Merge branch 'rusty-cpumask-parisc' into parisc
[linux-2.6] / arch / m68knommu / platform / 68360 / commproc.c
1 /*
2  * General Purpose functions for the global management of the
3  * Communication Processor Module.
4  *
5  * Copyright (c) 2000 Michael Leslie <mleslie@lineo.com>
6  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
7  *
8  * In addition to the individual control of the communication
9  * channels, there are a few functions that globally affect the
10  * communication processor.
11  *
12  * Buffer descriptors must be allocated from the dual ported memory
13  * space.  The allocator for that is here.  When the communication
14  * process is reset, we reclaim the memory available.  There is
15  * currently no deallocator for this memory.
16  * The amount of space available is platform dependent.  On the
17  * MBX, the EPPC software loads additional microcode into the
18  * communication processor, and uses some of the DP ram for this
19  * purpose.  Current, the first 512 bytes and the last 256 bytes of
20  * memory are used.  Right now I am conservative and only use the
21  * memory that can never be used for microcode.  If there are
22  * applications that require more DP ram, we can expand the boundaries
23  * but then we have to be careful of any downloaded microcode.
24  *
25  */
26
27 /*
28  * Michael Leslie <mleslie@lineo.com>
29  * adapted Dan Malek's ppc8xx drivers to M68360
30  *
31  */
32
33 #include <linux/errno.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/param.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <asm/irq.h>
41 #include <asm/m68360.h>
42 #include <asm/commproc.h>
43
44 /* #include <asm/page.h> */
45 /* #include <asm/pgtable.h> */
46 extern void *_quicc_base;
47 extern unsigned int system_clock;
48
49
50 static uint dp_alloc_base;      /* Starting offset in DP ram */
51 static uint dp_alloc_top;       /* Max offset + 1 */
52
53 #if 0
54 static  void    *host_buffer;   /* One page of host buffer */
55 static  void    *host_end;          /* end + 1 */
56 #endif
57
58 /* struct  cpm360_t *cpmp; */         /* Pointer to comm processor space */
59
60 QUICC  *pquicc;
61 /* QUICC  *quicc_dpram; */ /* mleslie - temporary; use extern pquicc elsewhere instead */
62
63
64 /* CPM interrupt vector functions. */
65 struct  cpm_action {
66         void    (*handler)(void *);
67         void    *dev_id;
68 };
69 static  struct  cpm_action cpm_vecs[CPMVEC_NR];
70 static  void    cpm_interrupt(int irq, void * dev, struct pt_regs * regs);
71 static  void    cpm_error_interrupt(void *);
72
73 /* prototypes: */
74 void cpm_install_handler(int vec, void (*handler)(), void *dev_id);
75 void m360_cpm_reset(void);
76
77
78
79
80 void m360_cpm_reset()
81 {
82 /*      pte_t              *pte; */
83
84         pquicc = (struct quicc *)(_quicc_base); /* initialized in crt0_rXm.S */
85
86         /* Perform a CPM reset. */
87         pquicc->cp_cr = (SOFTWARE_RESET | CMD_FLAG);
88
89         /* Wait for CPM to become ready (should be 2 clocks). */
90         while (pquicc->cp_cr & CMD_FLAG);
91
92         /* On the recommendation of the 68360 manual, p. 7-60
93          * - Set sdma interrupt service mask to 7
94          * - Set sdma arbitration ID to 4
95          */
96         pquicc->sdma_sdcr = 0x0740;
97
98
99         /* Claim the DP memory for our use.
100          */
101         dp_alloc_base = CPM_DATAONLY_BASE;
102         dp_alloc_top = dp_alloc_base + CPM_DATAONLY_SIZE;
103
104
105         /* Set the host page for allocation.
106          */
107         /*      host_buffer = host_page_addr; */
108         /*      host_end = host_page_addr + PAGE_SIZE; */
109
110         /*      pte = find_pte(&init_mm, host_page_addr); */
111         /*      pte_val(*pte) |= _PAGE_NO_CACHE; */
112         /*      flush_tlb_page(current->mm->mmap, host_buffer); */
113         
114         /* Tell everyone where the comm processor resides.
115         */
116 /*      cpmp = (cpm360_t *)commproc; */
117 }
118
119
120 /* This is called during init_IRQ.  We used to do it above, but this
121  * was too early since init_IRQ was not yet called.
122  */
123 void
124 cpm_interrupt_init(void)
125 {
126         /* Initialize the CPM interrupt controller.
127          * NOTE THAT pquicc had better have been initialized!
128          * reference: MC68360UM p. 7-377
129          */
130         pquicc->intr_cicr =
131                 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
132                 (CPM_INTERRUPT << 13) |
133                 CICR_HP_MASK |
134                 (CPM_VECTOR_BASE << 5) |
135                 CICR_SPS;
136
137         /* mask all CPM interrupts from reaching the cpu32 core: */
138         pquicc->intr_cimr = 0;
139
140
141         /* mles - If I understand correctly, the 360 just pops over to the CPM
142          * specific vector, obviating the necessity to vector through the IRQ
143          * whose priority the CPM is set to. This needs a closer look, though.
