eCryptfs: kerneldoc for ecryptfs_parse_tag_70_packet()
[linux-2.6] / fs / binfmt_elf.c
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/fcntl.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/shm.h>
28 #include <linux/personality.h>
29 #include <linux/elfcore.h>
30 #include <linux/init.h>
31 #include <linux/highuid.h>
32 #include <linux/smp.h>
33 #include <linux/compiler.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/security.h>
37 #include <linux/syscalls.h>
38 #include <linux/random.h>
39 #include <linux/elf.h>
40 #include <linux/utsname.h>
41 #include <asm/uaccess.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44
45 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
46 static int load_elf_library(struct file *);
47 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
48                                 int, int, unsigned long);
49
50 /*
51  * If we don't support core dumping, then supply a NULL so we
52  * don't even try.
53  */
54 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
55 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
56 #else
57 #define elf_core_dump   NULL
58 #endif
59
60 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
61 #define ELF_MIN_ALIGN   ELF_EXEC_PAGESIZE
62 #else
63 #define ELF_MIN_ALIGN   PAGE_SIZE
64 #endif
65
66 #ifndef ELF_CORE_EFLAGS
67 #define ELF_CORE_EFLAGS 0
68 #endif
69
70 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
71 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
72 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
73
74 static struct linux_binfmt elf_format = {
75                 .module         = THIS_MODULE,
76                 .load_binary    = load_elf_binary,
77                 .load_shlib     = load_elf_library,
78                 .core_dump      = elf_core_dump,
79                 .min_coredump   = ELF_EXEC_PAGESIZE,
80                 .hasvdso        = 1
81 };
82
83 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
84
85 static int set_brk(unsigned long start, unsigned long end)
86 {
87         start = ELF_PAGEALIGN(start);
88         end = ELF_PAGEALIGN(end);
89         if (end > start) {
90                 unsigned long addr;
91                 down_write(&current->mm->mmap_sem);
92                 addr = do_brk(start, end - start);
93                 up_write(&current->mm->mmap_sem);
94                 if (BAD_ADDR(addr))
95                         return addr;
96         }
97         current->mm->start_brk = current->mm->brk = end;
98         return 0;
99 }
100
101 /* We need to explicitly zero any fractional pages
102    after the data section (i.e. bss).  This would
103    contain the junk from the file that should not
104    be in memory
105  */
106 static int padzero(unsigned long elf_bss)
107 {
108         unsigned long nbyte;
109
110         nbyte = ELF_PAGEOFFSET(elf_bss);
111         if (nbyte) {
112                 nbyte = ELF_MIN_ALIGN - nbyte;
113                 if (clear_user((void __user *) elf_bss, nbyte))
114                         return -EFAULT;
115         }
116         return 0;
117 }
118
119 /* Let's use some macros to make this stack manipulation a little clearer */
120 #ifdef CONFIG_STACK_GROWSUP
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
122 #define STACK_ROUND(sp, items) \
123         ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ \
125         elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
126         old_sp; })
127 #else
128 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
129 #define STACK_ROUND(sp, items) \
130         (((unsigned long) (sp - items)) &~ 15UL)
131 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
132 #endif
133
134 #ifndef ELF_BASE_PLATFORM
135 /*
136  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
137  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
138  * will be copied to the user stack in the same manner as AT_PLATFORM.
139  */
140 #define ELF_BASE_PLATFORM NULL
141 #endif
142
143 static int
144 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
145                 unsigned long load_addr, unsigned long interp_load_addr)
146 {
147         unsigned long p = bprm->p;
148         int argc = bprm->argc;
149         int envc = bprm->envc;
150         elf_addr_t __user *argv;
151         elf_addr_t __user *envp;
152         elf_addr_t __user *sp;
153         elf_addr_t __user *u_platform;
154         elf_addr_t __user *u_base_platform;
155         const char *k_platform = ELF_PLATFORM;
156         const char *k_base_platform = ELF_BASE_PLATFORM;
157         int items;
158         elf_addr_t *elf_info;
159         int ei_index = 0;
160         const struct cred *cred = current_cred();
161         struct vm_area_struct *vma;
162
163         /*
164          * In some cases (e.g. Hyper-Threading), we want to avoid L1
165          * evictions by the processes running on the same package. One
166          * thing we can do is to shuffle the initial stack for them.
167          */
168
169         p = arch_align_stack(p);
170
171         /*
172          * If this architecture has a platform capability string, copy it
173          * to userspace.  In some cases (Sparc), this info is impossible
174          * for userspace to get any other way, in others (i386) it is
175          * merely difficult.
176          */
177         u_platform = NULL;
178         if (k_platform) {
179                 size_t len = strlen(k_platform) + 1;
180
181                 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
182                 if (__copy_to_user(u_platform, k_platform, len))
183                         return -EFAULT;
184         }
185
186         /*
187          * If this architecture has a "base" platform capability
188          * string, copy it to userspace.
189          */
190         u_base_platform = NULL;
191         if (k_base_platform) {
192                 size_t len = strlen(k_base_platform) + 1;
193
194                 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
195                 if (__copy_to_user(u_base_platform, k_base_platform, len))
196                         return -EFAULT;
197         }
198
199         /* Create the ELF interpreter info */
200         elf_info = (elf_addr_t *)current->mm->saved_auxv;
201         /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
202 #define NEW_AUX_ENT(id, val) \
203         do { \
204                 elf_info[ei_index++] = id; \
205                 elf_info[ei_index++] = val; \
206         } while (0)
207
208 #ifdef ARCH_DLINFO
209         /* 
210          * ARCH_DLINFO must come first so PPC can do its special alignment of
211          * AUXV.
212          * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
213          * ARCH_DLINFO changes
214          */
215         ARCH_DLINFO;
216 #endif
217         NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
218         NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
219         NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
220         NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
221         NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
222         NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
223         NEW_AUX_ENT(AT_BASE, interp_load_addr);
224         NEW_AUX_ENT(AT_FLAGS, 0);
225         NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
226         NEW_AUX_ENT(AT_UID, cred->uid);
227         NEW_AUX_ENT(AT_EUID, cred->euid);
228         NEW_AUX_ENT(AT_GID, cred->gid);
229         NEW_AUX_ENT(AT_EGID, cred->egid);
230         NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
231         NEW_AUX_ENT(AT_EXECFN, bprm->exec);
232         if (k_platform) {
233                 NEW_AUX_ENT(AT_PLATFORM,
234                             (elf_addr_t)(unsigned long)u_platform);
235         }
236         if (k_base_platform) {
237                 NEW_AUX_ENT(AT_BASE_PLATFORM,
238                             (elf_addr_t)(unsigned long)u_base_platform);
239         }
240         if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
241                 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
242         }
243 #undef NEW_AUX_ENT
244         /* AT_NULL is zero; clear the rest too */
245         memset(&elf_info[ei_index], 0,
246                sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
247
248         /* And advance past the AT_NULL entry.  */
249         ei_index += 2;
250
251         sp = STACK_ADD(p, ei_index);
252
253         items = (argc + 1) + (envc + 1) + 1;
254         bprm->p = STACK_ROUND(sp, items);
255
256         /* Point sp at the lowest address on the stack */
257 #ifdef CONFIG_STACK_GROWSUP
258         sp = (elf_addr_t __user *)bprm->p - items - ei_index;
259         bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
260 #else
261         sp = (elf_addr_t __user *)bprm->p;
262 #endif
263
264
265         /*
266          * Grow the stack manually; some architectures have a limit on how
267          * far ahead a user-space access may be in order to grow the stack.
