1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
3 Written 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
30 #define PFX DRV_NAME ": "
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
64 /* Do ugly workaround for GX server chipset errata. */
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #define yellowfin_debug debug
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
109 /* These identify the driver base version and may not be removed. */
110 static char version[] __devinitdata =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 KERN_INFO " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
136 I. Board Compatibility
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
142 II. Board-specific settings
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
150 III. Driver operation
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
174 IIIC. Synchronization
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
207 See Packet Engines confidential appendix (prototype chips only).
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
218 /* The PCI I/O space extent. */
220 YELLOWFIN_SIZE = 0x100,
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
229 int drv_flags; /* Driver use, intended as capability flags. */
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
271 __le32 result_status;
274 struct tx_status_words {
280 #else /* Little endian chips. */
285 #endif /* __BIG_ENDIAN */
288 /* Bits in yellowfin_desc.cmd */
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
305 #define PRIV_ALIGN 31 /* Required alignment mask */
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
320 struct timer_list timer; /* Media selection timer. */
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static void yellowfin_init_ring(struct net_device *dev);
350 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
358 static const struct net_device_ops netdev_ops = {
359 .ndo_open = yellowfin_open,
360 .ndo_stop = yellowfin_close,
361 .ndo_start_xmit = yellowfin_start_xmit,
362 .ndo_set_multicast_list = set_rx_mode,
363 .ndo_change_mtu = eth_change_mtu,
364 .ndo_validate_addr = eth_validate_addr,
365 .ndo_do_ioctl = netdev_ioctl,
366 .ndo_tx_timeout = yellowfin_tx_timeout,
369 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
370 const struct pci_device_id *ent)
372 struct net_device *dev;
373 struct yellowfin_private *np;
375 int chip_idx = ent->driver_data;
377 void __iomem *ioaddr;
378 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
379 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
388 /* when built into the kernel, we only print version if device is found */
390 static int printed_version;
391 if (!printed_version++)
395 i = pci_enable_device(pdev);
398 dev = alloc_etherdev(sizeof(*np));
400 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
403 SET_NETDEV_DEV(dev, &pdev->dev);
405 np = netdev_priv(dev);
407 if (pci_request_regions(pdev, DRV_NAME))
408 goto err_out_free_netdev;
410 pci_set_master (pdev);
412 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
414 goto err_out_free_res;
418 if (drv_flags & DontUseEeprom)
419 for (i = 0; i < 6; i++)
420 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
422 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
423 for (i = 0; i < 6; i++)
424 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
427 /* Reset the chip. */
428 iowrite32(0x80000000, ioaddr + DMACtrl);
430 dev->base_addr = (unsigned long)ioaddr;
433 pci_set_drvdata(pdev, dev);
434 spin_lock_init(&np->lock);
437 np->chip_id = chip_idx;
438 np->drv_flags = drv_flags;
441 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
443 goto err_out_cleardev;
444 np->tx_ring = (struct yellowfin_desc *)ring_space;
445 np->tx_ring_dma = ring_dma;
447 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
449 goto err_out_unmap_tx;
450 np->rx_ring = (struct yellowfin_desc *)ring_space;
451 np->rx_ring_dma = ring_dma;
453 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
455 goto err_out_unmap_rx;
456 np->tx_status = (struct tx_status_words *)ring_space;
457 np->tx_status_dma = ring_dma;
460 option = dev->mem_start;
462 /* The lower four bits are the media type. */
466 np->default_port = option & 15;
467 if (np->default_port)
470 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
476 /* The Yellowfin-specific entries in the device structure. */
477 dev->netdev_ops = &netdev_ops;
478 SET_ETHTOOL_OPS(dev, ðtool_ops);
479 dev->watchdog_timeo = TX_TIMEOUT;
484 i = register_netdev(dev);
486 goto err_out_unmap_status;
488 printk(KERN_INFO "%s: %s type %8x at %p, %pM, IRQ %d.\n",
489 dev->name, pci_id_tbl[chip_idx].name,
490 ioread32(ioaddr + ChipRev), ioaddr,
493 if (np->drv_flags & HasMII) {
494 int phy, phy_idx = 0;
495 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
496 int mii_status = mdio_read(ioaddr, phy, 1);
497 if (mii_status != 0xffff && mii_status != 0x0000) {
498 np->phys[phy_idx++] = phy;
499 np->advertising = mdio_read(ioaddr, phy, 4);
500 printk(KERN_INFO "%s: MII PHY found at address %d, status "
501 "0x%4.4x advertising %4.4x.\n",
502 dev->name, phy, mii_status, np->advertising);
505 np->mii_cnt = phy_idx;
512 err_out_unmap_status:
513 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
516 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
518 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
520 pci_set_drvdata(pdev, NULL);
521 pci_iounmap(pdev, ioaddr);
523 pci_release_regions(pdev);
529 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
531 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
533 iowrite8(location, ioaddr + EEAddr);
534 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
535 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
537 return ioread8(ioaddr + EERead);
540 /* MII Managemen Data I/O accesses.
