Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[linux-2.6] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long prio_bias;
210         unsigned long cpu_load[3];
211 #endif
212         unsigned long long nr_switches;
213
214         /*
215          * This is part of a global counter where only the total sum
216          * over all CPUs matters. A task can increase this counter on
217          * one CPU and if it got migrated afterwards it may decrease
218          * it on another CPU. Always updated under the runqueue lock:
219          */
220         unsigned long nr_uninterruptible;
221
222         unsigned long expired_timestamp;
223         unsigned long long timestamp_last_tick;
224         task_t *curr, *idle;
225         struct mm_struct *prev_mm;
226         prio_array_t *active, *expired, arrays[2];
227         int best_expired_prio;
228         atomic_t nr_iowait;
229
230 #ifdef CONFIG_SMP
231         struct sched_domain *sd;
232
233         /* For active balancing */
234         int active_balance;
235         int push_cpu;
236
237         task_t *migration_thread;
238         struct list_head migration_queue;
239 #endif
240
241 #ifdef CONFIG_SCHEDSTATS
242         /* latency stats */
243         struct sched_info rq_sched_info;
244
245         /* sys_sched_yield() stats */
246         unsigned long yld_exp_empty;
247         unsigned long yld_act_empty;
248         unsigned long yld_both_empty;
249         unsigned long yld_cnt;
250
251         /* schedule() stats */
252         unsigned long sched_switch;
253         unsigned long sched_cnt;
254         unsigned long sched_goidle;
255
256         /* try_to_wake_up() stats */
257         unsigned long ttwu_cnt;
258         unsigned long ttwu_local;
259 #endif
260 };
261
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
263
264 /*
265  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266  * See detach_destroy_domains: synchronize_sched for details.
267  *
268  * The domain tree of any CPU may only be accessed from within
269  * preempt-disabled sections.
270  */
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273
274 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
275 #define this_rq()               (&__get_cpu_var(runqueues))
276 #define task_rq(p)              cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
278
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next)      do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev)       do { } while (0)
284 #endif
285
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
288 {
289         return rq->curr == p;
290 }
291
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293 {
294 }
295
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 {
298 #ifdef CONFIG_DEBUG_SPINLOCK
299         /* this is a valid case when another task releases the spinlock */
300         rq->lock.owner = current;
301 #endif
302         spin_unlock_irq(&rq->lock);
303 }
304
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
307 {
308 #ifdef CONFIG_SMP
309         return p->oncpu;
310 #else
311         return rq->curr == p;
312 #endif
313 }
314
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316 {
317 #ifdef CONFIG_SMP
318         /*
319          * We can optimise this out completely for !SMP, because the
320          * SMP rebalancing from interrupt is the only thing that cares
321          * here.
322          */
323         next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326         spin_unlock_irq(&rq->lock);
327 #else
328         spin_unlock(&rq->lock);
329 #endif
330 }
331
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333 {
334 #ifdef CONFIG_SMP
335         /*
336          * After ->oncpu is cleared, the task can be moved to a different CPU.
337          * We must ensure this doesn't happen until the switch is completely
338          * finished.
339          */
340         smp_wmb();
341         prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344         local_irq_enable();
345 #endif
346 }
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
348
349 /*
350  * task_rq_lock - lock the runqueue a given task resides on and disable
351  * interrupts.  Note the ordering: we can safely lookup the task_rq without
352  * explicitly disabling preemption.
353  */
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355         __acquires(rq->lock)
356 {
357         struct runqueue *rq;
358
359 repeat_lock_task:
360         local_irq_save(*flags);
361         rq = task_rq(p);
362         spin_lock(&rq->lock);
363         if (unlikely(rq != task_rq(p))) {
364                 spin_unlock_irqrestore(&rq->lock, *flags);
365                 goto repeat_lock_task;
366         }
367         return rq;
368 }
369
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371         __releases(rq->lock)
372 {
373         spin_unlock_irqrestore(&rq->lock, *flags);
374 }
375
376 #ifdef CONFIG_SCHEDSTATS
377 /*
378  * bump this up when changing the output format or the meaning of an existing
379  * format, so that tools can adapt (or abort)
380  */
381 #define SCHEDSTAT_VERSION 12
382
383 static int show_schedstat(struct seq_file *seq, void *v)
384 {
385         int cpu;
386
387         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388         seq_printf(seq, "timestamp %lu\n", jiffies);
389         for_each_online_cpu(cpu) {
390                 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392                 struct sched_domain *sd;
393                 int dcnt = 0;
394 #endif
395
396                 /* runqueue-specific stats */
397                 seq_printf(seq,
398                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399                     cpu, rq->yld_both_empty,
400                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402                     rq->ttwu_cnt, rq->ttwu_local,
403                     rq->rq_sched_info.cpu_time,
404                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406                 seq_printf(seq, "\n");
407
408 #ifdef CONFIG_SMP
409                 /* domain-specific stats */
410                 preempt_disable();
411                 for_each_domain(cpu, sd) {
412                         enum idle_type itype;
413                         char mask_str[NR_CPUS];
414
415                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418                                         itype++) {
419                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420                                     sd->lb_cnt[itype],
421                                     sd->lb_balanced[itype],
422                                     sd->lb_failed[itype],
423                                     sd->lb_imbalance[itype],
424                                     sd->lb_gained[itype],
425                                     sd->lb_hot_gained[itype],
426                                     sd->lb_nobusyq[itype],
427                                     sd->lb_nobusyg[itype]);
428                         }
429                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434                 }
435                 preempt_enable();
436 #endif
437         }
438         return 0;
439 }
440
441 static int schedstat_open(struct inode *inode, struct file *file)
442 {
443         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444         char *buf = kmalloc(size, GFP_KERNEL);
445         struct seq_file *m;
446         int res;
447
448         if (!buf)
449                 return -ENOMEM;
450         res = single_open(file, show_schedstat, NULL);
451         if (!res) {
452                 m = file->private_data;
453                 m->buf = buf;
454                 m->size = size;
455         } else
456                 kfree(buf);
457         return res;
458 }
459
460 struct file_operations proc_schedstat_operations = {
461         .open    = schedstat_open,
462         .read    = seq_read,
463         .llseek  = seq_lseek,
464         .release = single_release,
465 };
466
467 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field)       do { } while (0)
471 # define schedstat_add(rq, field, amt)  do { } while (0)
472 #endif
473
474 /*
475  * rq_lock - lock a given runqueue and disable interrupts.
476  */
477 static inline runqueue_t *this_rq_lock(void)
478         __acquires(rq->lock)
479 {
480         runqueue_t *rq;
481
482         local_irq_disable();
483         rq = this_rq();
484         spin_lock(&rq->lock);
485
486         return rq;
487 }
488
489 #ifdef CONFIG_SCHEDSTATS
490 /*
491  * Called when a process is dequeued from the active array and given
492  * the cpu.  We should note that with the exception of interactive
493  * tasks, the expired queue will become the active queue after the active
494  * queue is empty, without explicitly dequeuing and requeuing tasks in the
495  * expired queue.  (Interactive tasks may be requeued directly to the
496  * active queue, thus delaying tasks in the expired queue from running;
497  * see scheduler_tick()).
498  *
499  * This function is only called from sched_info_arrive(), rather than
500  * dequeue_task(). Even though a task may be queued and dequeued multiple
501  * times as it is shuffled about, we're really interested in knowing how
502  * long it was from the *first* time it was queued to the time that it
503  * finally hit a cpu.
504  */
505 static inline void sched_info_dequeued(task_t *t)
506 {
507         t->sched_info.last_queued = 0;
508 }
509
510 /*
511  * Called when a task finally hits the cpu.  We can now calculate how
512  * long it was waiting to run.  We also note when it began so that we
513  * can keep stats on how long its timeslice is.
514  */
515 static inline void sched_info_arrive(task_t *t)
516 {
517         unsigned long now = jiffies, diff = 0;
518         struct runqueue *rq = task_rq(t);
519
520         if (t->sched_info.last_queued)
521                 diff = now - t->sched_info.last_queued;
522         sched_info_dequeued(t);
523         t->sched_info.run_delay += diff;
524         t->sched_info.last_arrival = now;
525         t->sched_info.pcnt++;
526
527         if (!rq)
528                 return;
529
530         rq->rq_sched_info.run_delay += diff;
531         rq->rq_sched_info.pcnt++;
532 }
533
534 /*
535  * Called when a process is queued into either the active or expired
536  * array.  The time is noted and later used to determine how long we
537  * had to wait for us to reach the cpu.  Since the expired queue will
538  * become the active queue after active queue is empty, without dequeuing
539  * and requeuing any tasks, we are interested in queuing to either. It
540  * is unusual but not impossible for tasks to be dequeued and immediately
541  * requeued in the same or another array: this can happen in sched_yield(),
542  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543  * to runqueue.
544  *
545  * This function is only called from enqueue_task(), but also only updates
546  * the timestamp if it is already not set.  It's assumed that
547  * sched_info_dequeued() will clear that stamp when appropriate.
548  */
549 static inline void sched_info_queued(task_t *t)
550 {
551         if (!t->sched_info.last_queued)
552                 t->sched_info.last_queued = jiffies;
553 }
554
555 /*
556  * Called when a process ceases being the active-running process, either
557  * voluntarily or involuntarily.  Now we can calculate how long we ran.
558  */
559 static inline void sched_info_depart(task_t *t)
560 {
561         struct runqueue *rq = task_rq(t);
562         unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564         t->sched_info.cpu_time += diff;
565
566         if (rq)
567                 rq->rq_sched_info.cpu_time += diff;
568 }
569
570 /*
571  * Called when tasks are switched involuntarily due, typically, to expiring
572  * their time slice.  (This may also be called when switching to or from
573  * the idle task.)  We are only called when prev != next.
574  */
575 static inline void sched_info_switch(task_t *prev, task_t *next)
576 {
577         struct runqueue *rq = task_rq(prev);
578
579         /*
580          * prev now departs the cpu.  It's not interesting to record
581          * stats about how efficient we were at scheduling the idle
582          * process, however.
583          */
584         if (prev != rq->idle)
585                 sched_info_depart(prev);
586
587         if (next != rq->idle)
588                 sched_info_arrive(next);
589 }
590 #else
591 #define sched_info_queued(t)            do { } while (0)
592 #define sched_info_switch(t, next)      do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
594
595 /*
596  * Adding/removing a task to/from a priority array:
597  */
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
599 {
600         array->nr_active--;
601         list_del(&p->run_list);
602         if (list_empty(array->queue + p->prio))
603                 __clear_bit(p->prio, array->bitmap);
604 }
605
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
607 {
608         sched_info_queued(p);
609         list_add_tail(&p->run_list, array->queue + p->prio);
610         __set_bit(p->prio, array->bitmap);
611         array->nr_active++;
612         p->array = array;
613 }
614
615 /*
616  * Put task to the end of the run list without the overhead of dequeue
617  * followed by enqueue.
618  */
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
620 {
621         list_move_tail(&p->run_list, array->queue + p->prio);
622 }
623
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625 {
626         list_add(&p->run_list, array->queue + p->prio);
627         __set_bit(p->prio, array->bitmap);
628         array->nr_active++;
629         p->array = array;
630 }
631
632 /*
633  * effective_prio - return the priority that is based on the static
634  * priority but is modified by bonuses/penalties.
635  *
636  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637  * into the -5 ... 0 ... +5 bonus/penalty range.
638  *
639  * We use 25% of the full 0...39 priority range so that:
640  *
641  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643  *
644  * Both properties are important to certain workloads.
645  */
646 static int effective_prio(task_t *p)
647 {
648         int bonus, prio;
649
650         if (rt_task(p))
651                 return p->prio;
652
653         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655         prio = p->static_prio - bonus;
656         if (prio < MAX_RT_PRIO)
657                 prio = MAX_RT_PRIO;
658         if (prio > MAX_PRIO-1)
659                 prio = MAX_PRIO-1;
660         return prio;
661 }
662
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
665 {
666         rq->prio_bias += MAX_PRIO - prio;
667 }
668
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
670 {
671         rq->prio_bias -= MAX_PRIO - prio;
672 }
673
674 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
675 {
676         rq->nr_running++;
677         if (rt_task(p)) {
678                 if (p != rq->migration_thread)
679                         /*
680                          * The migration thread does the actual balancing. Do
681                          * not bias by its priority as the ultra high priority
682                          * will skew balancing adversely.
683                          */
684                         inc_prio_bias(rq, p->prio);
685         } else
686                 inc_prio_bias(rq, p->static_prio);
687 }
688
689 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
690 {
691         rq->nr_running--;
692         if (rt_task(p)) {
693                 if (p != rq->migration_thread)
694                         dec_prio_bias(rq, p->prio);
695         } else
696                 dec_prio_bias(rq, p->static_prio);
697 }
698 #else
699 static inline void inc_prio_bias(runqueue_t *rq, int prio)
700 {
701 }
702
703 static inline void dec_prio_bias(runqueue_t *rq, int prio)
704 {
705 }
706
707 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
708 {
709         rq->nr_running++;
710 }
711
712 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
713 {
714         rq->nr_running--;
715 }
716 #endif
717
718 /*
719  * __activate_task - move a task to the runqueue.
720  */
721 static inline void __activate_task(task_t *p, runqueue_t *rq)
722 {
723         enqueue_task(p, rq->active);
724         inc_nr_running(p, rq);
725 }
726
727 /*
728  * __activate_idle_task - move idle task to the _front_ of runqueue.
729  */
730 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
731 {
732         enqueue_task_head(p, rq->active);
733         inc_nr_running(p, rq);
734 }
735
736 static int recalc_task_prio(task_t *p, unsigned long long now)
737 {
738         /* Caller must always ensure 'now >= p->timestamp' */
739         unsigned long long __sleep_time = now - p->timestamp;
740         unsigned long sleep_time;
741
742         if (__sleep_time > NS_MAX_SLEEP_AVG)
743                 sleep_time = NS_MAX_SLEEP_AVG;
744         else
745                 sleep_time = (unsigned long)__sleep_time;
746
747         if (likely(sleep_time > 0)) {
748                 /*
749                  * User tasks that sleep a long time are categorised as
750                  * idle and will get just interactive status to stay active &
751                  * prevent them suddenly becoming cpu hogs and starving
752                  * other processes.
753                  */
754                 if (p->mm && p->activated != -1 &&
755                         sleep_time > INTERACTIVE_SLEEP(p)) {
756                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
757                                                 DEF_TIMESLICE);
758                 } else {
759                         /*
760                          * The lower the sleep avg a task has the more
761                          * rapidly it will rise with sleep time.
762                          */
763                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
764
765                         /*
766                          * Tasks waking from uninterruptible sleep are
767                          * limited in their sleep_avg rise as they
768                          * are likely to be waiting on I/O
769                          */
770                         if (p->activated == -1 && p->mm) {
771                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
772                                         sleep_time = 0;
773                                 else if (p->sleep_avg + sleep_time >=
774                                                 INTERACTIVE_SLEEP(p)) {
775                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
776                                         sleep_time = 0;
777                                 }
778                         }
779
780                         /*
781                          * This code gives a bonus to interactive tasks.
782                          *
783                          * The boost works by updating the 'average sleep time'
784                          * value here, based on ->timestamp. The more time a
785                          * task spends sleeping, the higher the average gets -
786                          * and the higher the priority boost gets as well.
787                          */
788                         p->sleep_avg += sleep_time;
789
790                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
791                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
792                 }
793         }
794
795         return effective_prio(p);
796 }
797
798 /*
799  * activate_task - move a task to the runqueue and do priority recalculation
800  *
801  * Update all the scheduling statistics stuff. (sleep average
802  * calculation, priority modifiers, etc.)
803  */
804 static void activate_task(task_t *p, runqueue_t *rq, int local)
805 {
806         unsigned long long now;
807
808         now = sched_clock();
809 #ifdef CONFIG_SMP
810         if (!local) {
811                 /* Compensate for drifting sched_clock */
812                 runqueue_t *this_rq = this_rq();
813                 now = (now - this_rq->timestamp_last_tick)
814                         + rq->timestamp_last_tick;
815         }
816 #endif
817
818         p->prio = recalc_task_prio(p, now);
819
820         /*
821          * This checks to make sure it's not an uninterruptible task
822          * that is now waking up.
823          */
824         if (!p->activated) {
825                 /*
826                  * Tasks which were woken up by interrupts (ie. hw events)
827                  * are most likely of interactive nature. So we give them
828                  * the credit of extending their sleep time to the period
829                  * of time they spend on the runqueue, waiting for execution
830                  * on a CPU, first time around:
831                  */
832                 if (in_interrupt())
833                         p->activated = 2;
834                 else {
835                         /*
836                          * Normal first-time wakeups get a credit too for
837                          * on-runqueue time, but it will be weighted down:
838                          */
839                         p->activated = 1;
840                 }
841         }
842         p->timestamp = now;
843
844         __activate_task(p, rq);
845 }
846
847 /*
848  * deactivate_task - remove a task from the runqueue.
849  */
850 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
851 {
852         dec_nr_running(p, rq);
853         dequeue_task(p, p->array);
854         p->array = NULL;
855 }
856
857 /*
858  * resched_task - mark a task 'to be rescheduled now'.
859  *
860  * On UP this means the setting of the need_resched flag, on SMP it
861  * might also involve a cross-CPU call to trigger the scheduler on
862  * the target CPU.
863  */
864 #ifdef CONFIG_SMP
865 static void resched_task(task_t *p)
866 {
867         int cpu;
868
869         assert_spin_locked(&task_rq(p)->lock);
870
871         if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
872                 return;
873
874         set_tsk_thread_flag(p, TIF_NEED_RESCHED);
875
876         cpu = task_cpu(p);
877         if (cpu == smp_processor_id())
878                 return;
879
880         /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
881         smp_mb();
882         if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
883                 smp_send_reschedule(cpu);
884 }
885 #else
886 static inline void resched_task(task_t *p)
887 {
888         assert_spin_locked(&task_rq(p)->lock);
889         set_tsk_need_resched(p);
890 }
891 #endif
892
893 /**
894  * task_curr - is this task currently executing on a CPU?
895  * @p: the task in question.
896  */
897 inline int task_curr(const task_t *p)
898 {
899         return cpu_curr(task_cpu(p)) == p;
900 }
901
902 #ifdef CONFIG_SMP
903 typedef struct {
904         struct list_head list;
905
906         task_t *task;
907         int dest_cpu;
908
909         struct completion done;
910 } migration_req_t;
911
912 /*
913  * The task's runqueue lock must be held.
914  * Returns true if you have to wait for migration thread.
915  */
916 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
917 {
918         runqueue_t *rq = task_rq(p);
919
920         /*
921          * If the task is not on a runqueue (and not running), then
922          * it is sufficient to simply update the task's cpu field.
923          */
924         if (!p->array && !task_running(rq, p)) {
925                 set_task_cpu(p, dest_cpu);
926                 return 0;
927         }
928
929         init_completion(&req->done);
930         req->task = p;
931         req->dest_cpu = dest_cpu;
932         list_add(&req->list, &rq->migration_queue);
933         return 1;
934 }
935
936 /*
937  * wait_task_inactive - wait for a thread to unschedule.
938  *
939  * The caller must ensure that the task *will* unschedule sometime soon,
940  * else this function might spin for a *long* time. This function can't
941  * be called with interrupts off, or it may introduce deadlock with
942  * smp_call_function() if an IPI is sent by the same process we are
943  * waiting to become inactive.
944  */
945 void wait_task_inactive(task_t *p)
946 {
947         unsigned long flags;
948         runqueue_t *rq;
949         int preempted;
950
951 repeat:
952         rq = task_rq_lock(p, &flags);
953         /* Must be off runqueue entirely, not preempted. */
954         if (unlikely(p->array || task_running(rq, p))) {
955                 /* If it's preempted, we yield.  It could be a while. */
956                 preempted = !task_running(rq, p);
957                 task_rq_unlock(rq, &flags);
958                 cpu_relax();
959                 if (preempted)
960                         yield();
961                 goto repeat;
962         }
963         task_rq_unlock(rq, &flags);
964 }
965
966 /***
967  * kick_process - kick a running thread to enter/exit the kernel
968  * @p: the to-be-kicked thread
969  *
970  * Cause a process which is running on another CPU to enter
971  * kernel-mode, without any delay. (to get signals handled.)
972  *
973  * NOTE: this function doesnt have to take the runqueue lock,
974  * because all it wants to ensure is that the remote task enters
975  * the kernel. If the IPI races and the task has been migrated
976  * to another CPU then no harm is done and the purpose has been
977  * achieved as well.
978  */
979 void kick_process(task_t *p)
980 {
981         int cpu;
982
983         preempt_disable();
984         cpu = task_cpu(p);
985         if ((cpu != smp_processor_id()) && task_curr(p))
986                 smp_send_reschedule(cpu);
987         preempt_enable();
988 }
989
990 /*
991  * Return a low guess at the load of a migration-source cpu.
992  *
993  * We want to under-estimate the load of migration sources, to
994  * balance conservatively.