268          */
269         vma = find_extend_vma(current->mm, bprm->p);
270         if (!vma)
271                 return -EFAULT;
272
273         /* Now, let's put argc (and argv, envp if appropriate) on the stack */
274         if (__put_user(argc, sp++))
275                 return -EFAULT;
276         argv = sp;
277         envp = argv + argc + 1;
278
279         /* Populate argv and envp */
280         p = current->mm->arg_end = current->mm->arg_start;
281         while (argc-- > 0) {
282                 size_t len;
283                 if (__put_user((elf_addr_t)p, argv++))
284                         return -EFAULT;
285                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
286                 if (!len || len > MAX_ARG_STRLEN)
287                         return -EINVAL;
288                 p += len;
289         }
290         if (__put_user(0, argv))
291                 return -EFAULT;
292         current->mm->arg_end = current->mm->env_start = p;
293         while (envc-- > 0) {
294                 size_t len;
295                 if (__put_user((elf_addr_t)p, envp++))
296                         return -EFAULT;
297                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
298                 if (!len || len > MAX_ARG_STRLEN)
299                         return -EINVAL;
300                 p += len;
301         }
302         if (__put_user(0, envp))
303                 return -EFAULT;
304         current->mm->env_end = p;
305
306         /* Put the elf_info on the stack in the right place.  */
307         sp = (elf_addr_t __user *)envp + 1;
308         if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
309                 return -EFAULT;
310         return 0;
311 }
312
313 #ifndef elf_map
314
315 static unsigned long elf_map(struct file *filep, unsigned long addr,
316                 struct elf_phdr *eppnt, int prot, int type,
317                 unsigned long total_size)
318 {
319         unsigned long map_addr;
320         unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
321         unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
322         addr = ELF_PAGESTART(addr);
323         size = ELF_PAGEALIGN(size);
324
325         /* mmap() will return -EINVAL if given a zero size, but a
326          * segment with zero filesize is perfectly valid */
327         if (!size)
328                 return addr;
329
330         down_write(&current->mm->mmap_sem);
331         /*
332         * total_size is the size of the ELF (interpreter) image.
333         * The _first_ mmap needs to know the full size, otherwise
334         * randomization might put this image into an overlapping
335         * position with the ELF binary image. (since size < total_size)
336         * So we first map the 'big' image - and unmap the remainder at
337         * the end. (which unmap is needed for ELF images with holes.)
338         */
339         if (total_size) {
340                 total_size = ELF_PAGEALIGN(total_size);
341                 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
342                 if (!BAD_ADDR(map_addr))
343                         do_munmap(current->mm, map_addr+size, total_size-size);
344         } else
345                 map_addr = do_mmap(filep, addr, size, prot, type, off);
346
347         up_write(&current->mm->mmap_sem);
348         return(map_addr);
349 }
350
351 #endif /* !elf_map */
352
353 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
354 {
355         int i, first_idx = -1, last_idx = -1;
356
357         for (i = 0; i < nr; i++) {
358                 if (cmds[i].p_type == PT_LOAD) {
359                         last_idx = i;
360                         if (first_idx == -1)
361                                 first_idx = i;
362                 }
363         }
364         if (first_idx == -1)
365                 return 0;
366
367         return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
368                                 ELF_PAGESTART(cmds[first_idx].p_vaddr);
369 }
370
371
372 /* This is much more generalized than the library routine read function,
373    so we keep this separate.  Technically the library read function
374    is only provided so that we can read a.out libraries that have
375    an ELF header */
376
377 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
378                 struct file *interpreter, unsigned long *interp_map_addr,
379                 unsigned long no_base)
380 {
381         struct elf_phdr *elf_phdata;
382         struct elf_phdr *eppnt;
383         unsigned long load_addr = 0;
384         int load_addr_set = 0;
385         unsigned long last_bss = 0, elf_bss = 0;
386         unsigned long error = ~0UL;
387         unsigned long total_size;
388         int retval, i, size;
389
390         /* First of all, some simple consistency checks */
391         if (interp_elf_ex->e_type != ET_EXEC &&
392             interp_elf_ex->e_type != ET_DYN)
393                 goto out;
394         if (!elf_check_arch(interp_elf_ex))
395                 goto out;
396         if (!interpreter->f_op || !interpreter->f_op->mmap)
397                 goto out;
398
399         /*
400          * If the size of this structure has changed, then punt, since
401          * we will be doing the wrong thing.
402          */
403         if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
404                 goto out;
405         if (interp_elf_ex->e_phnum < 1 ||
406                 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
407                 goto out;
408
409         /* Now read in all of the header information */
410         size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
411         if (size > ELF_MIN_ALIGN)
412                 goto out;
413         elf_phdata = kmalloc(size, GFP_KERNEL);
414         if (!elf_phdata)
415                 goto out;
416
417         retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
418                              (char *)elf_phdata,size);
419         error = -EIO;
420         if (retval != size) {
421                 if (retval < 0)
422                         error = retval; 
423                 goto out_close;
424         }
425
426         total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
427         if (!total_size) {
428                 error = -EINVAL;
429                 goto out_close;
430         }
431
432         eppnt = elf_phdata;
433         for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
434                 if (eppnt->p_type == PT_LOAD) {
435                         int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
436                         int elf_prot = 0;
437                         unsigned long vaddr = 0;
438                         unsigned long k, map_addr;
439
440                         if (eppnt->p_flags & PF_R)
441                                 elf_prot = PROT_READ;
442                         if (eppnt->p_flags & PF_W)
443                                 elf_prot |= PROT_WRITE;
444                         if (eppnt->p_flags & PF_X)
445                                 elf_prot |= PROT_EXEC;
446                         vaddr = eppnt->p_vaddr;
447                         if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
448                                 elf_type |= MAP_FIXED;
449                         else if (no_base && interp_elf_ex->e_type == ET_DYN)
450                                 load_addr = -vaddr;
451
452                         map_addr = elf_map(interpreter, load_addr + vaddr,
453                                         eppnt, elf_prot, elf_type, total_size);
454                         total_size = 0;
455                         if (!*interp_map_addr)
456                                 *interp_map_addr = map_addr;
457                         error = map_addr;
458                         if (BAD_ADDR(map_addr))
459                                 goto out_close;
460
461                         if (!load_addr_set &&
462                             interp_elf_ex->e_type == ET_DYN) {
463                                 load_addr = map_addr - ELF_PAGESTART(vaddr);
464                                 load_addr_set = 1;
465                         }
466
467                         /*
468                          * Check to see if the section's size will overflow the
469                          * allowed task size. Note that p_filesz must always be
470                          * <= p_memsize so it's only necessary to check p_memsz.
471                          */
472                         k = load_addr + eppnt->p_vaddr;
473                         if (BAD_ADDR(k) ||
474                             eppnt->p_filesz > eppnt->p_memsz ||
475                             eppnt->p_memsz > TASK_SIZE ||
476                             TASK_SIZE - eppnt->p_memsz < k) {
477                                 error = -ENOMEM;
478                                 goto out_close;
479                         }
480
481                         /*
482                          * Find the end of the file mapping for this phdr, and
483                          * keep track of the largest address we see for this.
484                          */
485                         k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
486                         if (k > elf_bss)
487                                 elf_bss = k;
488
489                         /*
490                          * Do the same thing for the memory mapping - between
491                          * elf_bss and last_bss is the bss section.
492                          */
493                         k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
494                         if (k > last_bss)
495                                 last_bss = k;
496                 }
497         }
498
499         /*
500          * Now fill out the bss section.  First pad the last page up
501          * to the page boundary, and then perform a mmap to make sure
502          * that there are zero-mapped pages up to and including the 
503          * last bss page.
504          */
505         if (padzero(elf_bss)) {
506                 error = -EFAULT;
507                 goto out_close;
508         }
509
510         /* What we have mapped so far */
511         elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
512
513         /* Map the last of the bss segment */
514         if (last_bss > elf_bss) {
515                 down_write(&current->mm->mmap_sem);
516                 error = do_brk(elf_bss, last_bss - elf_bss);
517                 up_write(&current->mm->mmap_sem);
518                 if (BAD_ADDR(error))
519                         goto out_close;
520         }
521
522         error = load_addr;
523
524 out_close:
525         kfree(elf_phdata);
526 out:
527         return error;
528 }
529
530 /*
531  * These are the functions used to load ELF style executables and shared
532  * libraries.  There is no binary dependent code anywhere else.
