2 * linux/arch/alpha/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
8 * This file handles the architecture-dependent parts of process handling.
11 #include <linux/config.h>
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/smp_lock.h>
19 #include <linux/stddef.h>
20 #include <linux/unistd.h>
21 #include <linux/ptrace.h>
22 #include <linux/slab.h>
23 #include <linux/user.h>
24 #include <linux/a.out.h>
25 #include <linux/utsname.h>
26 #include <linux/time.h>
27 #include <linux/major.h>
28 #include <linux/stat.h>
29 #include <linux/mman.h>
30 #include <linux/elfcore.h>
31 #include <linux/reboot.h>
32 #include <linux/tty.h>
33 #include <linux/console.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
39 #include <asm/pgtable.h>
40 #include <asm/hwrpb.h>
49 set_thread_flag(TIF_POLLING_NRFLAG);
52 /* FIXME -- EV6 and LCA45 know how to power down
55 while (!need_resched())
68 common_shutdown_1(void *generic_ptr)
70 struct halt_info *how = (struct halt_info *)generic_ptr;
71 struct percpu_struct *cpup;
72 unsigned long *pflags, flags;
73 int cpuid = smp_processor_id();
75 /* No point in taking interrupts anymore. */
78 cpup = (struct percpu_struct *)
79 ((unsigned long)hwrpb + hwrpb->processor_offset
80 + hwrpb->processor_size * cpuid);
81 pflags = &cpup->flags;
84 /* Clear reason to "default"; clear "bootstrap in progress". */
85 flags &= ~0x00ff0001UL;
88 /* Secondaries halt here. */
89 if (cpuid != boot_cpuid) {
90 flags |= 0x00040000UL; /* "remain halted" */
92 clear_bit(cpuid, &cpu_present_mask);
97 if (how->mode == LINUX_REBOOT_CMD_RESTART) {
98 if (!how->restart_cmd) {
99 flags |= 0x00020000UL; /* "cold bootstrap" */
101 /* For SRM, we could probably set environment
102 variables to get this to work. We'd have to
103 delay this until after srm_paging_stop unless
104 we ever got srm_fixup working.
106 At the moment, SRM will use the last boot device,
107 but the file and flags will be the defaults, when
108 doing a "warm" bootstrap. */
109 flags |= 0x00030000UL; /* "warm bootstrap" */
112 flags |= 0x00040000UL; /* "remain halted" */
117 /* Wait for the secondaries to halt. */
118 cpu_clear(boot_cpuid, cpu_possible_map);
119 while (cpus_weight(cpu_possible_map))
123 /* If booted from SRM, reset some of the original environment. */
124 if (alpha_using_srm) {
125 #ifdef CONFIG_DUMMY_CONSOLE
126 /* If we've gotten here after SysRq-b, leave interrupt
127 context before taking over the console. */
130 /* This has the effect of resetting the VGA video origin. */
131 take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
133 pci_restore_srm_config();
137 if (alpha_mv.kill_arch)
138 alpha_mv.kill_arch(how->mode);
140 if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
141 /* Unfortunately, since MILO doesn't currently understand
142 the hwrpb bits above, we can't reliably halt the
143 processor and keep it halted. So just loop. */
154 common_shutdown(int mode, char *restart_cmd)
156 struct halt_info args;
158 args.restart_cmd = restart_cmd;
159 on_each_cpu(common_shutdown_1, &args, 1, 0);
163 machine_restart(char *restart_cmd)
165 common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
172 common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
177 machine_power_off(void)
179 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
183 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
184 saved in the context it's used. */
187 show_regs(struct pt_regs *regs)
189 dik_show_regs(regs, NULL);
193 * Re-start a thread when doing execve()
196 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
205 * Free current thread data structures etc..