995  */
996 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
997 {
998         runqueue_t *rq = cpu_rq(cpu);
999         unsigned long running = rq->nr_running;
1000         unsigned long source_load, cpu_load = rq->cpu_load[type-1],
1001                 load_now = running * SCHED_LOAD_SCALE;
1002
1003         if (type == 0)
1004                 source_load = load_now;
1005         else
1006                 source_load = min(cpu_load, load_now);
1007
1008         if (running > 1 || (idle == NOT_IDLE && running))
1009                 /*
1010                  * If we are busy rebalancing the load is biased by
1011                  * priority to create 'nice' support across cpus. When
1012                  * idle rebalancing we should only bias the source_load if
1013                  * there is more than one task running on that queue to
1014                  * prevent idle rebalance from trying to pull tasks from a
1015                  * queue with only one running task.
1016                  */
1017                 source_load = source_load * rq->prio_bias / running;
1018
1019         return source_load;
1020 }
1021
1022 static inline unsigned long source_load(int cpu, int type)
1023 {
1024         return __source_load(cpu, type, NOT_IDLE);
1025 }
1026
1027 /*
1028  * Return a high guess at the load of a migration-target cpu
1029  */
1030 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1031 {
1032         runqueue_t *rq = cpu_rq(cpu);
1033         unsigned long running = rq->nr_running;
1034         unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1035                 load_now = running * SCHED_LOAD_SCALE;
1036
1037         if (type == 0)
1038                 target_load = load_now;
1039         else
1040                 target_load = max(cpu_load, load_now);
1041
1042         if (running > 1 || (idle == NOT_IDLE && running))
1043                 target_load = target_load * rq->prio_bias / running;
1044
1045         return target_load;
1046 }
1047
1048 static inline unsigned long target_load(int cpu, int type)
1049 {
1050         return __target_load(cpu, type, NOT_IDLE);
1051 }
1052
1053 /*
1054  * find_idlest_group finds and returns the least busy CPU group within the
1055  * domain.
1056  */
1057 static struct sched_group *
1058 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1059 {
1060         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1061         unsigned long min_load = ULONG_MAX, this_load = 0;
1062         int load_idx = sd->forkexec_idx;
1063         int imbalance = 100 + (sd->imbalance_pct-100)/2;
1064
1065         do {
1066                 unsigned long load, avg_load;
1067                 int local_group;
1068                 int i;
1069
1070                 /* Skip over this group if it has no CPUs allowed */
1071                 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1072                         goto nextgroup;
1073
1074                 local_group = cpu_isset(this_cpu, group->cpumask);
1075
1076                 /* Tally up the load of all CPUs in the group */
1077                 avg_load = 0;
1078
1079                 for_each_cpu_mask(i, group->cpumask) {
1080                         /* Bias balancing toward cpus of our domain */
1081                         if (local_group)
1082                                 load = source_load(i, load_idx);
1083                         else
1084                                 load = target_load(i, load_idx);
1085
1086                         avg_load += load;
1087                 }
1088
1089                 /* Adjust by relative CPU power of the group */
1090                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1091
1092                 if (local_group) {
1093                         this_load = avg_load;
1094                         this = group;
1095                 } else if (avg_load < min_load) {
1096                         min_load = avg_load;
1097                         idlest = group;
1098                 }
1099 nextgroup:
1100                 group = group->next;
1101         } while (group != sd->groups);
1102
1103         if (!idlest || 100*this_load < imbalance*min_load)
1104                 return NULL;
1105         return idlest;
1106 }
1107
1108 /*
1109  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1110  */
1111 static int
1112 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1113 {
1114         cpumask_t tmp;
1115         unsigned long load, min_load = ULONG_MAX;
1116         int idlest = -1;
1117         int i;
1118
1119         /* Traverse only the allowed CPUs */
1120         cpus_and(tmp, group->cpumask, p->cpus_allowed);
1121
1122         for_each_cpu_mask(i, tmp) {
1123                 load = source_load(i, 0);
1124
1125                 if (load < min_load || (load == min_load && i == this_cpu)) {
1126                         min_load = load;
1127                         idlest = i;
1128                 }
1129         }
1130
1131         return idlest;
1132 }
1133
1134 /*
1135  * sched_balance_self: balance the current task (running on cpu) in domains
1136  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1137  * SD_BALANCE_EXEC.
1138  *
1139  * Balance, ie. select the least loaded group.
1140  *
1141  * Returns the target CPU number, or the same CPU if no balancing is needed.
1142  *
1143  * preempt must be disabled.
1144  */
1145 static int sched_balance_self(int cpu, int flag)
1146 {
1147         struct task_struct *t = current;
1148         struct sched_domain *tmp, *sd = NULL;
1149
1150         for_each_domain(cpu, tmp)
1151                 if (tmp->flags & flag)
1152                         sd = tmp;
1153
1154         while (sd) {
1155                 cpumask_t span;
1156                 struct sched_group *group;
1157                 int new_cpu;
1158                 int weight;
1159
1160                 span = sd->span;
1161                 group = find_idlest_group(sd, t, cpu);
1162                 if (!group)
1163                         goto nextlevel;
1164
1165                 new_cpu = find_idlest_cpu(group, t, cpu);
1166                 if (new_cpu == -1 || new_cpu == cpu)
1167                         goto nextlevel;
1168
1169                 /* Now try balancing at a lower domain level */
1170                 cpu = new_cpu;
1171 nextlevel:
1172                 sd = NULL;
1173                 weight = cpus_weight(span);
1174                 for_each_domain(cpu, tmp) {
1175                         if (weight <= cpus_weight(tmp->span))
1176                                 break;
1177                         if (tmp->flags & flag)
1178                                 sd = tmp;
1179                 }
1180                 /* while loop will break here if sd == NULL */
1181         }
1182
1183         return cpu;
1184 }
1185
1186 #endif /* CONFIG_SMP */
1187
1188 /*
1189  * wake_idle() will wake a task on an idle cpu if task->cpu is
1190  * not idle and an idle cpu is available.  The span of cpus to
1191  * search starts with cpus closest then further out as needed,
1192  * so we always favor a closer, idle cpu.
1193  *
1194  * Returns the CPU we should wake onto.
1195  */
1196 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1197 static int wake_idle(int cpu, task_t *p)
1198 {
1199         cpumask_t tmp;
1200         struct sched_domain *sd;
1201         int i;
1202
1203         if (idle_cpu(cpu))
1204                 return cpu;
1205
1206         for_each_domain(cpu, sd) {
1207                 if (sd->flags & SD_WAKE_IDLE) {
1208                         cpus_and(tmp, sd->span, p->cpus_allowed);
1209                         for_each_cpu_mask(i, tmp) {
1210                                 if (idle_cpu(i))
1211                                         return i;
1212                         }
1213                 }
1214                 else
1215                         break;
1216         }
1217         return cpu;
1218 }
1219 #else
1220 static inline int wake_idle(int cpu, task_t *p)
1221 {
1222         return cpu;
1223 }
1224 #endif
1225
1226 /***
1227  * try_to_wake_up - wake up a thread
1228  * @p: the to-be-woken-up thread
1229  * @state: the mask of task states that can be woken
1230  * @sync: do a synchronous wakeup?
1231  *
1232  * Put it on the run-queue if it's not already there. The "current"
1233  * thread is always on the run-queue (except when the actual
1234  * re-schedule is in progress), and as such you're allowed to do
1235  * the simpler "current->state = TASK_RUNNING" to mark yourself
1236  * runnable without the overhead of this.
1237  *
1238  * returns failure only if the task is already active.
1239  */
1240 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1241 {
1242         int cpu, this_cpu, success = 0;
1243         unsigned long flags;
1244         long old_state;
1245         runqueue_t *rq;
1246 #ifdef CONFIG_SMP
1247         unsigned long load, this_load;
1248         struct sched_domain *sd, *this_sd = NULL;
1249         int new_cpu;
1250 #endif
1251
1252         rq = task_rq_lock(p, &flags);
1253         old_state = p->state;
1254         if (!(old_state & state))
1255                 goto out;
1256
1257         if (p->array)
1258                 goto out_running;
1259
1260         cpu = task_cpu(p);
1261         this_cpu = smp_processor_id();
1262
1263 #ifdef CONFIG_SMP
1264         if (unlikely(task_running(rq, p)))
1265                 goto out_activate;
1266
1267         new_cpu = cpu;
1268
1269         schedstat_inc(rq, ttwu_cnt);
1270         if (cpu == this_cpu) {
1271                 schedstat_inc(rq, ttwu_local);
1272                 goto out_set_cpu;
1273         }
1274
1275         for_each_domain(this_cpu, sd) {
1276                 if (cpu_isset(cpu, sd->span)) {
1277                         schedstat_inc(sd, ttwu_wake_remote);
1278                         this_sd = sd;
1279                         break;
1280                 }
1281         }
1282
1283         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1284                 goto out_set_cpu;
1285
1286         /*
1287          * Check for affine wakeup and passive balancing possibilities.
1288          */
1289         if (this_sd) {
1290                 int idx = this_sd->wake_idx;
1291                 unsigned int imbalance;
1292
1293                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1294
1295                 load = source_load(cpu, idx);
1296                 this_load = target_load(this_cpu, idx);
1297
1298                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1299
1300                 if (this_sd->flags & SD_WAKE_AFFINE) {
1301                         unsigned long tl = this_load;
1302                         /*
1303                          * If sync wakeup then subtract the (maximum possible)
1304                          * effect of the currently running task from the load
1305                          * of the current CPU:
1306                          */
1307                         if (sync)
1308                                 tl -= SCHED_LOAD_SCALE;
1309
1310                         if ((tl <= load &&
1311                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1312                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1313                                 /*
1314                                  * This domain has SD_WAKE_AFFINE and
1315                                  * p is cache cold in this domain, and
1316                                  * there is no bad imbalance.
1317                                  */
1318                                 schedstat_inc(this_sd, ttwu_move_affine);
1319                                 goto out_set_cpu;
1320                         }
1321                 }
1322
1323                 /*
1324                  * Start passive balancing when half the imbalance_pct
1325                  * limit is reached.
1326                  */
1327                 if (this_sd->flags & SD_WAKE_BALANCE) {
1328                         if (imbalance*this_load <= 100*load) {
1329                                 schedstat_inc(this_sd, ttwu_move_balance);
1330                                 goto out_set_cpu;
1331                         }
1332                 }
1333         }
1334
1335         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1336 out_set_cpu:
1337         new_cpu = wake_idle(new_cpu, p);
1338         if (new_cpu != cpu) {
1339                 set_task_cpu(p, new_cpu);
1340                 task_rq_unlock(rq, &flags);
1341                 /* might preempt at this point */
1342                 rq = task_rq_lock(p, &flags);
1343                 old_state = p->state;
1344                 if (!(old_state & state))
1345                         goto out;
1346                 if (p->array)
1347                         goto out_running;
1348
1349                 this_cpu = smp_processor_id();
1350                 cpu = task_cpu(p);
1351         }
1352
1353 out_activate:
1354 #endif /* CONFIG_SMP */
1355         if (old_state == TASK_UNINTERRUPTIBLE) {
1356                 rq->nr_uninterruptible--;
1357                 /*
1358                  * Tasks on involuntary sleep don't earn
1359                  * sleep_avg beyond just interactive state.
1360                  */
1361                 p->activated = -1;
1362         }
1363
1364         /*
1365          * Tasks that have marked their sleep as noninteractive get
1366          * woken up without updating their sleep average. (i.e. their
1367          * sleep is handled in a priority-neutral manner, no priority
1368          * boost and no penalty.)
1369          */
1370         if (old_state & TASK_NONINTERACTIVE)
1371                 __activate_task(p, rq);
1372         else
1373                 activate_task(p, rq, cpu == this_cpu);
1374         /*
1375          * Sync wakeups (i.e. those types of wakeups where the waker
1376          * has indicated that it will leave the CPU in short order)
1377          * don't trigger a preemption, if the woken up task will run on
1378          * this cpu. (in this case the 'I will reschedule' promise of
1379          * the waker guarantees that the freshly woken up task is going
1380          * to be considered on this CPU.)
1381          */
1382         if (!sync || cpu != this_cpu) {
1383                 if (TASK_PREEMPTS_CURR(p, rq))
1384                         resched_task(rq->curr);
1385         }
1386         success = 1;
1387
1388 out_running:
1389         p->state = TASK_RUNNING;
1390 out:
1391         task_rq_unlock(rq, &flags);
1392
1393         return success;
1394 }
1395
1396 int fastcall wake_up_process(task_t *p)
1397 {
1398         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1399                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1400 }
1401
1402 EXPORT_SYMBOL(wake_up_process);
1403
1404 int fastcall wake_up_state(task_t *p, unsigned int state)
1405 {
1406         return try_to_wake_up(p, state, 0);
1407 }
1408
1409 /*
1410  * Perform scheduler related setup for a newly forked process p.
1411  * p is forked by current.
1412  */
1413 void fastcall sched_fork(task_t *p, int clone_flags)
1414 {
1415         int cpu = get_cpu();
1416
1417 #ifdef CONFIG_SMP
1418         cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1419 #endif
1420         set_task_cpu(p, cpu);
1421
1422         /*
1423          * We mark the process as running here, but have not actually
1424          * inserted it onto the runqueue yet. This guarantees that
1425          * nobody will actually run it, and a signal or other external
1426          * event cannot wake it up and insert it on the runqueue either.
1427          */
1428         p->state = TASK_RUNNING;
1429         INIT_LIST_HEAD(&p->run_list);
1430         p->array = NULL;
1431 #ifdef CONFIG_SCHEDSTATS
1432         memset(&p->sched_info, 0, sizeof(p->sched_info));
1433 #endif
1434 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1435         p->oncpu = 0;
1436 #endif
1437 #ifdef CONFIG_PREEMPT
1438         /* Want to start with kernel preemption disabled. */
1439         p->thread_info->preempt_count = 1;
1440 #endif
1441         /*
1442          * Share the timeslice between parent and child, thus the
1443          * total amount of pending timeslices in the system doesn't change,
1444          * resulting in more scheduling fairness.
1445          */
1446         local_irq_disable();
1447         p->time_slice = (current->time_slice + 1) >> 1;
1448         /*
1449          * The remainder of the first timeslice might be recovered by
1450          * the parent if the child exits early enough.
1451          */
1452         p->first_time_slice = 1;
1453         current->time_slice >>= 1;
1454         p->timestamp = sched_clock();
1455         if (unlikely(!current->time_slice)) {
1456                 /*
1457                  * This case is rare, it happens when the parent has only
1458                  * a single jiffy left from its timeslice. Taking the
1459                  * runqueue lock is not a problem.
1460                  */
1461                 current->time_slice = 1;
1462                 scheduler_tick();
1463         }
1464         local_irq_enable();
1465         put_cpu();
1466 }
1467
1468 /*
1469  * wake_up_new_task - wake up a newly created task for the first time.
1470  *
1471  * This function will do some initial scheduler statistics housekeeping
1472  * that must be done for every newly created context, then puts the task
1473  * on the runqueue and wakes it.
1474  */
1475 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1476 {
1477         unsigned long flags;
1478         int this_cpu, cpu;
1479         runqueue_t *rq, *this_rq;
1480
1481         rq = task_rq_lock(p, &flags);
1482         BUG_ON(p->state != TASK_RUNNING);
1483         this_cpu = smp_processor_id();
1484         cpu = task_cpu(p);
1485
1486         /*
1487          * We decrease the sleep average of forking parents
1488          * and children as well, to keep max-interactive tasks
1489          * from forking tasks that are max-interactive. The parent
1490          * (current) is done further down, under its lock.
1491          */
1492         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1493                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1494
1495         p->prio = effective_prio(p);
1496
1497         if (likely(cpu == this_cpu)) {
1498                 if (!(clone_flags & CLONE_VM)) {
1499                         /*
1500                          * The VM isn't cloned, so we're in a good position to
1501                          * do child-runs-first in anticipation of an exec. This
1502                          * usually avoids a lot of COW overhead.
1503                          */
1504                         if (unlikely(!current->array))
1505                                 __activate_task(p, rq);
1506                         else {
1507                                 p->prio = current->prio;
1508                                 list_add_tail(&p->run_list, &current->run_list);
1509                                 p->array = current->array;
1510                                 p->array->nr_active++;
1511                                 inc_nr_running(p, rq);
1512                         }
1513                         set_need_resched();
1514                 } else
1515                         /* Run child last */
1516                         __activate_task(p, rq);
1517                 /*
1518                  * We skip the following code due to cpu == this_cpu
1519                  *
1520                  *   task_rq_unlock(rq, &flags);
1521                  *   this_rq = task_rq_lock(current, &flags);
1522                  */
1523                 this_rq = rq;
1524         } else {
1525                 this_rq = cpu_rq(this_cpu);
1526
1527                 /*
1528                  * Not the local CPU - must adjust timestamp. This should
1529                  * get optimised away in the !CONFIG_SMP case.
1530                  */
1531                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1532                                         + rq->timestamp_last_tick;
1533                 __activate_task(p, rq);
1534                 if (TASK_PREEMPTS_CURR(p, rq))
1535                         resched_task(rq->curr);
1536
1537                 /*
1538                  * Parent and child are on different CPUs, now get the
1539                  * parent runqueue to update the parent's ->sleep_avg:
1540                  */
1541                 task_rq_unlock(rq, &flags);
1542                 this_rq = task_rq_lock(current, &flags);
1543         }
1544         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1545                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1546         task_rq_unlock(this_rq, &flags);
1547 }
1548
1549 /*
1550  * Potentially available exiting-child timeslices are
1551  * retrieved here - this way the parent does not get
1552  * penalized for creating too many threads.
1553  *
1554  * (this cannot be used to 'generate' timeslices
1555  * artificially, because any timeslice recovered here
1556  * was given away by the parent in the first place.)
1557  */
1558 void fastcall sched_exit(task_t *p)
1559 {
1560         unsigned long flags;
1561         runqueue_t *rq;
1562
1563         /*
1564          * If the child was a (relative-) CPU hog then decrease
1565          * the sleep_avg of the parent as well.
1566          */
1567         rq = task_rq_lock(p->parent, &flags);
1568         if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1569                 p->parent->time_slice += p->time_slice;
1570                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1571                         p->parent->time_slice = task_timeslice(p);
1572         }
1573         if (p->sleep_avg < p->parent->sleep_avg)
1574                 p->parent->sleep_avg = p->parent->sleep_avg /
1575                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1576                 (EXIT_WEIGHT + 1);
1577         task_rq_unlock(rq, &flags);
1578 }
1579
1580 /**
1581  * prepare_task_switch - prepare to switch tasks
1582  * @rq: the runqueue preparing to switch
1583  * @next: the task we are going to switch to.
1584  *
1585  * This is called with the rq lock held and interrupts off. It must
1586  * be paired with a subsequent finish_task_switch after the context
1587  * switch.
1588  *
1589  * prepare_task_switch sets up locking and calls architecture specific
1590  * hooks.
1591  */
1592 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1593 {
1594         prepare_lock_switch(rq, next);
1595         prepare_arch_switch(next);
1596 }
1597
1598 /**
1599  * finish_task_switch - clean up after a task-switch
1600  * @rq: runqueue associated with task-switch
1601  * @prev: the thread we just switched away from.
1602  *
1603  * finish_task_switch must be called after the context switch, paired
1604  * with a prepare_task_switch call before the context switch.
1605  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1606  * and do any other architecture-specific cleanup actions.
1607  *
1608  * Note that we may have delayed dropping an mm in context_switch(). If
1609  * so, we finish that here outside of the runqueue lock.  (Doing it
1610  * with the lock held can cause deadlocks; see schedule() for
1611  * details.)
1612  */
1613 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1614         __releases(rq->lock)
1615 {
1616         struct mm_struct *mm = rq->prev_mm;
1617         unsigned long prev_task_flags;
1618
1619         rq->prev_mm = NULL;
1620
1621         /*
1622          * A task struct has one reference for the use as "current".
1623          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1624          * calls schedule one last time. The schedule call will never return,
1625          * and the scheduled task must drop that reference.
1626          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1627          * still held, otherwise prev could be scheduled on another cpu, die
1628          * there before we look at prev->state, and then the reference would
1629          * be dropped twice.
1630          *              Manfred Spraul <manfred@colorfullife.com>
1631          */
1632         prev_task_flags = prev->flags;
1633         finish_arch_switch(prev);
1634         finish_lock_switch(rq, prev);
1635         if (mm)
1636                 mmdrop(mm);
1637         if (unlikely(prev_task_flags & PF_DEAD))
1638                 put_task_struct(prev);
1639 }
1640
1641 /**
1642  * schedule_tail - first thing a freshly forked thread must call.
1643  * @prev: the thread we just switched away from.
1644  */
1645 asmlinkage void schedule_tail(task_t *prev)
1646         __releases(rq->lock)
1647 {
1648         runqueue_t *rq = this_rq();
1649         finish_task_switch(rq, prev);
1650 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1651         /* In this case, finish_task_switch does not reenable preemption */
1652         preempt_enable();
1653 #endif
1654         if (current->set_child_tid)
1655                 put_user(current->pid, current->set_child_tid);
1656 }
1657
1658 /*
1659  * context_switch - switch to the new MM and the new
1660  * thread's register state.