533  */
534
535 #define INTERPRETER_NONE 0
536 #define INTERPRETER_ELF 2
537
538 #ifndef STACK_RND_MASK
539 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
540 #endif
541
542 static unsigned long randomize_stack_top(unsigned long stack_top)
543 {
544         unsigned int random_variable = 0;
545
546         if ((current->flags & PF_RANDOMIZE) &&
547                 !(current->personality & ADDR_NO_RANDOMIZE)) {
548                 random_variable = get_random_int() & STACK_RND_MASK;
549                 random_variable <<= PAGE_SHIFT;
550         }
551 #ifdef CONFIG_STACK_GROWSUP
552         return PAGE_ALIGN(stack_top) + random_variable;
553 #else
554         return PAGE_ALIGN(stack_top) - random_variable;
555 #endif
556 }
557
558 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
559 {
560         struct file *interpreter = NULL; /* to shut gcc up */
561         unsigned long load_addr = 0, load_bias = 0;
562         int load_addr_set = 0;
563         char * elf_interpreter = NULL;
564         unsigned long error;
565         struct elf_phdr *elf_ppnt, *elf_phdata;
566         unsigned long elf_bss, elf_brk;
567         int elf_exec_fileno;
568         int retval, i;
569         unsigned int size;
570         unsigned long elf_entry;
571         unsigned long interp_load_addr = 0;
572         unsigned long start_code, end_code, start_data, end_data;
573         unsigned long reloc_func_desc = 0;
574         int executable_stack = EXSTACK_DEFAULT;
575         unsigned long def_flags = 0;
576         struct {
577                 struct elfhdr elf_ex;
578                 struct elfhdr interp_elf_ex;
579         } *loc;
580
581         loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582         if (!loc) {
583                 retval = -ENOMEM;
584                 goto out_ret;
585         }
586         
587         /* Get the exec-header */
588         loc->elf_ex = *((struct elfhdr *)bprm->buf);
589
590         retval = -ENOEXEC;
591         /* First of all, some simple consistency checks */
592         if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593                 goto out;
594
595         if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596                 goto out;
597         if (!elf_check_arch(&loc->elf_ex))
598                 goto out;
599         if (!bprm->file->f_op||!bprm->file->f_op->mmap)
600                 goto out;
601
602         /* Now read in all of the header information */
603         if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604                 goto out;
605         if (loc->elf_ex.e_phnum < 1 ||
606                 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607                 goto out;
608         size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609         retval = -ENOMEM;
610         elf_phdata = kmalloc(size, GFP_KERNEL);
611         if (!elf_phdata)
612                 goto out;
613
614         retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615                              (char *)elf_phdata, size);
616         if (retval != size) {
617                 if (retval >= 0)
618                         retval = -EIO;
619                 goto out_free_ph;
620         }
621
622         retval = get_unused_fd();
623         if (retval < 0)
624                 goto out_free_ph;
625         get_file(bprm->file);
626         fd_install(elf_exec_fileno = retval, bprm->file);
627
628         elf_ppnt = elf_phdata;
629         elf_bss = 0;
630         elf_brk = 0;
631
632         start_code = ~0UL;
633         end_code = 0;
634         start_data = 0;
635         end_data = 0;
636
637         for (i = 0; i < loc->elf_ex.e_phnum; i++) {
638                 if (elf_ppnt->p_type == PT_INTERP) {
639                         /* This is the program interpreter used for
640                          * shared libraries - for now assume that this
641                          * is an a.out format binary
642                          */
643                         retval = -ENOEXEC;
644                         if (elf_ppnt->p_filesz > PATH_MAX || 
645                             elf_ppnt->p_filesz < 2)
646                                 goto out_free_file;
647
648                         retval = -ENOMEM;
649                         elf_interpreter = kmalloc(elf_ppnt->p_filesz,
650                                                   GFP_KERNEL);
651                         if (!elf_interpreter)
652                                 goto out_free_file;
653
654                         retval = kernel_read(bprm->file, elf_ppnt->p_offset,
655                                              elf_interpreter,
656                                              elf_ppnt->p_filesz);
657                         if (retval != elf_ppnt->p_filesz) {
658                                 if (retval >= 0)
659                                         retval = -EIO;
660                                 goto out_free_interp;
661                         }
662                         /* make sure path is NULL terminated */
663                         retval = -ENOEXEC;
664                         if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
665                                 goto out_free_interp;
666
667                         /*
668                          * The early SET_PERSONALITY here is so that the lookup
669                          * for the interpreter happens in the namespace of the 
670                          * to-be-execed image.  SET_PERSONALITY can select an
671                          * alternate root.
672                          *
673                          * However, SET_PERSONALITY is NOT allowed to switch
674                          * this task into the new images's memory mapping
675                          * policy - that is, TASK_SIZE must still evaluate to
676                          * that which is appropriate to the execing application.
677                          * This is because exit_mmap() needs to have TASK_SIZE
678                          * evaluate to the size of the old image.
679                          *
680                          * So if (say) a 64-bit application is execing a 32-bit
681                          * application it is the architecture's responsibility
682                          * to defer changing the value of TASK_SIZE until the
683                          * switch really is going to happen - do this in
684                          * flush_thread().      - akpm
685                          */
686                         SET_PERSONALITY(loc->elf_ex);
687
688                         interpreter = open_exec(elf_interpreter);
689                         retval = PTR_ERR(interpreter);
690                         if (IS_ERR(interpreter))
691                                 goto out_free_interp;
692
693                         /*
694                          * If the binary is not readable then enforce
695                          * mm->dumpable = 0 regardless of the interpreter's
696                          * permissions.
697                          */
698                         if (file_permission(interpreter, MAY_READ) < 0)
699                                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
700
701                         retval = kernel_read(interpreter, 0, bprm->buf,
702                                              BINPRM_BUF_SIZE);
703                         if (retval != BINPRM_BUF_SIZE) {
704                                 if (retval >= 0)
705                                         retval = -EIO;
706                                 goto out_free_dentry;
707                         }
708
709                         /* Get the exec headers */
710                         loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
711                         break;
712                 }
713                 elf_ppnt++;
714         }
715
716         elf_ppnt = elf_phdata;
717         for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
718                 if (elf_ppnt->p_type == PT_GNU_STACK) {
719                         if (elf_ppnt->p_flags & PF_X)
720                                 executable_stack = EXSTACK_ENABLE_X;
721                         else
722                                 executable_stack = EXSTACK_DISABLE_X;
723                         break;
724                 }
725
726         /* Some simple consistency checks for the interpreter */
727         if (elf_interpreter) {
728                 retval = -ELIBBAD;
729                 /* Not an ELF interpreter */
730                 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
731                         goto out_free_dentry;
732                 /* Verify the interpreter has a valid arch */
733                 if (!elf_check_arch(&loc->interp_elf_ex))
734                         goto out_free_dentry;
735         } else {
736                 /* Executables without an interpreter also need a personality  */
737                 SET_PERSONALITY(loc->elf_ex);
738         }
739
740         /* Flush all traces of the currently running executable */
741         retval = flush_old_exec(bprm);
742         if (retval)
743                 goto out_free_dentry;
744
745         /* OK, This is the point of no return */
746         current->flags &= ~PF_FORKNOEXEC;
747         current->mm->def_flags = def_flags;
748
749         /* Do this immediately, since STACK_TOP as used in setup_arg_pages
750            may depend on the personality.  */
751         SET_PERSONALITY(loc->elf_ex);
752         if (elf_read_implies_exec(loc->elf_ex, executable_stack))
753                 current->personality |= READ_IMPLIES_EXEC;
754
755         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
756                 current->flags |= PF_RANDOMIZE;
757         arch_pick_mmap_layout(current->mm);
758
759         /* Do this so that we can load the interpreter, if need be.  We will
760            change some of these later */
761         current->mm->free_area_cache = current->mm->mmap_base;
762         current->mm->cached_hole_size = 0;
763         retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
764                                  executable_stack);
765         if (retval < 0) {
766                 send_sig(SIGKILL, current, 0);
767                 goto out_free_dentry;
768         }
769         
770         current->mm->start_stack = bprm->p;
771
772         /* Now we do a little grungy work by mmaping the ELF image into
773            the correct location in memory. */
774         for(i = 0, elf_ppnt = elf_phdata;
775             i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
776                 int elf_prot = 0, elf_flags;
777                 unsigned long k, vaddr;
778
779                 if (elf_ppnt->p_type != PT_LOAD)
780                         continue;
781
782                 if (unlikely (elf_brk > elf_bss)) {
783                         unsigned long nbyte;
784                     
785                         /* There was a PT_LOAD segment with p_memsz > p_filesz
786                            before this one. Map anonymous pages, if needed,
787                            and clear the area.  */
788                         retval = set_brk (elf_bss + load_bias,
789                                           elf_brk + load_bias);
790                         if (retval) {
791                                 send_sig(SIGKILL, current, 0);
792                                 goto out_free_dentry;
793                         }
794                         nbyte = ELF_PAGEOFFSET(elf_bss);
795                         if (nbyte) {
796                                 nbyte = ELF_MIN_ALIGN - nbyte;
797                                 if (nbyte > elf_brk - elf_bss)
798                                         nbyte = elf_brk - elf_bss;
799                                 if (clear_user((void __user *)elf_bss +
800                                                         load_bias, nbyte)) {
801                                         /*
802                                          * This bss-zeroing can fail if the ELF
803                                          * file specifies odd protections. So
804                                          * we don't check the return value
805                                          */
806                                 }
807                         }
808                 }
809
810                 if (elf_ppnt->p_flags & PF_R)
811                         elf_prot |= PROT_READ;
812                 if (elf_ppnt->p_flags & PF_W)
813                         elf_prot |= PROT_WRITE;
814                 if (elf_ppnt->p_flags & PF_X)
815                         elf_prot |= PROT_EXEC;
816
817                 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
818
819                 vaddr = elf_ppnt->p_vaddr;
820                 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
821                         elf_flags |= MAP_FIXED;
822                 } else if (loc->elf_ex.e_type == ET_DYN) {
823                         /* Try and get dynamic programs out of the way of the
824                          * default mmap base, as well as whatever program they
825                          * might try to exec.  This is because the brk will
826                          * follow the loader, and is not movable.  */
827 #ifdef CONFIG_X86
828                         load_bias = 0;
829 #else
830                         load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
831 #endif
832                 }
833
834                 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
835                                 elf_prot, elf_flags, 0);
836                 if (BAD_ADDR(error)) {
837                         send_sig(SIGKILL, current, 0);
838                         retval = IS_ERR((void *)error) ?