215 /* Arrange for each exec'ed process to start off with a clean slate
216 with respect to the FPU. This is all exceptions disabled. */
217 current_thread_info()->ieee_state = 0;
218 wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
220 /* Clean slate for TLS. */
221 current_thread_info()->pcb.unique = 0;
225 release_thread(struct task_struct *dead_task)
230 * "alpha_clone()".. By the time we get here, the
231 * non-volatile registers have also been saved on the
232 * stack. We do some ugly pointer stuff here.. (see
235 * Notice that "fork()" is implemented in terms of clone,
236 * with parameters (SIGCHLD, 0).
239 alpha_clone(unsigned long clone_flags, unsigned long usp,
240 int __user *parent_tid, int __user *child_tid,
241 unsigned long tls_value, struct pt_regs *regs)
246 return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
250 alpha_vfork(struct pt_regs *regs)
252 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
253 regs, 0, NULL, NULL);
257 * Copy an alpha thread..
259 * Note the "stack_offset" stuff: when returning to kernel mode, we need
260 * to have some extra stack-space for the kernel stack that still exists
261 * after the "ret_from_fork". When returning to user mode, we only want
262 * the space needed by the syscall stack frame (ie "struct pt_regs").
263 * Use the passed "regs" pointer to determine how much space we need
264 * for a kernel fork().
268 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
269 unsigned long unused,
270 struct task_struct * p, struct pt_regs * regs)
272 extern void ret_from_fork(void);
274 struct thread_info *childti = p->thread_info;
275 struct pt_regs * childregs;
276 struct switch_stack * childstack, *stack;
277 unsigned long stack_offset, settls;
279 stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
281 stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
282 childregs = (struct pt_regs *)
283 (stack_offset + PAGE_SIZE + (long) childti);
289 childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */
291 stack = ((struct switch_stack *) regs) - 1;
292 childstack = ((struct switch_stack *) childregs) - 1;
293 *childstack = *stack;
294 childstack->r26 = (unsigned long) ret_from_fork;
295 childti->pcb.usp = usp;
296 childti->pcb.ksp = (unsigned long) childstack;
297 childti->pcb.flags = 1; /* set FEN, clear everything else */
299 /* Set a new TLS for the child thread? Peek back into the
300 syscall arguments that we saved on syscall entry. Oops,
301 except we'd have clobbered it with the parent/child set
302 of r20. Read the saved copy. */
303 /* Note: if CLONE_SETTLS is not set, then we must inherit the
304 value from the parent, which will have been set by the block
305 copy in dup_task_struct. This is non-intuitive, but is
306 required for proper operation in the case of a threaded
307 application calling fork. */
308 if (clone_flags & CLONE_SETTLS)
309 childti->pcb.unique = settls;
315 * Fill in the user structure for an ECOFF core dump.
318 dump_thread(struct pt_regs * pt, struct user * dump)
320 /* switch stack follows right below pt_regs: */
321 struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
323 dump->magic = CMAGIC;
324 dump->start_code = current->mm->start_code;
325 dump->start_data = current->mm->start_data;
326 dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
327 dump->u_tsize = ((current->mm->end_code - dump->start_code)
329 dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data)
331 dump->u_ssize = (current->mm->start_stack - dump->start_stack
332 + PAGE_SIZE-1) >> PAGE_SHIFT;
335 * We store the registers in an order/format that is
336 * compatible with DEC Unix/OSF/1 as this makes life easier
339 dump->regs[EF_V0] = pt->r0;
340 dump->regs[EF_T0] = pt->r1;
341 dump->regs[EF_T1] = pt->r2;
342 dump->regs[EF_T2] = pt->r3;
343 dump->regs[EF_T3] = pt->r4;
344 dump->regs[EF_T4] = pt->r5;
345 dump->regs[EF_T5] = pt->r6;
346 dump->regs[EF_T6] = pt->r7;
347 dump->regs[EF_T7] = pt->r8;
348 dump->regs[EF_S0] = sw->r9;
349 dump->regs[EF_S1] = sw->r10;
350 dump->regs[EF_S2] = sw->r11;
351 dump->regs[EF_S3] = sw->r12;
352 dump->regs[EF_S4] = sw->r13;
353 dump->regs[EF_S5] = sw->r14;
354 dump->regs[EF_S6] = sw->r15;
355 dump->regs[EF_A3] = pt->r19;
356 dump->regs[EF_A4] = pt->r20;
357 dump->regs[EF_A5] = pt->r21;
358 dump->regs[EF_T8] = pt->r22;
359 dump->regs[EF_T9] = pt->r23;
360 dump->regs[EF_T10] = pt->r24;
361 dump->regs[EF_T11] = pt->r25;
362 dump->regs[EF_RA] = pt->r26;
363 dump->regs[EF_T12] = pt->r27;
364 dump->regs[EF_AT] = pt->r28;
365 dump->regs[EF_SP] = rdusp();
366 dump->regs[EF_PS] = pt->ps;
367 dump->regs[EF_PC] = pt->pc;
368 dump->regs[EF_GP] = pt->gp;
369 dump->regs[EF_A0] = pt->r16;
370 dump->regs[EF_A1] = pt->r17;
371 dump->regs[EF_A2] = pt->r18;
372 memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
376 * Fill in the user structure for a ELF core dump.