1661  */
1662 static inline
1663 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1664 {
1665         struct mm_struct *mm = next->mm;
1666         struct mm_struct *oldmm = prev->active_mm;
1667
1668         if (unlikely(!mm)) {
1669                 next->active_mm = oldmm;
1670                 atomic_inc(&oldmm->mm_count);
1671                 enter_lazy_tlb(oldmm, next);
1672         } else
1673                 switch_mm(oldmm, mm, next);
1674
1675         if (unlikely(!prev->mm)) {
1676                 prev->active_mm = NULL;
1677                 WARN_ON(rq->prev_mm);
1678                 rq->prev_mm = oldmm;
1679         }
1680
1681         /* Here we just switch the register state and the stack. */
1682         switch_to(prev, next, prev);
1683
1684         return prev;
1685 }
1686
1687 /*
1688  * nr_running, nr_uninterruptible and nr_context_switches:
1689  *
1690  * externally visible scheduler statistics: current number of runnable
1691  * threads, current number of uninterruptible-sleeping threads, total
1692  * number of context switches performed since bootup.
1693  */
1694 unsigned long nr_running(void)
1695 {
1696         unsigned long i, sum = 0;
1697
1698         for_each_online_cpu(i)
1699                 sum += cpu_rq(i)->nr_running;
1700
1701         return sum;
1702 }
1703
1704 unsigned long nr_uninterruptible(void)
1705 {
1706         unsigned long i, sum = 0;
1707
1708         for_each_cpu(i)
1709                 sum += cpu_rq(i)->nr_uninterruptible;
1710
1711         /*
1712          * Since we read the counters lockless, it might be slightly
1713          * inaccurate. Do not allow it to go below zero though:
1714          */
1715         if (unlikely((long)sum < 0))
1716                 sum = 0;
1717
1718         return sum;
1719 }
1720
1721 unsigned long long nr_context_switches(void)
1722 {
1723         unsigned long long i, sum = 0;
1724
1725         for_each_cpu(i)
1726                 sum += cpu_rq(i)->nr_switches;
1727
1728         return sum;
1729 }
1730
1731 unsigned long nr_iowait(void)
1732 {
1733         unsigned long i, sum = 0;
1734
1735         for_each_cpu(i)
1736                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1737
1738         return sum;
1739 }
1740
1741 #ifdef CONFIG_SMP
1742
1743 /*
1744  * double_rq_lock - safely lock two runqueues
1745  *
1746  * Note this does not disable interrupts like task_rq_lock,
1747  * you need to do so manually before calling.
1748  */
1749 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1750         __acquires(rq1->lock)
1751         __acquires(rq2->lock)
1752 {
1753         if (rq1 == rq2) {
1754                 spin_lock(&rq1->lock);
1755                 __acquire(rq2->lock);   /* Fake it out ;) */
1756         } else {
1757                 if (rq1 < rq2) {
1758                         spin_lock(&rq1->lock);
1759                         spin_lock(&rq2->lock);
1760                 } else {
1761                         spin_lock(&rq2->lock);
1762                         spin_lock(&rq1->lock);
1763                 }
1764         }
1765 }
1766
1767 /*
1768  * double_rq_unlock - safely unlock two runqueues
1769  *
1770  * Note this does not restore interrupts like task_rq_unlock,
1771  * you need to do so manually after calling.
1772  */
1773 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1774         __releases(rq1->lock)
1775         __releases(rq2->lock)
1776 {
1777         spin_unlock(&rq1->lock);
1778         if (rq1 != rq2)
1779                 spin_unlock(&rq2->lock);
1780         else
1781                 __release(rq2->lock);
1782 }
1783
1784 /*
1785  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786  */
1787 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1788         __releases(this_rq->lock)
1789         __acquires(busiest->lock)
1790         __acquires(this_rq->lock)
1791 {
1792         if (unlikely(!spin_trylock(&busiest->lock))) {
1793                 if (busiest < this_rq) {
1794                         spin_unlock(&this_rq->lock);
1795                         spin_lock(&busiest->lock);
1796                         spin_lock(&this_rq->lock);
1797                 } else
1798                         spin_lock(&busiest->lock);
1799         }
1800 }
1801
1802 /*
1803  * If dest_cpu is allowed for this process, migrate the task to it.
1804  * This is accomplished by forcing the cpu_allowed mask to only
1805  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1806  * the cpu_allowed mask is restored.
1807  */
1808 static void sched_migrate_task(task_t *p, int dest_cpu)
1809 {
1810         migration_req_t req;
1811         runqueue_t *rq;
1812         unsigned long flags;
1813
1814         rq = task_rq_lock(p, &flags);
1815         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1816             || unlikely(cpu_is_offline(dest_cpu)))
1817                 goto out;
1818
1819         /* force the process onto the specified CPU */
1820         if (migrate_task(p, dest_cpu, &req)) {
1821                 /* Need to wait for migration thread (might exit: take ref). */
1822                 struct task_struct *mt = rq->migration_thread;
1823                 get_task_struct(mt);
1824                 task_rq_unlock(rq, &flags);
1825                 wake_up_process(mt);
1826                 put_task_struct(mt);
1827                 wait_for_completion(&req.done);
1828                 return;
1829         }
1830 out:
1831         task_rq_unlock(rq, &flags);
1832 }
1833
1834 /*
1835  * sched_exec - execve() is a valuable balancing opportunity, because at
1836  * this point the task has the smallest effective memory and cache footprint.
1837  */
1838 void sched_exec(void)
1839 {
1840         int new_cpu, this_cpu = get_cpu();
1841         new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1842         put_cpu();
1843         if (new_cpu != this_cpu)
1844                 sched_migrate_task(current, new_cpu);
1845 }
1846
1847 /*
1848  * pull_task - move a task from a remote runqueue to the local runqueue.
1849  * Both runqueues must be locked.
1850  */
1851 static inline
1852 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1853                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1854 {
1855         dequeue_task(p, src_array);
1856         dec_nr_running(p, src_rq);
1857         set_task_cpu(p, this_cpu);
1858         inc_nr_running(p, this_rq);
1859         enqueue_task(p, this_array);
1860         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1861                                 + this_rq->timestamp_last_tick;
1862         /*
1863          * Note that idle threads have a prio of MAX_PRIO, for this test
1864          * to be always true for them.
1865          */
1866         if (TASK_PREEMPTS_CURR(p, this_rq))
1867                 resched_task(this_rq->curr);
1868 }
1869
1870 /*
1871  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1872  */
1873 static inline
1874 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1875                      struct sched_domain *sd, enum idle_type idle,
1876                      int *all_pinned)
1877 {
1878         /*
1879          * We do not migrate tasks that are:
1880          * 1) running (obviously), or
1881          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1882          * 3) are cache-hot on their current CPU.
1883          */
1884         if (!cpu_isset(this_cpu, p->cpus_allowed))
1885                 return 0;
1886         *all_pinned = 0;
1887
1888         if (task_running(rq, p))
1889                 return 0;
1890
1891         /*
1892          * Aggressive migration if:
1893          * 1) task is cache cold, or
1894          * 2) too many balance attempts have failed.
1895          */
1896
1897         if (sd->nr_balance_failed > sd->cache_nice_tries)
1898                 return 1;
1899
1900         if (task_hot(p, rq->timestamp_last_tick, sd))
1901                 return 0;
1902         return 1;
1903 }
1904
1905 /*
1906  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1907  * as part of a balancing operation within "domain". Returns the number of
1908  * tasks moved.
1909  *
1910  * Called with both runqueues locked.
1911  */
1912 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1913                       unsigned long max_nr_move, struct sched_domain *sd,
1914                       enum idle_type idle, int *all_pinned)
1915 {
1916         prio_array_t *array, *dst_array;
1917         struct list_head *head, *curr;
1918         int idx, pulled = 0, pinned = 0;
1919         task_t *tmp;
1920
1921         if (max_nr_move == 0)
1922                 goto out;
1923
1924         pinned = 1;
1925
1926         /*
1927          * We first consider expired tasks. Those will likely not be
1928          * executed in the near future, and they are most likely to
1929          * be cache-cold, thus switching CPUs has the least effect
1930          * on them.
1931          */
1932         if (busiest->expired->nr_active) {
1933                 array = busiest->expired;
1934                 dst_array = this_rq->expired;
1935         } else {
1936                 array = busiest->active;
1937                 dst_array = this_rq->active;
1938         }
1939
1940 new_array:
1941         /* Start searching at priority 0: */
1942         idx = 0;
1943 skip_bitmap:
1944         if (!idx)
1945                 idx = sched_find_first_bit(array->bitmap);
1946         else
1947                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1948         if (idx >= MAX_PRIO) {
1949                 if (array == busiest->expired && busiest->active->nr_active) {
1950                         array = busiest->active;
1951                         dst_array = this_rq->active;
1952                         goto new_array;
1953                 }
1954                 goto out;
1955         }
1956
1957         head = array->queue + idx;
1958         curr = head->prev;
1959 skip_queue:
1960         tmp = list_entry(curr, task_t, run_list);
1961
1962         curr = curr->prev;
1963
1964         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1965                 if (curr != head)
1966                         goto skip_queue;
1967                 idx++;
1968                 goto skip_bitmap;
1969         }
1970
1971 #ifdef CONFIG_SCHEDSTATS
1972         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1973                 schedstat_inc(sd, lb_hot_gained[idle]);
1974 #endif
1975
1976         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1977         pulled++;
1978
1979         /* We only want to steal up to the prescribed number of tasks. */
1980         if (pulled < max_nr_move) {
1981                 if (curr != head)
1982                         goto skip_queue;
1983                 idx++;
1984                 goto skip_bitmap;
1985         }
1986 out:
1987         /*
1988          * Right now, this is the only place pull_task() is called,
1989          * so we can safely collect pull_task() stats here rather than
1990          * inside pull_task().
1991          */
1992         schedstat_add(sd, lb_gained[idle], pulled);
1993
1994         if (all_pinned)
1995                 *all_pinned = pinned;
1996         return pulled;
1997 }
1998
1999 /*
2000  * find_busiest_group finds and returns the busiest CPU group within the
2001  * domain. It calculates and returns the number of tasks which should be
2002  * moved to restore balance via the imbalance parameter.
2003  */
2004 static struct sched_group *
2005 find_busiest_group(struct sched_domain *sd, int this_cpu,
2006                    unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2007 {
2008         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2009         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2010         unsigned long max_pull;
2011         int load_idx;
2012
2013         max_load = this_load = total_load = total_pwr = 0;
2014         if (idle == NOT_IDLE)
2015                 load_idx = sd->busy_idx;
2016         else if (idle == NEWLY_IDLE)
2017                 load_idx = sd->newidle_idx;
2018         else
2019                 load_idx = sd->idle_idx;
2020
2021         do {
2022                 unsigned long load;
2023                 int local_group;
2024                 int i;
2025
2026                 local_group = cpu_isset(this_cpu, group->cpumask);
2027
2028                 /* Tally up the load of all CPUs in the group */
2029                 avg_load = 0;
2030
2031                 for_each_cpu_mask(i, group->cpumask) {
2032                         if (*sd_idle && !idle_cpu(i))
2033                                 *sd_idle = 0;
2034
2035                         /* Bias balancing toward cpus of our domain */
2036                         if (local_group)
2037                                 load = __target_load(i, load_idx, idle);
2038                         else
2039                                 load = __source_load(i, load_idx, idle);
2040
2041                         avg_load += load;
2042                 }
2043
2044                 total_load += avg_load;
2045                 total_pwr += group->cpu_power;
2046
2047                 /* Adjust by relative CPU power of the group */
2048                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2049
2050                 if (local_group) {
2051                         this_load = avg_load;
2052                         this = group;
2053                 } else if (avg_load > max_load) {
2054                         max_load = avg_load;
2055                         busiest = group;
2056                 }
2057                 group = group->next;
2058         } while (group != sd->groups);
2059
2060         if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2061                 goto out_balanced;
2062
2063         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2064
2065         if (this_load >= avg_load ||
2066                         100*max_load <= sd->imbalance_pct*this_load)
2067                 goto out_balanced;
2068
2069         /*
2070          * We're trying to get all the cpus to the average_load, so we don't
2071          * want to push ourselves above the average load, nor do we wish to
2072          * reduce the max loaded cpu below the average load, as either of these
2073          * actions would just result in more rebalancing later, and ping-pong
2074          * tasks around. Thus we look for the minimum possible imbalance.
2075          * Negative imbalances (*we* are more loaded than anyone else) will
2076          * be counted as no imbalance for these purposes -- we can't fix that
2077          * by pulling tasks to us.  Be careful of negative numbers as they'll
2078          * appear as very large values with unsigned longs.
2079          */
2080
2081         /* Don't want to pull so many tasks that a group would go idle */
2082         max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2083
2084         /* How much load to actually move to equalise the imbalance */
2085         *imbalance = min(max_pull * busiest->cpu_power,
2086                                 (avg_load - this_load) * this->cpu_power)
2087                         / SCHED_LOAD_SCALE;
2088
2089         if (*imbalance < SCHED_LOAD_SCALE) {
2090                 unsigned long pwr_now = 0, pwr_move = 0;
2091                 unsigned long tmp;
2092
2093                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2094                         *imbalance = 1;
2095                         return busiest;
2096                 }
2097
2098                 /*
2099                  * OK, we don't have enough imbalance to justify moving tasks,
2100                  * however we may be able to increase total CPU power used by
2101                  * moving them.
2102                  */
2103
2104                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2105                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2106                 pwr_now /= SCHED_LOAD_SCALE;
2107
2108                 /* Amount of load we'd subtract */
2109                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2110                 if (max_load > tmp)
2111                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2112                                                         max_load - tmp);
2113
2114                 /* Amount of load we'd add */
2115                 if (max_load*busiest->cpu_power <
2116                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2117                         tmp = max_load*busiest->cpu_power/this->cpu_power;
2118                 else
2119                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2120                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2121                 pwr_move /= SCHED_LOAD_SCALE;
2122
2123                 /* Move if we gain throughput */
2124                 if (pwr_move <= pwr_now)
2125                         goto out_balanced;
2126
2127                 *imbalance = 1;
2128                 return busiest;
2129         }
2130
2131         /* Get rid of the scaling factor, rounding down as we divide */
2132         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2133         return busiest;
2134
2135 out_balanced:
2136
2137         *imbalance = 0;
2138         return NULL;
2139 }
2140
2141 /*
2142  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2143  */
2144 static runqueue_t *find_busiest_queue(struct sched_group *group,
2145         enum idle_type idle)
2146 {
2147         unsigned long load, max_load = 0;
2148         runqueue_t *busiest = NULL;
2149         int i;
2150
2151         for_each_cpu_mask(i, group->cpumask) {
2152                 load = __source_load(i, 0, idle);
2153
2154                 if (load > max_load) {
2155                         max_load = load;
2156                         busiest = cpu_rq(i);
2157                 }
2158         }
2159
2160         return busiest;
2161 }
2162
2163 /*
2164  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2165  * so long as it is large enough.
2166  */
2167 #define MAX_PINNED_INTERVAL     512
2168
2169 /*
2170  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2171  * tasks if there is an imbalance.
2172  *
2173  * Called with this_rq unlocked.
2174  */
2175 static int load_balance(int this_cpu, runqueue_t *this_rq,
2176                         struct sched_domain *sd, enum idle_type idle)
2177 {
2178         struct sched_group *group;
2179         runqueue_t *busiest;
2180         unsigned long imbalance;
2181         int nr_moved, all_pinned = 0;
2182         int active_balance = 0;
2183         int sd_idle = 0;
2184
2185         if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2186                 sd_idle = 1;
2187
2188         schedstat_inc(sd, lb_cnt[idle]);
2189
2190         group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2191         if (!group) {
2192                 schedstat_inc(sd, lb_nobusyg[idle]);
2193                 goto out_balanced;
2194         }
2195
2196         busiest = find_busiest_queue(group, idle);
2197         if (!busiest) {
2198                 schedstat_inc(sd, lb_nobusyq[idle]);
2199                 goto out_balanced;
2200         }
2201
2202         BUG_ON(busiest == this_rq);
2203
2204         schedstat_add(sd, lb_imbalance[idle], imbalance);
2205
2206         nr_moved = 0;
2207         if (busiest->nr_running > 1) {
2208                 /*
2209                  * Attempt to move tasks. If find_busiest_group has found
2210                  * an imbalance but busiest->nr_running <= 1, the group is
2211                  * still unbalanced. nr_moved simply stays zero, so it is
2212                  * correctly treated as an imbalance.
2213                  */
2214                 double_rq_lock(this_rq, busiest);
2215                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2216                                         imbalance, sd, idle, &all_pinned);
2217                 double_rq_unlock(this_rq, busiest);
2218
2219                 /* All tasks on this runqueue were pinned by CPU affinity */
2220                 if (unlikely(all_pinned))
2221                         goto out_balanced;
2222         }
2223
2224         if (!nr_moved) {
2225                 schedstat_inc(sd, lb_failed[idle]);
2226                 sd->nr_balance_failed++;
2227
2228                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2229
2230                         spin_lock(&busiest->lock);
2231
2232                         /* don't kick the migration_thread, if the curr
2233                          * task on busiest cpu can't be moved to this_cpu
2234                          */
2235                         if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2236                                 spin_unlock(&busiest->lock);
2237                                 all_pinned = 1;
2238                                 goto out_one_pinned;
2239                         }
2240
2241                         if (!busiest->active_balance) {
2242                                 busiest->active_balance = 1;
2243                                 busiest->push_cpu = this_cpu;
2244                                 active_balance = 1;
2245                         }
2246                         spin_unlock(&busiest->lock);
2247                         if (active_balance)
2248                                 wake_up_process(busiest->migration_thread);
2249
2250                         /*
2251                          * We've kicked active balancing, reset the failure
2252                          * counter.
2253                          */
2254                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2255                 }
2256         } else
2257                 sd->nr_balance_failed = 0;
2258
2259         if (likely(!active_balance)) {
2260                 /* We were unbalanced, so reset the balancing interval */
2261                 sd->balance_interval = sd->min_interval;
2262         } else {
2263                 /*
2264                  * If we've begun active balancing, start to back off. This
2265                  * case may not be covered by the all_pinned logic if there
2266                  * is only 1 task on the busy runqueue (because we don't call
2267                  * move_tasks).
2268                  */
2269                 if (sd->balance_interval < sd->max_interval)
2270                         sd->balance_interval *= 2;
2271         }
2272
2273         if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2274                 return -1;
2275         return nr_moved;
2276
2277 out_balanced:
2278         schedstat_inc(sd, lb_balanced[idle]);
2279
2280         sd->nr_balance_failed = 0;
2281
2282 out_one_pinned:
2283         /* tune up the balancing interval */
2284         if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2285                         (sd->balance_interval < sd->max_interval))
2286                 sd->balance_interval *= 2;
2287
2288         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2289                 return -1;
2290         return 0;
2291 }
2292
2293 /*
2294  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2295  * tasks if there is an imbalance.
2296  *
2297  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2298  * this_rq is locked.
2299  */
2300 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2301                                 struct sched_domain *sd)
2302 {
2303         struct sched_group *group;
2304         runqueue_t *busiest = NULL;
2305         unsigned long imbalance;
2306         int nr_moved = 0;
2307         int sd_idle = 0;
2308
2309         if (sd->flags & SD_SHARE_CPUPOWER)
2310                 sd_idle = 1;
2311
2312         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2313         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2314         if (!group) {
2315                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2316                 goto out_balanced;
2317         }
2318
2319         busiest = find_busiest_queue(group, NEWLY_IDLE);
2320         if (!busiest) {
2321                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2322                 goto out_balanced;
2323         }
2324
2325         BUG_ON(busiest == this_rq);
2326
2327         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2328
2329         nr_moved = 0;
2330         if (busiest->nr_running > 1) {
2331                 /* Attempt to move tasks */
2332                 double_lock_balance(this_rq, busiest);
2333                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2334                                         imbalance, sd, NEWLY_IDLE, NULL);
2335                 spin_unlock(&busiest->lock);
2336         }
2337
2338         if (!nr_moved) {
2339                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2340                 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2341                         return -1;
2342         } else
2343                 sd->nr_balance_failed = 0;
2344
2345         return nr_moved;
2346
2347 out_balanced:
2348         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2349         if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2350                 return -1;
2351         sd->nr_balance_failed = 0;
2352         return 0;
2353 }
2354
2355 /*
2356  * idle_balance is called by schedule() if this_cpu is about to become
2357  * idle. Attempts to pull tasks from other CPUs.
2358  */
2359 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2360 {
2361         struct sched_domain *sd;
2362
2363         for_each_domain(this_cpu, sd) {
2364                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2365                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2366                                 /* We've pulled tasks over so stop searching */
2367                                 break;
2368                         }
2369                 }
2370         }
2371 }
2372
2373 /*
2374  * active_load_balance is run by migration threads. It pushes running tasks
2375  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2376  * running on each physical CPU where possible, and avoids physical /
2377  * logical imbalances.
2378  *
2379  * Called with busiest_rq locked.
2380  */
2381 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2382 {
2383         struct sched_domain *sd;
2384         runqueue_t *target_rq;
2385         int target_cpu = busiest_rq->push_cpu;
2386
2387         if (busiest_rq->nr_running <= 1)
2388                 /* no task to move */
2389                 return;
2390
2391         target_rq = cpu_rq(target_cpu);
2392
2393         /*
2394          * This condition is "impossible", if it occurs
2395          * we need to fix it.  Originally reported by
2396          * Bjorn Helgaas on a 128-cpu setup.
