Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[linux-2.6] / kernel / exit.c
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/mutex.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
39
40 extern void sem_exit (void);
41 extern struct task_struct *child_reaper;
42
43 int getrusage(struct task_struct *, int, struct rusage __user *);
44
45 static void exit_mm(struct task_struct * tsk);
46
47 static void __unhash_process(struct task_struct *p)
48 {
49         nr_threads--;
50         detach_pid(p, PIDTYPE_PID);
51         detach_pid(p, PIDTYPE_TGID);
52         if (thread_group_leader(p)) {
53                 detach_pid(p, PIDTYPE_PGID);
54                 detach_pid(p, PIDTYPE_SID);
55                 if (p->pid)
56                         __get_cpu_var(process_counts)--;
57         }
58
59         REMOVE_LINKS(p);
60 }
61
62 void release_task(struct task_struct * p)
63 {
64         int zap_leader;
65         task_t *leader;
66         struct dentry *proc_dentry;
67
68 repeat: 
69         atomic_dec(&p->user->processes);
70         spin_lock(&p->proc_lock);
71         proc_dentry = proc_pid_unhash(p);
72         write_lock_irq(&tasklist_lock);
73         if (unlikely(p->ptrace))
74                 __ptrace_unlink(p);
75         BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
76         __exit_signal(p);
77         /*
78          * Note that the fastpath in sys_times depends on __exit_signal having
79          * updated the counters before a task is removed from the tasklist of
80          * the process by __unhash_process.
81          */
82         __unhash_process(p);
83
84         /*
85          * If we are the last non-leader member of the thread
86          * group, and the leader is zombie, then notify the
87          * group leader's parent process. (if it wants notification.)
88          */
89         zap_leader = 0;
90         leader = p->group_leader;
91         if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
92                 BUG_ON(leader->exit_signal == -1);
93                 do_notify_parent(leader, leader->exit_signal);
94                 /*
95                  * If we were the last child thread and the leader has
96                  * exited already, and the leader's parent ignores SIGCHLD,
97                  * then we are the one who should release the leader.
98                  *
99                  * do_notify_parent() will have marked it self-reaping in
100                  * that case.
101                  */
102                 zap_leader = (leader->exit_signal == -1);
103         }
104
105         sched_exit(p);
106         write_unlock_irq(&tasklist_lock);
107         spin_unlock(&p->proc_lock);
108         proc_pid_flush(proc_dentry);
109         release_thread(p);
110         put_task_struct(p);
111
112         p = leader;
113         if (unlikely(zap_leader))
114                 goto repeat;
115 }
116
117 /* we are using it only for SMP init */
118
119 void unhash_process(struct task_struct *p)
120 {
121         struct dentry *proc_dentry;
122
123         spin_lock(&p->proc_lock);
124         proc_dentry = proc_pid_unhash(p);
125         write_lock_irq(&tasklist_lock);
126         __unhash_process(p);
127         write_unlock_irq(&tasklist_lock);
128         spin_unlock(&p->proc_lock);
129         proc_pid_flush(proc_dentry);
130 }
131
132 /*
133  * This checks not only the pgrp, but falls back on the pid if no
134  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
135  * without this...
136  */
137 int session_of_pgrp(int pgrp)
138 {
139         struct task_struct *p;
140         int sid = -1;
141
142         read_lock(&tasklist_lock);
143         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
144                 if (p->signal->session > 0) {
145                         sid = p->signal->session;
146                         goto out;
147                 }
148         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
149         p = find_task_by_pid(pgrp);
150         if (p)
151                 sid = p->signal->session;
152 out:
153         read_unlock(&tasklist_lock);
154         
155         return sid;
156 }
157
158 /*
159  * Determine if a process group is "orphaned", according to the POSIX
160  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
161  * by terminal-generated stop signals.  Newly orphaned process groups are
162  * to receive a SIGHUP and a SIGCONT.
163  *
164  * "I ask you, have you ever known what it is to be an orphan?"
165  */
166 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
167 {
168         struct task_struct *p;
169         int ret = 1;
170
171         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
172                 if (p == ignored_task
173                                 || p->exit_state
174                                 || p->real_parent->pid == 1)
175                         continue;
176                 if (process_group(p->real_parent) != pgrp
177                             && p->real_parent->signal->session == p->signal->session) {
178                         ret = 0;
179                         break;
180                 }
181         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
182         return ret;     /* (sighing) "Often!" */
183 }
184
185 int is_orphaned_pgrp(int pgrp)
186 {
187         int retval;
188
189         read_lock(&tasklist_lock);
190         retval = will_become_orphaned_pgrp(pgrp, NULL);
191         read_unlock(&tasklist_lock);
192
193         return retval;
194 }
195
196 static int has_stopped_jobs(int pgrp)
197 {
198         int retval = 0;
199         struct task_struct *p;
200
201         do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
202                 if (p->state != TASK_STOPPED)
203                         continue;
204
205                 /* If p is stopped by a debugger on a signal that won't
206                    stop it, then don't count p as stopped.  This isn't
207                    perfect but it's a good approximation.  */
208                 if (unlikely (p->ptrace)
209                     && p->exit_code != SIGSTOP
210                     && p->exit_code != SIGTSTP
211                     && p->exit_code != SIGTTOU
212                     && p->exit_code != SIGTTIN)
213                         continue;
214
215                 retval = 1;
216                 break;
217         } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
218         return retval;
219 }
220
221 /**
222  * reparent_to_init - Reparent the calling kernel thread to the init task.
223  *
224  * If a kernel thread is launched as a result of a system call, or if
225  * it ever exits, it should generally reparent itself to init so that
226  * it is correctly cleaned up on exit.
227  *
228  * The various task state such as scheduling policy and priority may have
229  * been inherited from a user process, so we reset them to sane values here.
230  *
231  * NOTE that reparent_to_init() gives the caller full capabilities.