541 These routines assume the MDIO controller is idle, and do not exit until
542 the command is finished. */
544 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
548 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
549 iowrite16(1, ioaddr + MII_Cmd);
550 for (i = 10000; i >= 0; i--)
551 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
553 return ioread16(ioaddr + MII_Rd_Data);
556 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
560 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
561 iowrite16(value, ioaddr + MII_Wr_Data);
563 /* Wait for the command to finish. */
564 for (i = 10000; i >= 0; i--)
565 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
571 static int yellowfin_open(struct net_device *dev)
573 struct yellowfin_private *yp = netdev_priv(dev);
574 void __iomem *ioaddr = yp->base;
577 /* Reset the chip. */
578 iowrite32(0x80000000, ioaddr + DMACtrl);
580 i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
583 if (yellowfin_debug > 1)
584 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
585 dev->name, dev->irq);
587 yellowfin_init_ring(dev);
589 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
590 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
592 for (i = 0; i < 6; i++)
593 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
595 /* Set up various condition 'select' registers.
596 There are no options here. */
597 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
598 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
599 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
600 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
601 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
602 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
604 /* Initialize other registers: with so many this eventually this will
605 converted to an offset/value list. */
606 iowrite32(dma_ctrl, ioaddr + DMACtrl);
607 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
608 /* Enable automatic generation of flow control frames, period 0xffff. */
609 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
611 yp->tx_threshold = 32;
612 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
614 if (dev->if_port == 0)
615 dev->if_port = yp->default_port;
617 netif_start_queue(dev);
619 /* Setting the Rx mode will start the Rx process. */
620 if (yp->drv_flags & IsGigabit) {
621 /* We are always in full-duplex mode with gigabit! */
623 iowrite16(0x01CF, ioaddr + Cnfg);
625 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
626 iowrite16(0x1018, ioaddr + FrameGap1);
627 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
631 /* Enable interrupts by setting the interrupt mask. */
632 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
633 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
634 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
635 iowrite32(0x80008000, ioaddr + TxCtrl);
637 if (yellowfin_debug > 2) {
638 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
642 /* Set the timer to check for link beat. */
643 init_timer(&yp->timer);
644 yp->timer.expires = jiffies + 3*HZ;
645 yp->timer.data = (unsigned long)dev;
646 yp->timer.function = &yellowfin_timer; /* timer handler */
647 add_timer(&yp->timer);
652 static void yellowfin_timer(unsigned long data)
654 struct net_device *dev = (struct net_device *)data;
655 struct yellowfin_private *yp = netdev_priv(dev);
656 void __iomem *ioaddr = yp->base;
657 int next_tick = 60*HZ;
659 if (yellowfin_debug > 3) {
660 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
661 dev->name, ioread16(ioaddr + IntrStatus));
665 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
666 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
667 int negotiated = lpa & yp->advertising;
668 if (yellowfin_debug > 1)
669 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
670 "link partner capability %4.4x.\n",
671 dev->name, yp->phys[0], bmsr, lpa);
673 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
675 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
677 if (bmsr & BMSR_LSTATUS)
683 yp->timer.expires = jiffies + next_tick;
684 add_timer(&yp->timer);
687 static void yellowfin_tx_timeout(struct net_device *dev)
689 struct yellowfin_private *yp = netdev_priv(dev);
690 void __iomem *ioaddr = yp->base;