2397          */
2398         BUG_ON(busiest_rq == target_rq);
2399
2400         /* move a task from busiest_rq to target_rq */
2401         double_lock_balance(busiest_rq, target_rq);
2402
2403         /* Search for an sd spanning us and the target CPU. */
2404         for_each_domain(target_cpu, sd)
2405                 if ((sd->flags & SD_LOAD_BALANCE) &&
2406                         cpu_isset(busiest_cpu, sd->span))
2407                                 break;
2408
2409         if (unlikely(sd == NULL))
2410                 goto out;
2411
2412         schedstat_inc(sd, alb_cnt);
2413
2414         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2415                 schedstat_inc(sd, alb_pushed);
2416         else
2417                 schedstat_inc(sd, alb_failed);
2418 out:
2419         spin_unlock(&target_rq->lock);
2420 }
2421
2422 /*
2423  * rebalance_tick will get called every timer tick, on every CPU.
2424  *
2425  * It checks each scheduling domain to see if it is due to be balanced,
2426  * and initiates a balancing operation if so.
2427  *
2428  * Balancing parameters are set up in arch_init_sched_domains.
2429  */
2430
2431 /* Don't have all balancing operations going off at once */
2432 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2433
2434 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2435                            enum idle_type idle)
2436 {
2437         unsigned long old_load, this_load;
2438         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2439         struct sched_domain *sd;
2440         int i;
2441
2442         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2443         /* Update our load */
2444         for (i = 0; i < 3; i++) {
2445                 unsigned long new_load = this_load;
2446                 int scale = 1 << i;
2447                 old_load = this_rq->cpu_load[i];
2448                 /*
2449                  * Round up the averaging division if load is increasing. This
2450                  * prevents us from getting stuck on 9 if the load is 10, for
2451                  * example.
2452                  */
2453                 if (new_load > old_load)
2454                         new_load += scale-1;
2455                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2456         }
2457
2458         for_each_domain(this_cpu, sd) {
2459                 unsigned long interval;
2460
2461                 if (!(sd->flags & SD_LOAD_BALANCE))
2462                         continue;
2463
2464                 interval = sd->balance_interval;
2465                 if (idle != SCHED_IDLE)
2466                         interval *= sd->busy_factor;
2467
2468                 /* scale ms to jiffies */
2469                 interval = msecs_to_jiffies(interval);
2470                 if (unlikely(!interval))
2471                         interval = 1;
2472
2473                 if (j - sd->last_balance >= interval) {
2474                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2475                                 /*
2476                                  * We've pulled tasks over so either we're no
2477                                  * longer idle, or one of our SMT siblings is
2478                                  * not idle.
2479                                  */
2480                                 idle = NOT_IDLE;
2481                         }
2482                         sd->last_balance += interval;
2483                 }
2484         }
2485 }
2486 #else
2487 /*
2488  * on UP we do not need to balance between CPUs:
2489  */
2490 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2491 {
2492 }
2493 static inline void idle_balance(int cpu, runqueue_t *rq)
2494 {
2495 }
2496 #endif
2497
2498 static inline int wake_priority_sleeper(runqueue_t *rq)
2499 {
2500         int ret = 0;
2501 #ifdef CONFIG_SCHED_SMT
2502         spin_lock(&rq->lock);
2503         /*
2504          * If an SMT sibling task has been put to sleep for priority
2505          * reasons reschedule the idle task to see if it can now run.
2506          */
2507         if (rq->nr_running) {
2508                 resched_task(rq->idle);
2509                 ret = 1;
2510         }
2511         spin_unlock(&rq->lock);
2512 #endif
2513         return ret;
2514 }
2515
2516 DEFINE_PER_CPU(struct kernel_stat, kstat);
2517
2518 EXPORT_PER_CPU_SYMBOL(kstat);
2519
2520 /*
2521  * This is called on clock ticks and on context switches.
2522  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2523  */
2524 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2525                                     unsigned long long now)
2526 {
2527         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2528         p->sched_time += now - last;
2529 }
2530
2531 /*
2532  * Return current->sched_time plus any more ns on the sched_clock
2533  * that have not yet been banked.
2534  */
2535 unsigned long long current_sched_time(const task_t *tsk)
2536 {
2537         unsigned long long ns;
2538         unsigned long flags;
2539         local_irq_save(flags);
2540         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2541         ns = tsk->sched_time + (sched_clock() - ns);
2542         local_irq_restore(flags);
2543         return ns;
2544 }
2545
2546 /*
2547  * We place interactive tasks back into the active array, if possible.
2548  *
2549  * To guarantee that this does not starve expired tasks we ignore the
2550  * interactivity of a task if the first expired task had to wait more
2551  * than a 'reasonable' amount of time. This deadline timeout is
2552  * load-dependent, as the frequency of array switched decreases with
2553  * increasing number of running tasks. We also ignore the interactivity
2554  * if a better static_prio task has expired:
2555  */
2556 #define EXPIRED_STARVING(rq) \
2557         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2558                 (jiffies - (rq)->expired_timestamp >= \
2559                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2560                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2561
2562 /*
2563  * Account user cpu time to a process.
2564  * @p: the process that the cpu time gets accounted to
2565  * @hardirq_offset: the offset to subtract from hardirq_count()
2566  * @cputime: the cpu time spent in user space since the last update
2567  */
2568 void account_user_time(struct task_struct *p, cputime_t cputime)
2569 {
2570         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2571         cputime64_t tmp;
2572
2573         p->utime = cputime_add(p->utime, cputime);
2574
2575         /* Add user time to cpustat. */
2576         tmp = cputime_to_cputime64(cputime);
2577         if (TASK_NICE(p) > 0)
2578                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2579         else
2580                 cpustat->user = cputime64_add(cpustat->user, tmp);
2581 }
2582
2583 /*
2584  * Account system cpu time to a process.
2585  * @p: the process that the cpu time gets accounted to
2586  * @hardirq_offset: the offset to subtract from hardirq_count()
2587  * @cputime: the cpu time spent in kernel space since the last update
2588  */
2589 void account_system_time(struct task_struct *p, int hardirq_offset,
2590                          cputime_t cputime)
2591 {
2592         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2593         runqueue_t *rq = this_rq();
2594         cputime64_t tmp;
2595
2596         p->stime = cputime_add(p->stime, cputime);
2597
2598         /* Add system time to cpustat. */
2599         tmp = cputime_to_cputime64(cputime);
2600         if (hardirq_count() - hardirq_offset)
2601                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2602         else if (softirq_count())
2603                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2604         else if (p != rq->idle)
2605                 cpustat->system = cputime64_add(cpustat->system, tmp);
2606         else if (atomic_read(&rq->nr_iowait) > 0)
2607                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2608         else
2609                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2610         /* Account for system time used */
2611         acct_update_integrals(p);
2612 }
2613
2614 /*
2615  * Account for involuntary wait time.
2616  * @p: the process from which the cpu time has been stolen
2617  * @steal: the cpu time spent in involuntary wait
2618  */
2619 void account_steal_time(struct task_struct *p, cputime_t steal)
2620 {
2621         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2622         cputime64_t tmp = cputime_to_cputime64(steal);
2623         runqueue_t *rq = this_rq();
2624
2625         if (p == rq->idle) {
2626                 p->stime = cputime_add(p->stime, steal);
2627                 if (atomic_read(&rq->nr_iowait) > 0)
2628                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2629                 else
2630                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2631         } else
2632                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2633 }
2634
2635 /*
2636  * This function gets called by the timer code, with HZ frequency.
2637  * We call it with interrupts disabled.
2638  *
2639  * It also gets called by the fork code, when changing the parent's
2640  * timeslices.
2641  */
2642 void scheduler_tick(void)
2643 {
2644         int cpu = smp_processor_id();
2645         runqueue_t *rq = this_rq();
2646         task_t *p = current;
2647         unsigned long long now = sched_clock();
2648
2649         update_cpu_clock(p, rq, now);
2650
2651         rq->timestamp_last_tick = now;
2652
2653         if (p == rq->idle) {
2654                 if (wake_priority_sleeper(rq))
2655                         goto out;
2656                 rebalance_tick(cpu, rq, SCHED_IDLE);
2657                 return;
2658         }
2659
2660         /* Task might have expired already, but not scheduled off yet */
2661         if (p->array != rq->active) {
2662                 set_tsk_need_resched(p);
2663                 goto out;
2664         }
2665         spin_lock(&rq->lock);
2666         /*
2667          * The task was running during this tick - update the
2668          * time slice counter. Note: we do not update a thread's
2669          * priority until it either goes to sleep or uses up its
2670          * timeslice. This makes it possible for interactive tasks
2671          * to use up their timeslices at their highest priority levels.
2672          */
2673         if (rt_task(p)) {
2674                 /*
2675                  * RR tasks need a special form of timeslice management.
2676                  * FIFO tasks have no timeslices.
2677                  */
2678                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2679                         p->time_slice = task_timeslice(p);
2680                         p->first_time_slice = 0;
2681                         set_tsk_need_resched(p);
2682
2683                         /* put it at the end of the queue: */
2684                         requeue_task(p, rq->active);
2685                 }
2686                 goto out_unlock;
2687         }
2688         if (!--p->time_slice) {
2689                 dequeue_task(p, rq->active);
2690                 set_tsk_need_resched(p);
2691                 p->prio = effective_prio(p);
2692                 p->time_slice = task_timeslice(p);
2693                 p->first_time_slice = 0;
2694
2695                 if (!rq->expired_timestamp)
2696                         rq->expired_timestamp = jiffies;
2697                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2698                         enqueue_task(p, rq->expired);
2699                         if (p->static_prio < rq->best_expired_prio)
2700                                 rq->best_expired_prio = p->static_prio;
2701                 } else
2702                         enqueue_task(p, rq->active);
2703         } else {
2704                 /*
2705                  * Prevent a too long timeslice allowing a task to monopolize
2706                  * the CPU. We do this by splitting up the timeslice into
2707                  * smaller pieces.
2708                  *
2709                  * Note: this does not mean the task's timeslices expire or
2710                  * get lost in any way, they just might be preempted by
2711                  * another task of equal priority. (one with higher
2712                  * priority would have preempted this task already.) We
2713                  * requeue this task to the end of the list on this priority
2714                  * level, which is in essence a round-robin of tasks with
2715                  * equal priority.
2716                  *
2717                  * This only applies to tasks in the interactive
2718                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2719                  */
2720                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2721                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2722                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2723                         (p->array == rq->active)) {
2724
2725                         requeue_task(p, rq->active);
2726                         set_tsk_need_resched(p);
2727                 }
2728         }
2729 out_unlock:
2730         spin_unlock(&rq->lock);
2731 out:
2732         rebalance_tick(cpu, rq, NOT_IDLE);
2733 }
2734
2735 #ifdef CONFIG_SCHED_SMT
2736 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2737 {
2738         /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2739         if (rq->curr == rq->idle && rq->nr_running)
2740                 resched_task(rq->idle);
2741 }
2742
2743 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2744 {
2745         struct sched_domain *tmp, *sd = NULL;
2746         cpumask_t sibling_map;
2747         int i;
2748
2749         for_each_domain(this_cpu, tmp)
2750                 if (tmp->flags & SD_SHARE_CPUPOWER)
2751                         sd = tmp;
2752
2753         if (!sd)
2754                 return;
2755
2756         /*
2757          * Unlock the current runqueue because we have to lock in
2758          * CPU order to avoid deadlocks. Caller knows that we might
2759          * unlock. We keep IRQs disabled.
2760          */
2761         spin_unlock(&this_rq->lock);
2762
2763         sibling_map = sd->span;
2764
2765         for_each_cpu_mask(i, sibling_map)
2766                 spin_lock(&cpu_rq(i)->lock);
2767         /*
2768          * We clear this CPU from the mask. This both simplifies the
2769          * inner loop and keps this_rq locked when we exit:
2770          */
2771         cpu_clear(this_cpu, sibling_map);
2772
2773         for_each_cpu_mask(i, sibling_map) {
2774                 runqueue_t *smt_rq = cpu_rq(i);
2775
2776                 wakeup_busy_runqueue(smt_rq);
2777         }
2778
2779         for_each_cpu_mask(i, sibling_map)
2780                 spin_unlock(&cpu_rq(i)->lock);
2781         /*
2782          * We exit with this_cpu's rq still held and IRQs
2783          * still disabled:
2784          */
2785 }
2786
2787 /*
2788  * number of 'lost' timeslices this task wont be able to fully
2789  * utilize, if another task runs on a sibling. This models the
2790  * slowdown effect of other tasks running on siblings:
2791  */
2792 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2793 {
2794         return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2795 }
2796
2797 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2798 {
2799         struct sched_domain *tmp, *sd = NULL;
2800         cpumask_t sibling_map;
2801         prio_array_t *array;
2802         int ret = 0, i;
2803         task_t *p;
2804
2805         for_each_domain(this_cpu, tmp)
2806                 if (tmp->flags & SD_SHARE_CPUPOWER)
2807                         sd = tmp;
2808
2809         if (!sd)
2810                 return 0;
2811
2812         /*
2813          * The same locking rules and details apply as for
2814          * wake_sleeping_dependent():
2815          */
2816         spin_unlock(&this_rq->lock);
2817         sibling_map = sd->span;
2818         for_each_cpu_mask(i, sibling_map)
2819                 spin_lock(&cpu_rq(i)->lock);
2820         cpu_clear(this_cpu, sibling_map);
2821
2822         /*
2823          * Establish next task to be run - it might have gone away because
2824          * we released the runqueue lock above:
2825          */
2826         if (!this_rq->nr_running)
2827                 goto out_unlock;
2828         array = this_rq->active;
2829         if (!array->nr_active)
2830                 array = this_rq->expired;
2831         BUG_ON(!array->nr_active);
2832
2833         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2834                 task_t, run_list);
2835
2836         for_each_cpu_mask(i, sibling_map) {
2837                 runqueue_t *smt_rq = cpu_rq(i);
2838                 task_t *smt_curr = smt_rq->curr;
2839
2840                 /* Kernel threads do not participate in dependent sleeping */
2841                 if (!p->mm || !smt_curr->mm || rt_task(p))
2842                         goto check_smt_task;
2843
2844                 /*
2845                  * If a user task with lower static priority than the
2846                  * running task on the SMT sibling is trying to schedule,
2847                  * delay it till there is proportionately less timeslice
2848                  * left of the sibling task to prevent a lower priority
2849                  * task from using an unfair proportion of the
2850                  * physical cpu's resources. -ck
2851                  */
2852                 if (rt_task(smt_curr)) {
2853                         /*
2854                          * With real time tasks we run non-rt tasks only
2855                          * per_cpu_gain% of the time.
2856                          */
2857                         if ((jiffies % DEF_TIMESLICE) >
2858                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2859                                         ret = 1;
2860                 } else
2861                         if (smt_curr->static_prio < p->static_prio &&
2862                                 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2863                                 smt_slice(smt_curr, sd) > task_timeslice(p))
2864                                         ret = 1;
2865
2866 check_smt_task:
2867                 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2868                         rt_task(smt_curr))
2869                                 continue;
2870                 if (!p->mm) {
2871                         wakeup_busy_runqueue(smt_rq);
2872                         continue;
2873                 }
2874
2875                 /*
2876                  * Reschedule a lower priority task on the SMT sibling for
2877                  * it to be put to sleep, or wake it up if it has been put to
2878                  * sleep for priority reasons to see if it should run now.
2879                  */
2880                 if (rt_task(p)) {
2881                         if ((jiffies % DEF_TIMESLICE) >
2882                                 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2883                                         resched_task(smt_curr);
2884                 } else {
2885                         if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2886                                 smt_slice(p, sd) > task_timeslice(smt_curr))
2887                                         resched_task(smt_curr);
2888                         else
2889                                 wakeup_busy_runqueue(smt_rq);
2890                 }
2891         }
2892 out_unlock:
2893         for_each_cpu_mask(i, sibling_map)
2894                 spin_unlock(&cpu_rq(i)->lock);
2895         return ret;
2896 }
2897 #else
2898 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2899 {
2900 }
2901
2902 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2903 {
2904         return 0;
2905 }
2906 #endif
2907
2908 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2909
2910 void fastcall add_preempt_count(int val)
2911 {
2912         /*
2913          * Underflow?
2914          */
2915         BUG_ON((preempt_count() < 0));
2916         preempt_count() += val;
2917         /*
2918          * Spinlock count overflowing soon?
2919          */
2920         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2921 }
2922 EXPORT_SYMBOL(add_preempt_count);
2923
2924 void fastcall sub_preempt_count(int val)
2925 {
2926         /*
2927          * Underflow?
2928          */
2929         BUG_ON(val > preempt_count());
2930         /*
2931          * Is the spinlock portion underflowing?
2932          */
2933         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2934         preempt_count() -= val;
2935 }
2936 EXPORT_SYMBOL(sub_preempt_count);
2937
2938 #endif
2939
2940 /*
2941  * schedule() is the main scheduler function.
2942  */
2943 asmlinkage void __sched schedule(void)
2944 {
2945         long *switch_count;
2946         task_t *prev, *next;
2947         runqueue_t *rq;
2948         prio_array_t *array;
2949         struct list_head *queue;
2950         unsigned long long now;
2951         unsigned long run_time;
2952         int cpu, idx, new_prio;
2953
2954         /*
2955          * Test if we are atomic.  Since do_exit() needs to call into
2956          * schedule() atomically, we ignore that path for now.
2957          * Otherwise, whine if we are scheduling when we should not be.
2958          */
2959         if (likely(!current->exit_state)) {
2960                 if (unlikely(in_atomic())) {
2961                         printk(KERN_ERR "scheduling while atomic: "
2962                                 "%s/0x%08x/%d\n",
2963                                 current->comm, preempt_count(), current->pid);
2964                         dump_stack();
2965                 }
2966         }
2967         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2968
2969 need_resched:
2970         preempt_disable();
2971         prev = current;
2972         release_kernel_lock(prev);
2973 need_resched_nonpreemptible:
2974         rq = this_rq();
2975
2976         /*
2977          * The idle thread is not allowed to schedule!
2978          * Remove this check after it has been exercised a bit.
2979          */
2980         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2981                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2982                 dump_stack();
2983         }
2984
2985         schedstat_inc(rq, sched_cnt);
2986         now = sched_clock();
2987         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2988                 run_time = now - prev->timestamp;
2989                 if (unlikely((long long)(now - prev->timestamp) < 0))
2990                         run_time = 0;
2991         } else
2992                 run_time = NS_MAX_SLEEP_AVG;
2993
2994         /*
2995          * Tasks charged proportionately less run_time at high sleep_avg to
2996          * delay them losing their interactive status
2997          */
2998         run_time /= (CURRENT_BONUS(prev) ? : 1);
2999
3000         spin_lock_irq(&rq->lock);
3001
3002         if (unlikely(prev->flags & PF_DEAD))
3003                 prev->state = EXIT_DEAD;
3004
3005         switch_count = &prev->nivcsw;
3006         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3007                 switch_count = &prev->nvcsw;
3008                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3009                                 unlikely(signal_pending(prev))))
3010                         prev->state = TASK_RUNNING;
3011                 else {
3012                         if (prev->state == TASK_UNINTERRUPTIBLE)
3013                                 rq->nr_uninterruptible++;
3014                         deactivate_task(prev, rq);
3015                 }
3016         }
3017
3018         cpu = smp_processor_id();
3019         if (unlikely(!rq->nr_running)) {
3020 go_idle:
3021                 idle_balance(cpu, rq);
3022                 if (!rq->nr_running) {
3023                         next = rq->idle;
3024                         rq->expired_timestamp = 0;
3025                         wake_sleeping_dependent(cpu, rq);
3026                         /*
3027                          * wake_sleeping_dependent() might have released
3028                          * the runqueue, so break out if we got new
3029                          * tasks meanwhile:
3030                          */
3031                         if (!rq->nr_running)
3032                                 goto switch_tasks;
3033                 }
3034         } else {
3035                 if (dependent_sleeper(cpu, rq)) {
3036                         next = rq->idle;
3037                         goto switch_tasks;
3038                 }
3039                 /*
3040                  * dependent_sleeper() releases and reacquires the runqueue
3041                  * lock, hence go into the idle loop if the rq went
3042                  * empty meanwhile:
3043                  */
3044                 if (unlikely(!rq->nr_running))
3045                         goto go_idle;
3046         }
3047
3048         array = rq->active;
3049         if (unlikely(!array->nr_active)) {
3050                 /*
3051                  * Switch the active and expired arrays.
