4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
48 #define PFX "IPMI message handler: "
50 #define IPMI_DRIVER_VERSION "39.2"
52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
55 static int initialized;
58 static struct proc_dir_entry *proc_ipmi_root;
59 #endif /* CONFIG_PROC_FS */
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64 #define MAX_EVENTS_IN_QUEUE 25
67 * Don't let a message sit in a queue forever, always time it with at lest
68 * the max message timer. This is in milliseconds.
70 #define MAX_MSG_TIMEOUT 60000
73 * The main "user" data structure.
76 struct list_head link;
78 /* Set to "0" when the user is destroyed. */
83 /* The upper layer that handles receive messages. */
84 struct ipmi_user_hndl *handler;
87 /* The interface this user is bound to. */
90 /* Does this interface receive IPMI events? */
95 struct list_head link;
103 * This is used to form a linked lised during mass deletion.
104 * Since this is in an RCU list, we cannot use the link above
105 * or change any data until the RCU period completes. So we
106 * use this next variable during mass deletion so we can have
107 * a list and don't have to wait and restart the search on
108 * every individual deletion of a command.
110 struct cmd_rcvr *next;
114 unsigned int inuse : 1;
115 unsigned int broadcast : 1;
117 unsigned long timeout;
118 unsigned long orig_timeout;
119 unsigned int retries_left;
122 * To verify on an incoming send message response that this is
123 * the message that the response is for, we keep a sequence id
124 * and increment it every time we send a message.
129 * This is held so we can properly respond to the message on a
130 * timeout, and it is used to hold the temporary data for
131 * retransmission, too.
133 struct ipmi_recv_msg *recv_msg;
137 * Store the information in a msgid (long) to allow us to find a
138 * sequence table entry from the msgid.
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
144 seq = ((msgid >> 26) & 0x3f); \
145 seqid = (msgid & 0x3fffff); \
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150 struct ipmi_channel {
151 unsigned char medium;
152 unsigned char protocol;
155 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
156 * but may be changed by the user.
158 unsigned char address;
161 * My LUN. This should generally stay the SMS LUN, but just in
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry {
170 struct ipmi_proc_entry *next;
175 struct platform_device *dev;
176 struct ipmi_device_id id;
177 unsigned char guid[16];
180 struct kref refcount;
182 /* bmc device attributes */
183 struct device_attribute device_id_attr;
184 struct device_attribute provides_dev_sdrs_attr;
185 struct device_attribute revision_attr;
186 struct device_attribute firmware_rev_attr;
187 struct device_attribute version_attr;
188 struct device_attribute add_dev_support_attr;
189 struct device_attribute manufacturer_id_attr;
190 struct device_attribute product_id_attr;
191 struct device_attribute guid_attr;
192 struct device_attribute aux_firmware_rev_attr;
196 * Various statistics for IPMI, these index stats[] in the ipmi_smi
199 enum ipmi_stat_indexes {
200 /* Commands we got from the user that were invalid. */
201 IPMI_STAT_sent_invalid_commands = 0,
203 /* Commands we sent to the MC. */
204 IPMI_STAT_sent_local_commands,
206 /* Responses from the MC that were delivered to a user. */
207 IPMI_STAT_handled_local_responses,
209 /* Responses from the MC that were not delivered to a user. */
210 IPMI_STAT_unhandled_local_responses,
212 /* Commands we sent out to the IPMB bus. */
213 IPMI_STAT_sent_ipmb_commands,
215 /* Commands sent on the IPMB that had errors on the SEND CMD */
216 IPMI_STAT_sent_ipmb_command_errs,
218 /* Each retransmit increments this count. */
219 IPMI_STAT_retransmitted_ipmb_commands,
222 * When a message times out (runs out of retransmits) this is
225 IPMI_STAT_timed_out_ipmb_commands,
228 * This is like above, but for broadcasts. Broadcasts are
229 * *not* included in the above count (they are expected to
232 IPMI_STAT_timed_out_ipmb_broadcasts,
234 /* Responses I have sent to the IPMB bus. */
235 IPMI_STAT_sent_ipmb_responses,
237 /* The response was delivered to the user. */
238 IPMI_STAT_handled_ipmb_responses,
240 /* The response had invalid data in it. */
241 IPMI_STAT_invalid_ipmb_responses,
243 /* The response didn't have anyone waiting for it. */
244 IPMI_STAT_unhandled_ipmb_responses,
246 /* Commands we sent out to the IPMB bus. */
247 IPMI_STAT_sent_lan_commands,
249 /* Commands sent on the IPMB that had errors on the SEND CMD */
250 IPMI_STAT_sent_lan_command_errs,
252 /* Each retransmit increments this count. */
253 IPMI_STAT_retransmitted_lan_commands,
256 * When a message times out (runs out of retransmits) this is
259 IPMI_STAT_timed_out_lan_commands,
261 /* Responses I have sent to the IPMB bus. */
262 IPMI_STAT_sent_lan_responses,
264 /* The response was delivered to the user. */
265 IPMI_STAT_handled_lan_responses,
267 /* The response had invalid data in it. */
268 IPMI_STAT_invalid_lan_responses,
270 /* The response didn't have anyone waiting for it. */
271 IPMI_STAT_unhandled_lan_responses,
273 /* The command was delivered to the user. */
274 IPMI_STAT_handled_commands,
276 /* The command had invalid data in it. */
277 IPMI_STAT_invalid_commands,
279 /* The command didn't have anyone waiting for it. */
280 IPMI_STAT_unhandled_commands,
282 /* Invalid data in an event. */
283 IPMI_STAT_invalid_events,
285 /* Events that were received with the proper format. */
288 /* Retransmissions on IPMB that failed. */
289 IPMI_STAT_dropped_rexmit_ipmb_commands,
291 /* Retransmissions on LAN that failed. */
292 IPMI_STAT_dropped_rexmit_lan_commands,
294 /* This *must* remain last, add new values above this. */
299 #define IPMI_IPMB_NUM_SEQ 64
300 #define IPMI_MAX_CHANNELS 16
302 /* What interface number are we? */
305 struct kref refcount;
307 /* Used for a list of interfaces. */
308 struct list_head link;
311 * The list of upper layers that are using me. seq_lock
314 struct list_head users;
316 /* Information to supply to users. */
317 unsigned char ipmi_version_major;
318 unsigned char ipmi_version_minor;
320 /* Used for wake ups at startup. */
321 wait_queue_head_t waitq;
323 struct bmc_device *bmc;
328 * This is the lower-layer's sender routine. Note that you
329 * must either be holding the ipmi_interfaces_mutex or be in
330 * an umpreemptible region to use this. You must fetch the
331 * value into a local variable and make sure it is not NULL.
333 struct ipmi_smi_handlers *handlers;
336 #ifdef CONFIG_PROC_FS
337 /* A list of proc entries for this interface. */
338 struct mutex proc_entry_lock;
339 struct ipmi_proc_entry *proc_entries;
342 /* Driver-model device for the system interface. */
343 struct device *si_dev;
346 * A table of sequence numbers for this interface. We use the
347 * sequence numbers for IPMB messages that go out of the
348 * interface to match them up with their responses. A routine
349 * is called periodically to time the items in this list.
352 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
356 * Messages that were delayed for some reason (out of memory,
357 * for instance), will go in here to be processed later in a
358 * periodic timer interrupt.
360 spinlock_t waiting_msgs_lock;
361 struct list_head waiting_msgs;
364 * The list of command receivers that are registered for commands
367 struct mutex cmd_rcvrs_mutex;
368 struct list_head cmd_rcvrs;
371 * Events that were queues because no one was there to receive
374 spinlock_t events_lock; /* For dealing with event stuff. */
375 struct list_head waiting_events;
376 unsigned int waiting_events_count; /* How many events in queue? */
377 char delivering_events;
378 char event_msg_printed;
381 * The event receiver for my BMC, only really used at panic
382 * shutdown as a place to store this.
384 unsigned char event_receiver;
385 unsigned char event_receiver_lun;
386 unsigned char local_sel_device;
387 unsigned char local_event_generator;
389 /* For handling of maintenance mode. */
390 int maintenance_mode;
391 int maintenance_mode_enable;
392 int auto_maintenance_timeout;
393 spinlock_t maintenance_mode_lock; /* Used in a timer... */
396 * A cheap hack, if this is non-null and a message to an
397 * interface comes in with a NULL user, call this routine with
398 * it. Note that the message will still be freed by the
399 * caller. This only works on the system interface.
401 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
404 * When we are scanning the channels for an SMI, this will
405 * tell which channel we are scanning.
409 /* Channel information */
410 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
413 struct proc_dir_entry *proc_dir;
414 char proc_dir_name[10];
416 atomic_t stats[IPMI_NUM_STATS];
419 * run_to_completion duplicate of smb_info, smi_info
420 * and ipmi_serial_info structures. Used to decrease numbers of
421 * parameters passed by "low" level IPMI code.
423 int run_to_completion;
425 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
428 * The driver model view of the IPMI messaging driver.
430 static struct platform_driver ipmidriver = {
433 .bus = &platform_bus_type
436 static DEFINE_MUTEX(ipmidriver_mutex);
438 static LIST_HEAD(ipmi_interfaces);
439 static DEFINE_MUTEX(ipmi_interfaces_mutex);
442 * List of watchers that want to know when smi's are added and deleted.
444 static LIST_HEAD(smi_watchers);
445 static DEFINE_MUTEX(smi_watchers_mutex);
448 #define ipmi_inc_stat(intf, stat) \
449 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
450 #define ipmi_get_stat(intf, stat) \
451 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
453 static int is_lan_addr(struct ipmi_addr *addr)
455 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
458 static int is_ipmb_addr(struct ipmi_addr *addr)
460 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
463 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
465 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
468 static void free_recv_msg_list(struct list_head *q)
470 struct ipmi_recv_msg *msg, *msg2;
472 list_for_each_entry_safe(msg, msg2, q, link) {
473 list_del(&msg->link);
474 ipmi_free_recv_msg(msg);
478 static void free_smi_msg_list(struct list_head *q)
480 struct ipmi_smi_msg *msg, *msg2;
482 list_for_each_entry_safe(msg, msg2, q, link) {
483 list_del(&msg->link);
484 ipmi_free_smi_msg(msg);
488 static void clean_up_interface_data(ipmi_smi_t intf)
491 struct cmd_rcvr *rcvr, *rcvr2;
492 struct list_head list;
494 free_smi_msg_list(&intf->waiting_msgs);
495 free_recv_msg_list(&intf->waiting_events);
498 * Wholesale remove all the entries from the list in the
499 * interface and wait for RCU to know that none are in use.
501 mutex_lock(&intf->cmd_rcvrs_mutex);
502 INIT_LIST_HEAD(&list);
503 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
504 mutex_unlock(&intf->cmd_rcvrs_mutex);
506 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
509 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
510 if ((intf->seq_table[i].inuse)
511 && (intf->seq_table[i].recv_msg))
512 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
516 static void intf_free(struct kref *ref)
518 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
520 clean_up_interface_data(intf);
524 struct watcher_entry {
527 struct list_head link;
530 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
533 LIST_HEAD(to_deliver);
534 struct watcher_entry *e, *e2;
536 mutex_lock(&smi_watchers_mutex);
538 mutex_lock(&ipmi_interfaces_mutex);
540 /* Build a list of things to deliver. */
541 list_for_each_entry(intf, &ipmi_interfaces, link) {
542 if (intf->intf_num == -1)
544 e = kmalloc(sizeof(*e), GFP_KERNEL);
547 kref_get(&intf->refcount);
549 e->intf_num = intf->intf_num;
550 list_add_tail(&e->link, &to_deliver);
553 /* We will succeed, so add it to the list. */
554 list_add(&watcher->link, &smi_watchers);
556 mutex_unlock(&ipmi_interfaces_mutex);
558 list_for_each_entry_safe(e, e2, &to_deliver, link) {
560 watcher->new_smi(e->intf_num, e->intf->si_dev);
561 kref_put(&e->intf->refcount, intf_free);
565 mutex_unlock(&smi_watchers_mutex);
570 mutex_unlock(&ipmi_interfaces_mutex);
571 mutex_unlock(&smi_watchers_mutex);
572 list_for_each_entry_safe(e, e2, &to_deliver, link) {
574 kref_put(&e->intf->refcount, intf_free);
579 EXPORT_SYMBOL(ipmi_smi_watcher_register);
581 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
583 mutex_lock(&smi_watchers_mutex);
584 list_del(&(watcher->link));
585 mutex_unlock(&smi_watchers_mutex);
588 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
591 * Must be called with smi_watchers_mutex held.