232  */
233 static void reparent_to_init(void)
234 {
235         write_lock_irq(&tasklist_lock);
236
237         ptrace_unlink(current);
238         /* Reparent to init */
239         REMOVE_LINKS(current);
240         current->parent = child_reaper;
241         current->real_parent = child_reaper;
242         SET_LINKS(current);
243
244         /* Set the exit signal to SIGCHLD so we signal init on exit */
245         current->exit_signal = SIGCHLD;
246
247         if ((current->policy == SCHED_NORMAL ||
248                         current->policy == SCHED_BATCH)
249                                 && (task_nice(current) < 0))
250                 set_user_nice(current, 0);
251         /* cpus_allowed? */
252         /* rt_priority? */
253         /* signals? */
254         security_task_reparent_to_init(current);
255         memcpy(current->signal->rlim, init_task.signal->rlim,
256                sizeof(current->signal->rlim));
257         atomic_inc(&(INIT_USER->__count));
258         write_unlock_irq(&tasklist_lock);
259         switch_uid(INIT_USER);
260 }
261
262 void __set_special_pids(pid_t session, pid_t pgrp)
263 {
264         struct task_struct *curr = current->group_leader;
265
266         if (curr->signal->session != session) {
267                 detach_pid(curr, PIDTYPE_SID);
268                 curr->signal->session = session;
269                 attach_pid(curr, PIDTYPE_SID, session);
270         }
271         if (process_group(curr) != pgrp) {
272                 detach_pid(curr, PIDTYPE_PGID);
273                 curr->signal->pgrp = pgrp;
274                 attach_pid(curr, PIDTYPE_PGID, pgrp);
275         }
276 }
277
278 void set_special_pids(pid_t session, pid_t pgrp)
279 {
280         write_lock_irq(&tasklist_lock);
281         __set_special_pids(session, pgrp);
282         write_unlock_irq(&tasklist_lock);
283 }
284
285 /*
286  * Let kernel threads use this to say that they
287  * allow a certain signal (since daemonize() will
288  * have disabled all of them by default).
289  */
290 int allow_signal(int sig)
291 {
292         if (!valid_signal(sig) || sig < 1)
293                 return -EINVAL;
294
295         spin_lock_irq(&current->sighand->siglock);
296         sigdelset(&current->blocked, sig);
297         if (!current->mm) {
298                 /* Kernel threads handle their own signals.
299                    Let the signal code know it'll be handled, so
300                    that they don't get converted to SIGKILL or
301                    just silently dropped */
302                 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
303         }
304         recalc_sigpending();
305         spin_unlock_irq(&current->sighand->siglock);
306         return 0;
307 }
308
309 EXPORT_SYMBOL(allow_signal);
310
311 int disallow_signal(int sig)
312 {
313         if (!valid_signal(sig) || sig < 1)
314                 return -EINVAL;
315
316         spin_lock_irq(&current->sighand->siglock);
317         sigaddset(&current->blocked, sig);
318         recalc_sigpending();
319         spin_unlock_irq(&current->sighand->siglock);
320         return 0;
321 }
322
323 EXPORT_SYMBOL(disallow_signal);
324
325 /*
326  *      Put all the gunge required to become a kernel thread without
327  *      attached user resources in one place where it belongs.
328  */
329
330 void daemonize(const char *name, ...)
331 {
332         va_list args;
333         struct fs_struct *fs;
334         sigset_t blocked;
335
336         va_start(args, name);
337         vsnprintf(current->comm, sizeof(current->comm), name, args);
338         va_end(args);
339
340         /*
341          * If we were started as result of loading a module, close all of the
342          * user space pages.  We don't need them, and if we didn't close them
343          * they would be locked into memory.
344          */
345         exit_mm(current);
346
347         set_special_pids(1, 1);
348         mutex_lock(&tty_mutex);
349         current->signal->tty = NULL;
350         mutex_unlock(&tty_mutex);
351
352         /* Block and flush all signals */
353         sigfillset(&blocked);
354         sigprocmask(SIG_BLOCK, &blocked, NULL);
355         flush_signals(current);
356
357         /* Become as one with the init task */
358
359         exit_fs(current);       /* current->fs->count--; */
360         fs = init_task.fs;
361         current->fs = fs;
362         atomic_inc(&fs->count);
363         exit_namespace(current);
364         current->namespace = init_task.namespace;
365         get_namespace(current->namespace);
366         exit_files(current);
367         current->files = init_task.files;
368         atomic_inc(&current->files->count);
369
370         reparent_to_init();
371 }
372
373 EXPORT_SYMBOL(daemonize);
374
375 static void close_files(struct files_struct * files)
376 {
377         int i, j;
378         struct fdtable *fdt;
379
380         j = 0;
381
382         /*
383          * It is safe to dereference the fd table without RCU or
384          * ->file_lock because this is the last reference to the
385          * files structure.
386          */
387         fdt = files_fdtable(files);
388         for (;;) {
389                 unsigned long set;
390                 i = j * __NFDBITS;
391                 if (i >= fdt->max_fdset || i >= fdt->max_fds)
392                         break;
393                 set = fdt->open_fds->fds_bits[j++];
394                 while (set) {
395                         if (set & 1) {
396                                 struct file * file = xchg(&fdt->fd[i], NULL);
397                                 if (file)
398                                         filp_close(file, files);
399                         }
400                         i++;
401                         set >>= 1;
402                 }
403         }
404 }
405
406 struct files_struct *get_files_struct(struct task_struct *task)
407 {
408         struct files_struct *files;
409
410         task_lock(task);
411         files = task->files;
412         if (files)
413                 atomic_inc(&files->count);
414         task_unlock(task);
415
416         return files;
417 }
418
419 void fastcall put_files_struct(struct files_struct *files)
420 {
421         struct fdtable *fdt;
422
423         if (atomic_dec_and_test(&files->count)) {
424                 close_files(files);
425                 /*
426                  * Free the fd and fdset arrays if we expanded them.
427                  * If the fdtable was embedded, pass files for freeing
428                  * at the end of the RCU grace period. Otherwise,
429                  * you can free files immediately.