692 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
693 "status %4.4x, Rx status %4.4x, resetting...\n",
694 dev->name, yp->cur_tx, yp->dirty_tx,
695 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
697 /* Note: these should be KERN_DEBUG. */
698 if (yellowfin_debug) {
700 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
701 for (i = 0; i < RX_RING_SIZE; i++)
702 printk(" %8.8x", yp->rx_ring[i].result_status);
703 printk("\n"KERN_WARNING" Tx ring %p: ", yp->tx_ring);
704 for (i = 0; i < TX_RING_SIZE; i++)
705 printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
706 yp->tx_ring[i].result_status);
710 /* If the hardware is found to hang regularly, we will update the code
711 to reinitialize the chip here. */
714 /* Wake the potentially-idle transmit channel. */
715 iowrite32(0x10001000, yp->base + TxCtrl);
716 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
717 netif_wake_queue (dev); /* Typical path */
719 dev->trans_start = jiffies;
720 dev->stats.tx_errors++;
723 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
724 static void yellowfin_init_ring(struct net_device *dev)
726 struct yellowfin_private *yp = netdev_priv(dev);
730 yp->cur_rx = yp->cur_tx = 0;
733 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
735 for (i = 0; i < RX_RING_SIZE; i++) {
736 yp->rx_ring[i].dbdma_cmd =
737 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
738 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
739 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
742 for (i = 0; i < RX_RING_SIZE; i++) {
743 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
744 yp->rx_skbuff[i] = skb;
747 skb->dev = dev; /* Mark as being used by this device. */
748 skb_reserve(skb, 2); /* 16 byte align the IP header. */
749 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
750 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
753 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
757 /* In this mode the Tx ring needs only a single descriptor. */
758 for (i = 0; i < TX_RING_SIZE; i++) {
759 yp->tx_skbuff[i] = NULL;
760 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
761 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
762 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
765 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
770 /* Tx ring needs a pair of descriptors, the second for the status. */
771 for (i = 0; i < TX_RING_SIZE; i++) {
773 yp->tx_skbuff[i] = 0;
774 /* Branch on Tx error. */
775 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
776 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
777 (j+1)*sizeof(struct yellowfin_desc));
779 if (yp->flags & FullTxStatus) {
780 yp->tx_ring[j].dbdma_cmd =
781 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
782 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
783 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
784 i*sizeof(struct tx_status_words));
786 /* Symbios chips write only tx_errs word. */
787 yp->tx_ring[j].dbdma_cmd =
788 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
789 yp->tx_ring[j].request_cnt = 2;
790 /* Om pade ummmmm... */
791 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
792 i*sizeof(struct tx_status_words) +
793 &(yp->tx_status[0].tx_errs) -
794 &(yp->tx_status[0]));
796 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
797 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
800 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
803 yp->tx_tail_desc = &yp->tx_status[0];
807 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
809 struct yellowfin_private *yp = netdev_priv(dev);
813 netif_stop_queue (dev);
815 /* Note: Ordering is important here, set the field with the
816 "ownership" bit last, and only then increment cur_tx. */
818 /* Calculate the next Tx descriptor entry. */
819 entry = yp->cur_tx % TX_RING_SIZE;
821 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
822 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
823 /* Fix GX chipset errata. */
824 if (cacheline_end > 24 || cacheline_end == 0) {
825 len = skb->len + 32 - cacheline_end + 1;
826 if (skb_padto(skb, len)) {
827 yp->tx_skbuff[entry] = NULL;
828 netif_wake_queue(dev);
833 yp->tx_skbuff[entry] = skb;
836 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
837 skb->data, len, PCI_DMA_TODEVICE));