594 call_smi_watchers(int i, struct device *dev)
596 struct ipmi_smi_watcher *w;
598 list_for_each_entry(w, &smi_watchers, link) {
599 if (try_module_get(w->owner)) {
601 module_put(w->owner);
607 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
609 if (addr1->addr_type != addr2->addr_type)
612 if (addr1->channel != addr2->channel)
615 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
616 struct ipmi_system_interface_addr *smi_addr1
617 = (struct ipmi_system_interface_addr *) addr1;
618 struct ipmi_system_interface_addr *smi_addr2
619 = (struct ipmi_system_interface_addr *) addr2;
620 return (smi_addr1->lun == smi_addr2->lun);
623 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
624 struct ipmi_ipmb_addr *ipmb_addr1
625 = (struct ipmi_ipmb_addr *) addr1;
626 struct ipmi_ipmb_addr *ipmb_addr2
627 = (struct ipmi_ipmb_addr *) addr2;
629 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
630 && (ipmb_addr1->lun == ipmb_addr2->lun));
633 if (is_lan_addr(addr1)) {
634 struct ipmi_lan_addr *lan_addr1
635 = (struct ipmi_lan_addr *) addr1;
636 struct ipmi_lan_addr *lan_addr2
637 = (struct ipmi_lan_addr *) addr2;
639 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
640 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
641 && (lan_addr1->session_handle
642 == lan_addr2->session_handle)
643 && (lan_addr1->lun == lan_addr2->lun));
649 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
651 if (len < sizeof(struct ipmi_system_interface_addr))
654 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
655 if (addr->channel != IPMI_BMC_CHANNEL)
660 if ((addr->channel == IPMI_BMC_CHANNEL)
661 || (addr->channel >= IPMI_MAX_CHANNELS)
662 || (addr->channel < 0))
665 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
666 if (len < sizeof(struct ipmi_ipmb_addr))
671 if (is_lan_addr(addr)) {
672 if (len < sizeof(struct ipmi_lan_addr))
679 EXPORT_SYMBOL(ipmi_validate_addr);
681 unsigned int ipmi_addr_length(int addr_type)
683 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
684 return sizeof(struct ipmi_system_interface_addr);
686 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
687 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
688 return sizeof(struct ipmi_ipmb_addr);
690 if (addr_type == IPMI_LAN_ADDR_TYPE)
691 return sizeof(struct ipmi_lan_addr);
695 EXPORT_SYMBOL(ipmi_addr_length);
697 static void deliver_response(struct ipmi_recv_msg *msg)
700 ipmi_smi_t intf = msg->user_msg_data;
702 /* Special handling for NULL users. */
703 if (intf->null_user_handler) {
704 intf->null_user_handler(intf, msg);
705 ipmi_inc_stat(intf, handled_local_responses);
707 /* No handler, so give up. */
708 ipmi_inc_stat(intf, unhandled_local_responses);
710 ipmi_free_recv_msg(msg);
712 ipmi_user_t user = msg->user;
713 user->handler->ipmi_recv_hndl(msg, user->handler_data);
718 deliver_err_response(struct ipmi_recv_msg *msg, int err)
720 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
721 msg->msg_data[0] = err;
722 msg->msg.netfn |= 1; /* Convert to a response. */
723 msg->msg.data_len = 1;
724 msg->msg.data = msg->msg_data;
725 deliver_response(msg);
729 * Find the next sequence number not being used and add the given
730 * message with the given timeout to the sequence table. This must be
731 * called with the interface's seq_lock held.
733 static int intf_next_seq(ipmi_smi_t intf,
734 struct ipmi_recv_msg *recv_msg,
735 unsigned long timeout,
744 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
745 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
746 if (!intf->seq_table[i].inuse)
750 if (!intf->seq_table[i].inuse) {
751 intf->seq_table[i].recv_msg = recv_msg;
754 * Start with the maximum timeout, when the send response
755 * comes in we will start the real timer.
757 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
758 intf->seq_table[i].orig_timeout = timeout;
759 intf->seq_table[i].retries_left = retries;
760 intf->seq_table[i].broadcast = broadcast;
761 intf->seq_table[i].inuse = 1;
762 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
764 *seqid = intf->seq_table[i].seqid;
765 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
774 * Return the receive message for the given sequence number and
775 * release the sequence number so it can be reused. Some other data
776 * is passed in to be sure the message matches up correctly (to help
777 * guard against message coming in after their timeout and the
778 * sequence number being reused).
780 static int intf_find_seq(ipmi_smi_t intf,
785 struct ipmi_addr *addr,
786 struct ipmi_recv_msg **recv_msg)
791 if (seq >= IPMI_IPMB_NUM_SEQ)
794 spin_lock_irqsave(&(intf->seq_lock), flags);
795 if (intf->seq_table[seq].inuse) {
796 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
798 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
799 && (msg->msg.netfn == netfn)
800 && (ipmi_addr_equal(addr, &(msg->addr)))) {
802 intf->seq_table[seq].inuse = 0;
806 spin_unlock_irqrestore(&(intf->seq_lock), flags);
812 /* Start the timer for a specific sequence table entry. */
813 static int intf_start_seq_timer(ipmi_smi_t intf,
822 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
824 spin_lock_irqsave(&(intf->seq_lock), flags);
826 * We do this verification because the user can be deleted
827 * while a message is outstanding.
829 if ((intf->seq_table[seq].inuse)
830 && (intf->seq_table[seq].seqid == seqid)) {
831 struct seq_table *ent = &(intf->seq_table[seq]);
832 ent->timeout = ent->orig_timeout;
835 spin_unlock_irqrestore(&(intf->seq_lock), flags);
840 /* Got an error for the send message for a specific sequence number. */
841 static int intf_err_seq(ipmi_smi_t intf,
849 struct ipmi_recv_msg *msg = NULL;
852 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
854 spin_lock_irqsave(&(intf->seq_lock), flags);
856 * We do this verification because the user can be deleted
857 * while a message is outstanding.
859 if ((intf->seq_table[seq].inuse)
860 && (intf->seq_table[seq].seqid == seqid)) {
861 struct seq_table *ent = &(intf->seq_table[seq]);
867 spin_unlock_irqrestore(&(intf->seq_lock), flags);
870 deliver_err_response(msg, err);
876 int ipmi_create_user(unsigned int if_num,
877 struct ipmi_user_hndl *handler,
882 ipmi_user_t new_user;
887 * There is no module usecount here, because it's not
888 * required. Since this can only be used by and called from
889 * other modules, they will implicitly use this module, and
890 * thus this can't be removed unless the other modules are
898 * Make sure the driver is actually initialized, this handles
899 * problems with initialization order.
902 rv = ipmi_init_msghandler();
907 * The init code doesn't return an error if it was turned
908 * off, but it won't initialize. Check that.
914 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
918 mutex_lock(&ipmi_interfaces_mutex);
919 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
920 if (intf->intf_num == if_num)
923 /* Not found, return an error */
928 /* Note that each existing user holds a refcount to the interface. */
929 kref_get(&intf->refcount);
931 kref_init(&new_user->refcount);
932 new_user->handler = handler;
933 new_user->handler_data = handler_data;
934 new_user->intf = intf;
935 new_user->gets_events = 0;
937 if (!try_module_get(intf->handlers->owner)) {
942 if (intf->handlers->inc_usecount) {
943 rv = intf->handlers->inc_usecount(intf->send_info);
945 module_put(intf->handlers->owner);
951 * Hold the lock so intf->handlers is guaranteed to be good
954 mutex_unlock(&ipmi_interfaces_mutex);
957 spin_lock_irqsave(&intf->seq_lock, flags);
958 list_add_rcu(&new_user->link, &intf->users);
959 spin_unlock_irqrestore(&intf->seq_lock, flags);
964 kref_put(&intf->refcount, intf_free);
966 mutex_unlock(&ipmi_interfaces_mutex);
970 EXPORT_SYMBOL(ipmi_create_user);
972 static void free_user(struct kref *ref)
974 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
978 int ipmi_destroy_user(ipmi_user_t user)
980 ipmi_smi_t intf = user->intf;
983 struct cmd_rcvr *rcvr;
984 struct cmd_rcvr *rcvrs = NULL;
988 /* Remove the user from the interface's sequence table. */
989 spin_lock_irqsave(&intf->seq_lock, flags);
990 list_del_rcu(&user->link);
992 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
993 if (intf->seq_table[i].inuse
994 && (intf->seq_table[i].recv_msg->user == user)) {
995 intf->seq_table[i].inuse = 0;
996 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
999 spin_unlock_irqrestore(&intf->seq_lock, flags);
1002 * Remove the user from the command receiver's table. First
1003 * we build a list of everything (not using the standard link,
1004 * since other things may be using it till we do
1005 * synchronize_rcu()) then free everything in that list.
1007 mutex_lock(&intf->cmd_rcvrs_mutex);
1008 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1009 if (rcvr->user == user) {
1010 list_del_rcu(&rcvr->link);
1015 mutex_unlock(&intf->cmd_rcvrs_mutex);
1023 mutex_lock(&ipmi_interfaces_mutex);
1024 if (intf->handlers) {
1025 module_put(intf->handlers->owner);
1026 if (intf->handlers->dec_usecount)
1027 intf->handlers->dec_usecount(intf->send_info);
1029 mutex_unlock(&ipmi_interfaces_mutex);
1031 kref_put(&intf->refcount, intf_free);
1033 kref_put(&user->refcount, free_user);
1037 EXPORT_SYMBOL(ipmi_destroy_user);
1039 void ipmi_get_version(ipmi_user_t user,
1040 unsigned char *major,
1041 unsigned char *minor)
1043 *major = user->intf->ipmi_version_major;
1044 *minor = user->intf->ipmi_version_minor;
1046 EXPORT_SYMBOL(ipmi_get_version);
1048 int ipmi_set_my_address(ipmi_user_t user,
1049 unsigned int channel,
1050 unsigned char address)
1052 if (channel >= IPMI_MAX_CHANNELS)
1054 user->intf->channels[channel].address = address;
1057 EXPORT_SYMBOL(ipmi_set_my_address);
1059 int ipmi_get_my_address(ipmi_user_t user,
1060 unsigned int channel,
1061 unsigned char *address)
1063 if (channel >= IPMI_MAX_CHANNELS)
1065 *address = user->intf->channels[channel].address;
1068 EXPORT_SYMBOL(ipmi_get_my_address);
1070 int ipmi_set_my_LUN(ipmi_user_t user,
1071 unsigned int channel,
1074 if (channel >= IPMI_MAX_CHANNELS)
1076 user->intf->channels[channel].lun = LUN & 0x3;
1079 EXPORT_SYMBOL(ipmi_set_my_LUN);
1081 int ipmi_get_my_LUN(ipmi_user_t user,
1082 unsigned int channel,
1083 unsigned char *address)
1085 if (channel >= IPMI_MAX_CHANNELS)
1087 *address = user->intf->channels[channel].lun;
1090 EXPORT_SYMBOL(ipmi_get_my_LUN);
1092 int ipmi_get_maintenance_mode(ipmi_user_t user)
1095 unsigned long flags;
1097 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1098 mode = user->intf->maintenance_mode;
1099 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1103 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1105 static void maintenance_mode_update(ipmi_smi_t intf)
1107 if (intf->handlers->set_maintenance_mode)
1108 intf->handlers->set_maintenance_mode(
1109 intf->send_info, intf->maintenance_mode_enable);
1112 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1115 unsigned long flags;
1116 ipmi_smi_t intf = user->intf;
1118 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1119 if (intf->maintenance_mode != mode) {
1121 case IPMI_MAINTENANCE_MODE_AUTO:
1122 intf->maintenance_mode = mode;
1123 intf->maintenance_mode_enable
1124 = (intf->auto_maintenance_timeout > 0);
1127 case IPMI_MAINTENANCE_MODE_OFF:
1128 intf->maintenance_mode = mode;
1129 intf->maintenance_mode_enable = 0;
1132 case IPMI_MAINTENANCE_MODE_ON:
1133 intf->maintenance_mode = mode;
1134 intf->maintenance_mode_enable = 1;
1142 maintenance_mode_update(intf);
1145 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1149 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1151 int ipmi_set_gets_events(ipmi_user_t user, int val)
1153 unsigned long flags;
1154 ipmi_smi_t intf = user->intf;
1155 struct ipmi_recv_msg *msg, *msg2;
1156 struct list_head msgs;
1158 INIT_LIST_HEAD(&msgs);
1160 spin_lock_irqsave(&intf->events_lock, flags);
1161 user->gets_events = val;
1163 if (intf->delivering_events)
1165 * Another thread is delivering events for this, so
1166 * let it handle any new events.
