Full      Off       None      <ignored>    10
3217         **  10HD      Half      Off       None      <ignored>    10
3218         ** 
3219         ** This ConType parameter is used for all ports of the adapter!
3220         */
3221         if ( (ConType != NULL)                && 
3222              (pAC->Index < SK_MAX_CARD_PARAM) &&
3223              (ConType[pAC->Index] != NULL) ) {
3224
3225                         /* Check chipset family */
3226                         if ((!pAC->ChipsetType) && 
3227                                 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3228                                 (strcmp(ConType[pAC->Index],"")!=0)) {
3229                                 /* Set the speed parameter back */
3230                                         printk("sk98lin: Illegal value \"%s\" " 
3231                                                         "for ConType."
3232                                                         " Using Auto.\n", 
3233                                                         ConType[pAC->Index]);
3234
3235                                         sprintf(ConType[pAC->Index], "Auto");   
3236                         }
3237
3238                                 if (strcmp(ConType[pAC->Index],"")==0) {
3239                         IsConTypeDefined = SK_FALSE; /* No ConType defined */
3240                                 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3241                     for (Port = 0; Port < SK_MAX_MACS; Port++) {
3242                         M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3243                         M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3244                         M_CurrPort.PMSMode       = SK_MS_MODE_AUTO;
3245                         M_CurrPort.PLinkSpeed    = SK_LSPEED_AUTO;
3246                     }
3247                 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3248                     for (Port = 0; Port < SK_MAX_MACS; Port++) {
3249                         M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3250                         M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3251                         M_CurrPort.PMSMode       = SK_MS_MODE_AUTO;
3252                         M_CurrPort.PLinkSpeed    = SK_LSPEED_100MBPS;
3253                     }
3254                 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3255                     for (Port = 0; Port < SK_MAX_MACS; Port++) {
3256                         M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3257                         M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3258                         M_CurrPort.PMSMode       = SK_MS_MODE_AUTO;
3259                         M_CurrPort.PLinkSpeed    = SK_LSPEED_100MBPS;
3260                     }
3261                 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3262                     for (Port = 0; Port < SK_MAX_MACS; Port++) {
3263                         M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3264                         M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3265                         M_CurrPort.PMSMode       = SK_MS_MODE_AUTO;
3266                         M_CurrPort.PLinkSpeed    = SK_LSPEED_10MBPS;
3267                     }
3268                 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3269                     for (Port = 0; Port < SK_MAX_MACS; Port++) {
3270                         M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3271                         M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3272                         M_CurrPort.PMSMode       = SK_MS_MODE_AUTO;
3273                         M_CurrPort.PLinkSpeed    = SK_LSPEED_10MBPS;
3274                     }
3275                 } else { 
3276                     printk("sk98lin: Illegal value \"%s\" for ConType\n", 
3277                         ConType[pAC->Index]);
3278                     IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3279                 }
3280         } else {
3281             IsConTypeDefined = SK_FALSE; /* No ConType defined */
3282         }
3283
3284         /*
3285         ** Parse any parameter settings for port A:
3286         ** a) any LinkSpeed stated?
3287         */
3288         if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3289                 Speed_A[pAC->Index] != NULL) {
3290                 if (strcmp(Speed_A[pAC->Index],"")==0) {
3291                     IsLinkSpeedDefined = SK_FALSE;
3292                 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3293                     LinkSpeed = SK_LSPEED_AUTO;
3294                 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3295                     LinkSpeed = SK_LSPEED_10MBPS;
3296                 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3297                     LinkSpeed = SK_LSPEED_100MBPS;
3298                 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3299                     LinkSpeed = SK_LSPEED_1000MBPS;
3300                 } else {
3301                     printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3302                         Speed_A[pAC->Index]);
3303                     IsLinkSpeedDefined = SK_FALSE;
3304                 }
3305         } else {
3306             IsLinkSpeedDefined = SK_FALSE;
3307         }
3308
3309         /* 
3310         ** Check speed parameter: 
3311         **    Only copper type adapter and GE V2 cards 
3312         */
3313         if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3314                 ((LinkSpeed != SK_LSPEED_AUTO) &&
3315                 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3316                 printk("sk98lin: Illegal value for Speed_A. "
3317                         "Not a copper card or GE V2 card\n    Using "
3318                         "speed 1000\n");
3319                 LinkSpeed = SK_LSPEED_1000MBPS;
3320         }
3321         
3322         /*      
3323         ** Decide whether to set new config value if somethig valid has
3324         ** been received.
3325         */
3326         if (IsLinkSpeedDefined) {
3327                 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3328         } 
3329
3330         /* 
3331         ** b) Any Autonegotiation and DuplexCapabilities set?
3332         **    Please note that both belong together...
3333         */
3334         AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3335         AutoSet = SK_FALSE;
3336         if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3337                 AutoNeg_A[pAC->Index] != NULL) {
3338                 AutoSet = SK_TRUE;
3339                 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3340                     AutoSet = SK_FALSE;
3341                 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3342                     AutoNeg = AN_ON;
3343                 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3344                     AutoNeg = AN_OFF;
3345                 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3346                     AutoNeg = AN_SENS;
3347                 } else {
3348                     printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3349                         AutoNeg_A[pAC->Index]);
3350                 }
3351         }
3352
3353         DuplexCap = DC_BOTH;
3354         DupSet    = SK_FALSE;
3355         if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3356                 DupCap_A[pAC->Index] != NULL) {
3357                 DupSet = SK_TRUE;
3358                 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3359                     DupSet = SK_FALSE;
3360                 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3361                     DuplexCap = DC_BOTH;
3362                 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3363                     DuplexCap = DC_FULL;
3364                 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3365                     DuplexCap = DC_HALF;
3366                 } else {
3367                     printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3368                         DupCap_A[pAC->Index]);
3369                 }
3370         }
3371
3372         /* 
3373         ** Check for illegal combinations 
3374         */
3375         if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3376                 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3377                 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3378                 (pAC->ChipsetType)) {
3379                     printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3380                                         "    Using Full Duplex.\n");
3381                                 DuplexCap = DC_FULL;
3382         }
3383
3384         if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3385                 printk("sk98lin, Port A: DuplexCapabilities"
3386                         " ignored using Sense mode\n");
3387         }
3388
3389         if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3390                 printk("sk98lin: Port A: Illegal combination"
3391                         " of values AutoNeg. and DuplexCap.\n    Using "
3392                         "Full Duplex\n");
3393                 DuplexCap = DC_FULL;
3394         }
3395
3396         if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3397                 DuplexCap = DC_FULL;
3398         }
3399         
3400         if (!AutoSet && DupSet) {
3401                 printk("sk98lin: Port A: Duplex setting not"
3402                         " possible in\n    default AutoNegotiation mode"
3403                         " (Sense).\n    Using AutoNegotiation On\n");
3404                 AutoNeg = AN_ON;
3405         }
3406         
3407         /* 
3408         ** set the desired mode 
3409         */
3410         if (AutoSet || DupSet) {
3411             pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3412         }
3413         
3414         /* 
3415         ** c) Any Flowcontrol-parameter set?
3416         */
3417         if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3418                 FlowCtrl_A[pAC->Index] != NULL) {
3419                 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3420                     IsFlowCtrlDefined = SK_FALSE;
3421                 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3422                     FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3423                 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3424                     FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3425                 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3426                     FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3427                 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3428                     FlowCtrl = SK_FLOW_MODE_NONE;
3429                 } else {
3430                     printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3431                         FlowCtrl_A[pAC->Index]);
3432                     IsFlowCtrlDefined = SK_FALSE;
3433                 }
3434         } else {
3435            IsFlowCtrlDefined = SK_FALSE;
3436         }
3437
3438         if (IsFlowCtrlDefined) {
3439             if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3440                 printk("sk98lin: Port A: FlowControl"
3441                         " impossible without AutoNegotiation,"
3442                         " disabled\n");
3443                 FlowCtrl = SK_FLOW_MODE_NONE;
3444             }
3445             pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3446         }
3447
3448         /*
3449         ** d) What is with the RoleParameter?