838 yp->tx_ring[entry].result_status = 0;
839 if (entry >= TX_RING_SIZE-1) {
840 /* New stop command. */
841 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
842 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
843 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
845 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
846 yp->tx_ring[entry].dbdma_cmd =
847 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
851 yp->tx_ring[entry<<1].request_cnt = len;
852 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
853 skb->data, len, PCI_DMA_TODEVICE));
854 /* The input_last (status-write) command is constant, but we must
855 rewrite the subsequent 'stop' command. */
859 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
860 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
862 /* Final step -- overwrite the old 'stop' command. */
864 yp->tx_ring[entry<<1].dbdma_cmd =
865 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
866 CMD_TX_PKT | BRANCH_IFTRUE) | len);
869 /* Non-x86 Todo: explicitly flush cache lines here. */
871 /* Wake the potentially-idle transmit channel. */
872 iowrite32(0x10001000, yp->base + TxCtrl);
874 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
875 netif_start_queue (dev); /* Typical path */
878 dev->trans_start = jiffies;
880 if (yellowfin_debug > 4) {
881 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
882 dev->name, yp->cur_tx, entry);
887 /* The interrupt handler does all of the Rx thread work and cleans up
888 after the Tx thread. */
889 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
891 struct net_device *dev = dev_instance;
892 struct yellowfin_private *yp;
893 void __iomem *ioaddr;
894 int boguscnt = max_interrupt_work;
895 unsigned int handled = 0;
897 yp = netdev_priv(dev);
900 spin_lock (&yp->lock);
903 u16 intr_status = ioread16(ioaddr + IntrClear);
905 if (yellowfin_debug > 4)
906 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
907 dev->name, intr_status);
909 if (intr_status == 0)
913 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
915 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
919 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
920 int entry = yp->dirty_tx % TX_RING_SIZE;
923 if (yp->tx_ring[entry].result_status == 0)
925 skb = yp->tx_skbuff[entry];
926 dev->stats.tx_packets++;
927 dev->stats.tx_bytes += skb->len;
928 /* Free the original skb. */
929 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
930 skb->len, PCI_DMA_TODEVICE);
931 dev_kfree_skb_irq(skb);
932 yp->tx_skbuff[entry] = NULL;
935 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
936 /* The ring is no longer full, clear tbusy. */
938 netif_wake_queue(dev);
941 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
942 unsigned dirty_tx = yp->dirty_tx;
944 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
946 /* Todo: optimize this. */
947 int entry = dirty_tx % TX_RING_SIZE;
948 u16 tx_errs = yp->tx_status[entry].tx_errs;
951 #ifndef final_version
952 if (yellowfin_debug > 5)
953 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
954 "%4.4x %4.4x %4.4x %4.4x.\n",
956 yp->tx_status[entry].tx_cnt,
957 yp->tx_status[entry].tx_errs,
958 yp->tx_status[entry].total_tx_cnt,
959 yp->tx_status[entry].paused);
962 break; /* It still hasn't been Txed */
963 skb = yp->tx_skbuff[entry];
964 if (tx_errs & 0xF810) {
965 /* There was an major error, log it. */
966 #ifndef final_version
967 if (yellowfin_debug > 1)
968 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
971 dev->stats.tx_errors++;
972 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
973 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
974 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
975 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
977 #ifndef final_version
978 if (yellowfin_debug > 4)
979 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
982 dev->stats.tx_bytes += skb->len;
983 dev->stats.collisions += tx_errs & 15;
984 dev->stats.tx_packets++;
986 /* Free the original skb. */
987 pci_unmap_single(yp->pci_dev,
988 yp->tx_ring[entry<<1].addr, skb->len,
990 dev_kfree_skb_irq(skb);
991 yp->tx_skbuff[entry] = 0;
992 /* Mark status as empty. */
993 yp->tx_status[entry].tx_errs = 0;
996 #ifndef final_version