1170 /* Deliver any queued events. */
1171 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1172 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1173 list_move_tail(&msg->link, &msgs);
1174 intf->waiting_events_count = 0;
1175 if (intf->event_msg_printed) {
1176 printk(KERN_WARNING PFX "Event queue no longer"
1178 intf->event_msg_printed = 0;
1181 intf->delivering_events = 1;
1182 spin_unlock_irqrestore(&intf->events_lock, flags);
1184 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1186 kref_get(&user->refcount);
1187 deliver_response(msg);
1190 spin_lock_irqsave(&intf->events_lock, flags);
1191 intf->delivering_events = 0;
1195 spin_unlock_irqrestore(&intf->events_lock, flags);
1199 EXPORT_SYMBOL(ipmi_set_gets_events);
1201 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1202 unsigned char netfn,
1206 struct cmd_rcvr *rcvr;
1208 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1209 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1210 && (rcvr->chans & (1 << chan)))
1216 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1217 unsigned char netfn,
1221 struct cmd_rcvr *rcvr;
1223 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1224 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1225 && (rcvr->chans & chans))
1231 int ipmi_register_for_cmd(ipmi_user_t user,
1232 unsigned char netfn,
1236 ipmi_smi_t intf = user->intf;
1237 struct cmd_rcvr *rcvr;
1241 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1245 rcvr->netfn = netfn;
1246 rcvr->chans = chans;
1249 mutex_lock(&intf->cmd_rcvrs_mutex);
1250 /* Make sure the command/netfn is not already registered. */
1251 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1256 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1259 mutex_unlock(&intf->cmd_rcvrs_mutex);
1265 EXPORT_SYMBOL(ipmi_register_for_cmd);
1267 int ipmi_unregister_for_cmd(ipmi_user_t user,
1268 unsigned char netfn,
1272 ipmi_smi_t intf = user->intf;
1273 struct cmd_rcvr *rcvr;
1274 struct cmd_rcvr *rcvrs = NULL;
1275 int i, rv = -ENOENT;
1277 mutex_lock(&intf->cmd_rcvrs_mutex);
1278 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1279 if (((1 << i) & chans) == 0)
1281 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1284 if (rcvr->user == user) {
1286 rcvr->chans &= ~chans;
1287 if (rcvr->chans == 0) {
1288 list_del_rcu(&rcvr->link);
1294 mutex_unlock(&intf->cmd_rcvrs_mutex);
1303 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1305 static unsigned char
1306 ipmb_checksum(unsigned char *data, int size)
1308 unsigned char csum = 0;
1310 for (; size > 0; size--, data++)
1316 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1317 struct kernel_ipmi_msg *msg,
1318 struct ipmi_ipmb_addr *ipmb_addr,
1320 unsigned char ipmb_seq,
1322 unsigned char source_address,
1323 unsigned char source_lun)
1327 /* Format the IPMB header data. */
1328 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1329 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1330 smi_msg->data[2] = ipmb_addr->channel;
1332 smi_msg->data[3] = 0;
1333 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1334 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1335 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1336 smi_msg->data[i+6] = source_address;
1337 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1338 smi_msg->data[i+8] = msg->cmd;
1340 /* Now tack on the data to the message. */
1341 if (msg->data_len > 0)
1342 memcpy(&(smi_msg->data[i+9]), msg->data,
1344 smi_msg->data_size = msg->data_len + 9;
1346 /* Now calculate the checksum and tack it on. */
1347 smi_msg->data[i+smi_msg->data_size]
1348 = ipmb_checksum(&(smi_msg->data[i+6]),
1349 smi_msg->data_size-6);
1352 * Add on the checksum size and the offset from the
1355 smi_msg->data_size += 1 + i;
1357 smi_msg->msgid = msgid;
1360 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1361 struct kernel_ipmi_msg *msg,
1362 struct ipmi_lan_addr *lan_addr,
1364 unsigned char ipmb_seq,
1365 unsigned char source_lun)
1367 /* Format the IPMB header data. */
1368 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1369 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1370 smi_msg->data[2] = lan_addr->channel;
1371 smi_msg->data[3] = lan_addr->session_handle;
1372 smi_msg->data[4] = lan_addr->remote_SWID;
1373 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1374 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1375 smi_msg->data[7] = lan_addr->local_SWID;
1376 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1377 smi_msg->data[9] = msg->cmd;
1379 /* Now tack on the data to the message. */
1380 if (msg->data_len > 0)
1381 memcpy(&(smi_msg->data[10]), msg->data,
1383 smi_msg->data_size = msg->data_len + 10;
1385 /* Now calculate the checksum and tack it on. */
1386 smi_msg->data[smi_msg->data_size]
1387 = ipmb_checksum(&(smi_msg->data[7]),
1388 smi_msg->data_size-7);
1391 * Add on the checksum size and the offset from the
1394 smi_msg->data_size += 1;
1396 smi_msg->msgid = msgid;
1400 * Separate from ipmi_request so that the user does not have to be
1401 * supplied in certain circumstances (mainly at panic time). If
1402 * messages are supplied, they will be freed, even if an error
1405 static int i_ipmi_request(ipmi_user_t user,
1407 struct ipmi_addr *addr,
1409 struct kernel_ipmi_msg *msg,
1410 void *user_msg_data,
1412 struct ipmi_recv_msg *supplied_recv,
1414 unsigned char source_address,
1415 unsigned char source_lun,
1417 unsigned int retry_time_ms)
1420 struct ipmi_smi_msg *smi_msg;
1421 struct ipmi_recv_msg *recv_msg;
1422 unsigned long flags;
1423 struct ipmi_smi_handlers *handlers;
1427 recv_msg = supplied_recv;
1429 recv_msg = ipmi_alloc_recv_msg();
1430 if (recv_msg == NULL)
1433 recv_msg->user_msg_data = user_msg_data;
1436 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1438 smi_msg = ipmi_alloc_smi_msg();
1439 if (smi_msg == NULL) {
1440 ipmi_free_recv_msg(recv_msg);
1446 handlers = intf->handlers;
1452 recv_msg->user = user;
1454 kref_get(&user->refcount);
1455 recv_msg->msgid = msgid;
1457 * Store the message to send in the receive message so timeout
1458 * responses can get the proper response data.
1460 recv_msg->msg = *msg;
1462 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1463 struct ipmi_system_interface_addr *smi_addr;
1465 if (msg->netfn & 1) {
1466 /* Responses are not allowed to the SMI. */
1471 smi_addr = (struct ipmi_system_interface_addr *) addr;
1472 if (smi_addr->lun > 3) {
1473 ipmi_inc_stat(intf, sent_invalid_commands);
1478 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1480 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1481 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1482 || (msg->cmd == IPMI_GET_MSG_CMD)
1483 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1485 * We don't let the user do these, since we manage
1486 * the sequence numbers.
1488 ipmi_inc_stat(intf, sent_invalid_commands);
1493 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1494 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1495 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1496 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1497 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1498 intf->auto_maintenance_timeout
1499 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1500 if (!intf->maintenance_mode
1501 && !intf->maintenance_mode_enable) {
1502 intf->maintenance_mode_enable = 1;
1503 maintenance_mode_update(intf);
1505 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1509 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1510 ipmi_inc_stat(intf, sent_invalid_commands);
1515 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1516 smi_msg->data[1] = msg->cmd;
1517 smi_msg->msgid = msgid;
1518 smi_msg->user_data = recv_msg;
1519 if (msg->data_len > 0)
1520 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1521 smi_msg->data_size = msg->data_len + 2;
1522 ipmi_inc_stat(intf, sent_local_commands);
1523 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1524 struct ipmi_ipmb_addr *ipmb_addr;
1525 unsigned char ipmb_seq;
1529 if (addr->channel >= IPMI_MAX_CHANNELS) {
1530 ipmi_inc_stat(intf, sent_invalid_commands);
1535 if (intf->channels[addr->channel].medium
1536 != IPMI_CHANNEL_MEDIUM_IPMB) {
1537 ipmi_inc_stat(intf, sent_invalid_commands);
1543 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1544 retries = 0; /* Don't retry broadcasts. */
1548 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1550 * Broadcasts add a zero at the beginning of the
1551 * message, but otherwise is the same as an IPMB
1554 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1559 /* Default to 1 second retries. */
1560 if (retry_time_ms == 0)
1561 retry_time_ms = 1000;
1564 * 9 for the header and 1 for the checksum, plus
1565 * possibly one for the broadcast.
1567 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1568 ipmi_inc_stat(intf, sent_invalid_commands);
1573 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1574 if (ipmb_addr->lun > 3) {
1575 ipmi_inc_stat(intf, sent_invalid_commands);
1580 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1582 if (recv_msg->msg.netfn & 0x1) {
1584 * It's a response, so use the user's sequence
1587 ipmi_inc_stat(intf, sent_ipmb_responses);
1588 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1590 source_address, source_lun);
1593 * Save the receive message so we can use it
1594 * to deliver the response.
1596 smi_msg->user_data = recv_msg;
1598 /* It's a command, so get a sequence for it. */
1600 spin_lock_irqsave(&(intf->seq_lock), flags);
1603 * Create a sequence number with a 1 second
1604 * timeout and 4 retries.
1606 rv = intf_next_seq(intf,
1615 * We have used up all the sequence numbers,
1616 * probably, so abort.
1618 spin_unlock_irqrestore(&(intf->seq_lock),
1623 ipmi_inc_stat(intf, sent_ipmb_commands);
1626 * Store the sequence number in the message,
1627 * so that when the send message response
1628 * comes back we can start the timer.
1630 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1631 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1632 ipmb_seq, broadcast,
1633 source_address, source_lun);
1636 * Copy the message into the recv message data, so we
1637 * can retransmit it later if necessary.
1639 memcpy(recv_msg->msg_data, smi_msg->data,
1640 smi_msg->data_size);
1641 recv_msg->msg.data = recv_msg->msg_data;
1642 recv_msg->msg.data_len = smi_msg->data_size;
1645 * We don't unlock until here, because we need
1646 * to copy the completed message into the
1647 * recv_msg before we release the lock.
1648 * Otherwise, race conditions may bite us. I
1649 * know that's pretty paranoid, but I prefer
1652 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1654 } else if (is_lan_addr(addr)) {
1655 struct ipmi_lan_addr *lan_addr;
1656 unsigned char ipmb_seq;
1659 if (addr->channel >= IPMI_MAX_CHANNELS) {
1660 ipmi_inc_stat(intf, sent_invalid_commands);
1665 if ((intf->channels[addr->channel].medium
1666 != IPMI_CHANNEL_MEDIUM_8023LAN)
1667 && (intf->channels[addr->channel].medium
1668 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1669 ipmi_inc_stat(intf, sent_invalid_commands);
1676 /* Default to 1 second retries. */
1677 if (retry_time_ms == 0)
1678 retry_time_ms = 1000;
1680 /* 11 for the header and 1 for the checksum. */
1681 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1682 ipmi_inc_stat(intf, sent_invalid_commands);
1687 lan_addr = (struct ipmi_lan_addr *) addr;
1688 if (lan_addr->lun > 3) {
1689 ipmi_inc_stat(intf, sent_invalid_commands);
1694 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1696 if (recv_msg->msg.netfn & 0x1) {
1698 * It's a response, so use the user's sequence
1701 ipmi_inc_stat(intf, sent_lan_responses);
1702 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1706 * Save the receive message so we can use it
1707 * to deliver the response.
1709 smi_msg->user_data = recv_msg;
1711 /* It's a command, so get a sequence for it. */
1713 spin_lock_irqsave(&(intf->seq_lock), flags);
1716 * Create a sequence number with a 1 second
1717 * timeout and 4 retries.
1719 rv = intf_next_seq(intf,
1728 * We have used up all the sequence numbers,
1729 * probably, so abort.
1731 spin_unlock_irqrestore(&(intf->seq_lock),
1736 ipmi_inc_stat(intf, sent_lan_commands);
1739 * Store the sequence number in the message,
1740 * so that when the send message response
1741 * comes back we can start the timer.
1743 format_lan_msg(smi_msg, msg, lan_addr,
1744 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1745 ipmb_seq, source_lun);
1748 * Copy the message into the recv message data, so we
1749 * can retransmit it later if necessary.
1751 memcpy(recv_msg->msg_data, smi_msg->data,
1752 smi_msg->data_size);
1753 recv_msg->msg.data = recv_msg->msg_data;
1754 recv_msg->msg.data_len = smi_msg->data_size;
1757 * We don't unlock until here, because we need
1758 * to copy the completed message into the
1759 * recv_msg before we release the lock.