3450         */
3451         if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3452                 Role_A[pAC->Index] != NULL) {
3453                 if (strcmp(Role_A[pAC->Index],"")==0) {
3454                    IsRoleDefined = SK_FALSE;
3455                 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3456                     MSMode = SK_MS_MODE_AUTO;
3457                 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3458                     MSMode = SK_MS_MODE_MASTER;
3459                 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3460                     MSMode = SK_MS_MODE_SLAVE;
3461                 } else {
3462                     printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3463                         Role_A[pAC->Index]);
3464                     IsRoleDefined = SK_FALSE;
3465                 }
3466         } else {
3467            IsRoleDefined = SK_FALSE;
3468         }
3469
3470         if (IsRoleDefined == SK_TRUE) {
3471             pAC->GIni.GP[0].PMSMode = MSMode;
3472         }
3473         
3474
3475         
3476         /* 
3477         ** Parse any parameter settings for port B:
3478         ** a) any LinkSpeed stated?
3479         */
3480         IsConTypeDefined   = SK_TRUE;
3481         IsLinkSpeedDefined = SK_TRUE;
3482         IsFlowCtrlDefined  = SK_TRUE;
3483         IsModeDefined      = SK_TRUE;
3484
3485         if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3486                 Speed_B[pAC->Index] != NULL) {
3487                 if (strcmp(Speed_B[pAC->Index],"")==0) {
3488                     IsLinkSpeedDefined = SK_FALSE;
3489                 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3490                     LinkSpeed = SK_LSPEED_AUTO;
3491                 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3492                     LinkSpeed = SK_LSPEED_10MBPS;
3493                 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3494                     LinkSpeed = SK_LSPEED_100MBPS;
3495                 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3496                     LinkSpeed = SK_LSPEED_1000MBPS;
3497                 } else {
3498                     printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3499                         Speed_B[pAC->Index]);
3500                     IsLinkSpeedDefined = SK_FALSE;
3501                 }
3502         } else {
3503             IsLinkSpeedDefined = SK_FALSE;
3504         }
3505
3506         /* 
3507         ** Check speed parameter:
3508         **    Only copper type adapter and GE V2 cards 
3509         */
3510         if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3511                 ((LinkSpeed != SK_LSPEED_AUTO) &&
3512                 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3513                 printk("sk98lin: Illegal value for Speed_B. "
3514                         "Not a copper card or GE V2 card\n    Using "
3515                         "speed 1000\n");
3516                 LinkSpeed = SK_LSPEED_1000MBPS;
3517         }
3518
3519         /*      
3520         ** Decide whether to set new config value if somethig valid has
3521         ** been received.
3522         */
3523         if (IsLinkSpeedDefined) {
3524             pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3525         }
3526
3527         /* 
3528         ** b) Any Autonegotiation and DuplexCapabilities set?
3529         **    Please note that both belong together...
3530         */
3531         AutoNeg = AN_SENS; /* default: do auto Sense */
3532         AutoSet = SK_FALSE;
3533         if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3534                 AutoNeg_B[pAC->Index] != NULL) {
3535                 AutoSet = SK_TRUE;
3536                 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3537                     AutoSet = SK_FALSE;
3538                 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3539                     AutoNeg = AN_ON;
3540                 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3541                     AutoNeg = AN_OFF;
3542                 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3543                     AutoNeg = AN_SENS;
3544                 } else {
3545                     printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3546                         AutoNeg_B[pAC->Index]);
3547                 }
3548         }
3549
3550         DuplexCap = DC_BOTH;
3551         DupSet    = SK_FALSE;
3552         if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3553                 DupCap_B[pAC->Index] != NULL) {
3554                 DupSet = SK_TRUE;
3555                 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3556                     DupSet = SK_FALSE;
3557                 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3558                     DuplexCap = DC_BOTH;
3559                 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3560                     DuplexCap = DC_FULL;
3561                 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3562                     DuplexCap = DC_HALF;
3563                 } else {
3564                     printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3565                         DupCap_B[pAC->Index]);
3566                 }
3567         }
3568
3569         
3570         /* 
3571         ** Check for illegal combinations 
3572         */
3573         if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3574                 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3575                 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3576                 (pAC->ChipsetType)) {
3577                     printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3578                                         "    Using Full Duplex.\n");
3579                                 DuplexCap = DC_FULL;
3580         }
3581
3582         if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3583                 printk("sk98lin, Port B: DuplexCapabilities"
3584                         " ignored using Sense mode\n");
3585         }
3586
3587         if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3588                 printk("sk98lin: Port B: Illegal combination"
3589                         " of values AutoNeg. and DuplexCap.\n    Using "
3590                         "Full Duplex\n");
3591                 DuplexCap = DC_FULL;
3592         }
3593
3594         if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3595                 DuplexCap = DC_FULL;
3596         }
3597         
3598         if (!AutoSet && DupSet) {
3599                 printk("sk98lin: Port B: Duplex setting not"
3600                         " possible in\n    default AutoNegotiation mode"
3601                         " (Sense).\n    Using AutoNegotiation On\n");
3602                 AutoNeg = AN_ON;
3603         }
3604
3605         /* 
3606         ** set the desired mode 
3607         */
3608         if (AutoSet || DupSet) {
3609             pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3610         }
3611
3612         /*
3613         ** c) Any FlowCtrl parameter set?
3614         */
3615         if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3616                 FlowCtrl_B[pAC->Index] != NULL) {
3617                 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3618                     IsFlowCtrlDefined = SK_FALSE;
3619                 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3620                     FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3621                 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3622                     FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3623                 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3624                     FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3625                 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3626                     FlowCtrl = SK_FLOW_MODE_NONE;
3627                 } else {
3628                     printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3629                         FlowCtrl_B[pAC->Index]);
3630                     IsFlowCtrlDefined = SK_FALSE;
3631                 }
3632         } else {
3633                 IsFlowCtrlDefined = SK_FALSE;
3634         }
3635
3636         if (IsFlowCtrlDefined) {
3637             if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3638                 printk("sk98lin: Port B: FlowControl"
3639                         " impossible without AutoNegotiation,"
3640                         " disabled\n");
3641                 FlowCtrl = SK_FLOW_MODE_NONE;
3642             }
3643             pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3644         }
3645
3646         /*
3647         ** d) What is the RoleParameter?
3648         */
3649         if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3650                 Role_B[pAC->Index] != NULL) {
3651                 if (strcmp(Role_B[pAC->Index],"")==0) {
3652                     IsRoleDefined = SK_FALSE;
3653                 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3654                     MSMode = SK_MS_MODE_AUTO;
3655                 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3656                     MSMode = SK_MS_MODE_MASTER;
3657                 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3658                     MSMode = SK_MS_MODE_SLAVE;
3659                 } else {
3660                     printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3661                         Role_B[pAC->Index]);
3662                     IsRoleDefined = SK_FALSE;
3663                 }
3664         } else {
3665             IsRoleDefined = SK_FALSE;
3666         }
3667
3668         if (IsRoleDefined) {
3669             pAC->GIni.GP[1].PMSMode = MSMode;
3670         }
3671         
3672         /*
3673         ** Evaluate settings for both ports
3674         */
3675         pAC->ActivePort = 0;
3676         if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3677                 PrefPort[pAC->Index] != NULL) {
3678                 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3679                         pAC->ActivePort             =  0;
3680                         pAC->Rlmt.Net[0].Preference = -1; /* auto */
3681                         pAC->Rlmt.Net[0].PrefPort   =  0;
3682                 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3683                         /*
3684                         ** do not set ActivePort here, thus a port
3685                         ** switch is issued after net up.
3686                         */
3687                         Port                        = 0;
3688                         pAC->Rlmt.Net[0].Preference = Port;
3689                         pAC->Rlmt.Net[0].PrefPort   = Port;
3690                 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3691                         /*
3692                         ** do not set ActivePort here, thus a port
3693                         ** switch is issued after net up.