430                  */
431                 fdt = files_fdtable(files);
432                 if (fdt == &files->fdtab)
433                         fdt->free_files = files;
434                 else
435                         kmem_cache_free(files_cachep, files);
436                 free_fdtable(fdt);
437         }
438 }
439
440 EXPORT_SYMBOL(put_files_struct);
441
442 static inline void __exit_files(struct task_struct *tsk)
443 {
444         struct files_struct * files = tsk->files;
445
446         if (files) {
447                 task_lock(tsk);
448                 tsk->files = NULL;
449                 task_unlock(tsk);
450                 put_files_struct(files);
451         }
452 }
453
454 void exit_files(struct task_struct *tsk)
455 {
456         __exit_files(tsk);
457 }
458
459 static inline void __put_fs_struct(struct fs_struct *fs)
460 {
461         /* No need to hold fs->lock if we are killing it */
462         if (atomic_dec_and_test(&fs->count)) {
463                 dput(fs->root);
464                 mntput(fs->rootmnt);
465                 dput(fs->pwd);
466                 mntput(fs->pwdmnt);
467                 if (fs->altroot) {
468                         dput(fs->altroot);
469                         mntput(fs->altrootmnt);
470                 }
471                 kmem_cache_free(fs_cachep, fs);
472         }
473 }
474
475 void put_fs_struct(struct fs_struct *fs)
476 {
477         __put_fs_struct(fs);
478 }
479
480 static inline void __exit_fs(struct task_struct *tsk)
481 {
482         struct fs_struct * fs = tsk->fs;
483
484         if (fs) {
485                 task_lock(tsk);
486                 tsk->fs = NULL;
487                 task_unlock(tsk);
488                 __put_fs_struct(fs);
489         }
490 }
491
492 void exit_fs(struct task_struct *tsk)
493 {
494         __exit_fs(tsk);
495 }
496
497 EXPORT_SYMBOL_GPL(exit_fs);
498
499 /*
500  * Turn us into a lazy TLB process if we
501  * aren't already..
502  */
503 static void exit_mm(struct task_struct * tsk)
504 {
505         struct mm_struct *mm = tsk->mm;
506
507         mm_release(tsk, mm);
508         if (!mm)
509                 return;
510         /*
511          * Serialize with any possible pending coredump.
512          * We must hold mmap_sem around checking core_waiters
513          * and clearing tsk->mm.  The core-inducing thread
514          * will increment core_waiters for each thread in the
515          * group with ->mm != NULL.
516          */
517         down_read(&mm->mmap_sem);
518         if (mm->core_waiters) {
519                 up_read(&mm->mmap_sem);
520                 down_write(&mm->mmap_sem);
521                 if (!--mm->core_waiters)
522                         complete(mm->core_startup_done);
523                 up_write(&mm->mmap_sem);
524
525                 wait_for_completion(&mm->core_done);
526                 down_read(&mm->mmap_sem);
527         }
528         atomic_inc(&mm->mm_count);
529         if (mm != tsk->active_mm) BUG();
530         /* more a memory barrier than a real lock */
531         task_lock(tsk);
532         tsk->mm = NULL;
533         up_read(&mm->mmap_sem);
534         enter_lazy_tlb(mm, current);
535         task_unlock(tsk);
536         mmput(mm);
537 }
538
539 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
540 {
541         /*
542          * Make sure we're not reparenting to ourselves and that
543          * the parent is not a zombie.
544          */
545         BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE);
546         p->real_parent = reaper;
547 }
548
549 static void reparent_thread(task_t *p, task_t *father, int traced)
550 {
551         /* We don't want people slaying init.  */
552         if (p->exit_signal != -1)
553                 p->exit_signal = SIGCHLD;
554
555         if (p->pdeath_signal)
556                 /* We already hold the tasklist_lock here.  */
557                 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
558
559         /* Move the child from its dying parent to the new one.  */
560         if (unlikely(traced)) {
561                 /* Preserve ptrace links if someone else is tracing this child.  */
562                 list_del_init(&p->ptrace_list);
563                 if (p->parent != p->real_parent)
564                         list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
565         } else {
566                 /* If this child is being traced, then we're the one tracing it
567                  * anyway, so let go of it.
568                  */
569                 p->ptrace = 0;
570                 list_del_init(&p->sibling);
571                 p->parent = p->real_parent;
572                 list_add_tail(&p->sibling, &p->parent->children);
573
574                 /* If we'd notified the old parent about this child's death,
575                  * also notify the new parent.
576                  */
577                 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
578                     thread_group_empty(p))
579                         do_notify_parent(p, p->exit_signal);
580                 else if (p->state == TASK_TRACED) {
581                         /*
582                          * If it was at a trace stop, turn it into
583                          * a normal stop since it's no longer being
584                          * traced.
585                          */
586                         ptrace_untrace(p);
587                 }
588         }
589
590         /*
591          * process group orphan check
592          * Case ii: Our child is in a different pgrp
593          * than we are, and it was the only connection
594          * outside, so the child pgrp is now orphaned.
595          */
596         if ((process_group(p) != process_group(father)) &&
597             (p->signal->session == father->signal->session)) {
598                 int pgrp = process_group(p);
599
600                 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
601                         __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
602                         __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
603                 }
604         }
605 }
606
607 /*
608  * When we die, we re-parent all our children.
609  * Try to give them to another thread in our thread
610  * group, and if no such member exists, give it to
611  * the global child reaper process (ie "init")
612  */
613 static void forget_original_parent(struct task_struct * father,
614                                           struct list_head *to_release)
615 {
616         struct task_struct *p, *reaper = father;
617         struct list_head *_p, *_n;
618
619         do {
620                 reaper = next_thread(reaper);
621                 if (reaper == father) {
622                         reaper = child_reaper;
623                         break;
624                 }
625         } while (reaper->exit_state);
626
627         /*
628          * There are only two places where our children can be:
629          *
630          * - in our child list
631          * - in our ptraced child list
632          *
633          * Search them and reparent children.
634          */
635         list_for_each_safe(_p, _n, &father->children) {
636                 int ptrace;
637                 p = list_entry(_p,struct task_struct,sibling);
638
639                 ptrace = p->ptrace;
640
641                 /* if father isn't the real parent, then ptrace must be enabled */
642                 BUG_ON(father != p->real_parent && !ptrace);
643
644                 if (father == p->real_parent) {
645                         /* reparent with a reaper, real father it's us */
646                         choose_new_parent(p, reaper, child_reaper);
647                         reparent_thread(p, father, 0);
648                 } else {
649                         /* reparent ptraced task to its real parent */
650                         __ptrace_unlink (p);
651                         if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
652                             thread_group_empty(p))
653                                 do_notify_parent(p, p->exit_signal);
654                 }
655
656                 /*
657                  * if the ptraced child is a zombie with exit_signal == -1
658                  * we must collect it before we exit, or it will remain
659                  * zombie forever since we prevented it from self-reap itself
660                  * while it was being traced by us, to be able to see it in wait4.