839                                 PTR_ERR((void*)error) : -EINVAL;
840                         goto out_free_dentry;
841                 }
842
843                 if (!load_addr_set) {
844                         load_addr_set = 1;
845                         load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
846                         if (loc->elf_ex.e_type == ET_DYN) {
847                                 load_bias += error -
848                                              ELF_PAGESTART(load_bias + vaddr);
849                                 load_addr += load_bias;
850                                 reloc_func_desc = load_bias;
851                         }
852                 }
853                 k = elf_ppnt->p_vaddr;
854                 if (k < start_code)
855                         start_code = k;
856                 if (start_data < k)
857                         start_data = k;
858
859                 /*
860                  * Check to see if the section's size will overflow the
861                  * allowed task size. Note that p_filesz must always be
862                  * <= p_memsz so it is only necessary to check p_memsz.
863                  */
864                 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
865                     elf_ppnt->p_memsz > TASK_SIZE ||
866                     TASK_SIZE - elf_ppnt->p_memsz < k) {
867                         /* set_brk can never work. Avoid overflows. */
868                         send_sig(SIGKILL, current, 0);
869                         retval = -EINVAL;
870                         goto out_free_dentry;
871                 }
872
873                 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
874
875                 if (k > elf_bss)
876                         elf_bss = k;
877                 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
878                         end_code = k;
879                 if (end_data < k)
880                         end_data = k;
881                 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
882                 if (k > elf_brk)
883                         elf_brk = k;
884         }
885
886         loc->elf_ex.e_entry += load_bias;
887         elf_bss += load_bias;
888         elf_brk += load_bias;
889         start_code += load_bias;
890         end_code += load_bias;
891         start_data += load_bias;
892         end_data += load_bias;
893
894         /* Calling set_brk effectively mmaps the pages that we need
895          * for the bss and break sections.  We must do this before
896          * mapping in the interpreter, to make sure it doesn't wind
897          * up getting placed where the bss needs to go.
898          */
899         retval = set_brk(elf_bss, elf_brk);
900         if (retval) {
901                 send_sig(SIGKILL, current, 0);
902                 goto out_free_dentry;
903         }
904         if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
905                 send_sig(SIGSEGV, current, 0);
906                 retval = -EFAULT; /* Nobody gets to see this, but.. */
907                 goto out_free_dentry;
908         }
909
910         if (elf_interpreter) {
911                 unsigned long uninitialized_var(interp_map_addr);
912
913                 elf_entry = load_elf_interp(&loc->interp_elf_ex,
914                                             interpreter,
915                                             &interp_map_addr,
916                                             load_bias);
917                 if (!IS_ERR((void *)elf_entry)) {
918                         /*
919                          * load_elf_interp() returns relocation
920                          * adjustment
921                          */
922                         interp_load_addr = elf_entry;
923                         elf_entry += loc->interp_elf_ex.e_entry;
924                 }
925                 if (BAD_ADDR(elf_entry)) {
926                         force_sig(SIGSEGV, current);
927                         retval = IS_ERR((void *)elf_entry) ?
928                                         (int)elf_entry : -EINVAL;
929                         goto out_free_dentry;
930                 }
931                 reloc_func_desc = interp_load_addr;
932
933                 allow_write_access(interpreter);
934                 fput(interpreter);
935                 kfree(elf_interpreter);
936         } else {
937                 elf_entry = loc->elf_ex.e_entry;
938                 if (BAD_ADDR(elf_entry)) {
939                         force_sig(SIGSEGV, current);
940                         retval = -EINVAL;
941                         goto out_free_dentry;
942                 }
943         }
944
945         kfree(elf_phdata);
946
947         sys_close(elf_exec_fileno);
948
949         set_binfmt(&elf_format);
950
951 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
952         retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
953         if (retval < 0) {
954                 send_sig(SIGKILL, current, 0);
955                 goto out;
956         }
957 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
958
959         install_exec_creds(bprm);
960         current->flags &= ~PF_FORKNOEXEC;
961         retval = create_elf_tables(bprm, &loc->elf_ex,
962                           load_addr, interp_load_addr);
963         if (retval < 0) {
964                 send_sig(SIGKILL, current, 0);
965                 goto out;
966         }
967         /* N.B. passed_fileno might not be initialized? */
968         current->mm->end_code = end_code;
969         current->mm->start_code = start_code;
970         current->mm->start_data = start_data;
971         current->mm->end_data = end_data;
972         current->mm->start_stack = bprm->p;
973
974 #ifdef arch_randomize_brk
975         if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
976                 current->mm->brk = current->mm->start_brk =
977                         arch_randomize_brk(current->mm);
978 #endif
979
980         if (current->personality & MMAP_PAGE_ZERO) {
981                 /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
982                    and some applications "depend" upon this behavior.
983                    Since we do not have the power to recompile these, we
984                    emulate the SVr4 behavior. Sigh. */
985                 down_write(&current->mm->mmap_sem);
986                 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
987                                 MAP_FIXED | MAP_PRIVATE, 0);
988                 up_write(&current->mm->mmap_sem);
989         }
990
991 #ifdef ELF_PLAT_INIT
992         /*
993          * The ABI may specify that certain registers be set up in special
994          * ways (on i386 %edx is the address of a DT_FINI function, for
995          * example.  In addition, it may also specify (eg, PowerPC64 ELF)
996          * that the e_entry field is the address of the function descriptor
997          * for the startup routine, rather than the address of the startup
998          * routine itself.  This macro performs whatever initialization to
999          * the regs structure is required as well as any relocations to the
1000          * function descriptor entries when executing dynamically links apps.