3694                         */
3695                         if (pAC->GIni.GIMacsFound == 1) {
3696                                 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3697                                         "      Port B not available on single port adapters.\n");
3698
3699                                 pAC->ActivePort             =  0;
3700                                 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3701                                 pAC->Rlmt.Net[0].PrefPort   =  0;
3702                         } else {
3703                                 Port                        = 1;
3704                                 pAC->Rlmt.Net[0].Preference = Port;
3705                                 pAC->Rlmt.Net[0].PrefPort   = Port;
3706                         }
3707                 } else {
3708                     printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3709                         PrefPort[pAC->Index]);
3710                 }
3711         }
3712
3713         pAC->RlmtNets = 1;
3714
3715         if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3716                 RlmtMode[pAC->Index] != NULL) {
3717                 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3718                         pAC->RlmtMode = 0;
3719                 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3720                         pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3721                 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3722                         pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3723                                         SK_RLMT_CHECK_LOC_LINK;
3724                 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3725                         pAC->RlmtMode = SK_RLMT_CHECK_LINK     |
3726                                         SK_RLMT_CHECK_LOC_LINK |
3727                                         SK_RLMT_CHECK_SEG;
3728                 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3729                         (pAC->GIni.GIMacsFound == 2)) {
3730                         pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3731                         pAC->RlmtNets = 2;
3732                 } else {
3733                     printk("sk98lin: Illegal value \"%s\" for"
3734                         " RlmtMode, using default\n", 
3735                         RlmtMode[pAC->Index]);
3736                         pAC->RlmtMode = 0;
3737                 }
3738         } else {
3739                 pAC->RlmtMode = 0;
3740         }
3741         
3742         /*
3743         ** Check the interrupt moderation parameters
3744         */
3745         if (Moderation[pAC->Index] != NULL) {
3746                 if (strcmp(Moderation[pAC->Index], "") == 0) {
3747                         pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3748                 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3749                         pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3750                 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3751                         pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3752                 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3753                         pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3754                 } else {
3755                         printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3756                                 "      Disable interrupt moderation.\n",
3757                                 Moderation[pAC->Index]);
3758                         pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3759                 }
3760         } else {
3761                 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3762         }
3763
3764         if (Stats[pAC->Index] != NULL) {
3765                 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3766                         pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3767                 } else {
3768                         pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3769                 }
3770         } else {
3771                 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3772         }
3773
3774         if (ModerationMask[pAC->Index] != NULL) {
3775                 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3776                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3777                 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3778                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3779                 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3780                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3781                 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3782                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3783                 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3784                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3785                 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3786                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3787                 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3788                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3789                 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3790                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3791                 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3792                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3793                 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3794                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3795                 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3796                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3797                 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3798                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3799                 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3800                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3801                 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3802                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3803                 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3804                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3805                 } else { /* some rubbish */
3806                         pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3807                 }
3808         } else {  /* operator has stated nothing */
3809                 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3810         }
3811
3812         if (AutoSizing[pAC->Index] != NULL) {
3813                 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3814                         pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3815                 } else {
3816                         pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3817                 }
3818         } else {  /* operator has stated nothing */
3819                 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3820         }
3821
3822         if (IntsPerSec[pAC->Index] != 0) {
3823                 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) || 
3824                         (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3825                         printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3826                                 "      Using default value of %i.\n", 
3827                                 IntsPerSec[pAC->Index],
3828                                 C_INT_MOD_IPS_LOWER_RANGE,
3829                                 C_INT_MOD_IPS_UPPER_RANGE,
3830                                 C_INTS_PER_SEC_DEFAULT);
3831                         pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3832                 } else {
3833                         pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3834                 }
3835         } else {
3836                 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3837         }
3838
3839         /*
3840         ** Evaluate upper and lower moderation threshold
3841         */
3842         pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3843                 pAC->DynIrqModInfo.MaxModIntsPerSec +
3844                 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3845
3846         pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3847                 pAC->DynIrqModInfo.MaxModIntsPerSec -
3848                 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3849
3850         pAC->DynIrqModInfo.PrevTimeVal = jiffies;  /* initial value */
3851
3852
3853 } /* GetConfiguration */
3854
3855
3856 /*****************************************************************************
3857  *
3858  *      ProductStr - return a adapter identification string from vpd
3859  *
3860  * Description:
3861  *      This function reads the product name string from the vpd area
3862  *      and puts it the field pAC->DeviceString.
3863  *
3864  * Returns: N/A
3865  */
3866 static void ProductStr(
3867 SK_AC   *pAC            /* pointer to adapter context */
3868 )
3869 {
3870 int     StrLen = 80;            /* length of the string, defined in SK_AC */
3871 char    Keyword[] = VPD_NAME;   /* vpd productname identifier */
3872 int     ReturnCode;             /* return code from vpd_read */
3873 unsigned long Flags;
3874
3875         spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3876         ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, pAC->DeviceStr,
3877                 &StrLen);
3878         spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3879         if (ReturnCode != 0) {
3880                 /* there was an error reading the vpd data */
3881                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
3882                         ("Error reading VPD data: %d\n", ReturnCode));
3883                 pAC->DeviceStr[0] = '\0';
3884         }
3885 } /* ProductStr */
3886
3887 /*****************************************************************************
3888  *
3889  *      StartDrvCleanupTimer - Start timer to check for descriptors which
3890  *                             might be placed in descriptor ring, but
3891  *                             havent been handled up to now
3892  *
3893  * Description:
3894  *      This function requests a HW-timer fo the Yukon card. The actions to
3895  *      perform when this timer expires, are located in the SkDrvEvent().
3896  *
3897  * Returns: N/A
3898  */
3899 static void
3900 StartDrvCleanupTimer(SK_AC *pAC) {
3901     SK_EVPARA    EventParam;   /* Event struct for timer event */
3902
3903     SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3904     EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3905     SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3906                  SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3907                  SKGE_DRV, SK_DRV_TIMER, EventParam);
3908 }
3909
3910 /*****************************************************************************
3911  *
3912  *      StopDrvCleanupTimer - Stop timer to check for descriptors
3913  *
3914  * Description:
3915  *      This function requests a HW-timer fo the Yukon card. The actions to
3916  *      perform when this timer expires, are located in the SkDrvEvent().
3917  *
3918  * Returns: N/A
3919  */
3920 static void
3921 StopDrvCleanupTimer(SK_AC *pAC) {
3922     SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3923     SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3924 }
3925
3926 /****************************************************************************/
3927 /* functions for common modules *********************************************/
3928 /****************************************************************************/
3929
3930
3931 /*****************************************************************************
3932  *
3933  *      SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3934  *
3935  * Description:
3936  *      This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3937  *      is embedded into a socket buff data area.
3938  *
3939  * Context:
3940  *      runtime
3941  *
3942  * Returns:
3943  *      NULL or pointer to Mbuf.
3944  */
3945 SK_MBUF *SkDrvAllocRlmtMbuf(
3946 SK_AC           *pAC,           /* pointer to adapter context */
3947 SK_IOC          IoC,            /* the IO-context */
3948 unsigned        BufferSize)     /* size of the requested buffer */
3949 {
3950 SK_MBUF         *pRlmtMbuf;     /* pointer to a new rlmt-mbuf structure */
3951 struct sk_buff  *pMsgBlock;     /* pointer to a new message block */
3952
3953         pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3954         if (pMsgBlock == NULL) {
3955                 return (NULL);
3956         }
3957         pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3958         skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3959         pRlmtMbuf->pNext = NULL;
3960         pRlmtMbuf->pOs = pMsgBlock;
3961         pRlmtMbuf->pData = pMsgBlock->data;     /* Data buffer. */
3962         pRlmtMbuf->Size = BufferSize;           /* Data buffer size. */
3963         pRlmtMbuf->Length = 0;          /* Length of packet (<= Size). */
3964         return (pRlmtMbuf);
3965
3966 } /* SkDrvAllocRlmtMbuf */
3967
3968
3969 /*****************************************************************************
3970  *
3971  *      SkDrvFreeRlmtMbuf - free an RLMT mbuf
3972  *
3973  * Description:
3974  *      This routine frees one or more RLMT mbuf(s).