3052                  */
3053                 schedstat_inc(rq, sched_switch);
3054                 rq->active = rq->expired;
3055                 rq->expired = array;
3056                 array = rq->active;
3057                 rq->expired_timestamp = 0;
3058                 rq->best_expired_prio = MAX_PRIO;
3059         }
3060
3061         idx = sched_find_first_bit(array->bitmap);
3062         queue = array->queue + idx;
3063         next = list_entry(queue->next, task_t, run_list);
3064
3065         if (!rt_task(next) && next->activated > 0) {
3066                 unsigned long long delta = now - next->timestamp;
3067                 if (unlikely((long long)(now - next->timestamp) < 0))
3068                         delta = 0;
3069
3070                 if (next->activated == 1)
3071                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3072
3073                 array = next->array;
3074                 new_prio = recalc_task_prio(next, next->timestamp + delta);
3075
3076                 if (unlikely(next->prio != new_prio)) {
3077                         dequeue_task(next, array);
3078                         next->prio = new_prio;
3079                         enqueue_task(next, array);
3080                 } else
3081                         requeue_task(next, array);
3082         }
3083         next->activated = 0;
3084 switch_tasks:
3085         if (next == rq->idle)
3086                 schedstat_inc(rq, sched_goidle);
3087         prefetch(next);
3088         prefetch_stack(next);
3089         clear_tsk_need_resched(prev);
3090         rcu_qsctr_inc(task_cpu(prev));
3091
3092         update_cpu_clock(prev, rq, now);
3093
3094         prev->sleep_avg -= run_time;
3095         if ((long)prev->sleep_avg <= 0)
3096                 prev->sleep_avg = 0;
3097         prev->timestamp = prev->last_ran = now;
3098
3099         sched_info_switch(prev, next);
3100         if (likely(prev != next)) {
3101                 next->timestamp = now;
3102                 rq->nr_switches++;
3103                 rq->curr = next;
3104                 ++*switch_count;
3105
3106                 prepare_task_switch(rq, next);
3107                 prev = context_switch(rq, prev, next);
3108                 barrier();
3109                 /*
3110                  * this_rq must be evaluated again because prev may have moved
3111                  * CPUs since it called schedule(), thus the 'rq' on its stack
3112                  * frame will be invalid.
3113                  */
3114                 finish_task_switch(this_rq(), prev);
3115         } else
3116                 spin_unlock_irq(&rq->lock);
3117
3118         prev = current;
3119         if (unlikely(reacquire_kernel_lock(prev) < 0))
3120                 goto need_resched_nonpreemptible;
3121         preempt_enable_no_resched();
3122         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3123                 goto need_resched;
3124 }
3125
3126 EXPORT_SYMBOL(schedule);
3127
3128 #ifdef CONFIG_PREEMPT
3129 /*
3130  * this is is the entry point to schedule() from in-kernel preemption
3131  * off of preempt_enable.  Kernel preemptions off return from interrupt
3132  * occur there and call schedule directly.
3133  */
3134 asmlinkage void __sched preempt_schedule(void)
3135 {
3136         struct thread_info *ti = current_thread_info();
3137 #ifdef CONFIG_PREEMPT_BKL
3138         struct task_struct *task = current;
3139         int saved_lock_depth;
3140 #endif
3141         /*
3142          * If there is a non-zero preempt_count or interrupts are disabled,
3143          * we do not want to preempt the current task.  Just return..
3144          */
3145         if (unlikely(ti->preempt_count || irqs_disabled()))
3146                 return;
3147
3148 need_resched:
3149         add_preempt_count(PREEMPT_ACTIVE);
3150         /*
3151          * We keep the big kernel semaphore locked, but we
3152          * clear ->lock_depth so that schedule() doesnt
3153          * auto-release the semaphore:
3154          */
3155 #ifdef CONFIG_PREEMPT_BKL
3156         saved_lock_depth = task->lock_depth;
3157         task->lock_depth = -1;
3158 #endif
3159         schedule();
3160 #ifdef CONFIG_PREEMPT_BKL
3161         task->lock_depth = saved_lock_depth;
3162 #endif
3163         sub_preempt_count(PREEMPT_ACTIVE);
3164
3165         /* we could miss a preemption opportunity between schedule and now */
3166         barrier();
3167         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3168                 goto need_resched;
3169 }
3170
3171 EXPORT_SYMBOL(preempt_schedule);
3172
3173 /*
3174  * this is is the entry point to schedule() from kernel preemption
3175  * off of irq context.
3176  * Note, that this is called and return with irqs disabled. This will
3177  * protect us against recursive calling from irq.
3178  */
3179 asmlinkage void __sched preempt_schedule_irq(void)
3180 {
3181         struct thread_info *ti = current_thread_info();
3182 #ifdef CONFIG_PREEMPT_BKL
3183         struct task_struct *task = current;
3184         int saved_lock_depth;
3185 #endif
3186         /* Catch callers which need to be fixed*/
3187         BUG_ON(ti->preempt_count || !irqs_disabled());
3188
3189 need_resched:
3190         add_preempt_count(PREEMPT_ACTIVE);
3191         /*
3192          * We keep the big kernel semaphore locked, but we
3193          * clear ->lock_depth so that schedule() doesnt
3194          * auto-release the semaphore:
3195          */
3196 #ifdef CONFIG_PREEMPT_BKL
3197         saved_lock_depth = task->lock_depth;
3198         task->lock_depth = -1;
3199 #endif
3200         local_irq_enable();
3201         schedule();
3202         local_irq_disable();
3203 #ifdef CONFIG_PREEMPT_BKL
3204         task->lock_depth = saved_lock_depth;
3205 #endif
3206         sub_preempt_count(PREEMPT_ACTIVE);
3207
3208         /* we could miss a preemption opportunity between schedule and now */
3209         barrier();
3210         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3211                 goto need_resched;
3212 }
3213
3214 #endif /* CONFIG_PREEMPT */
3215
3216 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3217                           void *key)
3218 {
3219         task_t *p = curr->private;
3220         return try_to_wake_up(p, mode, sync);
3221 }
3222
3223 EXPORT_SYMBOL(default_wake_function);
3224
3225 /*
3226  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3227  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3228  * number) then we wake all the non-exclusive tasks and one exclusive task.
3229  *
3230  * There are circumstances in which we can try to wake a task which has already
3231  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3232  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3233  */
3234 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3235                              int nr_exclusive, int sync, void *key)
3236 {
3237         struct list_head *tmp, *next;
3238
3239         list_for_each_safe(tmp, next, &q->task_list) {
3240                 wait_queue_t *curr;
3241                 unsigned flags;
3242                 curr = list_entry(tmp, wait_queue_t, task_list);
3243                 flags = curr->flags;
3244                 if (curr->func(curr, mode, sync, key) &&
3245                     (flags & WQ_FLAG_EXCLUSIVE) &&
3246                     !--nr_exclusive)
3247                         break;
3248         }
3249 }
3250
3251 /**
3252  * __wake_up - wake up threads blocked on a waitqueue.
3253  * @q: the waitqueue
3254  * @mode: which threads
3255  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3256  * @key: is directly passed to the wakeup function
3257  */
3258 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3259                         int nr_exclusive, void *key)
3260 {
3261         unsigned long flags;
3262
3263         spin_lock_irqsave(&q->lock, flags);
3264         __wake_up_common(q, mode, nr_exclusive, 0, key);
3265         spin_unlock_irqrestore(&q->lock, flags);
3266 }
3267
3268 EXPORT_SYMBOL(__wake_up);
3269
3270 /*
3271  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3272  */
3273 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3274 {
3275         __wake_up_common(q, mode, 1, 0, NULL);
3276 }
3277
3278 /**
3279  * __wake_up_sync - wake up threads blocked on a waitqueue.
3280  * @q: the waitqueue
3281  * @mode: which threads
3282  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3283  *
3284  * The sync wakeup differs that the waker knows that it will schedule
3285  * away soon, so while the target thread will be woken up, it will not
3286  * be migrated to another CPU - ie. the two threads are 'synchronized'
3287  * with each other. This can prevent needless bouncing between CPUs.
3288  *
3289  * On UP it can prevent extra preemption.
3290  */
3291 void fastcall
3292 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3293 {
3294         unsigned long flags;
3295         int sync = 1;
3296
3297         if (unlikely(!q))
3298                 return;
3299
3300         if (unlikely(!nr_exclusive))
3301                 sync = 0;
3302
3303         spin_lock_irqsave(&q->lock, flags);
3304         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3305         spin_unlock_irqrestore(&q->lock, flags);
3306 }
3307 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3308
3309 void fastcall complete(struct completion *x)
3310 {
3311         unsigned long flags;
3312
3313         spin_lock_irqsave(&x->wait.lock, flags);
3314         x->done++;
3315         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3316                          1, 0, NULL);
3317         spin_unlock_irqrestore(&x->wait.lock, flags);
3318 }
3319 EXPORT_SYMBOL(complete);
3320
3321 void fastcall complete_all(struct completion *x)
3322 {
3323         unsigned long flags;
3324
3325         spin_lock_irqsave(&x->wait.lock, flags);
3326         x->done += UINT_MAX/2;
3327         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3328                          0, 0, NULL);
3329         spin_unlock_irqrestore(&x->wait.lock, flags);
3330 }
3331 EXPORT_SYMBOL(complete_all);
3332
3333 void fastcall __sched wait_for_completion(struct completion *x)
3334 {
3335         might_sleep();
3336         spin_lock_irq(&x->wait.lock);
3337         if (!x->done) {
3338                 DECLARE_WAITQUEUE(wait, current);
3339
3340                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3341                 __add_wait_queue_tail(&x->wait, &wait);
3342                 do {
3343                         __set_current_state(TASK_UNINTERRUPTIBLE);
3344                         spin_unlock_irq(&x->wait.lock);
3345                         schedule();
3346                         spin_lock_irq(&x->wait.lock);
3347                 } while (!x->done);
3348                 __remove_wait_queue(&x->wait, &wait);
3349         }
3350         x->done--;
3351         spin_unlock_irq(&x->wait.lock);
3352 }
3353 EXPORT_SYMBOL(wait_for_completion);
3354
3355 unsigned long fastcall __sched
3356 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3357 {
3358         might_sleep();
3359
3360         spin_lock_irq(&x->wait.lock);
3361         if (!x->done) {
3362                 DECLARE_WAITQUEUE(wait, current);
3363
3364                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3365                 __add_wait_queue_tail(&x->wait, &wait);
3366                 do {
3367                         __set_current_state(TASK_UNINTERRUPTIBLE);
3368                         spin_unlock_irq(&x->wait.lock);
3369                         timeout = schedule_timeout(timeout);
3370                         spin_lock_irq(&x->wait.lock);
3371                         if (!timeout) {
3372                                 __remove_wait_queue(&x->wait, &wait);
3373                                 goto out;
3374                         }
3375                 } while (!x->done);
3376                 __remove_wait_queue(&x->wait, &wait);
3377         }
3378         x->done--;
3379 out:
3380         spin_unlock_irq(&x->wait.lock);
3381         return timeout;
3382 }
3383 EXPORT_SYMBOL(wait_for_completion_timeout);
3384
3385 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3386 {
3387         int ret = 0;
3388
3389         might_sleep();
3390
3391         spin_lock_irq(&x->wait.lock);
3392         if (!x->done) {
3393                 DECLARE_WAITQUEUE(wait, current);
3394
3395                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3396                 __add_wait_queue_tail(&x->wait, &wait);
3397                 do {
3398                         if (signal_pending(current)) {
3399                                 ret = -ERESTARTSYS;
3400                                 __remove_wait_queue(&x->wait, &wait);
3401                                 goto out;
3402                         }
3403                         __set_current_state(TASK_INTERRUPTIBLE);
3404                         spin_unlock_irq(&x->wait.lock);
3405                         schedule();
3406                         spin_lock_irq(&x->wait.lock);
3407                 } while (!x->done);
3408                 __remove_wait_queue(&x->wait, &wait);
3409         }
3410         x->done--;
3411 out:
3412         spin_unlock_irq(&x->wait.lock);
3413
3414         return ret;
3415 }
3416 EXPORT_SYMBOL(wait_for_completion_interruptible);
3417
3418 unsigned long fastcall __sched
3419 wait_for_completion_interruptible_timeout(struct completion *x,
3420                                           unsigned long timeout)
3421 {
3422         might_sleep();
3423
3424         spin_lock_irq(&x->wait.lock);
3425         if (!x->done) {
3426                 DECLARE_WAITQUEUE(wait, current);
3427
3428                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3429                 __add_wait_queue_tail(&x->wait, &wait);
3430                 do {
3431                         if (signal_pending(current)) {
3432                                 timeout = -ERESTARTSYS;
3433                                 __remove_wait_queue(&x->wait, &wait);
3434                                 goto out;
3435                         }
3436                         __set_current_state(TASK_INTERRUPTIBLE);
3437                         spin_unlock_irq(&x->wait.lock);
3438                         timeout = schedule_timeout(timeout);
3439                         spin_lock_irq(&x->wait.lock);
3440                         if (!timeout) {
3441                                 __remove_wait_queue(&x->wait, &wait);
3442                                 goto out;
3443                         }
3444                 } while (!x->done);
3445                 __remove_wait_queue(&x->wait, &wait);
3446         }
3447         x->done--;
3448 out:
3449         spin_unlock_irq(&x->wait.lock);
3450         return timeout;
3451 }
3452 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3453
3454
3455 #define SLEEP_ON_VAR                                    \
3456         unsigned long flags;                            \
3457         wait_queue_t wait;                              \
3458         init_waitqueue_entry(&wait, current);
3459
3460 #define SLEEP_ON_HEAD                                   \
3461         spin_lock_irqsave(&q->lock,flags);              \
3462         __add_wait_queue(q, &wait);                     \
3463         spin_unlock(&q->lock);
3464
3465 #define SLEEP_ON_TAIL                                   \
3466         spin_lock_irq(&q->lock);                        \
3467         __remove_wait_queue(q, &wait);                  \
3468         spin_unlock_irqrestore(&q->lock, flags);
3469
3470 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3471 {
3472         SLEEP_ON_VAR
3473
3474         current->state = TASK_INTERRUPTIBLE;
3475
3476         SLEEP_ON_HEAD
3477         schedule();
3478         SLEEP_ON_TAIL
3479 }
3480
3481 EXPORT_SYMBOL(interruptible_sleep_on);
3482
3483 long fastcall __sched
3484 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3485 {
3486         SLEEP_ON_VAR
3487
3488         current->state = TASK_INTERRUPTIBLE;
3489
3490         SLEEP_ON_HEAD
3491         timeout = schedule_timeout(timeout);
3492         SLEEP_ON_TAIL
3493
3494         return timeout;
3495 }
3496
3497 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3498
3499 void fastcall __sched sleep_on(wait_queue_head_t *q)
3500 {
3501         SLEEP_ON_VAR
3502
3503         current->state = TASK_UNINTERRUPTIBLE;
3504
3505         SLEEP_ON_HEAD
3506         schedule();
3507         SLEEP_ON_TAIL
3508 }
3509
3510 EXPORT_SYMBOL(sleep_on);
3511
3512 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3513 {
3514         SLEEP_ON_VAR
3515
3516         current->state = TASK_UNINTERRUPTIBLE;
3517
3518         SLEEP_ON_HEAD
3519         timeout = schedule_timeout(timeout);
3520         SLEEP_ON_TAIL
3521
3522         return timeout;
3523 }
3524
3525 EXPORT_SYMBOL(sleep_on_timeout);
3526
3527 void set_user_nice(task_t *p, long nice)
3528 {
3529         unsigned long flags;
3530         prio_array_t *array;
3531         runqueue_t *rq;
3532         int old_prio, new_prio, delta;
3533
3534         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3535                 return;
3536         /*
3537          * We have to be careful, if called from sys_setpriority(),
3538          * the task might be in the middle of scheduling on another CPU.
3539          */
3540         rq = task_rq_lock(p, &flags);
3541         /*
3542          * The RT priorities are set via sched_setscheduler(), but we still
3543          * allow the 'normal' nice value to be set - but as expected
3544          * it wont have any effect on scheduling until the task is
3545          * not SCHED_NORMAL:
3546          */
3547         if (rt_task(p)) {
3548                 p->static_prio = NICE_TO_PRIO(nice);
3549                 goto out_unlock;
3550         }
3551         array = p->array;
3552         if (array) {
3553                 dequeue_task(p, array);
3554                 dec_prio_bias(rq, p->static_prio);
3555         }
3556
3557         old_prio = p->prio;
3558         new_prio = NICE_TO_PRIO(nice);
3559         delta = new_prio - old_prio;
3560         p->static_prio = NICE_TO_PRIO(nice);
3561         p->prio += delta;
3562
3563         if (array) {
3564                 enqueue_task(p, array);
3565                 inc_prio_bias(rq, p->static_prio);
3566                 /*
3567                  * If the task increased its priority or is running and
3568                  * lowered its priority, then reschedule its CPU:
3569                  */
3570                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3571                         resched_task(rq->curr);
3572         }
3573 out_unlock:
3574         task_rq_unlock(rq, &flags);
3575 }
3576
3577 EXPORT_SYMBOL(set_user_nice);
3578
3579 /*
3580  * can_nice - check if a task can reduce its nice value
3581  * @p: task
3582  * @nice: nice value
3583  */
3584 int can_nice(const task_t *p, const int nice)
3585 {
3586         /* convert nice value [19,-20] to rlimit style value [1,40] */
3587         int nice_rlim = 20 - nice;
3588         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3589                 capable(CAP_SYS_NICE));
3590 }
3591
3592 #ifdef __ARCH_WANT_SYS_NICE
3593
3594 /*
3595  * sys_nice - change the priority of the current process.
3596  * @increment: priority increment
3597  *
3598  * sys_setpriority is a more generic, but much slower function that
3599  * does similar things.
3600  */
3601 asmlinkage long sys_nice(int increment)
3602 {
3603         int retval;
3604         long nice;
3605
3606         /*
3607          * Setpriority might change our priority at the same moment.
3608          * We don't have to worry. Conceptually one call occurs first
3609          * and we have a single winner.
3610          */
3611         if (increment < -40)
3612                 increment = -40;
3613         if (increment > 40)
3614                 increment = 40;
3615
3616         nice = PRIO_TO_NICE(current->static_prio) + increment;
3617         if (nice < -20)
3618                 nice = -20;
3619         if (nice > 19)
3620                 nice = 19;
3621
3622         if (increment < 0 && !can_nice(current, nice))
3623                 return -EPERM;
3624
3625         retval = security_task_setnice(current, nice);
3626         if (retval)
3627                 return retval;
3628
3629         set_user_nice(current, nice);
3630         return 0;
3631 }
3632
3633 #endif
3634
3635 /**
3636  * task_prio - return the priority value of a given task.
3637  * @p: the task in question.
3638  *
3639  * This is the priority value as seen by users in /proc.
3640  * RT tasks are offset by -200. Normal tasks are centered
3641  * around 0, value goes from -16 to +15.
3642  */
3643 int task_prio(const task_t *p)
3644 {
3645         return p->prio - MAX_RT_PRIO;
3646 }
3647
3648 /**
3649  * task_nice - return the nice value of a given task.
3650  * @p: the task in question.
3651  */
3652 int task_nice(const task_t *p)
3653 {
3654         return TASK_NICE(p);
3655 }
3656 EXPORT_SYMBOL_GPL(task_nice);
3657
3658 /**
3659  * idle_cpu - is a given cpu idle currently?
3660  * @cpu: the processor in question.
3661  */
3662 int idle_cpu(int cpu)
3663 {
3664         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3665 }
3666
3667 /**
3668  * idle_task - return the idle task for a given cpu.
3669  * @cpu: the processor in question.
3670  */
3671 task_t *idle_task(int cpu)
3672 {
3673         return cpu_rq(cpu)->idle;
3674 }
3675
3676 /**
3677  * find_process_by_pid - find a process with a matching PID value.
3678  * @pid: the pid in question.
3679  */
3680 static inline task_t *find_process_by_pid(pid_t pid)
3681 {
3682         return pid ? find_task_by_pid(pid) : current;
3683 }
3684
3685 /* Actually do priority change: must hold rq lock. */
3686 static void __setscheduler(struct task_struct *p, int policy, int prio)
3687 {
3688         BUG_ON(p->array);
3689         p->policy = policy;
3690         p->rt_priority = prio;
3691         if (policy != SCHED_NORMAL)
3692                 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3693         else
3694                 p->prio = p->static_prio;
3695 }
3696
3697 /**
3698  * sched_setscheduler - change the scheduling policy and/or RT priority of
3699  * a thread.
3700  * @p: the task in question.
3701  * @policy: new policy.
3702  * @param: structure containing the new RT priority.
3703  */
3704 int sched_setscheduler(struct task_struct *p, int policy,
3705                        struct sched_param *param)
3706 {
3707         int retval;
3708         int oldprio, oldpolicy = -1;
3709         prio_array_t *array;
3710         unsigned long flags;
3711         runqueue_t *rq;
3712
3713 recheck:
3714         /* double check policy once rq lock held */
3715         if (policy < 0)
3716                 policy = oldpolicy = p->policy;
3717         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3718                                 policy != SCHED_NORMAL)
3719                         return -EINVAL;
3720         /*
3721          * Valid priorities for SCHED_FIFO and SCHED_RR are
3722          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3723          */
3724         if (param->sched_priority < 0 ||
3725             (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3726             (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3727                 return -EINVAL;
3728         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3729                 return -EINVAL;
3730
3731         /*
3732          * Allow unprivileged RT tasks to decrease priority:
3733          */
3734         if (!capable(CAP_SYS_NICE)) {
3735                 /* can't change policy */
3736                 if (policy != p->policy &&
3737                         !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3738                         return -EPERM;
3739                 /* can't increase priority */
3740                 if (policy != SCHED_NORMAL &&
3741                     param->sched_priority > p->rt_priority &&
3742                     param->sched_priority >
3743                                 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3744                         return -EPERM;
3745                 /* can't change other user's priorities */
3746                 if ((current->euid != p->euid) &&
3747                     (current->euid != p->uid))
3748                         return -EPERM;
3749         }
3750
3751         retval = security_task_setscheduler(p, policy, param);
3752         if (retval)
3753                 return retval;
3754         /*
3755          * To be able to change p->policy safely, the apropriate
3756          * runqueue lock must be held.