144          */
145
146         /* Set our interrupt handler with the core CPU. */
147 /*      if (request_irq(CPM_INTERRUPT, cpm_interrupt, 0, "cpm", NULL) != 0) */
148 /*              panic("Could not allocate CPM IRQ!"); */
149
150         /* Install our own error handler.
151          */
152         /* I think we want to hold off on this one for the moment - mles */
153         /* cpm_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL); */
154
155         /* master CPM interrupt enable */
156         /* pquicc->intr_cicr |= CICR_IEN; */ /* no such animal for 360 */
157 }
158
159
160
161 /* CPM interrupt controller interrupt.
162 */
163 static  void
164 cpm_interrupt(int irq, void * dev, struct pt_regs * regs)
165 {
166         /* uint vec; */
167
168         /* mles: Note that this stuff is currently being performed by
169          * M68360_do_irq(int vec, struct pt_regs *fp), in ../ints.c  */
170
171         /* figure out the vector */
172         /* call that vector's handler */
173         /* clear the irq's bit in the service register */
174
175 #if 0 /* old 860 stuff: */
176         /* Get the vector by setting the ACK bit and then reading
177          * the register.
178          */
179         ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1;
180         vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr;
181         vec >>= 11;
182
183
184         if (cpm_vecs[vec].handler != 0)
185                 (*cpm_vecs[vec].handler)(cpm_vecs[vec].dev_id);
186         else
187                 ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec);
188
189         /* After servicing the interrupt, we have to remove the status
190          * indicator.
191          */
192         ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr |= (1 << vec);
193 #endif
194         
195 }
196
197 /* The CPM can generate the error interrupt when there is a race condition
198  * between generating and masking interrupts.  All we have to do is ACK it
199  * and return.  This is a no-op function so we don't need any special
200  * tests in the interrupt handler.
201  */
202 static  void
203 cpm_error_interrupt(void *dev)
204 {
205 }
206
207 /* Install a CPM interrupt handler.
208 */
209 void
210 cpm_install_handler(int vec, void (*handler)(), void *dev_id)
211 {
212
213         request_irq(vec, handler, IRQ_FLG_LOCK, "timer", dev_id);
214
215 /*      if (cpm_vecs[vec].handler != 0) */
216 /*              printk(KERN_INFO "CPM interrupt %x replacing %x\n", */
217 /*                      (uint)handler, (uint)cpm_vecs[vec].handler); */
218 /*      cpm_vecs[vec].handler = handler; */
219 /*      cpm_vecs[vec].dev_id = dev_id; */
220
221         /*              ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << vec); */
222 /*      pquicc->intr_cimr |= (1 << vec); */
223
224 }
225
226 /* Free a CPM interrupt handler.
227 */
228 void
229 cpm_free_handler(int vec)
230 {
231         cpm_vecs[vec].handler = NULL;
232         cpm_vecs[vec].dev_id = NULL;
233         /* ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec); */
234         pquicc->intr_cimr &= ~(1 << vec);
235 }
236
237
238
239
240 /* Allocate some memory from the dual ported ram.  We may want to
241  * enforce alignment restrictions, but right now everyone is a good
242  * citizen.
243  */
244 uint
245 m360_cpm_dpalloc(uint size)
246 {
247         uint    retloc;
248
249         if ((dp_alloc_base + size) >= dp_alloc_top)
250                 return(CPM_DP_NOSPACE);
251
252         retloc = dp_alloc_base;
253         dp_alloc_base += size;
254
255         return(retloc);
256 }
257
258
259 #if 0 /* mleslie - for now these are simply kmalloc'd */
260 /* We also own one page of host buffer space for the allocation of
261  * UART "fifos" and the like.
262  */
263 uint
264 m360_cpm_hostalloc(uint size)
265 {
266         uint    retloc;
267
268         if ((host_buffer + size) >= host_end)
269                 return(0);
270
271         retloc = host_buffer;
272         host_buffer += size;
273
274         return(retloc);
275 }
276 #endif
277
278
279 /* Set a baud rate generator.  This needs lots of work.  There are
280  * four BRGs, any of which can be wired to any channel.
281  * The internal baud rate clock is the system clock divided by 16.
282  * This assumes the baudrate is 16x oversampled by the uart.
283  */
284 /* #define BRG_INT_CLK  (((bd_t *)__res)->bi_intfreq * 1000000) */
285 #define BRG_INT_CLK             system_clock
286 #define BRG_UART_CLK    (BRG_INT_CLK/16)
287
288 void
289 m360_cpm_setbrg(uint brg, uint rate)
290 {
291         volatile uint   *bp;
292
293         /* This is good enough to get SMCs running.....
294          */
295         /* bp = (uint *)&cpmp->cp_brgc1; */
296         bp = (volatile uint *)(&pquicc->brgc[0].l);
297         bp += brg;
298         *bp = ((BRG_UART_CLK / rate - 1) << 1) | CPM_BRG_EN;
299 }
300
301
302 /*
303  * Local variables:
304  *  c-indent-level: 4
305  *  c-basic-offset: 4
306  *  tab-width: 4
307  * End:
308  */