1760 * Otherwise, race conditions may bite us. I
1761 * know that's pretty paranoid, but I prefer
1764 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1767 /* Unknown address type. */
1768 ipmi_inc_stat(intf, sent_invalid_commands);
1776 for (m = 0; m < smi_msg->data_size; m++)
1777 printk(" %2.2x", smi_msg->data[m]);
1782 handlers->sender(intf->send_info, smi_msg, priority);
1789 ipmi_free_smi_msg(smi_msg);
1790 ipmi_free_recv_msg(recv_msg);
1794 static int check_addr(ipmi_smi_t intf,
1795 struct ipmi_addr *addr,
1796 unsigned char *saddr,
1799 if (addr->channel >= IPMI_MAX_CHANNELS)
1801 *lun = intf->channels[addr->channel].lun;
1802 *saddr = intf->channels[addr->channel].address;
1806 int ipmi_request_settime(ipmi_user_t user,
1807 struct ipmi_addr *addr,
1809 struct kernel_ipmi_msg *msg,
1810 void *user_msg_data,
1813 unsigned int retry_time_ms)
1815 unsigned char saddr, lun;
1820 rv = check_addr(user->intf, addr, &saddr, &lun);
1823 return i_ipmi_request(user,
1836 EXPORT_SYMBOL(ipmi_request_settime);
1838 int ipmi_request_supply_msgs(ipmi_user_t user,
1839 struct ipmi_addr *addr,
1841 struct kernel_ipmi_msg *msg,
1842 void *user_msg_data,
1844 struct ipmi_recv_msg *supplied_recv,
1847 unsigned char saddr, lun;
1852 rv = check_addr(user->intf, addr, &saddr, &lun);
1855 return i_ipmi_request(user,
1868 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1870 #ifdef CONFIG_PROC_FS
1871 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1872 int count, int *eof, void *data)
1874 char *out = (char *) page;
1875 ipmi_smi_t intf = data;
1879 for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1880 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1881 out[rv-1] = '\n'; /* Replace the final space with a newline */
1887 static int version_file_read_proc(char *page, char **start, off_t off,
1888 int count, int *eof, void *data)
1890 char *out = (char *) page;
1891 ipmi_smi_t intf = data;
1893 return sprintf(out, "%u.%u\n",
1894 ipmi_version_major(&intf->bmc->id),
1895 ipmi_version_minor(&intf->bmc->id));
1898 static int stat_file_read_proc(char *page, char **start, off_t off,
1899 int count, int *eof, void *data)
1901 char *out = (char *) page;
1902 ipmi_smi_t intf = data;
1904 out += sprintf(out, "sent_invalid_commands: %u\n",
1905 ipmi_get_stat(intf, sent_invalid_commands));
1906 out += sprintf(out, "sent_local_commands: %u\n",
1907 ipmi_get_stat(intf, sent_local_commands));
1908 out += sprintf(out, "handled_local_responses: %u\n",
1909 ipmi_get_stat(intf, handled_local_responses));
1910 out += sprintf(out, "unhandled_local_responses: %u\n",
1911 ipmi_get_stat(intf, unhandled_local_responses));
1912 out += sprintf(out, "sent_ipmb_commands: %u\n",
1913 ipmi_get_stat(intf, sent_ipmb_commands));
1914 out += sprintf(out, "sent_ipmb_command_errs: %u\n",
1915 ipmi_get_stat(intf, sent_ipmb_command_errs));
1916 out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1917 ipmi_get_stat(intf, retransmitted_ipmb_commands));
1918 out += sprintf(out, "timed_out_ipmb_commands: %u\n",
1919 ipmi_get_stat(intf, timed_out_ipmb_commands));
1920 out += sprintf(out, "timed_out_ipmb_broadcasts: %u\n",
1921 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1922 out += sprintf(out, "sent_ipmb_responses: %u\n",
1923 ipmi_get_stat(intf, sent_ipmb_responses));
1924 out += sprintf(out, "handled_ipmb_responses: %u\n",
1925 ipmi_get_stat(intf, handled_ipmb_responses));
1926 out += sprintf(out, "invalid_ipmb_responses: %u\n",
1927 ipmi_get_stat(intf, invalid_ipmb_responses));
1928 out += sprintf(out, "unhandled_ipmb_responses: %u\n",
1929 ipmi_get_stat(intf, unhandled_ipmb_responses));
1930 out += sprintf(out, "sent_lan_commands: %u\n",
1931 ipmi_get_stat(intf, sent_lan_commands));
1932 out += sprintf(out, "sent_lan_command_errs: %u\n",
1933 ipmi_get_stat(intf, sent_lan_command_errs));
1934 out += sprintf(out, "retransmitted_lan_commands: %u\n",
1935 ipmi_get_stat(intf, retransmitted_lan_commands));
1936 out += sprintf(out, "timed_out_lan_commands: %u\n",
1937 ipmi_get_stat(intf, timed_out_lan_commands));
1938 out += sprintf(out, "sent_lan_responses: %u\n",
1939 ipmi_get_stat(intf, sent_lan_responses));
1940 out += sprintf(out, "handled_lan_responses: %u\n",
1941 ipmi_get_stat(intf, handled_lan_responses));
1942 out += sprintf(out, "invalid_lan_responses: %u\n",
1943 ipmi_get_stat(intf, invalid_lan_responses));
1944 out += sprintf(out, "unhandled_lan_responses: %u\n",
1945 ipmi_get_stat(intf, unhandled_lan_responses));
1946 out += sprintf(out, "handled_commands: %u\n",
1947 ipmi_get_stat(intf, handled_commands));
1948 out += sprintf(out, "invalid_commands: %u\n",
1949 ipmi_get_stat(intf, invalid_commands));
1950 out += sprintf(out, "unhandled_commands: %u\n",
1951 ipmi_get_stat(intf, unhandled_commands));
1952 out += sprintf(out, "invalid_events: %u\n",
1953 ipmi_get_stat(intf, invalid_events));
1954 out += sprintf(out, "events: %u\n",
1955 ipmi_get_stat(intf, events));
1956 out += sprintf(out, "failed rexmit LAN msgs: %u\n",
1957 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1958 out += sprintf(out, "failed rexmit IPMB msgs: %u\n",
1959 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1961 return (out - ((char *) page));
1963 #endif /* CONFIG_PROC_FS */
1965 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1966 read_proc_t *read_proc,
1970 #ifdef CONFIG_PROC_FS
1971 struct proc_dir_entry *file;
1972 struct ipmi_proc_entry *entry;
1974 /* Create a list element. */
1975 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1978 entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1983 strcpy(entry->name, name);
1985 file = create_proc_entry(name, 0, smi->proc_dir);
1992 file->read_proc = read_proc;
1994 mutex_lock(&smi->proc_entry_lock);
1995 /* Stick it on the list. */
1996 entry->next = smi->proc_entries;
1997 smi->proc_entries = entry;
1998 mutex_unlock(&smi->proc_entry_lock);
2000 #endif /* CONFIG_PROC_FS */
2004 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2006 static int add_proc_entries(ipmi_smi_t smi, int num)
2010 #ifdef CONFIG_PROC_FS
2011 sprintf(smi->proc_dir_name, "%d", num);
2012 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2017 rv = ipmi_smi_add_proc_entry(smi, "stats",
2018 stat_file_read_proc,
2022 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2023 ipmb_file_read_proc,
2027 rv = ipmi_smi_add_proc_entry(smi, "version",
2028 version_file_read_proc,
2030 #endif /* CONFIG_PROC_FS */
2035 static void remove_proc_entries(ipmi_smi_t smi)
2037 #ifdef CONFIG_PROC_FS
2038 struct ipmi_proc_entry *entry;
2040 mutex_lock(&smi->proc_entry_lock);
2041 while (smi->proc_entries) {
2042 entry = smi->proc_entries;
2043 smi->proc_entries = entry->next;
2045 remove_proc_entry(entry->name, smi->proc_dir);
2049 mutex_unlock(&smi->proc_entry_lock);
2050 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2051 #endif /* CONFIG_PROC_FS */
2054 static int __find_bmc_guid(struct device *dev, void *data)
2056 unsigned char *id = data;
2057 struct bmc_device *bmc = dev_get_drvdata(dev);
2058 return memcmp(bmc->guid, id, 16) == 0;
2061 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2062 unsigned char *guid)
2066 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2068 return dev_get_drvdata(dev);
2073 struct prod_dev_id {
2074 unsigned int product_id;
2075 unsigned char device_id;
2078 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2080 struct prod_dev_id *id = data;
2081 struct bmc_device *bmc = dev_get_drvdata(dev);
2083 return (bmc->id.product_id == id->product_id
2084 && bmc->id.device_id == id->device_id);
2087 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2088 struct device_driver *drv,
2089 unsigned int product_id, unsigned char device_id)
2091 struct prod_dev_id id = {
2092 .product_id = product_id,
2093 .device_id = device_id,
2097 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2099 return dev_get_drvdata(dev);
2104 static ssize_t device_id_show(struct device *dev,
2105 struct device_attribute *attr,
2108 struct bmc_device *bmc = dev_get_drvdata(dev);
2110 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2113 static ssize_t provides_dev_sdrs_show(struct device *dev,
2114 struct device_attribute *attr,
2117 struct bmc_device *bmc = dev_get_drvdata(dev);
2119 return snprintf(buf, 10, "%u\n",
2120 (bmc->id.device_revision & 0x80) >> 7);
2123 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2126 struct bmc_device *bmc = dev_get_drvdata(dev);
2128 return snprintf(buf, 20, "%u\n",
2129 bmc->id.device_revision & 0x0F);
2132 static ssize_t firmware_rev_show(struct device *dev,
2133 struct device_attribute *attr,
2136 struct bmc_device *bmc = dev_get_drvdata(dev);
2138 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2139 bmc->id.firmware_revision_2);
2142 static ssize_t ipmi_version_show(struct device *dev,
2143 struct device_attribute *attr,
2146 struct bmc_device *bmc = dev_get_drvdata(dev);
2148 return snprintf(buf, 20, "%u.%u\n",
2149 ipmi_version_major(&bmc->id),
2150 ipmi_version_minor(&bmc->id));
2153 static ssize_t add_dev_support_show(struct device *dev,
2154 struct device_attribute *attr,
2157 struct bmc_device *bmc = dev_get_drvdata(dev);
2159 return snprintf(buf, 10, "0x%02x\n",
2160 bmc->id.additional_device_support);
2163 static ssize_t manufacturer_id_show(struct device *dev,
2164 struct device_attribute *attr,
2167 struct bmc_device *bmc = dev_get_drvdata(dev);
2169 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2172 static ssize_t product_id_show(struct device *dev,
2173 struct device_attribute *attr,
2176 struct bmc_device *bmc = dev_get_drvdata(dev);
2178 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2181 static ssize_t aux_firmware_rev_show(struct device *dev,
2182 struct device_attribute *attr,
2185 struct bmc_device *bmc = dev_get_drvdata(dev);
2187 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2188 bmc->id.aux_firmware_revision[3],
2189 bmc->id.aux_firmware_revision[2],
2190 bmc->id.aux_firmware_revision[1],
2191 bmc->id.aux_firmware_revision[0]);
2194 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2197 struct bmc_device *bmc = dev_get_drvdata(dev);
2199 return snprintf(buf, 100, "%Lx%Lx\n",
2200 (long long) bmc->guid[0],
2201 (long long) bmc->guid[8]);
2204 static void remove_files(struct bmc_device *bmc)
2209 device_remove_file(&bmc->dev->dev,
2210 &bmc->device_id_attr);
2211 device_remove_file(&bmc->dev->dev,
2212 &bmc->provides_dev_sdrs_attr);
2213 device_remove_file(&bmc->dev->dev,
2214 &bmc->revision_attr);
2215 device_remove_file(&bmc->dev->dev,
2216 &bmc->firmware_rev_attr);
2217 device_remove_file(&bmc->dev->dev,
2218 &bmc->version_attr);
2219 device_remove_file(&bmc->dev->dev,
2220 &bmc->add_dev_support_attr);
2221 device_remove_file(&bmc->dev->dev,
2222 &bmc->manufacturer_id_attr);
2223 device_remove_file(&bmc->dev->dev,
2224 &bmc->product_id_attr);
2226 if (bmc->id.aux_firmware_revision_set)
2227 device_remove_file(&bmc->dev->dev,
2228 &bmc->aux_firmware_rev_attr);
2230 device_remove_file(&bmc->dev->dev,