3757          */
3758         rq = task_rq_lock(p, &flags);
3759         /* recheck policy now with rq lock held */
3760         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3761                 policy = oldpolicy = -1;
3762                 task_rq_unlock(rq, &flags);
3763                 goto recheck;
3764         }
3765         array = p->array;
3766         if (array)
3767                 deactivate_task(p, rq);
3768         oldprio = p->prio;
3769         __setscheduler(p, policy, param->sched_priority);
3770         if (array) {
3771                 __activate_task(p, rq);
3772                 /*
3773                  * Reschedule if we are currently running on this runqueue and
3774                  * our priority decreased, or if we are not currently running on
3775                  * this runqueue and our priority is higher than the current's
3776                  */
3777                 if (task_running(rq, p)) {
3778                         if (p->prio > oldprio)
3779                                 resched_task(rq->curr);
3780                 } else if (TASK_PREEMPTS_CURR(p, rq))
3781                         resched_task(rq->curr);
3782         }
3783         task_rq_unlock(rq, &flags);
3784         return 0;
3785 }
3786 EXPORT_SYMBOL_GPL(sched_setscheduler);
3787
3788 static int
3789 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3790 {
3791         int retval;
3792         struct sched_param lparam;
3793         struct task_struct *p;
3794
3795         if (!param || pid < 0)
3796                 return -EINVAL;
3797         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3798                 return -EFAULT;
3799         read_lock_irq(&tasklist_lock);
3800         p = find_process_by_pid(pid);
3801         if (!p) {
3802                 read_unlock_irq(&tasklist_lock);
3803                 return -ESRCH;
3804         }
3805         retval = sched_setscheduler(p, policy, &lparam);
3806         read_unlock_irq(&tasklist_lock);
3807         return retval;
3808 }
3809
3810 /**
3811  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3812  * @pid: the pid in question.
3813  * @policy: new policy.
3814  * @param: structure containing the new RT priority.
3815  */
3816 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3817                                        struct sched_param __user *param)
3818 {
3819         return do_sched_setscheduler(pid, policy, param);
3820 }
3821
3822 /**
3823  * sys_sched_setparam - set/change the RT priority of a thread
3824  * @pid: the pid in question.
3825  * @param: structure containing the new RT priority.
3826  */
3827 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3828 {
3829         return do_sched_setscheduler(pid, -1, param);
3830 }
3831
3832 /**
3833  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3834  * @pid: the pid in question.
3835  */
3836 asmlinkage long sys_sched_getscheduler(pid_t pid)
3837 {
3838         int retval = -EINVAL;
3839         task_t *p;
3840
3841         if (pid < 0)
3842                 goto out_nounlock;
3843
3844         retval = -ESRCH;
3845         read_lock(&tasklist_lock);
3846         p = find_process_by_pid(pid);
3847         if (p) {
3848                 retval = security_task_getscheduler(p);
3849                 if (!retval)
3850                         retval = p->policy;
3851         }
3852         read_unlock(&tasklist_lock);
3853
3854 out_nounlock:
3855         return retval;
3856 }
3857
3858 /**
3859  * sys_sched_getscheduler - get the RT priority of a thread
3860  * @pid: the pid in question.
3861  * @param: structure containing the RT priority.
3862  */
3863 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3864 {
3865         struct sched_param lp;
3866         int retval = -EINVAL;
3867         task_t *p;
3868
3869         if (!param || pid < 0)
3870                 goto out_nounlock;
3871
3872         read_lock(&tasklist_lock);
3873         p = find_process_by_pid(pid);
3874         retval = -ESRCH;
3875         if (!p)
3876                 goto out_unlock;
3877
3878         retval = security_task_getscheduler(p);
3879         if (retval)
3880                 goto out_unlock;
3881
3882         lp.sched_priority = p->rt_priority;
3883         read_unlock(&tasklist_lock);
3884
3885         /*
3886          * This one might sleep, we cannot do it with a spinlock held ...
3887          */
3888         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3889
3890 out_nounlock:
3891         return retval;
3892
3893 out_unlock:
3894         read_unlock(&tasklist_lock);
3895         return retval;
3896 }
3897
3898 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3899 {
3900         task_t *p;
3901         int retval;
3902         cpumask_t cpus_allowed;
3903
3904         lock_cpu_hotplug();
3905         read_lock(&tasklist_lock);
3906
3907         p = find_process_by_pid(pid);
3908         if (!p) {
3909                 read_unlock(&tasklist_lock);
3910                 unlock_cpu_hotplug();
3911                 return -ESRCH;
3912         }
3913
3914         /*
3915          * It is not safe to call set_cpus_allowed with the
3916          * tasklist_lock held.  We will bump the task_struct's
3917          * usage count and then drop tasklist_lock.
3918          */
3919         get_task_struct(p);
3920         read_unlock(&tasklist_lock);
3921
3922         retval = -EPERM;
3923         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3924                         !capable(CAP_SYS_NICE))
3925                 goto out_unlock;
3926
3927         cpus_allowed = cpuset_cpus_allowed(p);
3928         cpus_and(new_mask, new_mask, cpus_allowed);
3929         retval = set_cpus_allowed(p, new_mask);
3930
3931 out_unlock:
3932         put_task_struct(p);
3933         unlock_cpu_hotplug();
3934         return retval;
3935 }
3936
3937 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3938                              cpumask_t *new_mask)
3939 {
3940         if (len < sizeof(cpumask_t)) {
3941                 memset(new_mask, 0, sizeof(cpumask_t));
3942         } else if (len > sizeof(cpumask_t)) {
3943                 len = sizeof(cpumask_t);
3944         }
3945         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3946 }
3947
3948 /**
3949  * sys_sched_setaffinity - set the cpu affinity of a process
3950  * @pid: pid of the process
3951  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3952  * @user_mask_ptr: user-space pointer to the new cpu mask
3953  */
3954 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3955                                       unsigned long __user *user_mask_ptr)
3956 {
3957         cpumask_t new_mask;
3958         int retval;
3959
3960         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3961         if (retval)
3962                 return retval;
3963
3964         return sched_setaffinity(pid, new_mask);
3965 }
3966
3967 /*
3968  * Represents all cpu's present in the system
3969  * In systems capable of hotplug, this map could dynamically grow
3970  * as new cpu's are detected in the system via any platform specific
3971  * method, such as ACPI for e.g.
3972  */
3973
3974 cpumask_t cpu_present_map;
3975 EXPORT_SYMBOL(cpu_present_map);
3976
3977 #ifndef CONFIG_SMP
3978 cpumask_t cpu_online_map = CPU_MASK_ALL;
3979 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3980 #endif
3981
3982 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3983 {
3984         int retval;
3985         task_t *p;
3986
3987         lock_cpu_hotplug();
3988         read_lock(&tasklist_lock);
3989
3990         retval = -ESRCH;
3991         p = find_process_by_pid(pid);
3992         if (!p)
3993                 goto out_unlock;
3994
3995         retval = 0;
3996         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3997
3998 out_unlock:
3999         read_unlock(&tasklist_lock);
4000         unlock_cpu_hotplug();
4001         if (retval)
4002                 return retval;
4003
4004         return 0;
4005 }
4006
4007 /**
4008  * sys_sched_getaffinity - get the cpu affinity of a process
4009  * @pid: pid of the process
4010  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4011  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4012  */
4013 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4014                                       unsigned long __user *user_mask_ptr)
4015 {
4016         int ret;
4017         cpumask_t mask;
4018
4019         if (len < sizeof(cpumask_t))
4020                 return -EINVAL;
4021
4022         ret = sched_getaffinity(pid, &mask);
4023         if (ret < 0)
4024                 return ret;
4025
4026         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4027                 return -EFAULT;
4028
4029         return sizeof(cpumask_t);
4030 }
4031
4032 /**
4033  * sys_sched_yield - yield the current processor to other threads.
4034  *
4035  * this function yields the current CPU by moving the calling thread
4036  * to the expired array. If there are no other threads running on this
4037  * CPU then this function will return.
4038  */
4039 asmlinkage long sys_sched_yield(void)
4040 {
4041         runqueue_t *rq = this_rq_lock();
4042         prio_array_t *array = current->array;
4043         prio_array_t *target = rq->expired;
4044
4045         schedstat_inc(rq, yld_cnt);
4046         /*
4047          * We implement yielding by moving the task into the expired
4048          * queue.
4049          *
4050          * (special rule: RT tasks will just roundrobin in the active
4051          *  array.)
4052          */
4053         if (rt_task(current))
4054                 target = rq->active;
4055
4056         if (array->nr_active == 1) {
4057                 schedstat_inc(rq, yld_act_empty);
4058                 if (!rq->expired->nr_active)
4059                         schedstat_inc(rq, yld_both_empty);
4060         } else if (!rq->expired->nr_active)
4061                 schedstat_inc(rq, yld_exp_empty);
4062
4063         if (array != target) {
4064                 dequeue_task(current, array);
4065                 enqueue_task(current, target);
4066         } else
4067                 /*
4068                  * requeue_task is cheaper so perform that if possible.
4069                  */
4070                 requeue_task(current, array);
4071
4072         /*
4073          * Since we are going to call schedule() anyway, there's
4074          * no need to preempt or enable interrupts:
4075          */
4076         __release(rq->lock);
4077         _raw_spin_unlock(&rq->lock);
4078         preempt_enable_no_resched();
4079
4080         schedule();
4081
4082         return 0;
4083 }
4084
4085 static inline void __cond_resched(void)
4086 {
4087         /*
4088          * The BKS might be reacquired before we have dropped
4089          * PREEMPT_ACTIVE, which could trigger a second
4090          * cond_resched() call.
4091          */
4092         if (unlikely(preempt_count()))
4093                 return;
4094         do {
4095                 add_preempt_count(PREEMPT_ACTIVE);
4096                 schedule();
4097                 sub_preempt_count(PREEMPT_ACTIVE);
4098         } while (need_resched());
4099 }
4100
4101 int __sched cond_resched(void)
4102 {
4103         if (need_resched()) {
4104                 __cond_resched();
4105                 return 1;
4106         }
4107         return 0;
4108 }
4109
4110 EXPORT_SYMBOL(cond_resched);
4111
4112 /*
4113  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4114  * call schedule, and on return reacquire the lock.
4115  *
4116  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
4117  * operations here to prevent schedule() from being called twice (once via
4118  * spin_unlock(), once by hand).
4119  */
4120 int cond_resched_lock(spinlock_t *lock)
4121 {
4122         int ret = 0;
4123
4124         if (need_lockbreak(lock)) {
4125                 spin_unlock(lock);
4126                 cpu_relax();
4127                 ret = 1;
4128                 spin_lock(lock);
4129         }
4130         if (need_resched()) {
4131                 _raw_spin_unlock(lock);
4132                 preempt_enable_no_resched();
4133                 __cond_resched();
4134                 ret = 1;
4135                 spin_lock(lock);
4136         }
4137         return ret;
4138 }
4139
4140 EXPORT_SYMBOL(cond_resched_lock);
4141
4142 int __sched cond_resched_softirq(void)
4143 {
4144         BUG_ON(!in_softirq());
4145
4146         if (need_resched()) {
4147                 __local_bh_enable();
4148                 __cond_resched();
4149                 local_bh_disable();
4150                 return 1;
4151         }
4152         return 0;
4153 }
4154
4155 EXPORT_SYMBOL(cond_resched_softirq);
4156
4157
4158 /**
4159  * yield - yield the current processor to other threads.
4160  *
4161  * this is a shortcut for kernel-space yielding - it marks the
4162  * thread runnable and calls sys_sched_yield().
4163  */
4164 void __sched yield(void)
4165 {
4166         set_current_state(TASK_RUNNING);
4167         sys_sched_yield();
4168 }
4169
4170 EXPORT_SYMBOL(yield);
4171
4172 /*
4173  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
4174  * that process accounting knows that this is a task in IO wait state.
4175  *
4176  * But don't do that if it is a deliberate, throttling IO wait (this task
4177  * has set its backing_dev_info: the queue against which it should throttle)
4178  */
4179 void __sched io_schedule(void)
4180 {
4181         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4182
4183         atomic_inc(&rq->nr_iowait);
4184         schedule();
4185         atomic_dec(&rq->nr_iowait);
4186 }
4187
4188 EXPORT_SYMBOL(io_schedule);
4189
4190 long __sched io_schedule_timeout(long timeout)
4191 {
4192         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4193         long ret;
4194
4195         atomic_inc(&rq->nr_iowait);
4196         ret = schedule_timeout(timeout);
4197         atomic_dec(&rq->nr_iowait);
4198         return ret;
4199 }
4200
4201 /**
4202  * sys_sched_get_priority_max - return maximum RT priority.
4203  * @policy: scheduling class.
4204  *
4205  * this syscall returns the maximum rt_priority that can be used
4206  * by a given scheduling class.
4207  */
4208 asmlinkage long sys_sched_get_priority_max(int policy)
4209 {
4210         int ret = -EINVAL;
4211
4212         switch (policy) {
4213         case SCHED_FIFO:
4214         case SCHED_RR:
4215                 ret = MAX_USER_RT_PRIO-1;
4216                 break;
4217         case SCHED_NORMAL:
4218                 ret = 0;
4219                 break;
4220         }
4221         return ret;
4222 }
4223
4224 /**
4225  * sys_sched_get_priority_min - return minimum RT priority.
4226  * @policy: scheduling class.
4227  *
4228  * this syscall returns the minimum rt_priority that can be used
4229  * by a given scheduling class.
4230  */
4231 asmlinkage long sys_sched_get_priority_min(int policy)
4232 {
4233         int ret = -EINVAL;
4234
4235         switch (policy) {
4236         case SCHED_FIFO:
4237         case SCHED_RR:
4238                 ret = 1;
4239                 break;
4240         case SCHED_NORMAL:
4241                 ret = 0;
4242         }
4243         return ret;
4244 }
4245
4246 /**
4247  * sys_sched_rr_get_interval - return the default timeslice of a process.
4248  * @pid: pid of the process.
4249  * @interval: userspace pointer to the timeslice value.
4250  *
4251  * this syscall writes the default timeslice value of a given process
4252  * into the user-space timespec buffer. A value of '0' means infinity.
4253  */
4254 asmlinkage
4255 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4256 {
4257         int retval = -EINVAL;
4258         struct timespec t;
4259         task_t *p;
4260
4261         if (pid < 0)
4262                 goto out_nounlock;
4263
4264         retval = -ESRCH;
4265         read_lock(&tasklist_lock);
4266         p = find_process_by_pid(pid);
4267         if (!p)
4268                 goto out_unlock;
4269
4270         retval = security_task_getscheduler(p);
4271         if (retval)
4272                 goto out_unlock;
4273
4274         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4275                                 0 : task_timeslice(p), &t);
4276         read_unlock(&tasklist_lock);
4277         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4278 out_nounlock:
4279         return retval;
4280 out_unlock:
4281         read_unlock(&tasklist_lock);
4282         return retval;
4283 }
4284
4285 static inline struct task_struct *eldest_child(struct task_struct *p)
4286 {
4287         if (list_empty(&p->children)) return NULL;
4288         return list_entry(p->children.next,struct task_struct,sibling);
4289 }
4290
4291 static inline struct task_struct *older_sibling(struct task_struct *p)
4292 {
4293         if (p->sibling.prev==&p->parent->children) return NULL;
4294         return list_entry(p->sibling.prev,struct task_struct,sibling);
4295 }
4296
4297 static inline struct task_struct *younger_sibling(struct task_struct *p)
4298 {
4299         if (p->sibling.next==&p->parent->children) return NULL;
4300         return list_entry(p->sibling.next,struct task_struct,sibling);
4301 }
4302
4303 static void show_task(task_t *p)
4304 {
4305         task_t *relative;
4306         unsigned state;
4307         unsigned long free = 0;
4308         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4309
4310         printk("%-13.13s ", p->comm);
4311         state = p->state ? __ffs(p->state) + 1 : 0;
4312         if (state < ARRAY_SIZE(stat_nam))
4313                 printk(stat_nam[state]);
4314         else
4315                 printk("?");
4316 #if (BITS_PER_LONG == 32)
4317         if (state == TASK_RUNNING)
4318                 printk(" running ");
4319         else
4320                 printk(" %08lX ", thread_saved_pc(p));
4321 #else
4322         if (state == TASK_RUNNING)
4323                 printk("  running task   ");
4324         else
4325                 printk(" %016lx ", thread_saved_pc(p));
4326 #endif
4327 #ifdef CONFIG_DEBUG_STACK_USAGE
4328         {
4329                 unsigned long *n = (unsigned long *) (p->thread_info+1);
4330                 while (!*n)
4331                         n++;
4332                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4333         }
4334 #endif
4335         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4336         if ((relative = eldest_child(p)))
4337                 printk("%5d ", relative->pid);
4338         else
4339                 printk("      ");
4340         if ((relative = younger_sibling(p)))
4341                 printk("%7d", relative->pid);
4342         else
4343                 printk("       ");
4344         if ((relative = older_sibling(p)))
4345                 printk(" %5d", relative->pid);
4346         else
4347                 printk("      ");
4348         if (!p->mm)
4349                 printk(" (L-TLB)\n");
4350         else
4351                 printk(" (NOTLB)\n");
4352
4353         if (state != TASK_RUNNING)
4354                 show_stack(p, NULL);
4355 }
4356
4357 void show_state(void)
4358 {
4359         task_t *g, *p;
4360
4361 #if (BITS_PER_LONG == 32)
4362         printk("\n"
4363                "                                               sibling\n");
4364         printk("  task             PC      pid father child younger older\n");
4365 #else
4366         printk("\n"
4367                "                                                       sibling\n");
4368         printk("  task                 PC          pid father child younger older\n");
4369 #endif
4370         read_lock(&tasklist_lock);
4371         do_each_thread(g, p) {
4372                 /*
4373                  * reset the NMI-timeout, listing all files on a slow
4374                  * console might take alot of time:
4375                  */
4376                 touch_nmi_watchdog();
4377                 show_task(p);
4378         } while_each_thread(g, p);
4379
4380         read_unlock(&tasklist_lock);
4381 }
4382
4383 /**
4384  * init_idle - set up an idle thread for a given CPU
4385  * @idle: task in question
4386  * @cpu: cpu the idle task belongs to
4387  *
4388  * NOTE: this function does not set the idle thread's NEED_RESCHED
4389  * flag, to make booting more robust.
4390  */
4391 void __devinit init_idle(task_t *idle, int cpu)
4392 {
4393         runqueue_t *rq = cpu_rq(cpu);
4394         unsigned long flags;
4395
4396         idle->sleep_avg = 0;
4397         idle->array = NULL;
4398         idle->prio = MAX_PRIO;
4399         idle->state = TASK_RUNNING;
4400         idle->cpus_allowed = cpumask_of_cpu(cpu);
4401         set_task_cpu(idle, cpu);
4402
4403         spin_lock_irqsave(&rq->lock, flags);
4404         rq->curr = rq->idle = idle;
4405 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4406         idle->oncpu = 1;
4407 #endif
4408         spin_unlock_irqrestore(&rq->lock, flags);
4409
4410         /* Set the preempt count _outside_ the spinlocks! */
4411 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4412         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4413 #else
4414         idle->thread_info->preempt_count = 0;
4415 #endif
4416 }
4417
4418 /*
4419  * In a system that switches off the HZ timer nohz_cpu_mask
4420  * indicates which cpus entered this state. This is used
4421  * in the rcu update to wait only for active cpus. For system
4422  * which do not switch off the HZ timer nohz_cpu_mask should
4423  * always be CPU_MASK_NONE.
4424  */
4425 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4426
4427 #ifdef CONFIG_SMP
4428 /*
4429  * This is how migration works:
4430  *
4431  * 1) we queue a migration_req_t structure in the source CPU's
4432  *    runqueue and wake up that CPU's migration thread.
4433  * 2) we down() the locked semaphore => thread blocks.
4434  * 3) migration thread wakes up (implicitly it forces the migrated
4435  *    thread off the CPU)
4436  * 4) it gets the migration request and checks whether the migrated
4437  *    task is still in the wrong runqueue.
4438  * 5) if it's in the wrong runqueue then the migration thread removes
4439  *    it and puts it into the right queue.
4440  * 6) migration thread up()s the semaphore.
4441  * 7) we wake up and the migration is done.
4442  */
4443
4444 /*
4445  * Change a given task's CPU affinity. Migrate the thread to a
4446  * proper CPU and schedule it away if the CPU it's executing on
4447  * is removed from the allowed bitmask.
4448  *
4449  * NOTE: the caller must have a valid reference to the task, the
4450  * task must not exit() & deallocate itself prematurely.  The
4451  * call is not atomic; no spinlocks may be held.