661                  */
662                 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
663                         list_add(&p->ptrace_list, to_release);
664         }
665         list_for_each_safe(_p, _n, &father->ptrace_children) {
666                 p = list_entry(_p,struct task_struct,ptrace_list);
667                 choose_new_parent(p, reaper, child_reaper);
668                 reparent_thread(p, father, 1);
669         }
670 }
671
672 /*
673  * Send signals to all our closest relatives so that they know
674  * to properly mourn us..
675  */
676 static void exit_notify(struct task_struct *tsk)
677 {
678         int state;
679         struct task_struct *t;
680         struct list_head ptrace_dead, *_p, *_n;
681
682         if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
683             && !thread_group_empty(tsk)) {
684                 /*
685                  * This occurs when there was a race between our exit
686                  * syscall and a group signal choosing us as the one to
687                  * wake up.  It could be that we are the only thread
688                  * alerted to check for pending signals, but another thread
689                  * should be woken now to take the signal since we will not.
690                  * Now we'll wake all the threads in the group just to make
691                  * sure someone gets all the pending signals.
692                  */
693                 read_lock(&tasklist_lock);
694                 spin_lock_irq(&tsk->sighand->siglock);
695                 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
696                         if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
697                                 recalc_sigpending_tsk(t);
698                                 if (signal_pending(t))
699                                         signal_wake_up(t, 0);
700                         }
701                 spin_unlock_irq(&tsk->sighand->siglock);
702                 read_unlock(&tasklist_lock);
703         }
704
705         write_lock_irq(&tasklist_lock);
706
707         /*
708          * This does two things:
709          *
710          * A.  Make init inherit all the child processes
711          * B.  Check to see if any process groups have become orphaned
712          *      as a result of our exiting, and if they have any stopped
713          *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
714          */
715
716         INIT_LIST_HEAD(&ptrace_dead);
717         forget_original_parent(tsk, &ptrace_dead);
718         BUG_ON(!list_empty(&tsk->children));
719         BUG_ON(!list_empty(&tsk->ptrace_children));
720
721         /*
722          * Check to see if any process groups have become orphaned
723          * as a result of our exiting, and if they have any stopped
724          * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
725          *
726          * Case i: Our father is in a different pgrp than we are
727          * and we were the only connection outside, so our pgrp
728          * is about to become orphaned.
729          */
730          
731         t = tsk->real_parent;
732         
733         if ((process_group(t) != process_group(tsk)) &&
734             (t->signal->session == tsk->signal->session) &&
735             will_become_orphaned_pgrp(process_group(tsk), tsk) &&
736             has_stopped_jobs(process_group(tsk))) {
737                 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
738                 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
739         }
740
741         /* Let father know we died 
742          *
743          * Thread signals are configurable, but you aren't going to use
744          * that to send signals to arbitary processes. 
745          * That stops right now.
746          *
747          * If the parent exec id doesn't match the exec id we saved
748          * when we started then we know the parent has changed security
749          * domain.
750          *
751          * If our self_exec id doesn't match our parent_exec_id then
752          * we have changed execution domain as these two values started
753          * the same after a fork.
754          *      
755          */
756         
757         if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
758             ( tsk->parent_exec_id != t->self_exec_id  ||
759               tsk->self_exec_id != tsk->parent_exec_id)
760             && !capable(CAP_KILL))
761                 tsk->exit_signal = SIGCHLD;
762
763
764         /* If something other than our normal parent is ptracing us, then
765          * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
766          * only has special meaning to our real parent.
767          */
768         if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
769                 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
770                 do_notify_parent(tsk, signal);
771         } else if (tsk->ptrace) {
772                 do_notify_parent(tsk, SIGCHLD);
773         }
774
775         state = EXIT_ZOMBIE;
776         if (tsk->exit_signal == -1 &&
777             (likely(tsk->ptrace == 0) ||
778              unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
779                 state = EXIT_DEAD;
780         tsk->exit_state = state;
781
782         write_unlock_irq(&tasklist_lock);
783
784         list_for_each_safe(_p, _n, &ptrace_dead) {
785                 list_del_init(_p);
786                 t = list_entry(_p,struct task_struct,ptrace_list);
787                 release_task(t);
788         }
789
790         /* If the process is dead, release it - nobody will wait for it */
791         if (state == EXIT_DEAD)
792                 release_task(tsk);
793 }
794
795 fastcall NORET_TYPE void do_exit(long code)
796 {
797         struct task_struct *tsk = current;
798         int group_dead;
799
800         profile_task_exit(tsk);
801
802         WARN_ON(atomic_read(&tsk->fs_excl));
803
804         if (unlikely(in_interrupt()))
805                 panic("Aiee, killing interrupt handler!");
806         if (unlikely(!tsk->pid))
807                 panic("Attempted to kill the idle task!");
808         if (unlikely(tsk->pid == 1))
809                 panic("Attempted to kill init!");
810
811         if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
812                 current->ptrace_message = code;
813                 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
814         }
815
816         /*
817          * We're taking recursive faults here in do_exit. Safest is to just
818          * leave this task alone and wait for reboot.
819          */
820         if (unlikely(tsk->flags & PF_EXITING)) {
821                 printk(KERN_ALERT
822                         "Fixing recursive fault but reboot is needed!\n");
823                 if (tsk->io_context)
824                         exit_io_context();
825                 set_current_state(TASK_UNINTERRUPTIBLE);
826                 schedule();
827         }
828
829         tsk->flags |= PF_EXITING;
830
831         /*
832          * Make sure we don't try to process any timer firings
833          * while we are already exiting.