2235 cleanup_bmc_device(struct kref *ref)
2237 struct bmc_device *bmc;
2239 bmc = container_of(ref, struct bmc_device, refcount);
2242 platform_device_unregister(bmc->dev);
2246 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2248 struct bmc_device *bmc = intf->bmc;
2250 if (intf->sysfs_name) {
2251 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2252 kfree(intf->sysfs_name);
2253 intf->sysfs_name = NULL;
2255 if (intf->my_dev_name) {
2256 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2257 kfree(intf->my_dev_name);
2258 intf->my_dev_name = NULL;
2261 mutex_lock(&ipmidriver_mutex);
2262 kref_put(&bmc->refcount, cleanup_bmc_device);
2264 mutex_unlock(&ipmidriver_mutex);
2267 static int create_files(struct bmc_device *bmc)
2271 bmc->device_id_attr.attr.name = "device_id";
2272 bmc->device_id_attr.attr.mode = S_IRUGO;
2273 bmc->device_id_attr.show = device_id_show;
2275 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2276 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2277 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2279 bmc->revision_attr.attr.name = "revision";
2280 bmc->revision_attr.attr.mode = S_IRUGO;
2281 bmc->revision_attr.show = revision_show;
2283 bmc->firmware_rev_attr.attr.name = "firmware_revision";
2284 bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2285 bmc->firmware_rev_attr.show = firmware_rev_show;
2287 bmc->version_attr.attr.name = "ipmi_version";
2288 bmc->version_attr.attr.mode = S_IRUGO;
2289 bmc->version_attr.show = ipmi_version_show;
2291 bmc->add_dev_support_attr.attr.name = "additional_device_support";
2292 bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2293 bmc->add_dev_support_attr.show = add_dev_support_show;
2295 bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2296 bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2297 bmc->manufacturer_id_attr.show = manufacturer_id_show;
2299 bmc->product_id_attr.attr.name = "product_id";
2300 bmc->product_id_attr.attr.mode = S_IRUGO;
2301 bmc->product_id_attr.show = product_id_show;
2303 bmc->guid_attr.attr.name = "guid";
2304 bmc->guid_attr.attr.mode = S_IRUGO;
2305 bmc->guid_attr.show = guid_show;
2307 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2308 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2309 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2311 err = device_create_file(&bmc->dev->dev,
2312 &bmc->device_id_attr);
2315 err = device_create_file(&bmc->dev->dev,
2316 &bmc->provides_dev_sdrs_attr);
2319 err = device_create_file(&bmc->dev->dev,
2320 &bmc->revision_attr);
2323 err = device_create_file(&bmc->dev->dev,
2324 &bmc->firmware_rev_attr);
2327 err = device_create_file(&bmc->dev->dev,
2328 &bmc->version_attr);
2331 err = device_create_file(&bmc->dev->dev,
2332 &bmc->add_dev_support_attr);
2335 err = device_create_file(&bmc->dev->dev,
2336 &bmc->manufacturer_id_attr);
2339 err = device_create_file(&bmc->dev->dev,
2340 &bmc->product_id_attr);
2343 if (bmc->id.aux_firmware_revision_set) {
2344 err = device_create_file(&bmc->dev->dev,
2345 &bmc->aux_firmware_rev_attr);
2349 if (bmc->guid_set) {
2350 err = device_create_file(&bmc->dev->dev,
2359 if (bmc->id.aux_firmware_revision_set)
2360 device_remove_file(&bmc->dev->dev,
2361 &bmc->aux_firmware_rev_attr);
2363 device_remove_file(&bmc->dev->dev,
2364 &bmc->product_id_attr);
2366 device_remove_file(&bmc->dev->dev,
2367 &bmc->manufacturer_id_attr);
2369 device_remove_file(&bmc->dev->dev,
2370 &bmc->add_dev_support_attr);
2372 device_remove_file(&bmc->dev->dev,
2373 &bmc->version_attr);
2375 device_remove_file(&bmc->dev->dev,
2376 &bmc->firmware_rev_attr);
2378 device_remove_file(&bmc->dev->dev,
2379 &bmc->revision_attr);
2381 device_remove_file(&bmc->dev->dev,
2382 &bmc->provides_dev_sdrs_attr);
2384 device_remove_file(&bmc->dev->dev,
2385 &bmc->device_id_attr);
2390 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2391 const char *sysfs_name)
2394 struct bmc_device *bmc = intf->bmc;
2395 struct bmc_device *old_bmc;
2399 mutex_lock(&ipmidriver_mutex);
2402 * Try to find if there is an bmc_device struct
2403 * representing the interfaced BMC already
2406 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2408 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2413 * If there is already an bmc_device, free the new one,
2414 * otherwise register the new BMC device
2418 intf->bmc = old_bmc;
2421 kref_get(&bmc->refcount);
2422 mutex_unlock(&ipmidriver_mutex);
2425 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2426 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2427 bmc->id.manufacturer_id,
2432 unsigned char orig_dev_id = bmc->id.device_id;
2433 int warn_printed = 0;
2435 snprintf(name, sizeof(name),
2436 "ipmi_bmc.%4.4x", bmc->id.product_id);
2438 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2440 bmc->id.device_id)) {
2441 if (!warn_printed) {
2442 printk(KERN_WARNING PFX
2443 "This machine has two different BMCs"
2444 " with the same product id and device"
2445 " id. This is an error in the"
2446 " firmware, but incrementing the"
2447 " device id to work around the problem."
2448 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2449 bmc->id.product_id, bmc->id.device_id);
2452 bmc->id.device_id++; /* Wraps at 255 */
2453 if (bmc->id.device_id == orig_dev_id) {
2455 "Out of device ids!\n");
2460 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2462 mutex_unlock(&ipmidriver_mutex);
2465 " Unable to allocate platform device\n");
2468 bmc->dev->dev.driver = &ipmidriver.driver;
2469 dev_set_drvdata(&bmc->dev->dev, bmc);
2470 kref_init(&bmc->refcount);
2472 rv = platform_device_add(bmc->dev);
2473 mutex_unlock(&ipmidriver_mutex);
2475 platform_device_put(bmc->dev);
2479 " Unable to register bmc device: %d\n",
2482 * Don't go to out_err, you can only do that if
2483 * the device is registered already.
2488 rv = create_files(bmc);
2490 mutex_lock(&ipmidriver_mutex);
2491 platform_device_unregister(bmc->dev);
2492 mutex_unlock(&ipmidriver_mutex);
2498 "ipmi: Found new BMC (man_id: 0x%6.6x, "
2499 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2500 bmc->id.manufacturer_id,
2506 * create symlink from system interface device to bmc device
2509 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2510 if (!intf->sysfs_name) {
2513 "ipmi_msghandler: allocate link to BMC: %d\n",
2518 rv = sysfs_create_link(&intf->si_dev->kobj,
2519 &bmc->dev->dev.kobj, intf->sysfs_name);
2521 kfree(intf->sysfs_name);
2522 intf->sysfs_name = NULL;
2524 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2529 size = snprintf(dummy, 0, "ipmi%d", ifnum);
2530 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2531 if (!intf->my_dev_name) {
2532 kfree(intf->sysfs_name);
2533 intf->sysfs_name = NULL;
2536 "ipmi_msghandler: allocate link from BMC: %d\n",
2540 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2542 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2545 kfree(intf->sysfs_name);
2546 intf->sysfs_name = NULL;
2547 kfree(intf->my_dev_name);
2548 intf->my_dev_name = NULL;
2551 " Unable to create symlink to bmc: %d\n",
2559 ipmi_bmc_unregister(intf);
2564 send_guid_cmd(ipmi_smi_t intf, int chan)
2566 struct kernel_ipmi_msg msg;
2567 struct ipmi_system_interface_addr si;
2569 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2570 si.channel = IPMI_BMC_CHANNEL;
2573 msg.netfn = IPMI_NETFN_APP_REQUEST;
2574 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2577 return i_ipmi_request(NULL,
2579 (struct ipmi_addr *) &si,
2586 intf->channels[0].address,
2587 intf->channels[0].lun,
2592 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2594 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2595 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2596 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2600 if (msg->msg.data[0] != 0) {
2601 /* Error from getting the GUID, the BMC doesn't have one. */
2602 intf->bmc->guid_set = 0;
2606 if (msg->msg.data_len < 17) {
2607 intf->bmc->guid_set = 0;
2608 printk(KERN_WARNING PFX
2609 "guid_handler: The GUID response from the BMC was too"
2610 " short, it was %d but should have been 17. Assuming"
2611 " GUID is not available.\n",
2616 memcpy(intf->bmc->guid, msg->msg.data, 16);
2617 intf->bmc->guid_set = 1;
2619 wake_up(&intf->waitq);
2623 get_guid(ipmi_smi_t intf)
2627 intf->bmc->guid_set = 0x2;
2628 intf->null_user_handler = guid_handler;
2629 rv = send_guid_cmd(intf, 0);
2631 /* Send failed, no GUID available. */
2632 intf->bmc->guid_set = 0;
2633 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2634 intf->null_user_handler = NULL;
2638 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2640 struct kernel_ipmi_msg msg;
2641 unsigned char data[1];
2642 struct ipmi_system_interface_addr si;
2644 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2645 si.channel = IPMI_BMC_CHANNEL;
2648 msg.netfn = IPMI_NETFN_APP_REQUEST;
2649 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2653 return i_ipmi_request(NULL,
2655 (struct ipmi_addr *) &si,
2662 intf->channels[0].address,
2663 intf->channels[0].lun,
2668 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2673 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2674 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2675 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2676 /* It's the one we want */
2677 if (msg->msg.data[0] != 0) {
2678 /* Got an error from the channel, just go on. */
2680 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2682 * If the MC does not support this
2683 * command, that is legal. We just
2684 * assume it has one IPMB at channel
2687 intf->channels[0].medium
2688 = IPMI_CHANNEL_MEDIUM_IPMB;
2689 intf->channels[0].protocol
2690 = IPMI_CHANNEL_PROTOCOL_IPMB;
2693 intf->curr_channel = IPMI_MAX_CHANNELS;
2694 wake_up(&intf->waitq);
2699 if (msg->msg.data_len < 4) {
2700 /* Message not big enough, just go on. */
2703 chan = intf->curr_channel;
2704 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2705 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2708 intf->curr_channel++;
2709 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2710 wake_up(&intf->waitq);
2712 rv = send_channel_info_cmd(intf, intf->curr_channel);
2715 /* Got an error somehow, just give up. */
2716 intf->curr_channel = IPMI_MAX_CHANNELS;
2717 wake_up(&intf->waitq);
2719 printk(KERN_WARNING PFX
2720 "Error sending channel information: %d\n",
2728 void ipmi_poll_interface(ipmi_user_t user)
2730 ipmi_smi_t intf = user->intf;
2732 if (intf->handlers->poll)
2733 intf->handlers->poll(intf->send_info);
2735 EXPORT_SYMBOL(ipmi_poll_interface);
2737 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2739 struct ipmi_device_id *device_id,
2740 struct device *si_dev,
2741 const char *sysfs_name,
2742 unsigned char slave_addr)
2748 struct list_head *link;
2751 * Make sure the driver is actually initialized, this handles
2752 * problems with initialization order.
2755 rv = ipmi_init_msghandler();
2759 * The init code doesn't return an error if it was turned
2760 * off, but it won't initialize. Check that.