4452  */
4453 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4454 {
4455         unsigned long flags;
4456         int ret = 0;
4457         migration_req_t req;
4458         runqueue_t *rq;
4459
4460         rq = task_rq_lock(p, &flags);
4461         if (!cpus_intersects(new_mask, cpu_online_map)) {
4462                 ret = -EINVAL;
4463                 goto out;
4464         }
4465
4466         p->cpus_allowed = new_mask;
4467         /* Can the task run on the task's current CPU? If so, we're done */
4468         if (cpu_isset(task_cpu(p), new_mask))
4469                 goto out;
4470
4471         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4472                 /* Need help from migration thread: drop lock and wait. */
4473                 task_rq_unlock(rq, &flags);
4474                 wake_up_process(rq->migration_thread);
4475                 wait_for_completion(&req.done);
4476                 tlb_migrate_finish(p->mm);
4477                 return 0;
4478         }
4479 out:
4480         task_rq_unlock(rq, &flags);
4481         return ret;
4482 }
4483
4484 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4485
4486 /*
4487  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4488  * this because either it can't run here any more (set_cpus_allowed()
4489  * away from this CPU, or CPU going down), or because we're
4490  * attempting to rebalance this task on exec (sched_exec).
4491  *
4492  * So we race with normal scheduler movements, but that's OK, as long
4493  * as the task is no longer on this CPU.
4494  */
4495 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4496 {
4497         runqueue_t *rq_dest, *rq_src;
4498
4499         if (unlikely(cpu_is_offline(dest_cpu)))
4500                 return;
4501
4502         rq_src = cpu_rq(src_cpu);
4503         rq_dest = cpu_rq(dest_cpu);
4504
4505         double_rq_lock(rq_src, rq_dest);
4506         /* Already moved. */
4507         if (task_cpu(p) != src_cpu)
4508                 goto out;
4509         /* Affinity changed (again). */
4510         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4511                 goto out;
4512
4513         set_task_cpu(p, dest_cpu);
4514         if (p->array) {
4515                 /*
4516                  * Sync timestamp with rq_dest's before activating.
4517                  * The same thing could be achieved by doing this step
4518                  * afterwards, and pretending it was a local activate.
4519                  * This way is cleaner and logically correct.
4520                  */
4521                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4522                                 + rq_dest->timestamp_last_tick;
4523                 deactivate_task(p, rq_src);
4524                 activate_task(p, rq_dest, 0);
4525                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4526                         resched_task(rq_dest->curr);
4527         }
4528
4529 out:
4530         double_rq_unlock(rq_src, rq_dest);
4531 }
4532
4533 /*
4534  * migration_thread - this is a highprio system thread that performs
4535  * thread migration by bumping thread off CPU then 'pushing' onto
4536  * another runqueue.
4537  */
4538 static int migration_thread(void *data)
4539 {
4540         runqueue_t *rq;
4541         int cpu = (long)data;
4542
4543         rq = cpu_rq(cpu);
4544         BUG_ON(rq->migration_thread != current);
4545
4546         set_current_state(TASK_INTERRUPTIBLE);
4547         while (!kthread_should_stop()) {
4548                 struct list_head *head;
4549                 migration_req_t *req;
4550
4551                 try_to_freeze();
4552
4553                 spin_lock_irq(&rq->lock);
4554
4555                 if (cpu_is_offline(cpu)) {
4556                         spin_unlock_irq(&rq->lock);
4557                         goto wait_to_die;
4558                 }
4559
4560                 if (rq->active_balance) {
4561                         active_load_balance(rq, cpu);
4562                         rq->active_balance = 0;
4563                 }
4564
4565                 head = &rq->migration_queue;
4566
4567                 if (list_empty(head)) {
4568                         spin_unlock_irq(&rq->lock);
4569                         schedule();
4570                         set_current_state(TASK_INTERRUPTIBLE);
4571                         continue;
4572                 }
4573                 req = list_entry(head->next, migration_req_t, list);
4574                 list_del_init(head->next);
4575
4576                 spin_unlock(&rq->lock);
4577                 __migrate_task(req->task, cpu, req->dest_cpu);
4578                 local_irq_enable();
4579
4580                 complete(&req->done);
4581         }
4582         __set_current_state(TASK_RUNNING);
4583         return 0;
4584
4585 wait_to_die:
4586         /* Wait for kthread_stop */
4587         set_current_state(TASK_INTERRUPTIBLE);
4588         while (!kthread_should_stop()) {
4589                 schedule();
4590                 set_current_state(TASK_INTERRUPTIBLE);
4591         }
4592         __set_current_state(TASK_RUNNING);
4593         return 0;
4594 }
4595
4596 #ifdef CONFIG_HOTPLUG_CPU
4597 /* Figure out where task on dead CPU should go, use force if neccessary. */
4598 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4599 {
4600         int dest_cpu;
4601         cpumask_t mask;
4602
4603         /* On same node? */
4604         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4605         cpus_and(mask, mask, tsk->cpus_allowed);
4606         dest_cpu = any_online_cpu(mask);
4607
4608         /* On any allowed CPU? */
4609         if (dest_cpu == NR_CPUS)
4610                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4611
4612         /* No more Mr. Nice Guy. */
4613         if (dest_cpu == NR_CPUS) {
4614                 cpus_setall(tsk->cpus_allowed);
4615                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4616
4617                 /*
4618                  * Don't tell them about moving exiting tasks or
4619                  * kernel threads (both mm NULL), since they never
4620                  * leave kernel.
4621                  */
4622                 if (tsk->mm && printk_ratelimit())
4623                         printk(KERN_INFO "process %d (%s) no "
4624                                "longer affine to cpu%d\n",
4625                                tsk->pid, tsk->comm, dead_cpu);
4626         }
4627         __migrate_task(tsk, dead_cpu, dest_cpu);
4628 }
4629
4630 /*
4631  * While a dead CPU has no uninterruptible tasks queued at this point,
4632  * it might still have a nonzero ->nr_uninterruptible counter, because
4633  * for performance reasons the counter is not stricly tracking tasks to
4634  * their home CPUs. So we just add the counter to another CPU's counter,
4635  * to keep the global sum constant after CPU-down:
4636  */
4637 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4638 {
4639         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4640         unsigned long flags;
4641
4642         local_irq_save(flags);
4643         double_rq_lock(rq_src, rq_dest);
4644         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4645         rq_src->nr_uninterruptible = 0;
4646         double_rq_unlock(rq_src, rq_dest);
4647         local_irq_restore(flags);
4648 }
4649
4650 /* Run through task list and migrate tasks from the dead cpu. */
4651 static void migrate_live_tasks(int src_cpu)
4652 {
4653         struct task_struct *tsk, *t;
4654
4655         write_lock_irq(&tasklist_lock);
4656
4657         do_each_thread(t, tsk) {
4658                 if (tsk == current)
4659                         continue;
4660
4661                 if (task_cpu(tsk) == src_cpu)
4662                         move_task_off_dead_cpu(src_cpu, tsk);
4663         } while_each_thread(t, tsk);
4664
4665         write_unlock_irq(&tasklist_lock);
4666 }
4667
4668 /* Schedules idle task to be the next runnable task on current CPU.
4669  * It does so by boosting its priority to highest possible and adding it to
4670  * the _front_ of runqueue. Used by CPU offline code.
4671  */
4672 void sched_idle_next(void)
4673 {
4674         int cpu = smp_processor_id();
4675         runqueue_t *rq = this_rq();
4676         struct task_struct *p = rq->idle;
4677         unsigned long flags;
4678
4679         /* cpu has to be offline */
4680         BUG_ON(cpu_online(cpu));
4681
4682         /* Strictly not necessary since rest of the CPUs are stopped by now
4683          * and interrupts disabled on current cpu.
4684          */
4685         spin_lock_irqsave(&rq->lock, flags);
4686
4687         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4688         /* Add idle task to _front_ of it's priority queue */
4689         __activate_idle_task(p, rq);
4690
4691         spin_unlock_irqrestore(&rq->lock, flags);
4692 }
4693
4694 /* Ensures that the idle task is using init_mm right before its cpu goes
4695  * offline.
4696  */
4697 void idle_task_exit(void)
4698 {
4699         struct mm_struct *mm = current->active_mm;
4700
4701         BUG_ON(cpu_online(smp_processor_id()));
4702
4703         if (mm != &init_mm)
4704                 switch_mm(mm, &init_mm, current);
4705         mmdrop(mm);
4706 }
4707
4708 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4709 {
4710         struct runqueue *rq = cpu_rq(dead_cpu);
4711
4712         /* Must be exiting, otherwise would be on tasklist. */
4713         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4714
4715         /* Cannot have done final schedule yet: would have vanished. */
4716         BUG_ON(tsk->flags & PF_DEAD);
4717
4718         get_task_struct(tsk);
4719
4720         /*
4721          * Drop lock around migration; if someone else moves it,
4722          * that's OK.  No task can be added to this CPU, so iteration is
4723          * fine.
4724          */
4725         spin_unlock_irq(&rq->lock);
4726         move_task_off_dead_cpu(dead_cpu, tsk);
4727         spin_lock_irq(&rq->lock);
4728
4729         put_task_struct(tsk);
4730 }
4731
4732 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4733 static void migrate_dead_tasks(unsigned int dead_cpu)
4734 {
4735         unsigned arr, i;
4736         struct runqueue *rq = cpu_rq(dead_cpu);
4737
4738         for (arr = 0; arr < 2; arr++) {
4739                 for (i = 0; i < MAX_PRIO; i++) {
4740                         struct list_head *list = &rq->arrays[arr].queue[i];
4741                         while (!list_empty(list))
4742                                 migrate_dead(dead_cpu,
4743                                              list_entry(list->next, task_t,
4744                                                         run_list));
4745                 }
4746         }
4747 }
4748 #endif /* CONFIG_HOTPLUG_CPU */
4749
4750 /*
4751  * migration_call - callback that gets triggered when a CPU is added.
4752  * Here we can start up the necessary migration thread for the new CPU.
4753  */
4754 static int migration_call(struct notifier_block *nfb, unsigned long action,
4755                           void *hcpu)
4756 {
4757         int cpu = (long)hcpu;
4758         struct task_struct *p;
4759         struct runqueue *rq;
4760         unsigned long flags;
4761
4762         switch (action) {
4763         case CPU_UP_PREPARE:
4764                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4765                 if (IS_ERR(p))
4766                         return NOTIFY_BAD;
4767                 p->flags |= PF_NOFREEZE;
4768                 kthread_bind(p, cpu);
4769                 /* Must be high prio: stop_machine expects to yield to it. */
4770                 rq = task_rq_lock(p, &flags);
4771                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4772                 task_rq_unlock(rq, &flags);
4773                 cpu_rq(cpu)->migration_thread = p;
4774                 break;
4775         case CPU_ONLINE:
4776                 /* Strictly unneccessary, as first user will wake it. */
4777                 wake_up_process(cpu_rq(cpu)->migration_thread);
4778                 break;
4779 #ifdef CONFIG_HOTPLUG_CPU
4780         case CPU_UP_CANCELED:
4781                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4782                 kthread_bind(cpu_rq(cpu)->migration_thread,
4783                              any_online_cpu(cpu_online_map));
4784                 kthread_stop(cpu_rq(cpu)->migration_thread);
4785                 cpu_rq(cpu)->migration_thread = NULL;
4786                 break;
4787         case CPU_DEAD:
4788                 migrate_live_tasks(cpu);
4789                 rq = cpu_rq(cpu);
4790                 kthread_stop(rq->migration_thread);
4791                 rq->migration_thread = NULL;
4792                 /* Idle task back to normal (off runqueue, low prio) */
4793                 rq = task_rq_lock(rq->idle, &flags);
4794                 deactivate_task(rq->idle, rq);
4795                 rq->idle->static_prio = MAX_PRIO;
4796                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4797                 migrate_dead_tasks(cpu);
4798                 task_rq_unlock(rq, &flags);
4799                 migrate_nr_uninterruptible(rq);
4800                 BUG_ON(rq->nr_running != 0);
4801
4802                 /* No need to migrate the tasks: it was best-effort if
4803                  * they didn't do lock_cpu_hotplug().  Just wake up
4804                  * the requestors. */
4805                 spin_lock_irq(&rq->lock);
4806                 while (!list_empty(&rq->migration_queue)) {
4807                         migration_req_t *req;
4808                         req = list_entry(rq->migration_queue.next,
4809                                          migration_req_t, list);
4810                         list_del_init(&req->list);
4811                         complete(&req->done);
4812                 }
4813                 spin_unlock_irq(&rq->lock);
4814                 break;
4815 #endif
4816         }
4817         return NOTIFY_OK;
4818 }
4819
4820 /* Register at highest priority so that task migration (migrate_all_tasks)
4821  * happens before everything else.
4822  */
4823 static struct notifier_block __devinitdata migration_notifier = {
4824         .notifier_call = migration_call,
4825         .priority = 10
4826 };
4827
4828 int __init migration_init(void)
4829 {
4830         void *cpu = (void *)(long)smp_processor_id();
4831         /* Start one for boot CPU. */
4832         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4833         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4834         register_cpu_notifier(&migration_notifier);
4835         return 0;
4836 }
4837 #endif
4838
4839 #ifdef CONFIG_SMP
4840 #undef SCHED_DOMAIN_DEBUG
4841 #ifdef SCHED_DOMAIN_DEBUG
4842 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4843 {
4844         int level = 0;
4845
4846         if (!sd) {
4847                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4848                 return;
4849         }
4850
4851         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4852
4853         do {
4854                 int i;
4855                 char str[NR_CPUS];
4856                 struct sched_group *group = sd->groups;
4857                 cpumask_t groupmask;
4858
4859                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4860                 cpus_clear(groupmask);
4861
4862                 printk(KERN_DEBUG);
4863                 for (i = 0; i < level + 1; i++)
4864                         printk(" ");
4865                 printk("domain %d: ", level);
4866
4867                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4868                         printk("does not load-balance\n");
4869                         if (sd->parent)
4870                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4871                         break;
4872                 }
4873
4874                 printk("span %s\n", str);
4875
4876                 if (!cpu_isset(cpu, sd->span))
4877                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4878                 if (!cpu_isset(cpu, group->cpumask))
4879                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4880
4881                 printk(KERN_DEBUG);
4882                 for (i = 0; i < level + 2; i++)
4883                         printk(" ");
4884                 printk("groups:");
4885                 do {
4886                         if (!group) {
4887                                 printk("\n");
4888                                 printk(KERN_ERR "ERROR: group is NULL\n");
4889                                 break;
4890                         }
4891
4892                         if (!group->cpu_power) {
4893                                 printk("\n");
4894                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4895                         }
4896
4897                         if (!cpus_weight(group->cpumask)) {
4898                                 printk("\n");
4899                                 printk(KERN_ERR "ERROR: empty group\n");
4900                         }
4901
4902                         if (cpus_intersects(groupmask, group->cpumask)) {
4903                                 printk("\n");
4904                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4905                         }
4906
4907                         cpus_or(groupmask, groupmask, group->cpumask);
4908
4909                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4910                         printk(" %s", str);
4911
4912                         group = group->next;
4913                 } while (group != sd->groups);
4914                 printk("\n");
4915
4916                 if (!cpus_equal(sd->span, groupmask))
4917                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4918
4919                 level++;
4920                 sd = sd->parent;
4921
4922                 if (sd) {
4923                         if (!cpus_subset(groupmask, sd->span))
4924                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4925                 }
4926
4927         } while (sd);
4928 }
4929 #else
4930 #define sched_domain_debug(sd, cpu) {}
4931 #endif
4932
4933 static int sd_degenerate(struct sched_domain *sd)
4934 {
4935         if (cpus_weight(sd->span) == 1)
4936                 return 1;
4937
4938         /* Following flags need at least 2 groups */
4939         if (sd->flags & (SD_LOAD_BALANCE |
4940                          SD_BALANCE_NEWIDLE |
4941                          SD_BALANCE_FORK |
4942                          SD_BALANCE_EXEC)) {
4943                 if (sd->groups != sd->groups->next)
4944                         return 0;
4945         }
4946
4947         /* Following flags don't use groups */
4948         if (sd->flags & (SD_WAKE_IDLE |
4949                          SD_WAKE_AFFINE |
4950                          SD_WAKE_BALANCE))
4951                 return 0;
4952
4953         return 1;
4954 }
4955
4956 static int sd_parent_degenerate(struct sched_domain *sd,
4957                                                 struct sched_domain *parent)
4958 {
4959         unsigned long cflags = sd->flags, pflags = parent->flags;
4960
4961         if (sd_degenerate(parent))
4962                 return 1;
4963
4964         if (!cpus_equal(sd->span, parent->span))
4965                 return 0;
4966
4967         /* Does parent contain flags not in child? */
4968         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4969         if (cflags & SD_WAKE_AFFINE)
4970                 pflags &= ~SD_WAKE_BALANCE;
4971         /* Flags needing groups don't count if only 1 group in parent */
4972         if (parent->groups == parent->groups->next) {
4973                 pflags &= ~(SD_LOAD_BALANCE |
4974                                 SD_BALANCE_NEWIDLE |
4975                                 SD_BALANCE_FORK |
4976                                 SD_BALANCE_EXEC);
4977         }
4978         if (~cflags & pflags)
4979                 return 0;
4980
4981         return 1;
4982 }
4983
4984 /*
4985  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4986  * hold the hotplug lock.
4987  */
4988 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4989 {
4990         runqueue_t *rq = cpu_rq(cpu);
4991         struct sched_domain *tmp;
4992
4993         /* Remove the sched domains which do not contribute to scheduling. */
4994         for (tmp = sd; tmp; tmp = tmp->parent) {
4995                 struct sched_domain *parent = tmp->parent;
4996                 if (!parent)
4997                         break;
4998                 if (sd_parent_degenerate(tmp, parent))
4999                         tmp->parent = parent->parent;
5000         }
5001
5002         if (sd && sd_degenerate(sd))
5003                 sd = sd->parent;
5004
5005         sched_domain_debug(sd, cpu);
5006
5007         rcu_assign_pointer(rq->sd, sd);
5008 }
5009
5010 /* cpus with isolated domains */
5011 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5012
5013 /* Setup the mask of cpus configured for isolated domains */
5014 static int __init isolated_cpu_setup(char *str)
5015 {
5016         int ints[NR_CPUS], i;
5017
5018         str = get_options(str, ARRAY_SIZE(ints), ints);
5019         cpus_clear(cpu_isolated_map);
5020         for (i = 1; i <= ints[0]; i++)
5021                 if (ints[i] < NR_CPUS)
5022                         cpu_set(ints[i], cpu_isolated_map);
5023         return 1;
5024 }
5025
5026 __setup ("isolcpus=", isolated_cpu_setup);
5027
5028 /*
5029  * init_sched_build_groups takes an array of groups, the cpumask we wish
5030  * to span, and a pointer to a function which identifies what group a CPU
5031  * belongs to. The return value of group_fn must be a valid index into the
5032  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5033  * keep track of groups covered with a cpumask_t).
5034  *
5035  * init_sched_build_groups will build a circular linked list of the groups
5036  * covered by the given span, and will set each group's ->cpumask correctly,
5037  * and ->cpu_power to 0.
5038  */
5039 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5040                                     int (*group_fn)(int cpu))
5041 {
5042         struct sched_group *first = NULL, *last = NULL;
5043         cpumask_t covered = CPU_MASK_NONE;
5044         int i;
5045
5046         for_each_cpu_mask(i, span) {
5047                 int group = group_fn(i);
5048                 struct sched_group *sg = &groups[group];
5049                 int j;
5050
5051                 if (cpu_isset(i, covered))
5052                         continue;
5053
5054                 sg->cpumask = CPU_MASK_NONE;
5055                 sg->cpu_power = 0;
5056
5057                 for_each_cpu_mask(j, span) {
5058                         if (group_fn(j) != group)
5059                                 continue;
5060
5061                         cpu_set(j, covered);
5062                         cpu_set(j, sg->cpumask);
5063                 }
5064                 if (!first)
5065                         first = sg;
5066                 if (last)
5067                         last->next = sg;
5068                 last = sg;
5069         }
5070         last->next = first;
5071 }
5072
5073 #define SD_NODES_PER_DOMAIN 16
5074
5075 #ifdef CONFIG_NUMA
5076 /**
5077  * find_next_best_node - find the next node to include in a sched_domain
5078  * @node: node whose sched_domain we're building
5079  * @used_nodes: nodes already in the sched_domain
5080  *
5081  * Find the next node to include in a given scheduling domain.  Simply
5082  * finds the closest node not already in the @used_nodes map.
5083  *
5084  * Should use nodemask_t.
5085  */
5086 static int find_next_best_node(int node, unsigned long *used_nodes)
5087 {
5088         int i, n, val, min_val, best_node = 0;
5089
5090         min_val = INT_MAX;
5091
5092         for (i = 0; i < MAX_NUMNODES; i++) {
5093                 /* Start at @node */
5094                 n = (node + i) % MAX_NUMNODES;
5095
5096                 if (!nr_cpus_node(n))
5097                         continue;
5098
5099                 /* Skip already used nodes */
5100                 if (test_bit(n, used_nodes))
5101                         continue;
5102
5103                 /* Simple min distance search */
5104                 val = node_distance(node, n);
5105
5106                 if (val < min_val) {
5107                         min_val = val;
5108                         best_node = n;
5109                 }
5110         }
5111
5112         set_bit(best_node, used_nodes);
5113         return best_node;
5114 }
5115
5116 /**
5117  * sched_domain_node_span - get a cpumask for a node's sched_domain
5118  * @node: node whose cpumask we're constructing
5119  * @size: number of nodes to include in this span
5120  *
5121  * Given a node, construct a good cpumask for its sched_domain to span.  It
5122  * should be one that prevents unnecessary balancing, but also spreads tasks
5123  * out optimally.