834          */
835         tsk->it_virt_expires = cputime_zero;
836         tsk->it_prof_expires = cputime_zero;
837         tsk->it_sched_expires = 0;
838
839         if (unlikely(in_atomic()))
840                 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
841                                 current->comm, current->pid,
842                                 preempt_count());
843
844         acct_update_integrals(tsk);
845         if (tsk->mm) {
846                 update_hiwater_rss(tsk->mm);
847                 update_hiwater_vm(tsk->mm);
848         }
849         group_dead = atomic_dec_and_test(&tsk->signal->live);
850         if (group_dead) {
851                 hrtimer_cancel(&tsk->signal->real_timer);
852                 exit_itimers(tsk->signal);
853                 acct_process(code);
854         }
855         exit_mm(tsk);
856
857         exit_sem(tsk);
858         __exit_files(tsk);
859         __exit_fs(tsk);
860         exit_namespace(tsk);
861         exit_thread();
862         cpuset_exit(tsk);
863         exit_keys(tsk);
864
865         if (group_dead && tsk->signal->leader)
866                 disassociate_ctty(1);
867
868         module_put(task_thread_info(tsk)->exec_domain->module);
869         if (tsk->binfmt)
870                 module_put(tsk->binfmt->module);
871
872         tsk->exit_code = code;
873         proc_exit_connector(tsk);
874         exit_notify(tsk);
875 #ifdef CONFIG_NUMA
876         mpol_free(tsk->mempolicy);
877         tsk->mempolicy = NULL;
878 #endif
879         /*
880          * If DEBUG_MUTEXES is on, make sure we are holding no locks:
881          */
882         mutex_debug_check_no_locks_held(tsk);
883
884         if (tsk->io_context)
885                 exit_io_context();
886
887         /* PF_DEAD causes final put_task_struct after we schedule. */
888         preempt_disable();
889         BUG_ON(tsk->flags & PF_DEAD);
890         tsk->flags |= PF_DEAD;
891
892         schedule();
893         BUG();
894         /* Avoid "noreturn function does return".  */
895         for (;;) ;
896 }
897
898 EXPORT_SYMBOL_GPL(do_exit);
899
900 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
901 {
902         if (comp)
903                 complete(comp);
904         
905         do_exit(code);
906 }
907
908 EXPORT_SYMBOL(complete_and_exit);
909
910 asmlinkage long sys_exit(int error_code)
911 {
912         do_exit((error_code&0xff)<<8);
913 }
914
915 task_t fastcall *next_thread(const task_t *p)
916 {
917         return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
918 }
919
920 EXPORT_SYMBOL(next_thread);
921
922 /*
923  * Take down every thread in the group.  This is called by fatal signals
924  * as well as by sys_exit_group (below).
925  */
926 NORET_TYPE void
927 do_group_exit(int exit_code)
928 {
929         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
930
931         if (current->signal->flags & SIGNAL_GROUP_EXIT)
932                 exit_code = current->signal->group_exit_code;
933         else if (!thread_group_empty(current)) {
934                 struct signal_struct *const sig = current->signal;
935                 struct sighand_struct *const sighand = current->sighand;
936                 read_lock(&tasklist_lock);
937                 spin_lock_irq(&sighand->siglock);
938                 if (sig->flags & SIGNAL_GROUP_EXIT)
939                         /* Another thread got here before we took the lock.  */
940                         exit_code = sig->group_exit_code;
941                 else {
942                         sig->group_exit_code = exit_code;
943                         zap_other_threads(current);
944                 }
945                 spin_unlock_irq(&sighand->siglock);
946                 read_unlock(&tasklist_lock);
947         }
948
949         do_exit(exit_code);
950         /* NOTREACHED */
951 }
952
953 /*
954  * this kills every thread in the thread group. Note that any externally
955  * wait4()-ing process will get the correct exit code - even if this
956  * thread is not the thread group leader.
957  */
958 asmlinkage void sys_exit_group(int error_code)
959 {
960         do_group_exit((error_code & 0xff) << 8);
961 }
962
963 static int eligible_child(pid_t pid, int options, task_t *p)
964 {
965         if (pid > 0) {
966                 if (p->pid != pid)
967                         return 0;
968         } else if (!pid) {
969                 if (process_group(p) != process_group(current))
970                         return 0;
971         } else if (pid != -1) {
972                 if (process_group(p) != -pid)
973                         return 0;
974         }
975
976         /*
977          * Do not consider detached threads that are
978          * not ptraced:
979          */
980         if (p->exit_signal == -1 && !p->ptrace)
981                 return 0;
982
983         /* Wait for all children (clone and not) if __WALL is set;
984          * otherwise, wait for clone children *only* if __WCLONE is
985          * set; otherwise, wait for non-clone children *only*.  (Note:
986          * A "clone" child here is one that reports to its parent
987          * using a signal other than SIGCHLD.) */
988         if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
989             && !(options & __WALL))
990                 return 0;
991         /*
992          * Do not consider thread group leaders that are
993          * in a non-empty thread group:
994          */
995         if (current->tgid != p->tgid && delay_group_leader(p))
996                 return 2;
997
998         if (security_task_wait(p))
999                 return 0;
1000
1001         return 1;
1002 }
1003
1004 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1005                                int why, int status,
1006                                struct siginfo __user *infop,
1007                                struct rusage __user *rusagep)
1008 {
1009         int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1010         put_task_struct(p);
1011         if (!retval)
1012                 retval = put_user(SIGCHLD, &infop->si_signo);
1013         if (!retval)
1014                 retval = put_user(0, &infop->si_errno);
1015         if (!retval)
1016                 retval = put_user((short)why, &infop->si_code);
1017         if (!retval)
1018                 retval = put_user(pid, &infop->si_pid);
1019         if (!retval)
1020                 retval = put_user(uid, &infop->si_uid);
1021         if (!retval)
1022                 retval = put_user(status, &infop->si_status);
1023         if (!retval)
1024                 retval = pid;
1025         return retval;
1026 }
1027
1028 /*
1029  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1030  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1031  * the lock and this task is uninteresting.  If we return nonzero, we have
1032  * released the lock and the system call should return.