997 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
998 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
999 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1000 dirty_tx += TX_RING_SIZE;
1005 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1006 /* The ring is no longer full, clear tbusy. */
1008 netif_wake_queue(dev);
1011 yp->dirty_tx = dirty_tx;
1012 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1016 /* Log errors and other uncommon events. */
1017 if (intr_status & 0x2ee) /* Abnormal error summary. */
1018 yellowfin_error(dev, intr_status);
1020 if (--boguscnt < 0) {
1021 printk(KERN_WARNING "%s: Too much work at interrupt, "
1022 "status=0x%4.4x.\n",
1023 dev->name, intr_status);
1028 if (yellowfin_debug > 3)
1029 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1030 dev->name, ioread16(ioaddr + IntrStatus));
1032 spin_unlock (&yp->lock);
1033 return IRQ_RETVAL(handled);
1036 /* This routine is logically part of the interrupt handler, but separated
1037 for clarity and better register allocation. */
1038 static int yellowfin_rx(struct net_device *dev)
1040 struct yellowfin_private *yp = netdev_priv(dev);
1041 int entry = yp->cur_rx % RX_RING_SIZE;
1042 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1044 if (yellowfin_debug > 4) {
1045 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1046 entry, yp->rx_ring[entry].result_status);
1047 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1048 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1049 yp->rx_ring[entry].result_status);
1052 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1054 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1055 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1061 if(!desc->result_status)
1063 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1064 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1065 desc_status = le32_to_cpu(desc->result_status) >> 16;
1066 buf_addr = rx_skb->data;
1067 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1068 le32_to_cpu(desc->result_status)) & 0xffff;
1069 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1070 if (yellowfin_debug > 4)
1071 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1075 if ( ! (desc_status & RX_EOP)) {
1077 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1078 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1079 dev->stats.rx_length_errors++;
1080 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1081 /* There was a error. */
1082 if (yellowfin_debug > 3)
1083 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1085 dev->stats.rx_errors++;
1086 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1087 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1088 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1089 if (frame_status < 0) dev->stats.rx_dropped++;
1090 } else if ( !(yp->drv_flags & IsGigabit) &&
1091 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1092 u8 status1 = buf_addr[data_size-2];
1093 u8 status2 = buf_addr[data_size-1];
1094 dev->stats.rx_errors++;
1095 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1096 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1097 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1098 if (status2 & 0x80) dev->stats.rx_dropped++;
1099 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1100 } else if ((yp->flags & HasMACAddrBug) &&
1101 memcmp(le32_to_cpu(yp->rx_ring_dma +
1102 entry*sizeof(struct yellowfin_desc)),
1103 dev->dev_addr, 6) != 0 &&
1104 memcmp(le32_to_cpu(yp->rx_ring_dma +
1105 entry*sizeof(struct yellowfin_desc)),
1106 "\377\377\377\377\377\377", 6) != 0) {
1107 if (bogus_rx++ == 0)
1108 printk(KERN_WARNING "%s: Bad frame to %pM\n",
1109 dev->name, buf_addr);
1112 struct sk_buff *skb;
1113 int pkt_len = data_size -
1114 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1115 /* To verify: Yellowfin Length should omit the CRC! */
1117 #ifndef final_version
1118 if (yellowfin_debug > 4)
1119 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1120 " of %d, bogus_cnt %d.\n",
1121 pkt_len, data_size, boguscnt);
1123 /* Check if the packet is long enough to just pass up the skbuff
1124 without copying to a properly sized skbuff. */
1125 if (pkt_len > rx_copybreak) {
1126 skb_put(skb = rx_skb, pkt_len);
1127 pci_unmap_single(yp->pci_dev,