1001          */
1002         ELF_PLAT_INIT(regs, reloc_func_desc);
1003 #endif
1004
1005         start_thread(regs, elf_entry, bprm->p);
1006         retval = 0;
1007 out:
1008         kfree(loc);
1009 out_ret:
1010         return retval;
1011
1012         /* error cleanup */
1013 out_free_dentry:
1014         allow_write_access(interpreter);
1015         if (interpreter)
1016                 fput(interpreter);
1017 out_free_interp:
1018         kfree(elf_interpreter);
1019 out_free_file:
1020         sys_close(elf_exec_fileno);
1021 out_free_ph:
1022         kfree(elf_phdata);
1023         goto out;
1024 }
1025
1026 /* This is really simpleminded and specialized - we are loading an
1027    a.out library that is given an ELF header. */
1028 static int load_elf_library(struct file *file)
1029 {
1030         struct elf_phdr *elf_phdata;
1031         struct elf_phdr *eppnt;
1032         unsigned long elf_bss, bss, len;
1033         int retval, error, i, j;
1034         struct elfhdr elf_ex;
1035
1036         error = -ENOEXEC;
1037         retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1038         if (retval != sizeof(elf_ex))
1039                 goto out;
1040
1041         if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1042                 goto out;
1043
1044         /* First of all, some simple consistency checks */
1045         if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1046             !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1047                 goto out;
1048
1049         /* Now read in all of the header information */
1050
1051         j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1052         /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1053
1054         error = -ENOMEM;
1055         elf_phdata = kmalloc(j, GFP_KERNEL);
1056         if (!elf_phdata)
1057                 goto out;
1058
1059         eppnt = elf_phdata;
1060         error = -ENOEXEC;
1061         retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1062         if (retval != j)
1063                 goto out_free_ph;
1064
1065         for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1066                 if ((eppnt + i)->p_type == PT_LOAD)
1067                         j++;
1068         if (j != 1)
1069                 goto out_free_ph;
1070
1071         while (eppnt->p_type != PT_LOAD)
1072                 eppnt++;
1073
1074         /* Now use mmap to map the library into memory. */
1075         down_write(&current->mm->mmap_sem);
1076         error = do_mmap(file,
1077                         ELF_PAGESTART(eppnt->p_vaddr),
1078                         (eppnt->p_filesz +
1079                          ELF_PAGEOFFSET(eppnt->p_vaddr)),
1080                         PROT_READ | PROT_WRITE | PROT_EXEC,
1081                         MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1082                         (eppnt->p_offset -
1083                          ELF_PAGEOFFSET(eppnt->p_vaddr)));
1084         up_write(&current->mm->mmap_sem);
1085         if (error != ELF_PAGESTART(eppnt->p_vaddr))
1086                 goto out_free_ph;
1087
1088         elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1089         if (padzero(elf_bss)) {
1090                 error = -EFAULT;
1091                 goto out_free_ph;
1092         }
1093
1094         len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1095                             ELF_MIN_ALIGN - 1);
1096         bss = eppnt->p_memsz + eppnt->p_vaddr;
1097         if (bss > len) {
1098                 down_write(&current->mm->mmap_sem);
1099                 do_brk(len, bss - len);
1100                 up_write(&current->mm->mmap_sem);
1101         }
1102         error = 0;
1103
1104 out_free_ph:
1105         kfree(elf_phdata);
1106 out:
1107         return error;
1108 }
1109
1110 /*
1111  * Note that some platforms still use traditional core dumps and not
1112  * the ELF core dump.  Each platform can select it as appropriate.
1113  */
1114 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1115
1116 /*
1117  * ELF core dumper
1118  *
1119  * Modelled on fs/exec.c:aout_core_dump()
1120  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1121  */
1122 /*
1123  * These are the only things you should do on a core-file: use only these
1124  * functions to write out all the necessary info.
1125  */
1126 static int dump_write(struct file *file, const void *addr, int nr)
1127 {
1128         return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1129 }
1130
1131 static int dump_seek(struct file *file, loff_t off)
1132 {
1133         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1134                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1135                         return 0;
1136         } else {
1137                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1138                 if (!buf)
1139                         return 0;
1140                 while (off > 0) {
1141                         unsigned long n = off;
1142                         if (n > PAGE_SIZE)
1143                                 n = PAGE_SIZE;
1144                         if (!dump_write(file, buf, n))
1145                                 return 0;
1146                         off -= n;
1147                 }
1148                 free_page((unsigned long)buf);
1149         }
1150         return 1;
1151 }
1152
1153 /*
1154  * Decide what to dump of a segment, part, all or none.
1155  */
1156 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1157                                    unsigned long mm_flags)
1158 {
1159 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1160
1161         /* The vma can be set up to tell us the answer directly.  */
1162         if (vma->vm_flags & VM_ALWAYSDUMP)
1163                 goto whole;
1164
1165         /* Hugetlb memory check */
1166         if (vma->vm_flags & VM_HUGETLB) {
1167                 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1168                         goto whole;
1169                 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1170                         goto whole;
1171         }
1172
1173         /* Do not dump I/O mapped devices or special mappings */
1174         if (vma->vm_flags & (VM_IO | VM_RESERVED))
1175                 return 0;
1176
1177         /* By default, dump shared memory if mapped from an anonymous file. */
1178         if (vma->vm_flags & VM_SHARED) {
1179                 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1180                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1181                         goto whole;
1182                 return 0;
1183         }
1184
1185         /* Dump segments that have been written to.  */
1186         if (vma->anon_vma && FILTER(ANON_PRIVATE))
1187                 goto whole;
1188         if (vma->vm_file == NULL)
1189                 return 0;
1190
1191         if (FILTER(MAPPED_PRIVATE))
1192                 goto whole;
1193
1194         /*
1195          * If this looks like the beginning of a DSO or executable mapping,
1196          * check for an ELF header.  If we find one, dump the first page to
1197          * aid in determining what was mapped here.
1198          */
1199         if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1200                 u32 __user *header = (u32 __user *) vma->vm_start;
1201                 u32 word;
1202                 /*
1203                  * Doing it this way gets the constant folded by GCC.
1204                  */
1205                 union {
1206                         u32 cmp;
1207                         char elfmag[SELFMAG];
1208                 } magic;
1209                 BUILD_BUG_ON(SELFMAG != sizeof word);
1210                 magic.elfmag[EI_MAG0] = ELFMAG0;
1211                 magic.elfmag[EI_MAG1] = ELFMAG1;
1212                 magic.elfmag[EI_MAG2] = ELFMAG2;
1213                 magic.elfmag[EI_MAG3] = ELFMAG3;
1214                 if (get_user(word, header) == 0 && word == magic.cmp)
1215                         return PAGE_SIZE;
1216         }
1217
1218 #undef  FILTER
1219
1220         return 0;
1221
1222 whole:
1223         return vma->vm_end - vma->vm_start;
1224 }
1225
1226 /* An ELF note in memory */
1227 struct memelfnote
1228 {
1229         const char *name;
1230         int type;
1231         unsigned int datasz;
1232         void *data;
1233 };
1234
1235 static int notesize(struct memelfnote *en)
1236 {
1237         int sz;
1238
1239         sz = sizeof(struct elf_note);
1240         sz += roundup(strlen(en->name) + 1, 4);
1241         sz += roundup(en->datasz, 4);
1242
1243         return sz;
1244 }
1245
1246 #define DUMP_WRITE(addr, nr, foffset)   \
1247         do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1248
1249 static int alignfile(struct file *file, loff_t *foffset)
1250 {
1251         static const char buf[4] = { 0, };
1252         DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1253         return 1;
1254 }
1255
1256 static int writenote(struct memelfnote *men, struct file *file,
1257                         loff_t *foffset)
1258 {
1259         struct elf_note en;
1260         en.n_namesz = strlen(men->name) + 1;
1261         en.n_descsz = men->datasz;
1262         en.n_type = men->type;
1263
1264         DUMP_WRITE(&en, sizeof(en), foffset);
1265         DUMP_WRITE(men->name, en.n_namesz, foffset);
1266         if (!alignfile(file, foffset))
1267                 return 0;
1268         DUMP_WRITE(men->data, men->datasz, foffset);
1269         if (!alignfile(file, foffset))
1270                 return 0;
1271
1272         return 1;
1273 }
1274 #undef DUMP_WRITE
1275
1276 #define DUMP_WRITE(addr, nr)    \
1277         if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1278                 goto end_coredump;
1279 #define DUMP_SEEK(off)  \
1280         if (!dump_seek(file, (off))) \
1281                 goto end_coredump;
1282
1283 static void fill_elf_header(struct elfhdr *elf, int segs,
1284                             u16 machine, u32 flags, u8 osabi)
1285 {
1286         memset(elf, 0, sizeof(*elf));
1287
1288         memcpy(elf->e_ident, ELFMAG, SELFMAG);
1289         elf->e_ident[EI_CLASS] = ELF_CLASS;
1290         elf->e_ident[EI_DATA] = ELF_DATA;
1291         elf->e_ident[EI_VERSION] = EV_CURRENT;
1292         elf->e_ident[EI_OSABI] = ELF_OSABI;
1293
1294         elf->e_type = ET_CORE;
1295         elf->e_machine = machine;
1296         elf->e_version = EV_CURRENT;
1297         elf->e_phoff = sizeof(struct elfhdr);
1298         elf->e_flags = flags;
1299         elf->e_ehsize = sizeof(struct elfhdr);
1300         elf->e_phentsize = sizeof(struct elf_phdr);
1301         elf->e_phnum = segs;
1302
1303         return;
1304 }
1305
1306 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1307 {
1308         phdr->p_type = PT_NOTE;
1309         phdr->p_offset = offset;
1310         phdr->p_vaddr = 0;
1311         phdr->p_paddr = 0;
1312         phdr->p_filesz = sz;
1313         phdr->p_memsz = 0;
1314         phdr->p_flags = 0;
1315         phdr->p_align = 0;
1316         return;
1317 }
1318
1319 static void fill_note(struct memelfnote *note, const char *name, int type, 
1320                 unsigned int sz, void *data)
1321 {
1322         note->name = name;
1323         note->type = type;
1324         note->datasz = sz;
1325         note->data = data;
1326         return;
1327 }
1328
1329 /*
1330  * fill up all the fields in prstatus from the given task struct, except
1331  * registers which need to be filled up separately.