5124  */
5125 static cpumask_t sched_domain_node_span(int node)
5126 {
5127         int i;
5128         cpumask_t span, nodemask;
5129         DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5130
5131         cpus_clear(span);
5132         bitmap_zero(used_nodes, MAX_NUMNODES);
5133
5134         nodemask = node_to_cpumask(node);
5135         cpus_or(span, span, nodemask);
5136         set_bit(node, used_nodes);
5137
5138         for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5139                 int next_node = find_next_best_node(node, used_nodes);
5140                 nodemask = node_to_cpumask(next_node);
5141                 cpus_or(span, span, nodemask);
5142         }
5143
5144         return span;
5145 }
5146 #endif
5147
5148 /*
5149  * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5150  * can switch it on easily if needed.
5151  */
5152 #ifdef CONFIG_SCHED_SMT
5153 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5154 static struct sched_group sched_group_cpus[NR_CPUS];
5155 static int cpu_to_cpu_group(int cpu)
5156 {
5157         return cpu;
5158 }
5159 #endif
5160
5161 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5162 static struct sched_group sched_group_phys[NR_CPUS];
5163 static int cpu_to_phys_group(int cpu)
5164 {
5165 #ifdef CONFIG_SCHED_SMT
5166         return first_cpu(cpu_sibling_map[cpu]);
5167 #else
5168         return cpu;
5169 #endif
5170 }
5171
5172 #ifdef CONFIG_NUMA
5173 /*
5174  * The init_sched_build_groups can't handle what we want to do with node
5175  * groups, so roll our own. Now each node has its own list of groups which
5176  * gets dynamically allocated.
5177  */
5178 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5179 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5180
5181 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5182 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5183
5184 static int cpu_to_allnodes_group(int cpu)
5185 {
5186         return cpu_to_node(cpu);
5187 }
5188 #endif
5189
5190 /*
5191  * Build sched domains for a given set of cpus and attach the sched domains
5192  * to the individual cpus
5193  */
5194 void build_sched_domains(const cpumask_t *cpu_map)
5195 {
5196         int i;
5197 #ifdef CONFIG_NUMA
5198         struct sched_group **sched_group_nodes = NULL;
5199         struct sched_group *sched_group_allnodes = NULL;
5200
5201         /*
5202          * Allocate the per-node list of sched groups
5203          */
5204         sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5205                                            GFP_ATOMIC);
5206         if (!sched_group_nodes) {
5207                 printk(KERN_WARNING "Can not alloc sched group node list\n");
5208                 return;
5209         }
5210         sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5211 #endif
5212
5213         /*
5214          * Set up domains for cpus specified by the cpu_map.
5215          */
5216         for_each_cpu_mask(i, *cpu_map) {
5217                 int group;
5218                 struct sched_domain *sd = NULL, *p;
5219                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5220
5221                 cpus_and(nodemask, nodemask, *cpu_map);
5222
5223 #ifdef CONFIG_NUMA
5224                 if (cpus_weight(*cpu_map)
5225                                 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5226                         if (!sched_group_allnodes) {
5227                                 sched_group_allnodes
5228                                         = kmalloc(sizeof(struct sched_group)
5229                                                         * MAX_NUMNODES,
5230                                                   GFP_KERNEL);
5231                                 if (!sched_group_allnodes) {
5232                                         printk(KERN_WARNING
5233                                         "Can not alloc allnodes sched group\n");
5234                                         break;
5235                                 }
5236                                 sched_group_allnodes_bycpu[i]
5237                                                 = sched_group_allnodes;
5238                         }
5239                         sd = &per_cpu(allnodes_domains, i);
5240                         *sd = SD_ALLNODES_INIT;
5241                         sd->span = *cpu_map;
5242                         group = cpu_to_allnodes_group(i);
5243                         sd->groups = &sched_group_allnodes[group];
5244                         p = sd;
5245                 } else
5246                         p = NULL;
5247
5248                 sd = &per_cpu(node_domains, i);
5249                 *sd = SD_NODE_INIT;
5250                 sd->span = sched_domain_node_span(cpu_to_node(i));
5251                 sd->parent = p;
5252                 cpus_and(sd->span, sd->span, *cpu_map);
5253 #endif
5254
5255                 p = sd;
5256                 sd = &per_cpu(phys_domains, i);
5257                 group = cpu_to_phys_group(i);
5258                 *sd = SD_CPU_INIT;
5259                 sd->span = nodemask;
5260                 sd->parent = p;
5261                 sd->groups = &sched_group_phys[group];
5262
5263 #ifdef CONFIG_SCHED_SMT
5264                 p = sd;
5265                 sd = &per_cpu(cpu_domains, i);
5266                 group = cpu_to_cpu_group(i);
5267                 *sd = SD_SIBLING_INIT;
5268                 sd->span = cpu_sibling_map[i];
5269                 cpus_and(sd->span, sd->span, *cpu_map);
5270                 sd->parent = p;
5271                 sd->groups = &sched_group_cpus[group];
5272 #endif
5273         }
5274
5275 #ifdef CONFIG_SCHED_SMT
5276         /* Set up CPU (sibling) groups */
5277         for_each_cpu_mask(i, *cpu_map) {
5278                 cpumask_t this_sibling_map = cpu_sibling_map[i];
5279                 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5280                 if (i != first_cpu(this_sibling_map))
5281                         continue;
5282
5283                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5284                                                 &cpu_to_cpu_group);
5285         }
5286 #endif
5287
5288         /* Set up physical groups */
5289         for (i = 0; i < MAX_NUMNODES; i++) {
5290                 cpumask_t nodemask = node_to_cpumask(i);
5291
5292                 cpus_and(nodemask, nodemask, *cpu_map);
5293                 if (cpus_empty(nodemask))
5294                         continue;
5295
5296                 init_sched_build_groups(sched_group_phys, nodemask,
5297                                                 &cpu_to_phys_group);
5298         }
5299
5300 #ifdef CONFIG_NUMA
5301         /* Set up node groups */
5302         if (sched_group_allnodes)
5303                 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5304                                         &cpu_to_allnodes_group);
5305
5306         for (i = 0; i < MAX_NUMNODES; i++) {
5307                 /* Set up node groups */
5308                 struct sched_group *sg, *prev;
5309                 cpumask_t nodemask = node_to_cpumask(i);
5310                 cpumask_t domainspan;
5311                 cpumask_t covered = CPU_MASK_NONE;
5312                 int j;
5313
5314                 cpus_and(nodemask, nodemask, *cpu_map);
5315                 if (cpus_empty(nodemask)) {
5316                         sched_group_nodes[i] = NULL;
5317                         continue;
5318                 }
5319
5320                 domainspan = sched_domain_node_span(i);
5321                 cpus_and(domainspan, domainspan, *cpu_map);
5322
5323                 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5324                 sched_group_nodes[i] = sg;
5325                 for_each_cpu_mask(j, nodemask) {
5326                         struct sched_domain *sd;
5327                         sd = &per_cpu(node_domains, j);
5328                         sd->groups = sg;
5329                         if (sd->groups == NULL) {
5330                                 /* Turn off balancing if we have no groups */
5331                                 sd->flags = 0;
5332                         }
5333                 }
5334                 if (!sg) {
5335                         printk(KERN_WARNING
5336                         "Can not alloc domain group for node %d\n", i);
5337                         continue;
5338                 }
5339                 sg->cpu_power = 0;
5340                 sg->cpumask = nodemask;
5341                 cpus_or(covered, covered, nodemask);
5342                 prev = sg;
5343
5344                 for (j = 0; j < MAX_NUMNODES; j++) {
5345                         cpumask_t tmp, notcovered;
5346                         int n = (i + j) % MAX_NUMNODES;
5347
5348                         cpus_complement(notcovered, covered);
5349                         cpus_and(tmp, notcovered, *cpu_map);
5350                         cpus_and(tmp, tmp, domainspan);
5351                         if (cpus_empty(tmp))
5352                                 break;
5353
5354                         nodemask = node_to_cpumask(n);
5355                         cpus_and(tmp, tmp, nodemask);
5356                         if (cpus_empty(tmp))
5357                                 continue;
5358
5359                         sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5360                         if (!sg) {
5361                                 printk(KERN_WARNING
5362                                 "Can not alloc domain group for node %d\n", j);
5363                                 break;
5364                         }
5365                         sg->cpu_power = 0;
5366                         sg->cpumask = tmp;
5367                         cpus_or(covered, covered, tmp);
5368                         prev->next = sg;
5369                         prev = sg;
5370                 }
5371                 prev->next = sched_group_nodes[i];
5372         }
5373 #endif
5374
5375         /* Calculate CPU power for physical packages and nodes */
5376         for_each_cpu_mask(i, *cpu_map) {
5377                 int power;
5378                 struct sched_domain *sd;
5379 #ifdef CONFIG_SCHED_SMT
5380                 sd = &per_cpu(cpu_domains, i);
5381                 power = SCHED_LOAD_SCALE;
5382                 sd->groups->cpu_power = power;
5383 #endif
5384
5385                 sd = &per_cpu(phys_domains, i);
5386                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5387                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5388                 sd->groups->cpu_power = power;
5389
5390 #ifdef CONFIG_NUMA
5391                 sd = &per_cpu(allnodes_domains, i);
5392                 if (sd->groups) {
5393                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5394                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5395                         sd->groups->cpu_power = power;
5396                 }
5397 #endif
5398         }
5399
5400 #ifdef CONFIG_NUMA
5401         for (i = 0; i < MAX_NUMNODES; i++) {
5402                 struct sched_group *sg = sched_group_nodes[i];
5403                 int j;
5404
5405                 if (sg == NULL)
5406                         continue;
5407 next_sg:
5408                 for_each_cpu_mask(j, sg->cpumask) {
5409                         struct sched_domain *sd;
5410                         int power;
5411
5412                         sd = &per_cpu(phys_domains, j);
5413                         if (j != first_cpu(sd->groups->cpumask)) {
5414                                 /*
5415                                  * Only add "power" once for each
5416                                  * physical package.
5417                                  */
5418                                 continue;
5419                         }
5420                         power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5421                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5422
5423                         sg->cpu_power += power;
5424                 }
5425                 sg = sg->next;
5426                 if (sg != sched_group_nodes[i])
5427                         goto next_sg;
5428         }
5429 #endif
5430
5431         /* Attach the domains */
5432         for_each_cpu_mask(i, *cpu_map) {
5433                 struct sched_domain *sd;
5434 #ifdef CONFIG_SCHED_SMT
5435                 sd = &per_cpu(cpu_domains, i);
5436 #else
5437                 sd = &per_cpu(phys_domains, i);
5438 #endif
5439                 cpu_attach_domain(sd, i);
5440         }
5441 }
5442 /*
5443  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
5444  */
5445 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5446 {
5447         cpumask_t cpu_default_map;
5448
5449         /*
5450          * Setup mask for cpus without special case scheduling requirements.
5451          * For now this just excludes isolated cpus, but could be used to
5452          * exclude other special cases in the future.
5453          */
5454         cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5455
5456         build_sched_domains(&cpu_default_map);
5457 }
5458
5459 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5460 {
5461 #ifdef CONFIG_NUMA
5462         int i;
5463         int cpu;
5464
5465         for_each_cpu_mask(cpu, *cpu_map) {
5466                 struct sched_group *sched_group_allnodes
5467                         = sched_group_allnodes_bycpu[cpu];
5468                 struct sched_group **sched_group_nodes
5469                         = sched_group_nodes_bycpu[cpu];
5470
5471                 if (sched_group_allnodes) {
5472                         kfree(sched_group_allnodes);
5473                         sched_group_allnodes_bycpu[cpu] = NULL;
5474                 }
5475
5476                 if (!sched_group_nodes)
5477                         continue;
5478
5479                 for (i = 0; i < MAX_NUMNODES; i++) {
5480                         cpumask_t nodemask = node_to_cpumask(i);
5481                         struct sched_group *oldsg, *sg = sched_group_nodes[i];
5482
5483                         cpus_and(nodemask, nodemask, *cpu_map);
5484                         if (cpus_empty(nodemask))
5485                                 continue;
5486
5487                         if (sg == NULL)
5488                                 continue;
5489                         sg = sg->next;
5490 next_sg:
5491                         oldsg = sg;
5492                         sg = sg->next;
5493                         kfree(oldsg);
5494                         if (oldsg != sched_group_nodes[i])
5495                                 goto next_sg;
5496                 }
5497                 kfree(sched_group_nodes);
5498                 sched_group_nodes_bycpu[cpu] = NULL;
5499         }
5500 #endif
5501 }
5502
5503 /*
5504  * Detach sched domains from a group of cpus specified in cpu_map
5505  * These cpus will now be attached to the NULL domain
5506  */
5507 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5508 {
5509         int i;
5510
5511         for_each_cpu_mask(i, *cpu_map)
5512                 cpu_attach_domain(NULL, i);
5513         synchronize_sched();
5514         arch_destroy_sched_domains(cpu_map);
5515 }
5516
5517 /*
5518  * Partition sched domains as specified by the cpumasks below.
5519  * This attaches all cpus from the cpumasks to the NULL domain,
5520  * waits for a RCU quiescent period, recalculates sched
5521  * domain information and then attaches them back to the
5522  * correct sched domains
5523  * Call with hotplug lock held
5524  */
5525 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5526 {
5527         cpumask_t change_map;
5528
5529         cpus_and(*partition1, *partition1, cpu_online_map);
5530         cpus_and(*partition2, *partition2, cpu_online_map);
5531         cpus_or(change_map, *partition1, *partition2);
5532
5533         /* Detach sched domains from all of the affected cpus */
5534         detach_destroy_domains(&change_map);
5535         if (!cpus_empty(*partition1))
5536                 build_sched_domains(partition1);
5537         if (!cpus_empty(*partition2))
5538                 build_sched_domains(partition2);
5539 }
5540
5541 #ifdef CONFIG_HOTPLUG_CPU
5542 /*
5543  * Force a reinitialization of the sched domains hierarchy.  The domains
5544  * and groups cannot be updated in place without racing with the balancing
5545  * code, so we temporarily attach all running cpus to the NULL domain
5546  * which will prevent rebalancing while the sched domains are recalculated.
5547  */
5548 static int update_sched_domains(struct notifier_block *nfb,
5549                                 unsigned long action, void *hcpu)
5550 {
5551         switch (action) {
5552         case CPU_UP_PREPARE:
5553         case CPU_DOWN_PREPARE:
5554                 detach_destroy_domains(&cpu_online_map);
5555                 return NOTIFY_OK;
5556
5557         case CPU_UP_CANCELED:
5558         case CPU_DOWN_FAILED:
5559         case CPU_ONLINE:
5560         case CPU_DEAD:
5561                 /*
5562                  * Fall through and re-initialise the domains.
5563                  */
5564                 break;
5565         default:
5566                 return NOTIFY_DONE;
5567         }
5568
5569         /* The hotplug lock is already held by cpu_up/cpu_down */
5570         arch_init_sched_domains(&cpu_online_map);
5571
5572         return NOTIFY_OK;
5573 }
5574 #endif
5575
5576 void __init sched_init_smp(void)
5577 {
5578         lock_cpu_hotplug();
5579         arch_init_sched_domains(&cpu_online_map);
5580         unlock_cpu_hotplug();
5581         /* XXX: Theoretical race here - CPU may be hotplugged now */
5582         hotcpu_notifier(update_sched_domains, 0);
5583 }
5584 #else
5585 void __init sched_init_smp(void)
5586 {
5587 }
5588 #endif /* CONFIG_SMP */
5589
5590 int in_sched_functions(unsigned long addr)
5591 {
5592         /* Linker adds these: start and end of __sched functions */
5593         extern char __sched_text_start[], __sched_text_end[];
5594         return in_lock_functions(addr) ||
5595                 (addr >= (unsigned long)__sched_text_start
5596                 && addr < (unsigned long)__sched_text_end);
5597 }
5598
5599 void __init sched_init(void)
5600 {
5601         runqueue_t *rq;
5602         int i, j, k;
5603
5604         for (i = 0; i < NR_CPUS; i++) {
5605                 prio_array_t *array;
5606
5607                 rq = cpu_rq(i);
5608                 spin_lock_init(&rq->lock);
5609                 rq->nr_running = 0;
5610                 rq->active = rq->arrays;
5611                 rq->expired = rq->arrays + 1;
5612                 rq->best_expired_prio = MAX_PRIO;
5613
5614 #ifdef CONFIG_SMP
5615                 rq->sd = NULL;
5616                 for (j = 1; j < 3; j++)
5617                         rq->cpu_load[j] = 0;
5618                 rq->active_balance = 0;
5619                 rq->push_cpu = 0;
5620                 rq->migration_thread = NULL;
5621                 INIT_LIST_HEAD(&rq->migration_queue);
5622 #endif
5623                 atomic_set(&rq->nr_iowait, 0);
5624
5625                 for (j = 0; j < 2; j++) {
5626                         array = rq->arrays + j;
5627                         for (k = 0; k < MAX_PRIO; k++) {
5628                                 INIT_LIST_HEAD(array->queue + k);
5629                                 __clear_bit(k, array->bitmap);
5630                         }
5631                         // delimiter for bitsearch
5632                         __set_bit(MAX_PRIO, array->bitmap);
5633                 }
5634         }
5635
5636         /*
5637          * The boot idle thread does lazy MMU switching as well:
5638          */
5639         atomic_inc(&init_mm.mm_count);
5640         enter_lazy_tlb(&init_mm, current);
5641
5642         /*
5643          * Make us the idle thread. Technically, schedule() should not be
5644          * called from this thread, however somewhere below it might be,
5645          * but because we are the idle thread, we just pick up running again
5646          * when this runqueue becomes "idle".
5647          */
5648         init_idle(current, smp_processor_id());
5649 }
5650
5651 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5652 void __might_sleep(char *file, int line)
5653 {
5654 #if defined(in_atomic)
5655         static unsigned long prev_jiffy;        /* ratelimiting */
5656
5657         if ((in_atomic() || irqs_disabled()) &&
5658             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5659                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5660                         return;
5661                 prev_jiffy = jiffies;
5662                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5663                                 " context at %s:%d\n", file, line);
5664                 printk("in_atomic():%d, irqs_disabled():%d\n",
5665                         in_atomic(), irqs_disabled());
5666                 dump_stack();
5667         }
5668 #endif
5669 }
5670 EXPORT_SYMBOL(__might_sleep);
5671 #endif
5672
5673 #ifdef CONFIG_MAGIC_SYSRQ
5674 void normalize_rt_tasks(void)
5675 {
5676         struct task_struct *p;
5677         prio_array_t *array;
5678         unsigned long flags;
5679         runqueue_t *rq;
5680
5681         read_lock_irq(&tasklist_lock);
5682         for_each_process (p) {
5683                 if (!rt_task(p))
5684                         continue;
5685
5686                 rq = task_rq_lock(p, &flags);
5687
5688                 array = p->array;
5689                 if (array)
5690                         deactivate_task(p, task_rq(p));
5691                 __setscheduler(p, SCHED_NORMAL, 0);
5692                 if (array) {
5693                         __activate_task(p, task_rq(p));
5694                         resched_task(rq->curr);
5695                 }
5696
5697                 task_rq_unlock(rq, &flags);
5698         }
5699         read_unlock_irq(&tasklist_lock);
5700 }
5701
5702 #endif /* CONFIG_MAGIC_SYSRQ */
5703
5704 #ifdef CONFIG_IA64
5705 /*
5706  * These functions are only useful for the IA64 MCA handling.
5707  *
5708  * They can only be called when the whole system has been
5709  * stopped - every CPU needs to be quiescent, and no scheduling
5710  * activity can take place. Using them for anything else would
5711  * be a serious bug, and as a result, they aren't even visible
5712  * under any other configuration.
5713  */
5714
5715 /**
5716  * curr_task - return the current task for a given cpu.
5717  * @cpu: the processor in question.
5718  *
5719  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5720  */
5721 task_t *curr_task(int cpu)
5722 {
5723         return cpu_curr(cpu);
5724 }
5725
5726 /**
5727  * set_curr_task - set the current task for a given cpu.
5728  * @cpu: the processor in question.
5729  * @p: the task pointer to set.
5730  *
5731  * Description: This function must only be used when non-maskable interrupts
5732  * are serviced on a separate stack.  It allows the architecture to switch the
5733  * notion of the current task on a cpu in a non-blocking manner.  This function
5734  * must be called with all CPU's synchronized, and interrupts disabled, the
5735  * and caller must save the original value of the current task (see
5736  * curr_task() above) and restore that value before reenabling interrupts and
5737  * re-starting the system.
5738  *
5739  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5740  */
5741 void set_curr_task(int cpu, task_t *p)
5742 {
5743         cpu_curr(cpu) = p;
5744 }
5745
5746 #endif