3975  *
3976  * Context:
3977  *      runtime
3978  *
3979  * Returns:
3980  *      Nothing
3981  */
3982 void  SkDrvFreeRlmtMbuf(
3983 SK_AC           *pAC,           /* pointer to adapter context */
3984 SK_IOC          IoC,            /* the IO-context */
3985 SK_MBUF         *pMbuf)         /* size of the requested buffer */
3986 {
3987 SK_MBUF         *pFreeMbuf;
3988 SK_MBUF         *pNextMbuf;
3989
3990         pFreeMbuf = pMbuf;
3991         do {
3992                 pNextMbuf = pFreeMbuf->pNext;
3993                 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
3994                 pFreeMbuf = pNextMbuf;
3995         } while ( pFreeMbuf != NULL );
3996 } /* SkDrvFreeRlmtMbuf */
3997
3998
3999 /*****************************************************************************
4000  *
4001  *      SkOsGetTime - provide a time value
4002  *
4003  * Description:
4004  *      This routine provides a time value. The unit is 1/HZ (defined by Linux).
4005  *      It is not used for absolute time, but only for time differences.
4006  *
4007  *
4008  * Returns:
4009  *      Time value
4010  */
4011 SK_U64 SkOsGetTime(SK_AC *pAC)
4012 {
4013         SK_U64  PrivateJiffies;
4014         SkOsGetTimeCurrent(pAC, &PrivateJiffies);
4015         return PrivateJiffies;
4016 } /* SkOsGetTime */
4017
4018
4019 /*****************************************************************************
4020  *
4021  *      SkPciReadCfgDWord - read a 32 bit value from pci config space
4022  *
4023  * Description:
4024  *      This routine reads a 32 bit value from the pci configuration
4025  *      space.
4026  *
4027  * Returns:
4028  *      0 - indicate everything worked ok.
4029  *      != 0 - error indication
4030  */
4031 int SkPciReadCfgDWord(
4032 SK_AC *pAC,             /* Adapter Control structure pointer */
4033 int PciAddr,            /* PCI register address */
4034 SK_U32 *pVal)           /* pointer to store the read value */
4035 {
4036         pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
4037         return(0);
4038 } /* SkPciReadCfgDWord */
4039
4040
4041 /*****************************************************************************
4042  *
4043  *      SkPciReadCfgWord - read a 16 bit value from pci config space
4044  *
4045  * Description:
4046  *      This routine reads a 16 bit value from the pci configuration
4047  *      space.
4048  *
4049  * Returns:
4050  *      0 - indicate everything worked ok.
4051  *      != 0 - error indication
4052  */
4053 int SkPciReadCfgWord(
4054 SK_AC *pAC,     /* Adapter Control structure pointer */
4055 int PciAddr,            /* PCI register address */
4056 SK_U16 *pVal)           /* pointer to store the read value */
4057 {
4058         pci_read_config_word(pAC->PciDev, PciAddr, pVal);
4059         return(0);
4060 } /* SkPciReadCfgWord */
4061
4062
4063 /*****************************************************************************
4064  *
4065  *      SkPciReadCfgByte - read a 8 bit value from pci config space
4066  *
4067  * Description:
4068  *      This routine reads a 8 bit value from the pci configuration
4069  *      space.
4070  *
4071  * Returns:
4072  *      0 - indicate everything worked ok.
4073  *      != 0 - error indication
4074  */
4075 int SkPciReadCfgByte(
4076 SK_AC *pAC,     /* Adapter Control structure pointer */
4077 int PciAddr,            /* PCI register address */
4078 SK_U8 *pVal)            /* pointer to store the read value */
4079 {
4080         pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
4081         return(0);
4082 } /* SkPciReadCfgByte */
4083
4084
4085 /*****************************************************************************
4086  *
4087  *      SkPciWriteCfgDWord - write a 32 bit value to pci config space
4088  *
4089  * Description:
4090  *      This routine writes a 32 bit value to the pci configuration
4091  *      space.
4092  *
4093  * Returns:
4094  *      0 - indicate everything worked ok.
4095  *      != 0 - error indication
4096  */
4097 int SkPciWriteCfgDWord(
4098 SK_AC *pAC,     /* Adapter Control structure pointer */
4099 int PciAddr,            /* PCI register address */
4100 SK_U32 Val)             /* pointer to store the read value */
4101 {
4102         pci_write_config_dword(pAC->PciDev, PciAddr, Val);
4103         return(0);
4104 } /* SkPciWriteCfgDWord */
4105
4106
4107 /*****************************************************************************
4108  *
4109  *      SkPciWriteCfgWord - write a 16 bit value to pci config space
4110  *
4111  * Description:
4112  *      This routine writes a 16 bit value to the pci configuration
4113  *      space. The flag PciConfigUp indicates whether the config space
4114  *      is accesible or must be set up first.
4115  *
4116  * Returns:
4117  *      0 - indicate everything worked ok.
4118  *      != 0 - error indication
4119  */
4120 int SkPciWriteCfgWord(
4121 SK_AC *pAC,     /* Adapter Control structure pointer */
4122 int PciAddr,            /* PCI register address */
4123 SK_U16 Val)             /* pointer to store the read value */
4124 {
4125         pci_write_config_word(pAC->PciDev, PciAddr, Val);
4126         return(0);
4127 } /* SkPciWriteCfgWord */
4128
4129
4130 /*****************************************************************************
4131  *
4132  *      SkPciWriteCfgWord - write a 8 bit value to pci config space
4133  *
4134  * Description:
4135  *      This routine writes a 8 bit value to the pci configuration
4136  *      space. The flag PciConfigUp indicates whether the config space
4137  *      is accesible or must be set up first.
4138  *
4139  * Returns:
4140  *      0 - indicate everything worked ok.
4141  *      != 0 - error indication
4142  */
4143 int SkPciWriteCfgByte(
4144 SK_AC *pAC,     /* Adapter Control structure pointer */
4145 int PciAddr,            /* PCI register address */
4146 SK_U8 Val)              /* pointer to store the read value */
4147 {
4148         pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4149         return(0);
4150 } /* SkPciWriteCfgByte */
4151
4152
4153 /*****************************************************************************
4154  *
4155  *      SkDrvEvent - handle driver events
4156  *
4157  * Description:
4158  *      This function handles events from all modules directed to the driver
4159  *
4160  * Context:
4161  *      Is called under protection of slow path lock.