2766 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2770 intf->ipmi_version_major = ipmi_version_major(device_id);
2771 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2773 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2778 intf->intf_num = -1; /* Mark it invalid for now. */
2779 kref_init(&intf->refcount);
2780 intf->bmc->id = *device_id;
2781 intf->si_dev = si_dev;
2782 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2783 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2784 intf->channels[j].lun = 2;
2786 if (slave_addr != 0)
2787 intf->channels[0].address = slave_addr;
2788 INIT_LIST_HEAD(&intf->users);
2789 intf->handlers = handlers;
2790 intf->send_info = send_info;
2791 spin_lock_init(&intf->seq_lock);
2792 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2793 intf->seq_table[j].inuse = 0;
2794 intf->seq_table[j].seqid = 0;
2797 #ifdef CONFIG_PROC_FS
2798 mutex_init(&intf->proc_entry_lock);
2800 spin_lock_init(&intf->waiting_msgs_lock);
2801 INIT_LIST_HEAD(&intf->waiting_msgs);
2802 spin_lock_init(&intf->events_lock);
2803 INIT_LIST_HEAD(&intf->waiting_events);
2804 intf->waiting_events_count = 0;
2805 mutex_init(&intf->cmd_rcvrs_mutex);
2806 spin_lock_init(&intf->maintenance_mode_lock);
2807 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2808 init_waitqueue_head(&intf->waitq);
2809 for (i = 0; i < IPMI_NUM_STATS; i++)
2810 atomic_set(&intf->stats[i], 0);
2812 intf->proc_dir = NULL;
2814 mutex_lock(&smi_watchers_mutex);
2815 mutex_lock(&ipmi_interfaces_mutex);
2816 /* Look for a hole in the numbers. */
2818 link = &ipmi_interfaces;
2819 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2820 if (tintf->intf_num != i) {
2821 link = &tintf->link;
2826 /* Add the new interface in numeric order. */
2828 list_add_rcu(&intf->link, &ipmi_interfaces);
2830 list_add_tail_rcu(&intf->link, link);
2832 rv = handlers->start_processing(send_info, intf);
2838 if ((intf->ipmi_version_major > 1)
2839 || ((intf->ipmi_version_major == 1)
2840 && (intf->ipmi_version_minor >= 5))) {
2842 * Start scanning the channels to see what is
2845 intf->null_user_handler = channel_handler;
2846 intf->curr_channel = 0;
2847 rv = send_channel_info_cmd(intf, 0);
2851 /* Wait for the channel info to be read. */
2852 wait_event(intf->waitq,
2853 intf->curr_channel >= IPMI_MAX_CHANNELS);
2854 intf->null_user_handler = NULL;
2856 /* Assume a single IPMB channel at zero. */
2857 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2858 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2859 intf->curr_channel = IPMI_MAX_CHANNELS;
2863 rv = add_proc_entries(intf, i);
2865 rv = ipmi_bmc_register(intf, i, sysfs_name);
2870 remove_proc_entries(intf);
2871 intf->handlers = NULL;
2872 list_del_rcu(&intf->link);
2873 mutex_unlock(&ipmi_interfaces_mutex);
2874 mutex_unlock(&smi_watchers_mutex);
2876 kref_put(&intf->refcount, intf_free);
2879 * Keep memory order straight for RCU readers. Make
2880 * sure everything else is committed to memory before
2881 * setting intf_num to mark the interface valid.
2885 mutex_unlock(&ipmi_interfaces_mutex);
2886 /* After this point the interface is legal to use. */
2887 call_smi_watchers(i, intf->si_dev);
2888 mutex_unlock(&smi_watchers_mutex);
2893 EXPORT_SYMBOL(ipmi_register_smi);
2895 static void cleanup_smi_msgs(ipmi_smi_t intf)
2898 struct seq_table *ent;
2900 /* No need for locks, the interface is down. */
2901 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2902 ent = &(intf->seq_table[i]);
2905 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2909 int ipmi_unregister_smi(ipmi_smi_t intf)
2911 struct ipmi_smi_watcher *w;
2912 int intf_num = intf->intf_num;
2914 ipmi_bmc_unregister(intf);
2916 mutex_lock(&smi_watchers_mutex);
2917 mutex_lock(&ipmi_interfaces_mutex);
2918 intf->intf_num = -1;
2919 intf->handlers = NULL;
2920 list_del_rcu(&intf->link);
2921 mutex_unlock(&ipmi_interfaces_mutex);
2924 cleanup_smi_msgs(intf);
2926 remove_proc_entries(intf);
2929 * Call all the watcher interfaces to tell them that
2930 * an interface is gone.
2932 list_for_each_entry(w, &smi_watchers, link)
2933 w->smi_gone(intf_num);
2934 mutex_unlock(&smi_watchers_mutex);
2936 kref_put(&intf->refcount, intf_free);
2939 EXPORT_SYMBOL(ipmi_unregister_smi);
2941 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
2942 struct ipmi_smi_msg *msg)
2944 struct ipmi_ipmb_addr ipmb_addr;
2945 struct ipmi_recv_msg *recv_msg;
2948 * This is 11, not 10, because the response must contain a
2951 if (msg->rsp_size < 11) {
2952 /* Message not big enough, just ignore it. */
2953 ipmi_inc_stat(intf, invalid_ipmb_responses);
2957 if (msg->rsp[2] != 0) {
2958 /* An error getting the response, just ignore it. */
2962 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2963 ipmb_addr.slave_addr = msg->rsp[6];
2964 ipmb_addr.channel = msg->rsp[3] & 0x0f;
2965 ipmb_addr.lun = msg->rsp[7] & 3;
2968 * It's a response from a remote entity. Look up the sequence
2969 * number and handle the response.
2971 if (intf_find_seq(intf,
2975 (msg->rsp[4] >> 2) & (~1),
2976 (struct ipmi_addr *) &(ipmb_addr),
2979 * We were unable to find the sequence number,
2980 * so just nuke the message.
2982 ipmi_inc_stat(intf, unhandled_ipmb_responses);
2986 memcpy(recv_msg->msg_data,
2990 * The other fields matched, so no need to set them, except
2991 * for netfn, which needs to be the response that was
2992 * returned, not the request value.
2994 recv_msg->msg.netfn = msg->rsp[4] >> 2;
2995 recv_msg->msg.data = recv_msg->msg_data;
2996 recv_msg->msg.data_len = msg->rsp_size - 10;
2997 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2998 ipmi_inc_stat(intf, handled_ipmb_responses);
2999 deliver_response(recv_msg);
3004 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3005 struct ipmi_smi_msg *msg)
3007 struct cmd_rcvr *rcvr;
3009 unsigned char netfn;
3012 ipmi_user_t user = NULL;
3013 struct ipmi_ipmb_addr *ipmb_addr;
3014 struct ipmi_recv_msg *recv_msg;
3015 struct ipmi_smi_handlers *handlers;
3017 if (msg->rsp_size < 10) {
3018 /* Message not big enough, just ignore it. */
3019 ipmi_inc_stat(intf, invalid_commands);
3023 if (msg->rsp[2] != 0) {
3024 /* An error getting the response, just ignore it. */
3028 netfn = msg->rsp[4] >> 2;
3030 chan = msg->rsp[3] & 0xf;
3033 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3036 kref_get(&user->refcount);
3042 /* We didn't find a user, deliver an error response. */
3043 ipmi_inc_stat(intf, unhandled_commands);
3045 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3046 msg->data[1] = IPMI_SEND_MSG_CMD;
3047 msg->data[2] = msg->rsp[3];
3048 msg->data[3] = msg->rsp[6];
3049 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3050 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3051 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3053 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3054 msg->data[8] = msg->rsp[8]; /* cmd */
3055 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3056 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3057 msg->data_size = 11;
3062 printk("Invalid command:");
3063 for (m = 0; m < msg->data_size; m++)
3064 printk(" %2.2x", msg->data[m]);
3069 handlers = intf->handlers;
3071 handlers->sender(intf->send_info, msg, 0);
3073 * We used the message, so return the value
3074 * that causes it to not be freed or
3081 /* Deliver the message to the user. */
3082 ipmi_inc_stat(intf, handled_commands);
3084 recv_msg = ipmi_alloc_recv_msg();
3087 * We couldn't allocate memory for the
3088 * message, so requeue it for handling
3092 kref_put(&user->refcount, free_user);
3094 /* Extract the source address from the data. */
3095 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3096 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3097 ipmb_addr->slave_addr = msg->rsp[6];
3098 ipmb_addr->lun = msg->rsp[7] & 3;
3099 ipmb_addr->channel = msg->rsp[3] & 0xf;
3102 * Extract the rest of the message information
3103 * from the IPMB header.
3105 recv_msg->user = user;
3106 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3107 recv_msg->msgid = msg->rsp[7] >> 2;
3108 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3109 recv_msg->msg.cmd = msg->rsp[8];
3110 recv_msg->msg.data = recv_msg->msg_data;
3113 * We chop off 10, not 9 bytes because the checksum
3114 * at the end also needs to be removed.
3116 recv_msg->msg.data_len = msg->rsp_size - 10;
3117 memcpy(recv_msg->msg_data,
3119 msg->rsp_size - 10);
3120 deliver_response(recv_msg);
3127 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3128 struct ipmi_smi_msg *msg)
3130 struct ipmi_lan_addr lan_addr;
3131 struct ipmi_recv_msg *recv_msg;
3135 * This is 13, not 12, because the response must contain a
3138 if (msg->rsp_size < 13) {
3139 /* Message not big enough, just ignore it. */
3140 ipmi_inc_stat(intf, invalid_lan_responses);
3144 if (msg->rsp[2] != 0) {
3145 /* An error getting the response, just ignore it. */
3149 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3150 lan_addr.session_handle = msg->rsp[4];
3151 lan_addr.remote_SWID = msg->rsp[8];
3152 lan_addr.local_SWID = msg->rsp[5];
3153 lan_addr.channel = msg->rsp[3] & 0x0f;
3154 lan_addr.privilege = msg->rsp[3] >> 4;
3155 lan_addr.lun = msg->rsp[9] & 3;
3158 * It's a response from a remote entity. Look up the sequence
3159 * number and handle the response.
3161 if (intf_find_seq(intf,
3165 (msg->rsp[6] >> 2) & (~1),
3166 (struct ipmi_addr *) &(lan_addr),
3169 * We were unable to find the sequence number,
3170 * so just nuke the message.
3172 ipmi_inc_stat(intf, unhandled_lan_responses);
3176 memcpy(recv_msg->msg_data,
3178 msg->rsp_size - 11);
3180 * The other fields matched, so no need to set them, except
3181 * for netfn, which needs to be the response that was
3182 * returned, not the request value.
3184 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3185 recv_msg->msg.data = recv_msg->msg_data;
3186 recv_msg->msg.data_len = msg->rsp_size - 12;
3187 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3188 ipmi_inc_stat(intf, handled_lan_responses);
3189 deliver_response(recv_msg);
3194 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3195 struct ipmi_smi_msg *msg)
3197 struct cmd_rcvr *rcvr;
3199 unsigned char netfn;
3202 ipmi_user_t user = NULL;
3203 struct ipmi_lan_addr *lan_addr;
3204 struct ipmi_recv_msg *recv_msg;
3206 if (msg->rsp_size < 12) {
3207 /* Message not big enough, just ignore it. */
3208 ipmi_inc_stat(intf, invalid_commands);
3212 if (msg->rsp[2] != 0) {
3213 /* An error getting the response, just ignore it. */
3217 netfn = msg->rsp[6] >> 2;
3219 chan = msg->rsp[3] & 0xf;
3222 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3225 kref_get(&user->refcount);
3231 /* We didn't find a user, just give up. */
3232 ipmi_inc_stat(intf, unhandled_commands);
3235 * Don't do anything with these messages, just allow
3240 /* Deliver the message to the user. */
3241 ipmi_inc_stat(intf, handled_commands);
3243 recv_msg = ipmi_alloc_recv_msg();
3246 * We couldn't allocate memory for the
3247 * message, so requeue it for handling later.
3250 kref_put(&user->refcount, free_user);
3252 /* Extract the source address from the data. */
3253 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3254 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3255 lan_addr->session_handle = msg->rsp[4];
3256 lan_addr->remote_SWID = msg->rsp[8];
3257 lan_addr->local_SWID = msg->rsp[5];
3258 lan_addr->lun = msg->rsp[9] & 3;
3259 lan_addr->channel = msg->rsp[3] & 0xf;
3260 lan_addr->privilege = msg->rsp[3] >> 4;
3263 * Extract the rest of the message information
3264 * from the IPMB header.
3266 recv_msg->user = user;
3267 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3268 recv_msg->msgid = msg->rsp[9] >> 2;
3269 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3270 recv_msg->msg.cmd = msg->rsp[10];
3271 recv_msg->msg.data = recv_msg->msg_data;
3274 * We chop off 12, not 11 bytes because the checksum
3275 * at the end also needs to be removed.
3277 recv_msg->msg.data_len = msg->rsp_size - 12;
3278 memcpy(recv_msg->msg_data,
3280 msg->rsp_size - 12);
3281 deliver_response(recv_msg);
3289 * This routine will handle "Get Message" command responses with
3290 * channels that use an OEM Medium. The message format belongs to
3291 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3292 * Chapter 22, sections 22.6 and 22.24 for more details.
3294 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3295 struct ipmi_smi_msg *msg)
3297 struct cmd_rcvr *rcvr;
3299 unsigned char netfn;
3302 ipmi_user_t user = NULL;
3303 struct ipmi_system_interface_addr *smi_addr;
3304 struct ipmi_recv_msg *recv_msg;
3307 * We expect the OEM SW to perform error checking
3308 * so we just do some basic sanity checks
3310 if (msg->rsp_size < 4) {
3311 /* Message not big enough, just ignore it. */
3312 ipmi_inc_stat(intf, invalid_commands);
3316 if (msg->rsp[2] != 0) {
3317 /* An error getting the response, just ignore it. */
3322 * This is an OEM Message so the OEM needs to know how
3323 * handle the message. We do no interpretation.