1332  */
1333 static void fill_prstatus(struct elf_prstatus *prstatus,
1334                 struct task_struct *p, long signr)
1335 {
1336         prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1337         prstatus->pr_sigpend = p->pending.signal.sig[0];
1338         prstatus->pr_sighold = p->blocked.sig[0];
1339         prstatus->pr_pid = task_pid_vnr(p);
1340         prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1341         prstatus->pr_pgrp = task_pgrp_vnr(p);
1342         prstatus->pr_sid = task_session_vnr(p);
1343         if (thread_group_leader(p)) {
1344                 struct task_cputime cputime;
1345
1346                 /*
1347                  * This is the record for the group leader.  It shows the
1348                  * group-wide total, not its individual thread total.
1349                  */
1350                 thread_group_cputime(p, &cputime);
1351                 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1352                 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1353         } else {
1354                 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1355                 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1356         }
1357         cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1358         cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1359 }
1360
1361 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1362                        struct mm_struct *mm)
1363 {
1364         const struct cred *cred;
1365         unsigned int i, len;
1366         
1367         /* first copy the parameters from user space */
1368         memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1369
1370         len = mm->arg_end - mm->arg_start;
1371         if (len >= ELF_PRARGSZ)
1372                 len = ELF_PRARGSZ-1;
1373         if (copy_from_user(&psinfo->pr_psargs,
1374                            (const char __user *)mm->arg_start, len))
1375                 return -EFAULT;
1376         for(i = 0; i < len; i++)
1377                 if (psinfo->pr_psargs[i] == 0)
1378                         psinfo->pr_psargs[i] = ' ';
1379         psinfo->pr_psargs[len] = 0;
1380
1381         psinfo->pr_pid = task_pid_vnr(p);
1382         psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1383         psinfo->pr_pgrp = task_pgrp_vnr(p);
1384         psinfo->pr_sid = task_session_vnr(p);
1385
1386         i = p->state ? ffz(~p->state) + 1 : 0;
1387         psinfo->pr_state = i;
1388         psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1389         psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1390         psinfo->pr_nice = task_nice(p);
1391         psinfo->pr_flag = p->flags;
1392         rcu_read_lock();
1393         cred = __task_cred(p);
1394         SET_UID(psinfo->pr_uid, cred->uid);
1395         SET_GID(psinfo->pr_gid, cred->gid);
1396         rcu_read_unlock();
1397         strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1398         
1399         return 0;
1400 }
1401
1402 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1403 {
1404         elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1405         int i = 0;
1406         do
1407                 i += 2;
1408         while (auxv[i - 2] != AT_NULL);
1409         fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1410 }
1411
1412 #ifdef CORE_DUMP_USE_REGSET
1413 #include <linux/regset.h>
1414
1415 struct elf_thread_core_info {
1416         struct elf_thread_core_info *next;
1417         struct task_struct *task;
1418         struct elf_prstatus prstatus;
1419         struct memelfnote notes[0];
1420 };
1421
1422 struct elf_note_info {
1423         struct elf_thread_core_info *thread;
1424         struct memelfnote psinfo;
1425         struct memelfnote auxv;
1426         size_t size;
1427         int thread_notes;
1428 };
1429
1430 /*
1431  * When a regset has a writeback hook, we call it on each thread before
1432  * dumping user memory.  On register window machines, this makes sure the
1433  * user memory backing the register data is up to date before we read it.
1434  */
1435 static void do_thread_regset_writeback(struct task_struct *task,
1436                                        const struct user_regset *regset)
1437 {
1438         if (regset->writeback)
1439                 regset->writeback(task, regset, 1);
1440 }
1441
1442 static int fill_thread_core_info(struct elf_thread_core_info *t,
1443                                  const struct user_regset_view *view,
1444                                  long signr, size_t *total)
1445 {
1446         unsigned int i;
1447
1448         /*
1449          * NT_PRSTATUS is the one special case, because the regset data
1450          * goes into the pr_reg field inside the note contents, rather
1451          * than being the whole note contents.  We fill the reset in here.
1452          * We assume that regset 0 is NT_PRSTATUS.
1453          */
1454         fill_prstatus(&t->prstatus, t->task, signr);
1455         (void) view->regsets[0].get(t->task, &view->regsets[0],
1456                                     0, sizeof(t->prstatus.pr_reg),
1457                                     &t->prstatus.pr_reg, NULL);
1458
1459         fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1460                   sizeof(t->prstatus), &t->prstatus);
1461         *total += notesize(&t->notes[0]);
1462
1463         do_thread_regset_writeback(t->task, &view->regsets[0]);
1464
1465         /*
1466          * Each other regset might generate a note too.  For each regset
1467          * that has no core_note_type or is inactive, we leave t->notes[i]
1468          * all zero and we'll know to skip writing it later.
1469          */
1470         for (i = 1; i < view->n; ++i) {
1471                 const struct user_regset *regset = &view->regsets[i];
1472                 do_thread_regset_writeback(t->task, regset);
1473                 if (regset->core_note_type &&
1474                     (!regset->active || regset->active(t->task, regset))) {
1475                         int ret;
1476                         size_t size = regset->n * regset->size;
1477                         void *data = kmalloc(size, GFP_KERNEL);
1478                         if (unlikely(!data))
1479                                 return 0;
1480                         ret = regset->get(t->task, regset,
1481                                           0, size, data, NULL);
1482                         if (unlikely(ret))
1483                                 kfree(data);
1484                         else {
1485                                 if (regset->core_note_type != NT_PRFPREG)
1486                                         fill_note(&t->notes[i], "LINUX",
1487                                                   regset->core_note_type,
1488                                                   size, data);
1489                                 else {
1490                                         t->prstatus.pr_fpvalid = 1;
1491                                         fill_note(&t->notes[i], "CORE",
1492                                                   NT_PRFPREG, size, data);
1493                                 }
1494                                 *total += notesize(&t->notes[i]);
1495                         }
1496                 }
1497         }
1498
1499         return 1;
1500 }
1501
1502 static int fill_note_info(struct elfhdr *elf, int phdrs,
1503                           struct elf_note_info *info,
1504                           long signr, struct pt_regs *regs)
1505 {
1506         struct task_struct *dump_task = current;
1507         const struct user_regset_view *view = task_user_regset_view(dump_task);
1508         struct elf_thread_core_info *t;
1509         struct elf_prpsinfo *psinfo;
1510         struct core_thread *ct;
1511         unsigned int i;
1512
1513         info->size = 0;
1514         info->thread = NULL;
1515
1516         psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1517         fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1518
1519         if (psinfo == NULL)
1520                 return 0;
1521
1522         /*
1523          * Figure out how many notes we're going to need for each thread.
1524          */
1525         info->thread_notes = 0;
1526         for (i = 0; i < view->n; ++i)
1527                 if (view->regsets[i].core_note_type != 0)
1528                         ++info->thread_notes;
1529
1530         /*
1531          * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1532          * since it is our one special case.
1533          */
1534         if (unlikely(info->thread_notes == 0) ||
1535             unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1536                 WARN_ON(1);
1537                 return 0;
1538         }
1539
1540         /*
1541          * Initialize the ELF file header.
1542          */
1543         fill_elf_header(elf, phdrs,
1544                         view->e_machine, view->e_flags, view->ei_osabi);
1545
1546         /*
1547          * Allocate a structure for each thread.