1128 le32_to_cpu(yp->rx_ring[entry].addr),
1130 PCI_DMA_FROMDEVICE);
1131 yp->rx_skbuff[entry] = NULL;
1133 skb = dev_alloc_skb(pkt_len + 2);
1136 skb_reserve(skb, 2); /* 16 byte align the IP header */
1137 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1138 skb_put(skb, pkt_len);
1139 pci_dma_sync_single_for_device(yp->pci_dev,
1140 le32_to_cpu(desc->addr),
1142 PCI_DMA_FROMDEVICE);
1144 skb->protocol = eth_type_trans(skb, dev);
1146 dev->stats.rx_packets++;
1147 dev->stats.rx_bytes += pkt_len;
1149 entry = (++yp->cur_rx) % RX_RING_SIZE;
1152 /* Refill the Rx ring buffers. */
1153 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1154 entry = yp->dirty_rx % RX_RING_SIZE;
1155 if (yp->rx_skbuff[entry] == NULL) {
1156 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1158 break; /* Better luck next round. */
1159 yp->rx_skbuff[entry] = skb;
1160 skb->dev = dev; /* Mark as being used by this device. */
1161 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1162 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1163 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1165 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1166 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1168 yp->rx_ring[entry - 1].dbdma_cmd =
1169 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1171 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1172 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1179 static void yellowfin_error(struct net_device *dev, int intr_status)
1181 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1182 dev->name, intr_status);
1183 /* Hmmmmm, it's not clear what to do here. */
1184 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1185 dev->stats.tx_errors++;
1186 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1187 dev->stats.rx_errors++;
1190 static int yellowfin_close(struct net_device *dev)
1192 struct yellowfin_private *yp = netdev_priv(dev);
1193 void __iomem *ioaddr = yp->base;
1196 netif_stop_queue (dev);
1198 if (yellowfin_debug > 1) {
1199 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1200 "Rx %4.4x Int %2.2x.\n",
1201 dev->name, ioread16(ioaddr + TxStatus),
1202 ioread16(ioaddr + RxStatus),
1203 ioread16(ioaddr + IntrStatus));
1204 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1205 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1208 /* Disable interrupts by clearing the interrupt mask. */
1209 iowrite16(0x0000, ioaddr + IntrEnb);
1211 /* Stop the chip's Tx and Rx processes. */
1212 iowrite32(0x80000000, ioaddr + RxCtrl);
1213 iowrite32(0x80000000, ioaddr + TxCtrl);
1215 del_timer(&yp->timer);
1217 #if defined(__i386__)
1218 if (yellowfin_debug > 2) {
1219 printk("\n"KERN_DEBUG" Tx ring at %8.8llx:\n",
1220 (unsigned long long)yp->tx_ring_dma);
1221 for (i = 0; i < TX_RING_SIZE*2; i++)
1222 printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1223 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1224 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1225 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1226 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1227 for (i = 0; i < TX_RING_SIZE; i++)
1228 printk(" #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1229 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1230 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1232 printk("\n"KERN_DEBUG " Rx ring %8.8llx:\n",
1233 (unsigned long long)yp->rx_ring_dma);
1234 for (i = 0; i < RX_RING_SIZE; i++) {
1235 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1236 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1237 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1238 yp->rx_ring[i].result_status);
1239 if (yellowfin_debug > 6) {
1240 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1242 for (j = 0; j < 0x50; j++)
1244 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1250 #endif /* __i386__ debugging only */
1252 free_irq(dev->irq, dev);
1254 /* Free all the skbuffs in the Rx queue. */
1255 for (i = 0; i < RX_RING_SIZE; i++) {
1256 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1257 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1258 if (yp->rx_skbuff[i]) {
1259 dev_kfree_skb(yp->rx_skbuff[i]);
1261 yp->rx_skbuff[i] = NULL;
1263 for (i = 0; i < TX_RING_SIZE; i++) {