3325 netfn = msg->rsp[0] >> 2;
3327 chan = msg->rsp[3] & 0xf;
3330 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3333 kref_get(&user->refcount);
3339 /* We didn't find a user, just give up. */
3340 ipmi_inc_stat(intf, unhandled_commands);
3343 * Don't do anything with these messages, just allow
3349 /* Deliver the message to the user. */
3350 ipmi_inc_stat(intf, handled_commands);
3352 recv_msg = ipmi_alloc_recv_msg();
3355 * We couldn't allocate memory for the
3356 * message, so requeue it for handling
3360 kref_put(&user->refcount, free_user);
3363 * OEM Messages are expected to be delivered via
3364 * the system interface to SMS software. We might
3365 * need to visit this again depending on OEM
3368 smi_addr = ((struct ipmi_system_interface_addr *)
3370 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3371 smi_addr->channel = IPMI_BMC_CHANNEL;
3372 smi_addr->lun = msg->rsp[0] & 3;
3374 recv_msg->user = user;
3375 recv_msg->user_msg_data = NULL;
3376 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3377 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3378 recv_msg->msg.cmd = msg->rsp[1];
3379 recv_msg->msg.data = recv_msg->msg_data;
3382 * The message starts at byte 4 which follows the
3383 * the Channel Byte in the "GET MESSAGE" command
3385 recv_msg->msg.data_len = msg->rsp_size - 4;
3386 memcpy(recv_msg->msg_data,
3389 deliver_response(recv_msg);
3396 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3397 struct ipmi_smi_msg *msg)
3399 struct ipmi_system_interface_addr *smi_addr;
3401 recv_msg->msgid = 0;
3402 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3403 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3404 smi_addr->channel = IPMI_BMC_CHANNEL;
3405 smi_addr->lun = msg->rsp[0] & 3;
3406 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3407 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3408 recv_msg->msg.cmd = msg->rsp[1];
3409 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3410 recv_msg->msg.data = recv_msg->msg_data;
3411 recv_msg->msg.data_len = msg->rsp_size - 3;
3414 static int handle_read_event_rsp(ipmi_smi_t intf,
3415 struct ipmi_smi_msg *msg)
3417 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3418 struct list_head msgs;
3421 int deliver_count = 0;
3422 unsigned long flags;
3424 if (msg->rsp_size < 19) {
3425 /* Message is too small to be an IPMB event. */
3426 ipmi_inc_stat(intf, invalid_events);
3430 if (msg->rsp[2] != 0) {
3431 /* An error getting the event, just ignore it. */
3435 INIT_LIST_HEAD(&msgs);
3437 spin_lock_irqsave(&intf->events_lock, flags);
3439 ipmi_inc_stat(intf, events);
3442 * Allocate and fill in one message for every user that is
3446 list_for_each_entry_rcu(user, &intf->users, link) {
3447 if (!user->gets_events)
3450 recv_msg = ipmi_alloc_recv_msg();
3453 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3455 list_del(&recv_msg->link);
3456 ipmi_free_recv_msg(recv_msg);
3459 * We couldn't allocate memory for the
3460 * message, so requeue it for handling
3469 copy_event_into_recv_msg(recv_msg, msg);
3470 recv_msg->user = user;
3471 kref_get(&user->refcount);
3472 list_add_tail(&(recv_msg->link), &msgs);
3476 if (deliver_count) {
3477 /* Now deliver all the messages. */
3478 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3479 list_del(&recv_msg->link);
3480 deliver_response(recv_msg);
3482 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3484 * No one to receive the message, put it in queue if there's
3485 * not already too many things in the queue.
3487 recv_msg = ipmi_alloc_recv_msg();
3490 * We couldn't allocate memory for the
3491 * message, so requeue it for handling
3498 copy_event_into_recv_msg(recv_msg, msg);
3499 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3500 intf->waiting_events_count++;
3501 } else if (!intf->event_msg_printed) {
3503 * There's too many things in the queue, discard this
3506 printk(KERN_WARNING PFX "Event queue full, discarding"
3507 " incoming events\n");
3508 intf->event_msg_printed = 1;
3512 spin_unlock_irqrestore(&(intf->events_lock), flags);
3517 static int handle_bmc_rsp(ipmi_smi_t intf,
3518 struct ipmi_smi_msg *msg)
3520 struct ipmi_recv_msg *recv_msg;
3521 struct ipmi_user *user;
3523 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3524 if (recv_msg == NULL) {
3526 "IPMI message received with no owner. This\n"
3527 "could be because of a malformed message, or\n"
3528 "because of a hardware error. Contact your\n"
3529 "hardware vender for assistance\n");
3533 user = recv_msg->user;
3534 /* Make sure the user still exists. */
3535 if (user && !user->valid) {
3536 /* The user for the message went away, so give up. */
3537 ipmi_inc_stat(intf, unhandled_local_responses);
3538 ipmi_free_recv_msg(recv_msg);
3540 struct ipmi_system_interface_addr *smi_addr;
3542 ipmi_inc_stat(intf, handled_local_responses);
3543 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3544 recv_msg->msgid = msg->msgid;
3545 smi_addr = ((struct ipmi_system_interface_addr *)
3547 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3548 smi_addr->channel = IPMI_BMC_CHANNEL;
3549 smi_addr->lun = msg->rsp[0] & 3;
3550 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3551 recv_msg->msg.cmd = msg->rsp[1];
3552 memcpy(recv_msg->msg_data,
3555 recv_msg->msg.data = recv_msg->msg_data;
3556 recv_msg->msg.data_len = msg->rsp_size - 2;
3557 deliver_response(recv_msg);
3564 * Handle a new message. Return 1 if the message should be requeued,
3565 * 0 if the message should be freed, or -1 if the message should not
3566 * be freed or requeued.
3568 static int handle_new_recv_msg(ipmi_smi_t intf,
3569 struct ipmi_smi_msg *msg)
3577 for (m = 0; m < msg->rsp_size; m++)
3578 printk(" %2.2x", msg->rsp[m]);
3581 if (msg->rsp_size < 2) {
3582 /* Message is too small to be correct. */
3583 printk(KERN_WARNING PFX "BMC returned to small a message"
3584 " for netfn %x cmd %x, got %d bytes\n",
3585 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3587 /* Generate an error response for the message. */
3588 msg->rsp[0] = msg->data[0] | (1 << 2);
3589 msg->rsp[1] = msg->data[1];
3590 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3592 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3593 || (msg->rsp[1] != msg->data[1])) {
3595 * The NetFN and Command in the response is not even
3596 * marginally correct.
3598 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3599 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3600 (msg->data[0] >> 2) | 1, msg->data[1],
3601 msg->rsp[0] >> 2, msg->rsp[1]);
3603 /* Generate an error response for the message. */
3604 msg->rsp[0] = msg->data[0] | (1 << 2);
3605 msg->rsp[1] = msg->data[1];
3606 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3610 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3611 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3612 && (msg->user_data != NULL)) {
3614 * It's a response to a response we sent. For this we
3615 * deliver a send message response to the user.
3617 struct ipmi_recv_msg *recv_msg = msg->user_data;
3620 if (msg->rsp_size < 2)
3621 /* Message is too small to be correct. */
3624 chan = msg->data[2] & 0x0f;
3625 if (chan >= IPMI_MAX_CHANNELS)
3626 /* Invalid channel number */
3632 /* Make sure the user still exists. */
3633 if (!recv_msg->user || !recv_msg->user->valid)
3636 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3637 recv_msg->msg.data = recv_msg->msg_data;
3638 recv_msg->msg.data_len = 1;
3639 recv_msg->msg_data[0] = msg->rsp[2];
3640 deliver_response(recv_msg);
3641 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3642 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3643 /* It's from the receive queue. */
3644 chan = msg->rsp[3] & 0xf;
3645 if (chan >= IPMI_MAX_CHANNELS) {
3646 /* Invalid channel number */
3652 * We need to make sure the channels have been initialized.
3653 * The channel_handler routine will set the "curr_channel"
3654 * equal to or greater than IPMI_MAX_CHANNELS when all the
3655 * channels for this interface have been initialized.
3657 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3658 requeue = 0; /* Throw the message away */
3662 switch (intf->channels[chan].medium) {
3663 case IPMI_CHANNEL_MEDIUM_IPMB:
3664 if (msg->rsp[4] & 0x04) {
3666 * It's a response, so find the
3667 * requesting message and send it up.
3669 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3672 * It's a command to the SMS from some other
3673 * entity. Handle that.
3675 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3679 case IPMI_CHANNEL_MEDIUM_8023LAN:
3680 case IPMI_CHANNEL_MEDIUM_ASYNC:
3681 if (msg->rsp[6] & 0x04) {
3683 * It's a response, so find the
3684 * requesting message and send it up.
3686 requeue = handle_lan_get_msg_rsp(intf, msg);
3689 * It's a command to the SMS from some other
3690 * entity. Handle that.
3692 requeue = handle_lan_get_msg_cmd(intf, msg);
3697 /* Check for OEM Channels. Clients had better
3698 register for these commands. */
3699 if ((intf->channels[chan].medium
3700 >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3701 && (intf->channels[chan].medium
3702 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3703 requeue = handle_oem_get_msg_cmd(intf, msg);
3706 * We don't handle the channel type, so just
3713 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3714 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3715 /* It's an asyncronous event. */
3716 requeue = handle_read_event_rsp(intf, msg);
3718 /* It's a response from the local BMC. */
3719 requeue = handle_bmc_rsp(intf, msg);
3726 /* Handle a new message from the lower layer. */
3727 void ipmi_smi_msg_received(ipmi_smi_t intf,
3728 struct ipmi_smi_msg *msg)
3730 unsigned long flags = 0; /* keep us warning-free. */
3732 int run_to_completion;
3735 if ((msg->data_size >= 2)
3736 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3737 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3738 && (msg->user_data == NULL)) {
3740 * This is the local response to a command send, start
3741 * the timer for these. The user_data will not be
3742 * NULL if this is a response send, and we will let
3743 * response sends just go through.
3747 * Check for errors, if we get certain errors (ones
3748 * that mean basically we can try again later), we
3749 * ignore them and start the timer. Otherwise we
3750 * report the error immediately.
3752 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3753 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3754 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3755 && (msg->rsp[2] != IPMI_BUS_ERR)
3756 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3757 int chan = msg->rsp[3] & 0xf;
3759 /* Got an error sending the message, handle it. */
3760 if (chan >= IPMI_MAX_CHANNELS)
3761 ; /* This shouldn't happen */
3762 else if ((intf->channels[chan].medium
3763 == IPMI_CHANNEL_MEDIUM_8023LAN)
3764 || (intf->channels[chan].medium
3765 == IPMI_CHANNEL_MEDIUM_ASYNC))
3766 ipmi_inc_stat(intf, sent_lan_command_errs);
3768 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3769 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3771 /* The message was sent, start the timer. */
3772 intf_start_seq_timer(intf, msg->msgid);
3774 ipmi_free_smi_msg(msg);
3779 * To preserve message order, if the list is not empty, we
3780 * tack this message onto the end of the list.
3782 run_to_completion = intf->run_to_completion;
3783 if (!run_to_completion)
3784 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3785 if (!list_empty(&intf->waiting_msgs)) {
3786 list_add_tail(&msg->link, &intf->waiting_msgs);
3787 if (!run_to_completion)
3788 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3791 if (!run_to_completion)
3792 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3794 rv = handle_new_recv_msg(intf, msg);
3797 * Could not handle the message now, just add it to a
3798 * list to handle later.
3800 run_to_completion = intf->run_to_completion;
3801 if (!run_to_completion)
3802 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3803 list_add_tail(&msg->link, &intf->waiting_msgs);
3804 if (!run_to_completion)
3805 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3806 } else if (rv == 0) {
3807 ipmi_free_smi_msg(msg);
3813 EXPORT_SYMBOL(ipmi_smi_msg_received);
3815 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3820 list_for_each_entry_rcu(user, &intf->users, link) {
3821 if (!user->handler->ipmi_watchdog_pretimeout)
3824 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3828 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3830 static struct ipmi_smi_msg *
3831 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3832 unsigned char seq, long seqid)
3834 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3837 * If we can't allocate the message, then just return, we
3838 * get 4 retries, so this should be ok.