1548          */
1549         for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1550                 t = kzalloc(offsetof(struct elf_thread_core_info,
1551                                      notes[info->thread_notes]),
1552                             GFP_KERNEL);
1553                 if (unlikely(!t))
1554                         return 0;
1555
1556                 t->task = ct->task;
1557                 if (ct->task == dump_task || !info->thread) {
1558                         t->next = info->thread;
1559                         info->thread = t;
1560                 } else {
1561                         /*
1562                          * Make sure to keep the original task at
1563                          * the head of the list.
1564                          */
1565                         t->next = info->thread->next;
1566                         info->thread->next = t;
1567                 }
1568         }
1569
1570         /*
1571          * Now fill in each thread's information.
1572          */
1573         for (t = info->thread; t != NULL; t = t->next)
1574                 if (!fill_thread_core_info(t, view, signr, &info->size))
1575                         return 0;
1576
1577         /*
1578          * Fill in the two process-wide notes.
1579          */
1580         fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1581         info->size += notesize(&info->psinfo);
1582
1583         fill_auxv_note(&info->auxv, current->mm);
1584         info->size += notesize(&info->auxv);
1585
1586         return 1;
1587 }
1588
1589 static size_t get_note_info_size(struct elf_note_info *info)
1590 {
1591         return info->size;
1592 }
1593
1594 /*
1595  * Write all the notes for each thread.  When writing the first thread, the
1596  * process-wide notes are interleaved after the first thread-specific note.
1597  */
1598 static int write_note_info(struct elf_note_info *info,
1599                            struct file *file, loff_t *foffset)
1600 {
1601         bool first = 1;
1602         struct elf_thread_core_info *t = info->thread;
1603
1604         do {
1605                 int i;
1606
1607                 if (!writenote(&t->notes[0], file, foffset))
1608                         return 0;
1609
1610                 if (first && !writenote(&info->psinfo, file, foffset))
1611                         return 0;
1612                 if (first && !writenote(&info->auxv, file, foffset))
1613                         return 0;
1614
1615                 for (i = 1; i < info->thread_notes; ++i)
1616                         if (t->notes[i].data &&
1617                             !writenote(&t->notes[i], file, foffset))
1618                                 return 0;
1619
1620                 first = 0;
1621                 t = t->next;
1622         } while (t);
1623
1624         return 1;
1625 }
1626
1627 static void free_note_info(struct elf_note_info *info)
1628 {
1629         struct elf_thread_core_info *threads = info->thread;
1630         while (threads) {
1631                 unsigned int i;
1632                 struct elf_thread_core_info *t = threads;
1633                 threads = t->next;
1634                 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1635                 for (i = 1; i < info->thread_notes; ++i)
1636                         kfree(t->notes[i].data);
1637                 kfree(t);
1638         }
1639         kfree(info->psinfo.data);
1640 }
1641
1642 #else
1643
1644 /* Here is the structure in which status of each thread is captured. */
1645 struct elf_thread_status
1646 {
1647         struct list_head list;
1648         struct elf_prstatus prstatus;   /* NT_PRSTATUS */
1649         elf_fpregset_t fpu;             /* NT_PRFPREG */
1650         struct task_struct *thread;
1651 #ifdef ELF_CORE_COPY_XFPREGS
1652         elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
1653 #endif
1654         struct memelfnote notes[3];
1655         int num_notes;
1656 };
1657
1658 /*
1659  * In order to add the specific thread information for the elf file format,
1660  * we need to keep a linked list of every threads pr_status and then create
1661  * a single section for them in the final core file.
1662  */
1663 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1664 {
1665         int sz = 0;
1666         struct task_struct *p = t->thread;
1667         t->num_notes = 0;
1668
1669         fill_prstatus(&t->prstatus, p, signr);
1670         elf_core_copy_task_regs(p, &t->prstatus.pr_reg);        
1671         
1672         fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1673                   &(t->prstatus));
1674         t->num_notes++;
1675         sz += notesize(&t->notes[0]);
1676
1677         if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1678                                                                 &t->fpu))) {
1679                 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1680                           &(t->fpu));
1681                 t->num_notes++;
1682                 sz += notesize(&t->notes[1]);
1683         }
1684
1685 #ifdef ELF_CORE_COPY_XFPREGS
1686         if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1687                 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1688                           sizeof(t->xfpu), &t->xfpu);
1689                 t->num_notes++;
1690                 sz += notesize(&t->notes[2]);
1691         }
1692 #endif  
1693         return sz;
1694 }
1695
1696 struct elf_note_info {
1697         struct memelfnote *notes;
1698         struct elf_prstatus *prstatus;  /* NT_PRSTATUS */
1699         struct elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
1700         struct list_head thread_list;
1701         elf_fpregset_t *fpu;
1702 #ifdef ELF_CORE_COPY_XFPREGS
1703         elf_fpxregset_t *xfpu;
1704 #endif
1705         int thread_status_size;
1706         int numnote;
1707 };
1708
1709 static int fill_note_info(struct elfhdr *elf, int phdrs,
1710                           struct elf_note_info *info,
1711                           long signr, struct pt_regs *regs)
1712 {
1713 #define NUM_NOTES       6
1714         struct list_head *t;
1715
1716         info->notes = NULL;
1717         info->prstatus = NULL;
1718         info->psinfo = NULL;
1719         info->fpu = NULL;
1720 #ifdef ELF_CORE_COPY_XFPREGS
1721         info->xfpu = NULL;
1722 #endif
1723         INIT_LIST_HEAD(&info->thread_list);
1724
1725         info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1726                               GFP_KERNEL);
1727         if (!info->notes)
1728                 return 0;
1729         info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1730         if (!info->psinfo)
1731                 return 0;
1732         info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1733         if (!info->prstatus)
1734                 return 0;
1735         info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1736         if (!info->fpu)
1737                 return 0;
1738 #ifdef ELF_CORE_COPY_XFPREGS
1739         info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1740         if (!info->xfpu)
1741                 return 0;
1742 #endif
1743
1744         info->thread_status_size = 0;
1745         if (signr) {
1746                 struct core_thread *ct;
1747                 struct elf_thread_status *ets;
1748
1749                 for (ct = current->mm->core_state->dumper.next;
1750                                                 ct; ct = ct->next) {
1751                         ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1752                         if (!ets)
1753                                 return 0;
1754
1755                         ets->thread = ct->task;
1756                         list_add(&ets->list, &info->thread_list);
1757                 }
1758
1759                 list_for_each(t, &info->thread_list) {
1760                         int sz;
1761
1762                         ets = list_entry(t, struct elf_thread_status, list);
1763                         sz = elf_dump_thread_status(signr, ets);
1764                         info->thread_status_size += sz;
1765                 }
1766         }
1767         /* now collect the dump for the current */
1768         memset(info->prstatus, 0, sizeof(*info->prstatus));
1769         fill_prstatus(info->prstatus, current, signr);
1770         elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1771
1772         /* Set up header */
1773         fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1774
1775         /*
1776          * Set up the notes in similar form to SVR4 core dumps made
1777          * with info from their /proc.