4162  *
4163  * Returns:
4164  *      0 if everything ok
4165  *      < 0  on error
4166  *      
4167  */
4168 int SkDrvEvent(
4169 SK_AC *pAC,             /* pointer to adapter context */
4170 SK_IOC IoC,             /* io-context */
4171 SK_U32 Event,           /* event-id */
4172 SK_EVPARA Param)        /* event-parameter */
4173 {
4174 SK_MBUF         *pRlmtMbuf;     /* pointer to a rlmt-mbuf structure */
4175 struct sk_buff  *pMsg;          /* pointer to a message block */
4176 int             FromPort;       /* the port from which we switch away */
4177 int             ToPort;         /* the port we switch to */
4178 SK_EVPARA       NewPara;        /* parameter for further events */
4179 int             Stat;
4180 unsigned long   Flags;
4181 SK_BOOL         DualNet;
4182
4183         switch (Event) {
4184         case SK_DRV_ADAP_FAIL:
4185                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4186                         ("ADAPTER FAIL EVENT\n"));
4187                 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4188                 /* disable interrupts */
4189                 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4190                 /* cgoos */
4191                 break;
4192         case SK_DRV_PORT_FAIL:
4193                 FromPort = Param.Para32[0];
4194                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4195                         ("PORT FAIL EVENT, Port: %d\n", FromPort));
4196                 if (FromPort == 0) {
4197                         printk("%s: Port A failed.\n", pAC->dev[0]->name);
4198                 } else {
4199                         printk("%s: Port B failed.\n", pAC->dev[1]->name);
4200                 }
4201                 /* cgoos */
4202                 break;
4203         case SK_DRV_PORT_RESET:  /* SK_U32 PortIdx */
4204                 /* action list 4 */
4205                 FromPort = Param.Para32[0];
4206                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4207                         ("PORT RESET EVENT, Port: %d ", FromPort));
4208                 NewPara.Para64 = FromPort;
4209                 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4210                 spin_lock_irqsave(
4211                         &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4212                         Flags);
4213
4214                 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
4215                 netif_carrier_off(pAC->dev[Param.Para32[0]]);
4216                 spin_unlock_irqrestore(
4217                         &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4218                         Flags);
4219                 
4220                 /* clear rx ring from received frames */
4221                 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4222                 
4223                 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4224                 spin_lock_irqsave(
4225                         &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4226                         Flags);
4227                 
4228                 /* tschilling: Handling of return value inserted. */
4229                 if (SkGeInitPort(pAC, IoC, FromPort)) {
4230                         if (FromPort == 0) {
4231                                 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4232                         } else {
4233                                 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4234                         }
4235                 }
4236                 SkAddrMcUpdate(pAC,IoC, FromPort);
4237                 PortReInitBmu(pAC, FromPort);
4238                 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4239                 ClearAndStartRx(pAC, FromPort);
4240                 spin_unlock_irqrestore(
4241                         &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4242                         Flags);
4243                 break;
4244         case SK_DRV_NET_UP:      /* SK_U32 PortIdx */
4245                 /* action list 5 */
4246                 FromPort = Param.Para32[0];
4247                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4248                         ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4249                 /* Mac update */
4250                 SkAddrMcUpdate(pAC,IoC, FromPort);
4251
4252                 if (DoPrintInterfaceChange) {
4253                 printk("%s: network connection up using"
4254                         " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4255
4256                 /* tschilling: Values changed according to LinkSpeedUsed. */
4257                 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4258                 if (Stat == SK_LSPEED_STAT_10MBPS) {
4259                         printk("    speed:           10\n");
4260                 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4261                         printk("    speed:           100\n");
4262                 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4263                         printk("    speed:           1000\n");
4264                 } else {
4265                         printk("    speed:           unknown\n");
4266                 }
4267
4268
4269                 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4270                 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4271                         Stat == SK_LMODE_STAT_AUTOFULL) {
4272                         printk("    autonegotiation: yes\n");
4273                 }
4274                 else {
4275                         printk("    autonegotiation: no\n");
4276                 }
4277                 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4278                         Stat == SK_LMODE_STAT_HALF) {
4279                         printk("    duplex mode:     half\n");
4280                 }
4281                 else {
4282                         printk("    duplex mode:     full\n");
4283                 }
4284                 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4285                 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4286                         printk("    flowctrl:        remote send\n");
4287                 }
4288                 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4289                         printk("    flowctrl:        local send\n");
4290                 }
4291                 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4292                         printk("    flowctrl:        symmetric\n");
4293                 }
4294                 else {
4295                         printk("    flowctrl:        none\n");
4296                 }
4297                 
4298                 /* tschilling: Check against CopperType now. */
4299                 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4300                         (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4301                         SK_LSPEED_STAT_1000MBPS)) {
4302                         Stat = pAC->GIni.GP[FromPort].PMSStatus;
4303                         if (Stat == SK_MS_STAT_MASTER ) {
4304                                 printk("    role:            master\n");
4305                         }
4306                         else if (Stat == SK_MS_STAT_SLAVE ) {
4307                                 printk("    role:            slave\n");
4308                         }
4309                         else {
4310                                 printk("    role:            ???\n");
4311                         }
4312                 }
4313
4314                 /* 
4315                    Display dim (dynamic interrupt moderation) 
4316                    informations
4317                  */
4318                 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4319                         printk("    irq moderation:  static (%d ints/sec)\n",
4320                                         pAC->DynIrqModInfo.MaxModIntsPerSec);
4321                 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4322                         printk("    irq moderation:  dynamic (%d ints/sec)\n",
4323                                         pAC->DynIrqModInfo.MaxModIntsPerSec);
4324                 else
4325                         printk("    irq moderation:  disabled\n");
4326
4327
4328 #ifdef SK_ZEROCOPY
4329                 if (pAC->ChipsetType)
4330 #ifdef USE_SK_TX_CHECKSUM
4331                         printk("    scatter-gather:  enabled\n");
4332 #else
4333                         printk("    tx-checksum:     disabled\n");
4334 #endif
4335                 else
4336                         printk("    scatter-gather:  disabled\n");
4337 #else
4338                         printk("    scatter-gather:  disabled\n");
4339 #endif
4340
4341 #ifndef USE_SK_RX_CHECKSUM
4342                         printk("    rx-checksum:     disabled\n");
4343 #endif
4344
4345                 } else {
4346                         DoPrintInterfaceChange = SK_TRUE;
4347                 }
4348         
4349                 if ((Param.Para32[0] != pAC->ActivePort) &&
4350                         (pAC->RlmtNets == 1)) {
4351                         NewPara.Para32[0] = pAC->ActivePort;
4352                         NewPara.Para32[1] = Param.Para32[0];
4353                         SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4354                                 NewPara);
4355                 }
4356
4357                 /* Inform the world that link protocol is up. */
4358                 netif_carrier_on(pAC->dev[Param.Para32[0]]);
4359
4360                 break;
4361         case SK_DRV_NET_DOWN:    /* SK_U32 Reason */
4362                 /* action list 7 */
4363                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4364                         ("NET DOWN EVENT "));
4365                 if (DoPrintInterfaceChange) {
4366                         printk("%s: network connection down\n", 
4367                                 pAC->dev[Param.Para32[1]]->name);
4368                 } else {
4369                         DoPrintInterfaceChange = SK_TRUE;
4370                 }
4371                 netif_carrier_off(pAC->dev[Param.Para32[1]]);
4372                 break;
4373         case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4374                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4375                         ("PORT SWITCH HARD "));
4376         case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4377         /* action list 6 */
4378                 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4379                         'A'+Param.Para32[1]);
4380         case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4381                 FromPort = Param.Para32[0];
4382                 ToPort = Param.Para32[1];
4383                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4384                         ("PORT SWITCH EVENT, From: %d  To: %d (Pref %d) ",
4385                         FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4386                 NewPara.Para64 = FromPort;
4387                 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4388                 NewPara.Para64 = ToPort;
4389                 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4390                 spin_lock_irqsave(
4391                         &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4392                         Flags);
4393                 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4394                 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4395                 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4396                 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4397                 spin_unlock_irqrestore(
4398                         &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4399                         Flags);
4400
4401                 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4402                 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4403                 
4404                 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4405                 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4406                 spin_lock_irqsave(
4407                         &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4408                         Flags);