1264 if (yp->tx_skbuff[i])
1265 dev_kfree_skb(yp->tx_skbuff[i]);
1266 yp->tx_skbuff[i] = NULL;
1269 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1270 if (yellowfin_debug > 0) {
1271 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1272 dev->name, bogus_rx);
1279 /* Set or clear the multicast filter for this adaptor. */
1281 static void set_rx_mode(struct net_device *dev)
1283 struct yellowfin_private *yp = netdev_priv(dev);
1284 void __iomem *ioaddr = yp->base;
1285 u16 cfg_value = ioread16(ioaddr + Cnfg);
1287 /* Stop the Rx process to change any value. */
1288 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1289 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1290 iowrite16(0x000F, ioaddr + AddrMode);
1291 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1292 /* Too many to filter well, or accept all multicasts. */
1293 iowrite16(0x000B, ioaddr + AddrMode);
1294 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1295 struct dev_mc_list *mclist;
1298 memset(hash_table, 0, sizeof(hash_table));
1299 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1300 i++, mclist = mclist->next) {
1303 /* Due to a bug in the early chip versions, multiple filter
1304 slots must be set for each address. */
1305 if (yp->drv_flags & HasMulticastBug) {
1306 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1307 hash_table[bit >> 4] |= (1 << bit);
1308 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1309 hash_table[bit >> 4] |= (1 << bit);
1310 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1311 hash_table[bit >> 4] |= (1 << bit);
1313 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1314 hash_table[bit >> 4] |= (1 << bit);
1316 /* Copy the hash table to the chip. */
1317 for (i = 0; i < 4; i++)
1318 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1319 iowrite16(0x0003, ioaddr + AddrMode);
1320 } else { /* Normal, unicast/broadcast-only mode. */
1321 iowrite16(0x0001, ioaddr + AddrMode);
1323 /* Restart the Rx process. */
1324 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1327 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1329 struct yellowfin_private *np = netdev_priv(dev);
1330 strcpy(info->driver, DRV_NAME);
1331 strcpy(info->version, DRV_VERSION);
1332 strcpy(info->bus_info, pci_name(np->pci_dev));
1335 static const struct ethtool_ops ethtool_ops = {
1336 .get_drvinfo = yellowfin_get_drvinfo
1339 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1341 struct yellowfin_private *np = netdev_priv(dev);
1342 void __iomem *ioaddr = np->base;
1343 struct mii_ioctl_data *data = if_mii(rq);
1346 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1347 data->phy_id = np->phys[0] & 0x1f;
1350 case SIOCGMIIREG: /* Read MII PHY register. */
1351 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1354 case SIOCSMIIREG: /* Write MII PHY register. */
1355 if (!capable(CAP_NET_ADMIN))
1357 if (data->phy_id == np->phys[0]) {
1358 u16 value = data->val_in;
1359 switch (data->reg_num) {
1361 /* Check for autonegotiation on or reset. */
1362 np->medialock = (value & 0x9000) ? 0 : 1;
1364 np->full_duplex = (value & 0x0100) ? 1 : 0;
1366 case 4: np->advertising = value; break;
1368 /* Perhaps check_duplex(dev), depending on chip semantics. */
1370 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1378 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1380 struct net_device *dev = pci_get_drvdata(pdev);
1381 struct yellowfin_private *np;
1384 np = netdev_priv(dev);
1386 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1388 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1389 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1390 unregister_netdev (dev);
1392 pci_iounmap(pdev, np->base);
1394 pci_release_regions (pdev);
1397 pci_set_drvdata(pdev, NULL);
1401 static struct pci_driver yellowfin_driver = {
1403 .id_table = yellowfin_pci_tbl,
1404 .probe = yellowfin_init_one,
1405 .remove = __devexit_p(yellowfin_remove_one),
1409 static int __init yellowfin_init (void)
1411 /* when a module, this is printed whether or not devices are found in probe */
1415 return pci_register_driver(&yellowfin_driver);
1419 static void __exit yellowfin_cleanup (void)
1421 pci_unregister_driver (&yellowfin_driver);
1425 module_init(yellowfin_init);
1426 module_exit(yellowfin_cleanup);