1778          */
1779
1780         fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1781                   sizeof(*info->prstatus), info->prstatus);
1782         fill_psinfo(info->psinfo, current->group_leader, current->mm);
1783         fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1784                   sizeof(*info->psinfo), info->psinfo);
1785
1786         info->numnote = 2;
1787
1788         fill_auxv_note(&info->notes[info->numnote++], current->mm);
1789
1790         /* Try to dump the FPU. */
1791         info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1792                                                                info->fpu);
1793         if (info->prstatus->pr_fpvalid)
1794                 fill_note(info->notes + info->numnote++,
1795                           "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1796 #ifdef ELF_CORE_COPY_XFPREGS
1797         if (elf_core_copy_task_xfpregs(current, info->xfpu))
1798                 fill_note(info->notes + info->numnote++,
1799                           "LINUX", ELF_CORE_XFPREG_TYPE,
1800                           sizeof(*info->xfpu), info->xfpu);
1801 #endif
1802
1803         return 1;
1804
1805 #undef NUM_NOTES
1806 }
1807
1808 static size_t get_note_info_size(struct elf_note_info *info)
1809 {
1810         int sz = 0;
1811         int i;
1812
1813         for (i = 0; i < info->numnote; i++)
1814                 sz += notesize(info->notes + i);
1815
1816         sz += info->thread_status_size;
1817
1818         return sz;
1819 }
1820
1821 static int write_note_info(struct elf_note_info *info,
1822                            struct file *file, loff_t *foffset)
1823 {
1824         int i;
1825         struct list_head *t;
1826
1827         for (i = 0; i < info->numnote; i++)
1828                 if (!writenote(info->notes + i, file, foffset))
1829                         return 0;
1830
1831         /* write out the thread status notes section */
1832         list_for_each(t, &info->thread_list) {
1833                 struct elf_thread_status *tmp =
1834                                 list_entry(t, struct elf_thread_status, list);
1835
1836                 for (i = 0; i < tmp->num_notes; i++)
1837                         if (!writenote(&tmp->notes[i], file, foffset))
1838                                 return 0;
1839         }
1840
1841         return 1;
1842 }
1843
1844 static void free_note_info(struct elf_note_info *info)
1845 {
1846         while (!list_empty(&info->thread_list)) {
1847                 struct list_head *tmp = info->thread_list.next;
1848                 list_del(tmp);
1849                 kfree(list_entry(tmp, struct elf_thread_status, list));
1850         }
1851
1852         kfree(info->prstatus);
1853         kfree(info->psinfo);
1854         kfree(info->notes);
1855         kfree(info->fpu);
1856 #ifdef ELF_CORE_COPY_XFPREGS
1857         kfree(info->xfpu);
1858 #endif
1859 }
1860
1861 #endif
1862
1863 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1864                                         struct vm_area_struct *gate_vma)
1865 {
1866         struct vm_area_struct *ret = tsk->mm->mmap;
1867
1868         if (ret)
1869                 return ret;
1870         return gate_vma;
1871 }
1872 /*
1873  * Helper function for iterating across a vma list.  It ensures that the caller
1874  * will visit `gate_vma' prior to terminating the search.
1875  */
1876 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1877                                         struct vm_area_struct *gate_vma)
1878 {
1879         struct vm_area_struct *ret;
1880
1881         ret = this_vma->vm_next;
1882         if (ret)
1883                 return ret;
1884         if (this_vma == gate_vma)
1885                 return NULL;
1886         return gate_vma;
1887 }
1888
1889 /*
1890  * Actual dumper
1891  *
1892  * This is a two-pass process; first we find the offsets of the bits,
1893  * and then they are actually written out.  If we run out of core limit
1894  * we just truncate.
1895  */
1896 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1897 {
1898         int has_dumped = 0;
1899         mm_segment_t fs;
1900         int segs;
1901         size_t size = 0;
1902         struct vm_area_struct *vma, *gate_vma;
1903         struct elfhdr *elf = NULL;
1904         loff_t offset = 0, dataoff, foffset;
1905         unsigned long mm_flags;
1906         struct elf_note_info info;
1907
1908         /*
1909          * We no longer stop all VM operations.
1910          * 
1911          * This is because those proceses that could possibly change map_count
1912          * or the mmap / vma pages are now blocked in do_exit on current
1913          * finishing this core dump.
1914          *
1915          * Only ptrace can touch these memory addresses, but it doesn't change
1916          * the map_count or the pages allocated. So no possibility of crashing
1917          * exists while dumping the mm->vm_next areas to the core file.
1918          */
1919   
1920         /* alloc memory for large data structures: too large to be on stack */
1921         elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1922         if (!elf)
1923                 goto out;
1924         
1925         segs = current->mm->map_count;
1926 #ifdef ELF_CORE_EXTRA_PHDRS
1927         segs += ELF_CORE_EXTRA_PHDRS;
1928 #endif
1929
1930         gate_vma = get_gate_vma(current);
1931         if (gate_vma != NULL)
1932                 segs++;
1933
1934         /*
1935          * Collect all the non-memory information about the process for the
1936          * notes.  This also sets up the file header.
1937          */
1938         if (!fill_note_info(elf, segs + 1, /* including notes section */
1939                             &info, signr, regs))
1940                 goto cleanup;
1941
1942         has_dumped = 1;
1943         current->flags |= PF_DUMPCORE;
1944   
1945         fs = get_fs();
1946         set_fs(KERNEL_DS);
1947
1948         DUMP_WRITE(elf, sizeof(*elf));
1949         offset += sizeof(*elf);                         /* Elf header */
1950         offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1951         foffset = offset;
1952
1953         /* Write notes phdr entry */
1954         {
1955                 struct elf_phdr phdr;
1956                 size_t sz = get_note_info_size(&info);
1957
1958                 sz += elf_coredump_extra_notes_size();
1959
1960                 fill_elf_note_phdr(&phdr, sz, offset);
1961                 offset += sz;
1962                 DUMP_WRITE(&phdr, sizeof(phdr));
1963         }
1964
1965         dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1966
1967         /*
1968          * We must use the same mm->flags while dumping core to avoid
1969          * inconsistency between the program headers and bodies, otherwise an
1970          * unusable core file can be generated.
1971          */
1972         mm_flags = current->mm->flags;
1973
1974         /* Write program headers for segments dump */
1975         for (vma = first_vma(current, gate_vma); vma != NULL;
1976                         vma = next_vma(vma, gate_vma)) {
1977                 struct elf_phdr phdr;
1978
1979                 phdr.p_type = PT_LOAD;
1980                 phdr.p_offset = offset;
1981                 phdr.p_vaddr = vma->vm_start;
1982                 phdr.p_paddr = 0;
1983                 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1984                 phdr.p_memsz = vma->vm_end - vma->vm_start;
1985                 offset += phdr.p_filesz;
1986                 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1987                 if (vma->vm_flags & VM_WRITE)
1988                         phdr.p_flags |= PF_W;
1989                 if (vma->vm_flags & VM_EXEC)
1990                         phdr.p_flags |= PF_X;
1991                 phdr.p_align = ELF_EXEC_PAGESIZE;
1992
1993                 DUMP_WRITE(&phdr, sizeof(phdr));
1994         }
1995
1996 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
1997         ELF_CORE_WRITE_EXTRA_PHDRS;
1998 #endif
1999
2000         /* write out the notes section */
2001         if (!write_note_info(&info, file, &foffset))
2002                 goto end_coredump;
2003
2004         if (elf_coredump_extra_notes_write(file, &foffset))
2005                 goto end_coredump;
2006
2007         /* Align to page */
2008         DUMP_SEEK(dataoff - foffset);
2009
2010         for (vma = first_vma(current, gate_vma); vma != NULL;
2011                         vma = next_vma(vma, gate_vma)) {
2012                 unsigned long addr;
2013                 unsigned long end;
2014
2015                 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2016
2017                 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2018                         struct page *page;
2019                         struct vm_area_struct *tmp_vma;
2020
2021                         if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2022                                                 &page, &tmp_vma) <= 0) {
2023                                 DUMP_SEEK(PAGE_SIZE);
2024                         } else {
2025                                 if (page == ZERO_PAGE(0)) {
2026                                         if (!dump_seek(file, PAGE_SIZE)) {
2027                                                 page_cache_release(page);
2028                                                 goto end_coredump;
2029                                         }
2030                                 } else {
2031                                         void *kaddr;
2032                                         flush_cache_page(tmp_vma, addr,
2033                                                          page_to_pfn(page));
2034                                         kaddr = kmap(page);
2035                                         if ((size += PAGE_SIZE) > limit ||
2036                                             !dump_write(file, kaddr,
2037                                             PAGE_SIZE)) {
2038                                                 kunmap(page);
2039                                                 page_cache_release(page);
2040                                                 goto end_coredump;
2041                                         }
2042                                         kunmap(page);
2043                                 }
2044                                 page_cache_release(page);
2045                         }
2046                 }
2047         }
2048
2049 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2050         ELF_CORE_WRITE_EXTRA_DATA;
2051 #endif
2052
2053 end_coredump:
2054         set_fs(fs);
2055
2056 cleanup:
2057         free_note_info(&info);
2058         kfree(elf);
2059 out:
2060         return has_dumped;
2061 }
2062
2063 #endif          /* USE_ELF_CORE_DUMP */
2064
2065 static int __init init_elf_binfmt(void)
2066 {
2067         return register_binfmt(&elf_format);
2068 }
2069
2070 static void __exit exit_elf_binfmt(void)
2071 {
2072         /* Remove the COFF and ELF loaders. */
2073         unregister_binfmt(&elf_format);
2074 }
2075
2076 core_initcall(init_elf_binfmt);
2077 module_exit(exit_elf_binfmt);
2078 MODULE_LICENSE("GPL");