4409                 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4410                 pAC->ActivePort = ToPort;
4411 #if 0
4412                 SetQueueSizes(pAC);
4413 #else
4414                 /* tschilling: New common function with minimum size check. */
4415                 DualNet = SK_FALSE;
4416                 if (pAC->RlmtNets == 2) {
4417                         DualNet = SK_TRUE;
4418                 }
4419                 
4420                 if (SkGeInitAssignRamToQueues(
4421                         pAC,
4422                         pAC->ActivePort,
4423                         DualNet)) {
4424                         spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4425                         spin_unlock_irqrestore(
4426                                 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4427                                 Flags);
4428                         printk("SkGeInitAssignRamToQueues failed.\n");
4429                         break;
4430                 }
4431 #endif
4432                 /* tschilling: Handling of return values inserted. */
4433                 if (SkGeInitPort(pAC, IoC, FromPort) ||
4434                         SkGeInitPort(pAC, IoC, ToPort)) {
4435                         printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4436                 }
4437                 if (Event == SK_DRV_SWITCH_SOFT) {
4438                         SkMacRxTxEnable(pAC, IoC, FromPort);
4439                 }
4440                 SkMacRxTxEnable(pAC, IoC, ToPort);
4441                 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4442                 SkAddrMcUpdate(pAC, IoC, FromPort);
4443                 SkAddrMcUpdate(pAC, IoC, ToPort);
4444                 PortReInitBmu(pAC, FromPort);
4445                 PortReInitBmu(pAC, ToPort);
4446                 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4447                 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4448                 ClearAndStartRx(pAC, FromPort);
4449                 ClearAndStartRx(pAC, ToPort);
4450                 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4451                 spin_unlock_irqrestore(
4452                         &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4453                         Flags);
4454                 break;
4455         case SK_DRV_RLMT_SEND:   /* SK_MBUF *pMb */
4456                 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4457                         ("RLS "));
4458                 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4459                 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4460                 skb_put(pMsg, pRlmtMbuf->Length);
4461                 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4462                         pMsg) < 0)
4463
4464                         DEV_KFREE_SKB_ANY(pMsg);
4465                 break;
4466         case SK_DRV_TIMER:
4467                 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4468                         /*
4469                         ** expiration of the moderation timer implies that
4470                         ** dynamic moderation is to be applied
4471                         */
4472                         SkDimStartModerationTimer(pAC);
4473                         SkDimModerate(pAC);
4474                         if (pAC->DynIrqModInfo.DisplayStats) {
4475                             SkDimDisplayModerationSettings(pAC);
4476                         }
4477                 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4478                         /*
4479                         ** check if we need to check for descriptors which
4480                         ** haven't been handled the last millisecs
4481                         */
4482                         StartDrvCleanupTimer(pAC);
4483                         if (pAC->GIni.GIMacsFound == 2) {
4484                                 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4485                         }
4486                         ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4487                 } else {
4488                         printk("Expiration of unknown timer\n");
4489                 }
4490                 break;
4491         default:
4492                 break;
4493         }
4494         SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4495                 ("END EVENT "));
4496         
4497         return (0);
4498 } /* SkDrvEvent */
4499
4500
4501 /*****************************************************************************
4502  *
4503  *      SkErrorLog - log errors
4504  *
4505  * Description:
4506  *      This function logs errors to the system buffer and to the console
4507  *
4508  * Returns:
4509  *      0 if everything ok
4510  *      < 0  on error
4511  *      
4512  */
4513 void SkErrorLog(
4514 SK_AC   *pAC,
4515 int     ErrClass,
4516 int     ErrNum,
4517 char    *pErrorMsg)
4518 {
4519 char    ClassStr[80];
4520
4521         switch (ErrClass) {
4522         case SK_ERRCL_OTHER:
4523                 strcpy(ClassStr, "Other error");
4524                 break;
4525         case SK_ERRCL_CONFIG:
4526                 strcpy(ClassStr, "Configuration error");
4527                 break;
4528         case SK_ERRCL_INIT:
4529                 strcpy(ClassStr, "Initialization error");
4530                 break;
4531         case SK_ERRCL_NORES:
4532                 strcpy(ClassStr, "Out of resources error");
4533                 break;
4534         case SK_ERRCL_SW:
4535                 strcpy(ClassStr, "internal Software error");
4536                 break;
4537         case SK_ERRCL_HW:
4538                 strcpy(ClassStr, "Hardware failure");
4539                 break;
4540         case SK_ERRCL_COMM:
4541                 strcpy(ClassStr, "Communication error");
4542                 break;
4543         }
4544         printk(KERN_INFO "%s: -- ERROR --\n        Class:  %s\n"
4545                 "        Nr:  0x%x\n        Msg:  %s\n", pAC->dev[0]->name,
4546                 ClassStr, ErrNum, pErrorMsg);
4547
4548 } /* SkErrorLog */
4549
4550 #ifdef SK_DIAG_SUPPORT
4551
4552 /*****************************************************************************
4553  *
4554  *      SkDrvEnterDiagMode - handles DIAG attach request
4555  *
4556  * Description:
4557  *      Notify the kernel to NOT access the card any longer due to DIAG
4558  *      Deinitialize the Card
4559  *
4560  * Returns:
4561  *      int
4562  */
4563 int SkDrvEnterDiagMode(
4564 SK_AC   *pAc)   /* pointer to adapter context */
4565 {
4566         DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4567         SK_AC   *pAC  = pNet->pAC;
4568
4569         SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct), 
4570                         sizeof(SK_PNMI_STRUCT_DATA));
4571
4572         pAC->DiagModeActive = DIAG_ACTIVE;
4573         if (pAC->BoardLevel > SK_INIT_DATA) {
4574                 if (pNet->Up) {
4575                         pAC->WasIfUp[0] = SK_TRUE;
4576                         pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose      */
4577                         DoPrintInterfaceChange = SK_FALSE;
4578                         SkDrvDeInitAdapter(pAC, 0);  /* performs SkGeClose */
4579                 } else {
4580                         pAC->WasIfUp[0] = SK_FALSE;
4581                 }
4582                 if (pNet != netdev_priv(pAC->dev[1])) {
4583                         pNet = netdev_priv(pAC->dev[1]);
4584                         if (pNet->Up) {
4585                                 pAC->WasIfUp[1] = SK_TRUE;
4586                                 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4587                                 DoPrintInterfaceChange = SK_FALSE;
4588                                 SkDrvDeInitAdapter(pAC, 1);  /* do SkGeClose  */
4589                         } else {
4590                                 pAC->WasIfUp[1] = SK_FALSE;
4591                         }
4592                 }
4593                 pAC->BoardLevel = SK_INIT_DATA;
4594         }
4595         return(0);
4596 }
4597
4598 /*****************************************************************************
4599  *
4600  *      SkDrvLeaveDiagMode - handles DIAG detach request
4601  *
4602  * Description:
4603  *      Notify the kernel to may access the card again after use by DIAG
4604  *      Initialize the Card
4605  *
4606  * Returns:
4607  *      int
4608  */
4609 int SkDrvLeaveDiagMode(
4610 SK_AC   *pAc)   /* pointer to adapter control context */
4611
4612         SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup), 
4613                         sizeof(SK_PNMI_STRUCT_DATA));
4614         pAc->DiagModeActive    = DIAG_NOTACTIVE;
4615         pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4616         if (pAc->WasIfUp[0] == SK_TRUE) {
4617                 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4618                 DoPrintInterfaceChange = SK_FALSE;
4619                 SkDrvInitAdapter(pAc, 0);    /* first device  */
4620         }
4621         if (pAc->WasIfUp[1] == SK_TRUE) {
4622                 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4623                 DoPrintInterfaceChange = SK_FALSE;
4624                 SkDrvInitAdapter(pAc, 1);    /* second device */
4625         }
4626         return(0);
4627 }
4628
4629 /*****************************************************************************
4630  *
4631  *      ParseDeviceNbrFromSlotName - Evaluate PCI device number
4632  *
4633  * Description:
4634  *      This function parses the PCI slot name information string and will
4635  *      retrieve the devcie number out of it. The slot_name maintianed by
4636  *      linux is in the form of '02:0a.0', whereas the first two characters 
4637  *      represent the bus number in hex (in the sample above this is 
4638  *      pci bus 0x02) and the next two characters the device number (0x0a).
4639  *
4640  * Returns:
4641  *      SK_U32: The device number from the PCI slot name
4642  */ 
4643
4644 static SK_U32 ParseDeviceNbrFromSlotName(
4645 const char *SlotName)   /* pointer to pci slot name eg. '02:0a.0' */
4646 {
4647         char    *CurrCharPos    = (char *) SlotName;
4648         int     FirstNibble     = -1;
4649         int     SecondNibble    = -1;
4650         SK_U32  Result          =  0;
4651
4652         while (*CurrCharPos != '\0') {
4653                 if (*CurrCharPos == ':') { 
4654                         while (*CurrCharPos != '.') {
4655                                 CurrCharPos++;  
4656                                 if (    (*CurrCharPos >= '0') && 
4657                                         (*CurrCharPos <= '9')) {
4658                                         if (FirstNibble == -1) {
4659                                                 /* dec. value for '0' */
4660                                                 FirstNibble = *CurrCharPos - 48;
4661                                         } else {
4662                                                 SecondNibble = *CurrCharPos - 48;
4663                                         }  
4664                                 } else if (     (*CurrCharPos >= 'a') && 
4665                                                 (*CurrCharPos <= 'f')  ) {
4666                                         if (FirstNibble == -1) {
4667                                                 FirstNibble = *CurrCharPos - 87; 
4668                                         } else {
4669                                                 SecondNibble = *CurrCharPos - 87; 
4670                                         }
4671                                 } else {
4672                                         Result = 0;
4673                                 }
4674                         }
4675
4676                         Result = FirstNibble;
4677                         Result = Result << 4; /* first nibble is higher one */
4678                         Result = Result | SecondNibble;
4679                 }
4680                 CurrCharPos++;   /* next character */
4681         }
4682         return (Result);
4683 }
4684
4685 /****************************************************************************
4686  *
4687  *      SkDrvDeInitAdapter - deinitialize adapter (this function is only 
4688  *                              called if Diag attaches to that card)
4689  *
4690  * Description:
4691  *      Close initialized adapter.