3842 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3843 smi_msg->data_size = recv_msg->msg.data_len;
3844 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3850 for (m = 0; m < smi_msg->data_size; m++)
3851 printk(" %2.2x", smi_msg->data[m]);
3858 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3859 struct list_head *timeouts, long timeout_period,
3860 int slot, unsigned long *flags)
3862 struct ipmi_recv_msg *msg;
3863 struct ipmi_smi_handlers *handlers;
3865 if (intf->intf_num == -1)
3871 ent->timeout -= timeout_period;
3872 if (ent->timeout > 0)
3875 if (ent->retries_left == 0) {
3876 /* The message has used all its retries. */
3878 msg = ent->recv_msg;
3879 list_add_tail(&msg->link, timeouts);
3881 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3882 else if (is_lan_addr(&ent->recv_msg->addr))
3883 ipmi_inc_stat(intf, timed_out_lan_commands);
3885 ipmi_inc_stat(intf, timed_out_ipmb_commands);
3887 struct ipmi_smi_msg *smi_msg;
3888 /* More retries, send again. */
3891 * Start with the max timer, set to normal timer after
3892 * the message is sent.
3894 ent->timeout = MAX_MSG_TIMEOUT;
3895 ent->retries_left--;
3896 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3899 if (is_lan_addr(&ent->recv_msg->addr))
3901 dropped_rexmit_lan_commands);
3904 dropped_rexmit_ipmb_commands);
3908 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3911 * Send the new message. We send with a zero
3912 * priority. It timed out, I doubt time is that
3913 * critical now, and high priority messages are really
3914 * only for messages to the local MC, which don't get
3917 handlers = intf->handlers;
3919 if (is_lan_addr(&ent->recv_msg->addr))
3921 retransmitted_lan_commands);
3924 retransmitted_ipmb_commands);
3926 intf->handlers->sender(intf->send_info,
3929 ipmi_free_smi_msg(smi_msg);
3931 spin_lock_irqsave(&intf->seq_lock, *flags);
3935 static void ipmi_timeout_handler(long timeout_period)
3938 struct list_head timeouts;
3939 struct ipmi_recv_msg *msg, *msg2;
3940 struct ipmi_smi_msg *smi_msg, *smi_msg2;
3941 unsigned long flags;
3945 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3946 /* See if any waiting messages need to be processed. */
3947 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3948 list_for_each_entry_safe(smi_msg, smi_msg2,
3949 &intf->waiting_msgs, link) {
3950 if (!handle_new_recv_msg(intf, smi_msg)) {
3951 list_del(&smi_msg->link);
3952 ipmi_free_smi_msg(smi_msg);
3955 * To preserve message order, quit if we
3956 * can't handle a message.
3961 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3964 * Go through the seq table and find any messages that
3965 * have timed out, putting them in the timeouts
3968 INIT_LIST_HEAD(&timeouts);
3969 spin_lock_irqsave(&intf->seq_lock, flags);
3970 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3971 check_msg_timeout(intf, &(intf->seq_table[i]),
3972 &timeouts, timeout_period, i,
3974 spin_unlock_irqrestore(&intf->seq_lock, flags);
3976 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3977 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3980 * Maintenance mode handling. Check the timeout
3981 * optimistically before we claim the lock. It may
3982 * mean a timeout gets missed occasionally, but that
3983 * only means the timeout gets extended by one period
3984 * in that case. No big deal, and it avoids the lock
3987 if (intf->auto_maintenance_timeout > 0) {
3988 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3989 if (intf->auto_maintenance_timeout > 0) {
3990 intf->auto_maintenance_timeout
3992 if (!intf->maintenance_mode
3993 && (intf->auto_maintenance_timeout <= 0)) {
3994 intf->maintenance_mode_enable = 0;
3995 maintenance_mode_update(intf);
3998 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4005 static void ipmi_request_event(void)
4008 struct ipmi_smi_handlers *handlers;
4012 * Called from the timer, no need to check if handlers is
4015 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4016 /* No event requests when in maintenance mode. */
4017 if (intf->maintenance_mode_enable)
4020 handlers = intf->handlers;
4022 handlers->request_events(intf->send_info);
4027 static struct timer_list ipmi_timer;
4029 /* Call every ~100 ms. */
4030 #define IPMI_TIMEOUT_TIME 100
4032 /* How many jiffies does it take to get to the timeout time. */
4033 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4036 * Request events from the queue every second (this is the number of
4037 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
4038 * future, IPMI will add a way to know immediately if an event is in
4039 * the queue and this silliness can go away.
4041 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
4043 static atomic_t stop_operation;
4044 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4046 static void ipmi_timeout(unsigned long data)
4048 if (atomic_read(&stop_operation))
4052 if (ticks_to_req_ev == 0) {
4053 ipmi_request_event();
4054 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4057 ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4059 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4063 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4064 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4066 /* FIXME - convert these to slabs. */
4067 static void free_smi_msg(struct ipmi_smi_msg *msg)
4069 atomic_dec(&smi_msg_inuse_count);
4073 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4075 struct ipmi_smi_msg *rv;
4076 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4078 rv->done = free_smi_msg;
4079 rv->user_data = NULL;
4080 atomic_inc(&smi_msg_inuse_count);
4084 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4086 static void free_recv_msg(struct ipmi_recv_msg *msg)
4088 atomic_dec(&recv_msg_inuse_count);
4092 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4094 struct ipmi_recv_msg *rv;
4096 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4099 rv->done = free_recv_msg;
4100 atomic_inc(&recv_msg_inuse_count);
4105 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4108 kref_put(&msg->user->refcount, free_user);
4111 EXPORT_SYMBOL(ipmi_free_recv_msg);
4113 #ifdef CONFIG_IPMI_PANIC_EVENT
4115 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4119 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4123 #ifdef CONFIG_IPMI_PANIC_STRING
4124 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4126 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4127 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4128 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4129 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4130 /* A get event receiver command, save it. */
4131 intf->event_receiver = msg->msg.data[1];
4132 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4136 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4138 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4139 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4140 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4141 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4143 * A get device id command, save if we are an event
4144 * receiver or generator.
4146 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4147 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4152 static void send_panic_events(char *str)
4154 struct kernel_ipmi_msg msg;
4156 unsigned char data[16];
4157 struct ipmi_system_interface_addr *si;
4158 struct ipmi_addr addr;
4159 struct ipmi_smi_msg smi_msg;
4160 struct ipmi_recv_msg recv_msg;
4162 si = (struct ipmi_system_interface_addr *) &addr;
4163 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4164 si->channel = IPMI_BMC_CHANNEL;
4167 /* Fill in an event telling that we have failed. */
4168 msg.netfn = 0x04; /* Sensor or Event. */
4169 msg.cmd = 2; /* Platform event command. */
4172 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4173 data[1] = 0x03; /* This is for IPMI 1.0. */
4174 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4175 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4176 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4179 * Put a few breadcrumbs in. Hopefully later we can add more things
4180 * to make the panic events more useful.
4188 smi_msg.done = dummy_smi_done_handler;
4189 recv_msg.done = dummy_recv_done_handler;
4191 /* For every registered interface, send the event. */
4192 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4193 if (!intf->handlers)
4194 /* Interface is not ready. */
4197 intf->run_to_completion = 1;
4198 /* Send the event announcing the panic. */
4199 intf->handlers->set_run_to_completion(intf->send_info, 1);
4200 i_ipmi_request(NULL,
4209 intf->channels[0].address,
4210 intf->channels[0].lun,
4211 0, 1); /* Don't retry, and don't wait. */
4214 #ifdef CONFIG_IPMI_PANIC_STRING
4216 * On every interface, dump a bunch of OEM event holding the
4222 /* For every registered interface, send the event. */
4223 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4225 struct ipmi_ipmb_addr *ipmb;
4228 if (intf->intf_num == -1)
4229 /* Interface was not ready yet. */
4233 * intf_num is used as an marker to tell if the
4234 * interface is valid. Thus we need a read barrier to
4235 * make sure data fetched before checking intf_num
4241 * First job here is to figure out where to send the
4242 * OEM events. There's no way in IPMI to send OEM
4243 * events using an event send command, so we have to
4244 * find the SEL to put them in and stick them in
4248 /* Get capabilities from the get device id. */
4249 intf->local_sel_device = 0;
4250 intf->local_event_generator = 0;
4251 intf->event_receiver = 0;
4253 /* Request the device info from the local MC. */
4254 msg.netfn = IPMI_NETFN_APP_REQUEST;
4255 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4258 intf->null_user_handler = device_id_fetcher;
4259 i_ipmi_request(NULL,
4268 intf->channels[0].address,
4269 intf->channels[0].lun,
4270 0, 1); /* Don't retry, and don't wait. */
4272 if (intf->local_event_generator) {
4273 /* Request the event receiver from the local MC. */
4274 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4275 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4278 intf->null_user_handler = event_receiver_fetcher;
4279 i_ipmi_request(NULL,
4288 intf->channels[0].address,
4289 intf->channels[0].lun,
4290 0, 1); /* no retry, and no wait. */
4292 intf->null_user_handler = NULL;
4295 * Validate the event receiver. The low bit must not
4296 * be 1 (it must be a valid IPMB address), it cannot
4297 * be zero, and it must not be my address.
4299 if (((intf->event_receiver & 1) == 0)
4300 && (intf->event_receiver != 0)
4301 && (intf->event_receiver != intf->channels[0].address)) {
4303 * The event receiver is valid, send an IPMB
4306 ipmb = (struct ipmi_ipmb_addr *) &addr;
4307 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4308 ipmb->channel = 0; /* FIXME - is this right? */
4309 ipmb->lun = intf->event_receiver_lun;
4310 ipmb->slave_addr = intf->event_receiver;
4311 } else if (intf->local_sel_device) {
4313 * The event receiver was not valid (or was
4314 * me), but I am an SEL device, just dump it
4317 si = (struct ipmi_system_interface_addr *) &addr;
4318 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4319 si->channel = IPMI_BMC_CHANNEL;
4322 continue; /* No where to send the event. */
4324 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4325 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4331 int size = strlen(p);
4337 data[2] = 0xf0; /* OEM event without timestamp. */
4338 data[3] = intf->channels[0].address;
4339 data[4] = j++; /* sequence # */
4341 * Always give 11 bytes, so strncpy will fill
4342 * it with zeroes for me.
4344 strncpy(data+5, p, 11);
4347 i_ipmi_request(NULL,
4356 intf->channels[0].address,
4357 intf->channels[0].lun,
4358 0, 1); /* no retry, and no wait. */
4361 #endif /* CONFIG_IPMI_PANIC_STRING */
4363 #endif /* CONFIG_IPMI_PANIC_EVENT */
4365 static int has_panicked;
4367 static int panic_event(struct notifier_block *this,
4368 unsigned long event,
4377 /* For every registered interface, set it to run to completion. */
4378 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4379 if (!intf->handlers)
4380 /* Interface is not ready. */
4383 intf->run_to_completion = 1;
4384 intf->handlers->set_run_to_completion(intf->send_info, 1);
4387 #ifdef CONFIG_IPMI_PANIC_EVENT
4388 send_panic_events(ptr);
4394 static struct notifier_block panic_block = {
4395 .notifier_call = panic_event,
4397 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4400 static int ipmi_init_msghandler(void)
4407 rv = driver_register(&ipmidriver.driver);
4409 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4413 printk(KERN_INFO "ipmi message handler version "
4414 IPMI_DRIVER_VERSION "\n");
4416 #ifdef CONFIG_PROC_FS
4417 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4418 if (!proc_ipmi_root) {
4419 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4423 #endif /* CONFIG_PROC_FS */
4425 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4426 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4428 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4435 static __init int ipmi_init_msghandler_mod(void)
4437 ipmi_init_msghandler();
4441 static __exit void cleanup_ipmi(void)
4448 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4451 * This can't be called if any interfaces exist, so no worry
4452 * about shutting down the interfaces.
4456 * Tell the timer to stop, then wait for it to stop. This
4457 * avoids problems with race conditions removing the timer
4460 atomic_inc(&stop_operation);
4461 del_timer_sync(&ipmi_timer);
4463 #ifdef CONFIG_PROC_FS
4464 remove_proc_entry(proc_ipmi_root->name, NULL);
4465 #endif /* CONFIG_PROC_FS */
4467 driver_unregister(&ipmidriver.driver);
4471 /* Check for buffer leaks. */
4472 count = atomic_read(&smi_msg_inuse_count);
4474 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4476 count = atomic_read(&recv_msg_inuse_count);
4478 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4481 module_exit(cleanup_ipmi);
4483 module_init(ipmi_init_msghandler_mod);
4484 MODULE_LICENSE("GPL");
4485 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4486 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4488 MODULE_VERSION(IPMI_DRIVER_VERSION);