1033  */
1034 static int wait_task_zombie(task_t *p, int noreap,
1035                             struct siginfo __user *infop,
1036                             int __user *stat_addr, struct rusage __user *ru)
1037 {
1038         unsigned long state;
1039         int retval;
1040         int status;
1041
1042         if (unlikely(noreap)) {
1043                 pid_t pid = p->pid;
1044                 uid_t uid = p->uid;
1045                 int exit_code = p->exit_code;
1046                 int why, status;
1047
1048                 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1049                         return 0;
1050                 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1051                         return 0;
1052                 get_task_struct(p);
1053                 read_unlock(&tasklist_lock);
1054                 if ((exit_code & 0x7f) == 0) {
1055                         why = CLD_EXITED;
1056                         status = exit_code >> 8;
1057                 } else {
1058                         why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1059                         status = exit_code & 0x7f;
1060                 }
1061                 return wait_noreap_copyout(p, pid, uid, why,
1062                                            status, infop, ru);
1063         }
1064
1065         /*
1066          * Try to move the task's state to DEAD
1067          * only one thread is allowed to do this:
1068          */
1069         state = xchg(&p->exit_state, EXIT_DEAD);
1070         if (state != EXIT_ZOMBIE) {
1071                 BUG_ON(state != EXIT_DEAD);
1072                 return 0;
1073         }
1074         if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1075                 /*
1076                  * This can only happen in a race with a ptraced thread
1077                  * dying on another processor.
1078                  */
1079                 return 0;
1080         }
1081
1082         if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1083                 struct signal_struct *psig;
1084                 struct signal_struct *sig;
1085
1086                 /*
1087                  * The resource counters for the group leader are in its
1088                  * own task_struct.  Those for dead threads in the group
1089                  * are in its signal_struct, as are those for the child
1090                  * processes it has previously reaped.  All these
1091                  * accumulate in the parent's signal_struct c* fields.
1092                  *
1093                  * We don't bother to take a lock here to protect these
1094                  * p->signal fields, because they are only touched by
1095                  * __exit_signal, which runs with tasklist_lock
1096                  * write-locked anyway, and so is excluded here.  We do
1097                  * need to protect the access to p->parent->signal fields,
1098                  * as other threads in the parent group can be right
1099                  * here reaping other children at the same time.
1100                  */
1101                 spin_lock_irq(&p->parent->sighand->siglock);
1102                 psig = p->parent->signal;
1103                 sig = p->signal;
1104                 psig->cutime =
1105                         cputime_add(psig->cutime,
1106                         cputime_add(p->utime,
1107                         cputime_add(sig->utime,
1108                                     sig->cutime)));
1109                 psig->cstime =
1110                         cputime_add(psig->cstime,
1111                         cputime_add(p->stime,
1112                         cputime_add(sig->stime,
1113                                     sig->cstime)));
1114                 psig->cmin_flt +=
1115                         p->min_flt + sig->min_flt + sig->cmin_flt;
1116                 psig->cmaj_flt +=
1117                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1118                 psig->cnvcsw +=
1119                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1120                 psig->cnivcsw +=
1121                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1122                 spin_unlock_irq(&p->parent->sighand->siglock);
1123         }
1124
1125         /*
1126          * Now we are sure this task is interesting, and no other
1127          * thread can reap it because we set its state to EXIT_DEAD.
1128          */
1129         read_unlock(&tasklist_lock);
1130
1131         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1132         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1133                 ? p->signal->group_exit_code : p->exit_code;
1134         if (!retval && stat_addr)
1135                 retval = put_user(status, stat_addr);
1136         if (!retval && infop)
1137                 retval = put_user(SIGCHLD, &infop->si_signo);
1138         if (!retval && infop)
1139                 retval = put_user(0, &infop->si_errno);
1140         if (!retval && infop) {
1141                 int why;
1142
1143                 if ((status & 0x7f) == 0) {
1144                         why = CLD_EXITED;
1145                         status >>= 8;
1146                 } else {
1147                         why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1148                         status &= 0x7f;
1149                 }
1150                 retval = put_user((short)why, &infop->si_code);
1151                 if (!retval)
1152                         retval = put_user(status, &infop->si_status);
1153         }
1154         if (!retval && infop)
1155                 retval = put_user(p->pid, &infop->si_pid);
1156         if (!retval && infop)
1157                 retval = put_user(p->uid, &infop->si_uid);
1158         if (retval) {
1159                 // TODO: is this safe?
1160                 p->exit_state = EXIT_ZOMBIE;
1161                 return retval;
1162         }
1163         retval = p->pid;
1164         if (p->real_parent != p->parent) {
1165                 write_lock_irq(&tasklist_lock);
1166                 /* Double-check with lock held.  */
1167                 if (p->real_parent != p->parent) {
1168                         __ptrace_unlink(p);
1169                         // TODO: is this safe?
1170                         p->exit_state = EXIT_ZOMBIE;
1171                         /*
1172                          * If this is not a detached task, notify the parent.
1173                          * If it's still not detached after that, don't release
1174                          * it now.
1175                          */
1176                         if (p->exit_signal != -1) {
1177                                 do_notify_parent(p, p->exit_signal);
1178                                 if (p->exit_signal != -1)
1179                                         p = NULL;
1180                         }
1181                 }
1182                 write_unlock_irq(&tasklist_lock);
1183         }
1184         if (p != NULL)
1185                 release_task(p);
1186         BUG_ON(!retval);
1187         return retval;
1188 }
1189
1190 /*
1191  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1192  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1193  * the lock and this task is uninteresting.  If we return nonzero, we have
1194  * released the lock and the system call should return.
1195  */
1196 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1197                              struct siginfo __user *infop,
1198                              int __user *stat_addr, struct rusage __user *ru)
1199 {
1200         int retval, exit_code;
1201
1202         if (!p->exit_code)
1203                 return 0;
1204         if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1205             p->signal && p->signal->group_stop_count > 0)
1206                 /*
1207                  * A group stop is in progress and this is the group leader.
1208                  * We won't report until all threads have stopped.
1209                  */
1210                 return 0;
1211
1212         /*
1213          * Now we are pretty sure this task is interesting.
1214          * Make sure it doesn't get reaped out from under us while we
1215          * give up the lock and then examine it below.  We don't want to
1216          * keep holding onto the tasklist_lock while we call getrusage and
1217          * possibly take page faults for user memory.