4692  *
4693  * Returns:
4694  *      0 - on success
4695  *      error code - on error
4696  */
4697 static int SkDrvDeInitAdapter(
4698 SK_AC   *pAC,           /* pointer to adapter context   */
4699 int      devNbr)        /* what device is to be handled */
4700 {
4701         struct SK_NET_DEVICE *dev;
4702
4703         dev = pAC->dev[devNbr];
4704
4705         /* On Linux 2.6 the network driver does NOT mess with reference
4706         ** counts.  The driver MUST be able to be unloaded at any time
4707         ** due to the possibility of hotplug.
4708         */
4709         if (SkGeClose(dev) != 0) {
4710                 return (-1);
4711         }
4712         return (0);
4713
4714 } /* SkDrvDeInitAdapter() */
4715
4716 /****************************************************************************
4717  *
4718  *      SkDrvInitAdapter - Initialize adapter (this function is only 
4719  *                              called if Diag deattaches from that card)
4720  *
4721  * Description:
4722  *      Close initialized adapter.
4723  *
4724  * Returns:
4725  *      0 - on success
4726  *      error code - on error
4727  */
4728 static int SkDrvInitAdapter(
4729 SK_AC   *pAC,           /* pointer to adapter context   */
4730 int      devNbr)        /* what device is to be handled */
4731 {
4732         struct SK_NET_DEVICE *dev;
4733
4734         dev = pAC->dev[devNbr];
4735
4736         if (SkGeOpen(dev) != 0) {
4737                 return (-1);
4738         }
4739
4740         /*
4741         ** Use correct MTU size and indicate to kernel TX queue can be started
4742         */ 
4743         if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4744                 return (-1);
4745         } 
4746         return (0);
4747
4748 } /* SkDrvInitAdapter */
4749
4750 #endif
4751
4752 #ifdef DEBUG
4753 /****************************************************************************/
4754 /* "debug only" section *****************************************************/
4755 /****************************************************************************/
4756
4757
4758 /*****************************************************************************
4759  *
4760  *      DumpMsg - print a frame
4761  *
4762  * Description:
4763  *      This function prints frames to the system logfile/to the console.
4764  *
4765  * Returns: N/A
4766  *      
4767  */
4768 static void DumpMsg(struct sk_buff *skb, char *str)
4769 {
4770         int     msglen;
4771
4772         if (skb == NULL) {
4773                 printk("DumpMsg(): NULL-Message\n");
4774                 return;
4775         }
4776
4777         if (skb->data == NULL) {
4778                 printk("DumpMsg(): Message empty\n");
4779                 return;
4780         }
4781
4782         msglen = skb->len;
4783         if (msglen > 64)
4784                 msglen = 64;
4785
4786         printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4787
4788         DumpData((char *)skb->data, msglen);
4789
4790         printk("------- End of message ---------\n");
4791 } /* DumpMsg */
4792
4793
4794
4795 /*****************************************************************************
4796  *
4797  *      DumpData - print a data area
4798  *
4799  * Description:
4800  *      This function prints a area of data to the system logfile/to the
4801  *      console.
4802  *
4803  * Returns: N/A
4804  *      
4805  */
4806 static void DumpData(char *p, int size)
4807 {
4808 register int    i;
4809 int     haddr, addr;
4810 char    hex_buffer[180];
4811 char    asc_buffer[180];
4812 char    HEXCHAR[] = "0123456789ABCDEF";
4813
4814         addr = 0;
4815         haddr = 0;
4816         hex_buffer[0] = 0;
4817         asc_buffer[0] = 0;
4818         for (i=0; i < size; ) {
4819                 if (*p >= '0' && *p <='z')
4820                         asc_buffer[addr] = *p;
4821                 else
4822                         asc_buffer[addr] = '.';
4823                 addr++;
4824                 asc_buffer[addr] = 0;
4825                 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4826                 haddr++;
4827                 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4828                 haddr++;
4829                 hex_buffer[haddr] = ' ';
4830                 haddr++;
4831                 hex_buffer[haddr] = 0;
4832                 p++;
4833                 i++;
4834                 if (i%16 == 0) {
4835                         printk("%s  %s\n", hex_buffer, asc_buffer);
4836                         addr = 0;
4837                         haddr = 0;
4838                 }
4839         }
4840 } /* DumpData */
4841
4842
4843 /*****************************************************************************
4844  *
4845  *      DumpLong - print a data area as long values
4846  *
4847  * Description:
4848  *      This function prints a area of data to the system logfile/to the
4849  *      console.
4850  *
4851  * Returns: N/A
4852  *      
4853  */
4854 static void DumpLong(char *pc, int size)
4855 {
4856 register int    i;
4857 int     haddr, addr;
4858 char    hex_buffer[180];
4859 char    asc_buffer[180];
4860 char    HEXCHAR[] = "0123456789ABCDEF";
4861 long    *p;
4862 int     l;
4863
4864         addr = 0;
4865         haddr = 0;
4866         hex_buffer[0] = 0;
4867         asc_buffer[0] = 0;
4868         p = (long*) pc;
4869         for (i=0; i < size; ) {
4870                 l = (long) *p;
4871                 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4872                 haddr++;
4873                 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4874                 haddr++;
4875                 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4876                 haddr++;
4877                 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4878                 haddr++;
4879                 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4880                 haddr++;
4881                 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4882                 haddr++;
4883                 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4884                 haddr++;
4885                 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4886                 haddr++;
4887                 hex_buffer[haddr] = ' ';
4888                 haddr++;
4889                 hex_buffer[haddr] = 0;
4890                 p++;
4891                 i++;
4892                 if (i%8 == 0) {
4893                         printk("%4x %s\n", (i-8)*4, hex_buffer);
4894                         haddr = 0;
4895                 }
4896         }
4897         printk("------------------------\n");
4898 } /* DumpLong */
4899
4900 #endif
4901
4902 static int __devinit skge_probe_one(struct pci_dev *pdev,
4903                 const struct pci_device_id *ent)
4904 {
4905         SK_AC                   *pAC;
4906         DEV_NET                 *pNet = NULL;
4907         struct net_device       *dev = NULL;
4908         static int boards_found = 0;
4909         int error = -ENODEV;
4910
4911         if (pci_enable_device(pdev))
4912                 goto out;
4913  
4914         /* Configure DMA attributes. */
4915         if (pci_set_dma_mask(pdev, (u64) 0xffffffffffffffffULL) &&
4916             pci_set_dma_mask(pdev, (u64) 0xffffffff))
4917                 goto out_disable_device;
4918
4919
4920         if ((dev = alloc_etherdev(sizeof(DEV_NET))) == NULL) {
4921                 printk(KERN_ERR "Unable to allocate etherdev "
4922                        "structure!\n");
4923                 goto out_disable_device;
4924         }
4925
4926         pNet = netdev_priv(dev);
4927         pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
4928         if (!pNet->pAC) {
4929                 printk(KERN_ERR "Unable to allocate adapter "
4930                        "structure!\n");
4931                 goto out_free_netdev;
4932         }
4933
4934         memset(pNet->pAC, 0, sizeof(SK_AC));
4935         pAC = pNet->pAC;
4936         pAC->PciDev = pdev;
4937         pAC->PciDevId = pdev->device;
4938         pAC->dev[0] = dev;
4939         pAC->dev[1] = dev;
4940         sprintf(pAC->Name, "SysKonnect SK-98xx");
4941         pAC->CheckQueue = SK_FALSE;
4942
4943         pNet->Mtu = 1500;
4944         pNet->Up = 0;
4945         dev->irq = pdev->irq;
4946         error = SkGeInitPCI(pAC);
4947         if (error) {
4948                 printk("SKGE: PCI setup failed: %i\n", error);
4949                 goto out_free_netdev;
4950         }
4951
4952         SET_MODULE_OWNER(dev);
4953         dev->open =             &SkGeOpen;
4954         dev->stop =             &SkGeClose;
4955         dev->hard_start_xmit =  &SkGeXmit;
4956         dev->get_stats =        &SkGeStats;
4957         dev->set_multicast_list = &SkGeSetRxMode;
4958         dev->set_mac_address =  &SkGeSetMacAddr;