379 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
381 /* switch stack follows right below pt_regs: */
382 struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
417 /* Once upon a time this was the PS value. Which is stupid
418 since that is always 8 for usermode. Usurped for the more
419 useful value of the thread's UNIQUE field. */
420 dest[32] = ti->pcb.unique;
424 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
426 struct thread_info *ti;
429 ti = task->thread_info;
430 pt = (struct pt_regs *)((unsigned long)ti + 2*PAGE_SIZE) - 1;
432 dump_elf_thread(dest, pt, ti);
438 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
440 struct thread_info *ti;
442 struct switch_stack *sw;
444 ti = task->thread_info;
445 pt = (struct pt_regs *)((unsigned long)ti + 2*PAGE_SIZE) - 1;
446 sw = (struct switch_stack *)pt - 1;
448 memcpy(dest, sw->fp, 32 * 8);
454 * sys_execve() executes a new program.
457 do_sys_execve(char __user *ufilename, char __user * __user *argv,
458 char __user * __user *envp, struct pt_regs *regs)
463 filename = getname(ufilename);
464 error = PTR_ERR(filename);
465 if (IS_ERR(filename))
467 error = do_execve(filename, argv, envp, regs);
474 * Return saved PC of a blocked thread. This assumes the frame
475 * pointer is the 6th saved long on the kernel stack and that the
476 * saved return address is the first long in the frame. This all
477 * holds provided the thread blocked through a call to schedule() ($15
478 * is the frame pointer in schedule() and $15 is saved at offset 48 by
479 * entry.S:do_switch_stack).
481 * Under heavy swap load I've seen this lose in an ugly way. So do
482 * some extra sanity checking on the ranges we expect these pointers
483 * to be in so that we can fail gracefully. This is just for ps after
488 thread_saved_pc(task_t *t)
490 unsigned long base = (unsigned long)t->thread_info;
491 unsigned long fp, sp = t->thread_info->pcb.ksp;
493 if (sp > base && sp+6*8 < base + 16*1024) {
494 fp = ((unsigned long*)sp)[6];
495 if (fp > sp && fp < base + 16*1024)
496 return *(unsigned long *)fp;
503 get_wchan(struct task_struct *p)
505 unsigned long schedule_frame;
507 if (!p || p == current || p->state == TASK_RUNNING)
510 * This one depends on the frame size of schedule(). Do a
511 * "disass schedule" in gdb to find the frame size. Also, the
512 * code assumes that sleep_on() follows immediately after
513 * interruptible_sleep_on() and that add_timer() follows
514 * immediately after interruptible_sleep(). Ugly, isn't it?
515 * Maybe adding a wchan field to task_struct would be better,
519 pc = thread_saved_pc(p);
520 if (in_sched_functions(pc)) {
521 schedule_frame = ((unsigned long *)p->thread_info->pcb.ksp)[6];
522 return ((unsigned long *)schedule_frame)[12];