1218          */
1219         get_task_struct(p);
1220         read_unlock(&tasklist_lock);
1221
1222         if (unlikely(noreap)) {
1223                 pid_t pid = p->pid;
1224                 uid_t uid = p->uid;
1225                 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1226
1227                 exit_code = p->exit_code;
1228                 if (unlikely(!exit_code) ||
1229                     unlikely(p->state & TASK_TRACED))
1230                         goto bail_ref;
1231                 return wait_noreap_copyout(p, pid, uid,
1232                                            why, (exit_code << 8) | 0x7f,
1233                                            infop, ru);
1234         }
1235
1236         write_lock_irq(&tasklist_lock);
1237
1238         /*
1239          * This uses xchg to be atomic with the thread resuming and setting
1240          * it.  It must also be done with the write lock held to prevent a
1241          * race with the EXIT_ZOMBIE case.
1242          */
1243         exit_code = xchg(&p->exit_code, 0);
1244         if (unlikely(p->exit_state)) {
1245                 /*
1246                  * The task resumed and then died.  Let the next iteration
1247                  * catch it in EXIT_ZOMBIE.  Note that exit_code might
1248                  * already be zero here if it resumed and did _exit(0).
1249                  * The task itself is dead and won't touch exit_code again;
1250                  * other processors in this function are locked out.
1251                  */
1252                 p->exit_code = exit_code;
1253                 exit_code = 0;
1254         }
1255         if (unlikely(exit_code == 0)) {
1256                 /*
1257                  * Another thread in this function got to it first, or it
1258                  * resumed, or it resumed and then died.
1259                  */
1260                 write_unlock_irq(&tasklist_lock);
1261 bail_ref:
1262                 put_task_struct(p);
1263                 /*
1264                  * We are returning to the wait loop without having successfully
1265                  * removed the process and having released the lock. We cannot
1266                  * continue, since the "p" task pointer is potentially stale.
1267                  *
1268                  * Return -EAGAIN, and do_wait() will restart the loop from the
1269                  * beginning. Do _not_ re-acquire the lock.
1270                  */
1271                 return -EAGAIN;
1272         }
1273
1274         /* move to end of parent's list to avoid starvation */
1275         remove_parent(p);
1276         add_parent(p, p->parent);
1277
1278         write_unlock_irq(&tasklist_lock);
1279
1280         retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1281         if (!retval && stat_addr)
1282                 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1283         if (!retval && infop)
1284                 retval = put_user(SIGCHLD, &infop->si_signo);
1285         if (!retval && infop)
1286                 retval = put_user(0, &infop->si_errno);
1287         if (!retval && infop)
1288                 retval = put_user((short)((p->ptrace & PT_PTRACED)
1289                                           ? CLD_TRAPPED : CLD_STOPPED),
1290                                   &infop->si_code);
1291         if (!retval && infop)
1292                 retval = put_user(exit_code, &infop->si_status);
1293         if (!retval && infop)
1294                 retval = put_user(p->pid, &infop->si_pid);
1295         if (!retval && infop)
1296                 retval = put_user(p->uid, &infop->si_uid);
1297         if (!retval)
1298                 retval = p->pid;
1299         put_task_struct(p);
1300
1301         BUG_ON(!retval);
1302         return retval;
1303 }
1304
1305 /*
1306  * Handle do_wait work for one task in a live, non-stopped state.
1307  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1308  * the lock and this task is uninteresting.  If we return nonzero, we have
1309  * released the lock and the system call should return.
1310  */
1311 static int wait_task_continued(task_t *p, int noreap,
1312                                struct siginfo __user *infop,
1313                                int __user *stat_addr, struct rusage __user *ru)
1314 {
1315         int retval;
1316         pid_t pid;
1317         uid_t uid;
1318
1319         if (unlikely(!p->signal))
1320                 return 0;
1321
1322         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1323                 return 0;
1324
1325         spin_lock_irq(&p->sighand->siglock);
1326         /* Re-check with the lock held.  */
1327         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1328                 spin_unlock_irq(&p->sighand->siglock);
1329                 return 0;
1330         }
1331         if (!noreap)
1332                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1333         spin_unlock_irq(&p->sighand->siglock);
1334
1335         pid = p->pid;
1336         uid = p->uid;
1337         get_task_struct(p);
1338         read_unlock(&tasklist_lock);
1339
1340         if (!infop) {
1341                 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1342                 put_task_struct(p);
1343                 if (!retval && stat_addr)
1344                         retval = put_user(0xffff, stat_addr);
1345                 if (!retval)
1346                         retval = p->pid;
1347         } else {
1348                 retval = wait_noreap_copyout(p, pid, uid,
1349                                              CLD_CONTINUED, SIGCONT,
1350                                              infop, ru);
1351                 BUG_ON(retval == 0);
1352         }
1353
1354         return retval;
1355 }
1356
1357
1358 static inline int my_ptrace_child(struct task_struct *p)
1359 {
1360         if (!(p->ptrace & PT_PTRACED))
1361                 return 0;
1362         if (!(p->ptrace & PT_ATTACHED))
1363                 return 1;
1364         /*
1365          * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1366          * we are the attacher.  If we are the real parent, this is a race
1367          * inside ptrace_attach.  It is waiting for the tasklist_lock,
1368          * which we have to switch the parent links, but has already set
1369          * the flags in p->ptrace.
1370          */
1371         return (p->parent != p->real_parent);
1372 }
1373
1374 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1375                     int __user *stat_addr, struct rusage __user *ru)
1376 {
1377         DECLARE_WAITQUEUE(wait, current);
1378         struct task_struct *tsk;
1379         int flag, retval;
1380
1381         add_wait_queue(&current->signal->wait_chldexit,&wait);
1382 repeat:
1383         /*
1384          * We will set this flag if we see any child that might later
1385          * match our criteria, even if we are not able to reap it yet.
1386          */
1387         flag = 0;
1388         current->state = TASK_INTERRUPTIBLE;
1389         read_lock(&tasklist_lock);
1390         tsk = current;
1391         do {
1392                 struct task_struct *p;
1393                 struct list_head *_p;
1394                 int ret;
1395
1396                 list_for_each(_p,&tsk->children) {
1397                         p = list_entry(_p,struct task_struct,sibling);
1398
1399                         ret = eligible_child(pid, options, p);
1400                         if (!ret)
1401                                 continue;
1402
1403                         switch (p->state) {
1404                         case TASK_TRACED:
1405                                 /*
1406                                  * When we hit the race with PTRACE_ATTACH,
1407                                  * we will not report this child.  But the
1408                                  * race means it has not yet been moved to
1409                                  * our ptrace_children list, so we need to
1410                                  * set the flag here to avoid a spurious ECHILD
1411                                  * when the race happens with the only child.