4959         dev->do_ioctl =         &SkGeIoctl;
4960         dev->change_mtu =       &SkGeChangeMtu;
4961 #ifdef CONFIG_NET_POLL_CONTROLLER
4962         dev->poll_controller =  &SkGePollController;
4963 #endif
4964         SET_NETDEV_DEV(dev, &pdev->dev);
4965         SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4966
4967 #ifdef SK_ZEROCOPY
4968 #ifdef USE_SK_TX_CHECKSUM
4969         if (pAC->ChipsetType) {
4970                 /* Use only if yukon hardware */
4971                 /* SK and ZEROCOPY - fly baby... */
4972                 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
4973         }
4974 #endif
4975 #endif
4976
4977         pAC->Index = boards_found++;
4978
4979         if (SkGeBoardInit(dev, pAC))
4980                 goto out_free_netdev;
4981
4982         /* Register net device */
4983         if (register_netdev(dev)) {
4984                 printk(KERN_ERR "SKGE: Could not register device.\n");
4985                 goto out_free_resources;
4986         }
4987
4988         /* Print adapter specific string from vpd */
4989         ProductStr(pAC);
4990         printk("%s: %s\n", dev->name, pAC->DeviceStr);
4991
4992         /* Print configuration settings */
4993         printk("      PrefPort:%c  RlmtMode:%s\n",
4994                 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4995                 (pAC->RlmtMode==0)  ? "Check Link State" :
4996                 ((pAC->RlmtMode==1) ? "Check Link State" :
4997                 ((pAC->RlmtMode==3) ? "Check Local Port" :
4998                 ((pAC->RlmtMode==7) ? "Check Segmentation" :
4999                 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
5000
5001         SkGeYellowLED(pAC, pAC->IoBase, 1);
5002
5003
5004         memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
5005
5006         SkGeProcCreate(dev);
5007
5008         pNet->PortNr = 0;
5009         pNet->NetNr  = 0;
5010
5011         boards_found++;
5012
5013         /* More then one port found */
5014         if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
5015                 if ((dev = alloc_etherdev(sizeof(DEV_NET))) == 0) {
5016                         printk(KERN_ERR "Unable to allocate etherdev "
5017                                 "structure!\n");
5018                         goto out;
5019                 }
5020
5021                 pAC->dev[1]   = dev;
5022                 pNet          = netdev_priv(dev);
5023                 pNet->PortNr  = 1;
5024                 pNet->NetNr   = 1;
5025                 pNet->pAC     = pAC;
5026                 pNet->Mtu     = 1500;
5027                 pNet->Up      = 0;
5028
5029                 dev->open               = &SkGeOpen;
5030                 dev->stop               = &SkGeClose;
5031                 dev->hard_start_xmit    = &SkGeXmit;
5032                 dev->get_stats          = &SkGeStats;
5033                 dev->set_multicast_list = &SkGeSetRxMode;
5034                 dev->set_mac_address    = &SkGeSetMacAddr;
5035                 dev->do_ioctl           = &SkGeIoctl;
5036                 dev->change_mtu         = &SkGeChangeMtu;
5037                 SET_NETDEV_DEV(dev, &pdev->dev);
5038                 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
5039
5040 #ifdef SK_ZEROCOPY
5041 #ifdef USE_SK_TX_CHECKSUM
5042                 if (pAC->ChipsetType) {
5043                         /* SG and ZEROCOPY - fly baby... */
5044                         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
5045                 }
5046 #endif
5047 #endif
5048
5049                 if (register_netdev(dev)) {
5050                         printk(KERN_ERR "SKGE: Could not register device.\n");
5051                         free_netdev(dev);
5052                         pAC->dev[1] = pAC->dev[0];
5053                 } else {
5054                         SkGeProcCreate(dev);
5055                         memcpy(&dev->dev_addr,
5056                                         &pAC->Addr.Net[1].CurrentMacAddress, 6);
5057         
5058                         printk("%s: %s\n", dev->name, pAC->DeviceStr);
5059                         printk("      PrefPort:B  RlmtMode:Dual Check Link State\n");
5060                 }
5061         }
5062
5063         /* Save the hardware revision */
5064         pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
5065                 (pAC->GIni.GIPciHwRev & 0x0F);
5066
5067         /* Set driver globals */
5068         pAC->Pnmi.pDriverFileName    = DRIVER_FILE_NAME;
5069         pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
5070
5071         memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
5072         memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
5073
5074         pci_set_drvdata(pdev, dev);
5075         return 0;
5076
5077  out_free_resources:
5078         FreeResources(dev);
5079  out_free_netdev:
5080         free_netdev(dev);
5081  out_disable_device:
5082         pci_disable_device(pdev);
5083  out:
5084         return error;
5085 }
5086
5087 static void __devexit skge_remove_one(struct pci_dev *pdev)
5088 {
5089         struct net_device *dev = pci_get_drvdata(pdev);
5090         DEV_NET *pNet = netdev_priv(dev);
5091         SK_AC *pAC = pNet->pAC;
5092         struct net_device *otherdev = pAC->dev[1];
5093
5094         SkGeProcRemove(dev);
5095         unregister_netdev(dev);
5096         if (otherdev != dev)
5097                 SkGeProcRemove(otherdev);
5098
5099         SkGeYellowLED(pAC, pAC->IoBase, 0);
5100
5101         if (pAC->BoardLevel == SK_INIT_RUN) {
5102                 SK_EVPARA EvPara;
5103                 unsigned long Flags;
5104
5105                 /* board is still alive */
5106                 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
5107                 EvPara.Para32[0] = 0;
5108                 EvPara.Para32[1] = -1;
5109                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5110                 EvPara.Para32[0] = 1;
5111                 EvPara.Para32[1] = -1;
5112                 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5113                 SkEventDispatcher(pAC, pAC->IoBase);
5114                 /* disable interrupts */
5115                 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
5116                 SkGeDeInit(pAC, pAC->IoBase);
5117                 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
5118                 pAC->BoardLevel = SK_INIT_DATA;
5119                 /* We do NOT check here, if IRQ was pending, of course*/
5120         }
5121
5122         if (pAC->BoardLevel == SK_INIT_IO) {
5123                 /* board is still alive */
5124                 SkGeDeInit(pAC, pAC->IoBase);
5125                 pAC->BoardLevel = SK_INIT_DATA;
5126         }
5127
5128         FreeResources(dev);
5129         free_netdev(dev);
5130         if (otherdev != dev)
5131                 free_netdev(otherdev);
5132         kfree(pAC);
5133 }
5134
5135 static struct pci_device_id skge_pci_tbl[] = {
5136         { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5137         { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5138         { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5139         { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5140         { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5141         { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5142 #if 0   /* don't handle Yukon2 cards at the moment -- mlindner@syskonnect.de */
5143         { PCI_VENDOR_ID_MARVELL, 0x4360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5144         { PCI_VENDOR_ID_MARVELL, 0x4361, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5145 #endif
5146         { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5147         { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5148         { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5149         { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5150         { 0, }
5151 };
5152
5153 MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5154
5155 static struct pci_driver skge_driver = {
5156         .name           = "sk98lin",
5157         .id_table       = skge_pci_tbl,
5158         .probe          = skge_probe_one,
5159         .remove         = __devexit_p(skge_remove_one),
5160 };
5161
5162 static int __init skge_init(void)
5163 {
5164         int error;
5165
5166         pSkRootDir = proc_mkdir(SKRootName, proc_net);
5167         if (pSkRootDir) 
5168                 pSkRootDir->owner = THIS_MODULE;
5169         
5170         error = pci_register_driver(&skge_driver);
5171         if (error)
5172                 proc_net_remove(SKRootName);
5173         return error;
5174 }
5175
5176 static void __exit skge_exit(void)
5177 {
5178         pci_unregister_driver(&skge_driver);
5179         proc_net_remove(SKRootName);
5180
5181 }
5182
5183 module_init(skge_init);
5184 module_exit(skge_exit);