1412                                  */
1413                                 flag = 1;
1414                                 if (!my_ptrace_child(p))
1415                                         continue;
1416                                 /*FALLTHROUGH*/
1417                         case TASK_STOPPED:
1418                                 /*
1419                                  * It's stopped now, so it might later
1420                                  * continue, exit, or stop again.
1421                                  */
1422                                 flag = 1;
1423                                 if (!(options & WUNTRACED) &&
1424                                     !my_ptrace_child(p))
1425                                         continue;
1426                                 retval = wait_task_stopped(p, ret == 2,
1427                                                            (options & WNOWAIT),
1428                                                            infop,
1429                                                            stat_addr, ru);
1430                                 if (retval == -EAGAIN)
1431                                         goto repeat;
1432                                 if (retval != 0) /* He released the lock.  */
1433                                         goto end;
1434                                 break;
1435                         default:
1436                         // case EXIT_DEAD:
1437                                 if (p->exit_state == EXIT_DEAD)
1438                                         continue;
1439                         // case EXIT_ZOMBIE:
1440                                 if (p->exit_state == EXIT_ZOMBIE) {
1441                                         /*
1442                                          * Eligible but we cannot release
1443                                          * it yet:
1444                                          */
1445                                         if (ret == 2)
1446                                                 goto check_continued;
1447                                         if (!likely(options & WEXITED))
1448                                                 continue;
1449                                         retval = wait_task_zombie(
1450                                                 p, (options & WNOWAIT),
1451                                                 infop, stat_addr, ru);
1452                                         /* He released the lock.  */
1453                                         if (retval != 0)
1454                                                 goto end;
1455                                         break;
1456                                 }
1457 check_continued:
1458                                 /*
1459                                  * It's running now, so it might later
1460                                  * exit, stop, or stop and then continue.
1461                                  */
1462                                 flag = 1;
1463                                 if (!unlikely(options & WCONTINUED))
1464                                         continue;
1465                                 retval = wait_task_continued(
1466                                         p, (options & WNOWAIT),
1467                                         infop, stat_addr, ru);
1468                                 if (retval != 0) /* He released the lock.  */
1469                                         goto end;
1470                                 break;
1471                         }
1472                 }
1473                 if (!flag) {
1474                         list_for_each(_p, &tsk->ptrace_children) {
1475                                 p = list_entry(_p, struct task_struct,
1476                                                 ptrace_list);
1477                                 if (!eligible_child(pid, options, p))
1478                                         continue;
1479                                 flag = 1;
1480                                 break;
1481                         }
1482                 }
1483                 if (options & __WNOTHREAD)
1484                         break;
1485                 tsk = next_thread(tsk);
1486                 if (tsk->signal != current->signal)
1487                         BUG();
1488         } while (tsk != current);
1489
1490         read_unlock(&tasklist_lock);
1491         if (flag) {
1492                 retval = 0;
1493                 if (options & WNOHANG)
1494                         goto end;
1495                 retval = -ERESTARTSYS;
1496                 if (signal_pending(current))
1497                         goto end;
1498                 schedule();
1499                 goto repeat;
1500         }
1501         retval = -ECHILD;
1502 end:
1503         current->state = TASK_RUNNING;
1504         remove_wait_queue(&current->signal->wait_chldexit,&wait);
1505         if (infop) {
1506                 if (retval > 0)
1507                 retval = 0;
1508                 else {
1509                         /*
1510                          * For a WNOHANG return, clear out all the fields
1511                          * we would set so the user can easily tell the
1512                          * difference.
1513                          */
1514                         if (!retval)
1515                                 retval = put_user(0, &infop->si_signo);
1516                         if (!retval)
1517                                 retval = put_user(0, &infop->si_errno);
1518                         if (!retval)
1519                                 retval = put_user(0, &infop->si_code);
1520                         if (!retval)
1521                                 retval = put_user(0, &infop->si_pid);
1522                         if (!retval)
1523                                 retval = put_user(0, &infop->si_uid);
1524                         if (!retval)
1525                                 retval = put_user(0, &infop->si_status);
1526                 }
1527         }
1528         return retval;
1529 }
1530
1531 asmlinkage long sys_waitid(int which, pid_t pid,
1532                            struct siginfo __user *infop, int options,
1533                            struct rusage __user *ru)
1534 {
1535         long ret;
1536
1537         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1538                 return -EINVAL;
1539         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1540                 return -EINVAL;
1541
1542         switch (which) {
1543         case P_ALL:
1544                 pid = -1;
1545                 break;
1546         case P_PID:
1547                 if (pid <= 0)
1548                         return -EINVAL;
1549                 break;
1550         case P_PGID:
1551                 if (pid <= 0)
1552                         return -EINVAL;
1553                 pid = -pid;
1554                 break;
1555         default:
1556                 return -EINVAL;
1557         }
1558
1559         ret = do_wait(pid, options, infop, NULL, ru);
1560
1561         /* avoid REGPARM breakage on x86: */
1562         prevent_tail_call(ret);
1563         return ret;
1564 }
1565
1566 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1567                           int options, struct rusage __user *ru)
1568 {
1569         long ret;
1570
1571         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1572                         __WNOTHREAD|__WCLONE|__WALL))
1573                 return -EINVAL;
1574         ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1575
1576         /* avoid REGPARM breakage on x86: */
1577         prevent_tail_call(ret);
1578         return ret;
1579 }
1580
1581 #ifdef __ARCH_WANT_SYS_WAITPID
1582
1583 /*
1584  * sys_waitpid() remains for compatibility. waitpid() should be
1585  * implemented by calling sys_wait4() from libc.a.
1586  */
1587 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1588 {
1589         return sys_wait4(pid, stat_addr, options, NULL);
1590 }
1591
1592 #endif