4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
209 unsigned long prio_bias;
210 unsigned long cpu_load[3];
212 unsigned long long nr_switches;
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
220 unsigned long nr_uninterruptible;
222 unsigned long expired_timestamp;
223 unsigned long long timestamp_last_tick;
225 struct mm_struct *prev_mm;
226 prio_array_t *active, *expired, arrays[2];
227 int best_expired_prio;
231 struct sched_domain *sd;
233 /* For active balancing */
237 task_t *migration_thread;
238 struct list_head migration_queue;
241 #ifdef CONFIG_SCHEDSTATS
243 struct sched_info rq_sched_info;
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty;
247 unsigned long yld_act_empty;
248 unsigned long yld_both_empty;
249 unsigned long yld_cnt;
251 /* schedule() stats */
252 unsigned long sched_switch;
253 unsigned long sched_cnt;
254 unsigned long sched_goidle;
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt;
258 unsigned long ttwu_local;
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266 * See detach_destroy_domains: synchronize_sched for details.
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
274 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275 #define this_rq() (&__get_cpu_var(runqueues))
276 #define task_rq(p) cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next) do { } while (0)
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev) do { } while (0)
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
289 return rq->curr == p;
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
298 #ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq->lock.owner = current;
302 spin_unlock_irq(&rq->lock);
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
311 return rq->curr == p;
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq->lock);
328 spin_unlock(&rq->lock);
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
360 local_irq_save(*flags);
362 spin_lock(&rq->lock);
363 if (unlikely(rq != task_rq(p))) {
364 spin_unlock_irqrestore(&rq->lock, *flags);
365 goto repeat_lock_task;
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
373 spin_unlock_irqrestore(&rq->lock, *flags);
376 #ifdef CONFIG_SCHEDSTATS
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
381 #define SCHEDSTAT_VERSION 12
383 static int show_schedstat(struct seq_file *seq, void *v)
387 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388 seq_printf(seq, "timestamp %lu\n", jiffies);
389 for_each_online_cpu(cpu) {
390 runqueue_t *rq = cpu_rq(cpu);
392 struct sched_domain *sd;
396 /* runqueue-specific stats */
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu, rq->yld_both_empty,
400 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402 rq->ttwu_cnt, rq->ttwu_local,
403 rq->rq_sched_info.cpu_time,
404 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
406 seq_printf(seq, "\n");
409 /* domain-specific stats */
411 for_each_domain(cpu, sd) {
412 enum idle_type itype;
413 char mask_str[NR_CPUS];
415 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
419 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
421 sd->lb_balanced[itype],
422 sd->lb_failed[itype],
423 sd->lb_imbalance[itype],
424 sd->lb_gained[itype],
425 sd->lb_hot_gained[itype],
426 sd->lb_nobusyq[itype],
427 sd->lb_nobusyg[itype]);
429 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
441 static int schedstat_open(struct inode *inode, struct file *file)
443 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444 char *buf = kmalloc(size, GFP_KERNEL);
450 res = single_open(file, show_schedstat, NULL);
452 m = file->private_data;
460 struct file_operations proc_schedstat_operations = {
461 .open = schedstat_open,
464 .release = single_release,
467 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field) do { } while (0)
471 # define schedstat_add(rq, field, amt) do { } while (0)
475 * rq_lock - lock a given runqueue and disable interrupts.
477 static inline runqueue_t *this_rq_lock(void)
484 spin_lock(&rq->lock);
489 #ifdef CONFIG_SCHEDSTATS
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
505 static inline void sched_info_dequeued(task_t *t)
507 t->sched_info.last_queued = 0;
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
515 static inline void sched_info_arrive(task_t *t)
517 unsigned long now = jiffies, diff = 0;
518 struct runqueue *rq = task_rq(t);
520 if (t->sched_info.last_queued)
521 diff = now - t->sched_info.last_queued;
522 sched_info_dequeued(t);
523 t->sched_info.run_delay += diff;
524 t->sched_info.last_arrival = now;
525 t->sched_info.pcnt++;
530 rq->rq_sched_info.run_delay += diff;
531 rq->rq_sched_info.pcnt++;
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
549 static inline void sched_info_queued(task_t *t)
551 if (!t->sched_info.last_queued)
552 t->sched_info.last_queued = jiffies;
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
559 static inline void sched_info_depart(task_t *t)
561 struct runqueue *rq = task_rq(t);
562 unsigned long diff = jiffies - t->sched_info.last_arrival;
564 t->sched_info.cpu_time += diff;
567 rq->rq_sched_info.cpu_time += diff;
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
575 static inline void sched_info_switch(task_t *prev, task_t *next)
577 struct runqueue *rq = task_rq(prev);
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
584 if (prev != rq->idle)
585 sched_info_depart(prev);
587 if (next != rq->idle)
588 sched_info_arrive(next);
591 #define sched_info_queued(t) do { } while (0)
592 #define sched_info_switch(t, next) do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
596 * Adding/removing a task to/from a priority array:
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
601 list_del(&p->run_list);
602 if (list_empty(array->queue + p->prio))
603 __clear_bit(p->prio, array->bitmap);
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
608 sched_info_queued(p);
609 list_add_tail(&p->run_list, array->queue + p->prio);
610 __set_bit(p->prio, array->bitmap);
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
621 list_move_tail(&p->run_list, array->queue + p->prio);
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
626 list_add(&p->run_list, array->queue + p->prio);
627 __set_bit(p->prio, array->bitmap);
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
639 * We use 25% of the full 0...39 priority range so that:
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
644 * Both properties are important to certain workloads.
646 static int effective_prio(task_t *p)
653 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
655 prio = p->static_prio - bonus;
656 if (prio < MAX_RT_PRIO)
658 if (prio > MAX_PRIO-1)
664 static inline void inc_prio_bias(runqueue_t *rq, int prio)
666 rq->prio_bias += MAX_PRIO - prio;
669 static inline void dec_prio_bias(runqueue_t *rq, int prio)
671 rq->prio_bias -= MAX_PRIO - prio;
674 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
678 if (p != rq->migration_thread)
680 * The migration thread does the actual balancing. Do
681 * not bias by its priority as the ultra high priority
682 * will skew balancing adversely.
684 inc_prio_bias(rq, p->prio);
686 inc_prio_bias(rq, p->static_prio);
689 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
693 if (p != rq->migration_thread)
694 dec_prio_bias(rq, p->prio);
696 dec_prio_bias(rq, p->static_prio);
699 static inline void inc_prio_bias(runqueue_t *rq, int prio)
703 static inline void dec_prio_bias(runqueue_t *rq, int prio)
707 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
712 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
719 * __activate_task - move a task to the runqueue.
721 static inline void __activate_task(task_t *p, runqueue_t *rq)
723 enqueue_task(p, rq->active);
724 inc_nr_running(p, rq);
728 * __activate_idle_task - move idle task to the _front_ of runqueue.
730 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
732 enqueue_task_head(p, rq->active);
733 inc_nr_running(p, rq);
736 static int recalc_task_prio(task_t *p, unsigned long long now)
738 /* Caller must always ensure 'now >= p->timestamp' */
739 unsigned long long __sleep_time = now - p->timestamp;
740 unsigned long sleep_time;
742 if (__sleep_time > NS_MAX_SLEEP_AVG)
743 sleep_time = NS_MAX_SLEEP_AVG;
745 sleep_time = (unsigned long)__sleep_time;
747 if (likely(sleep_time > 0)) {
749 * User tasks that sleep a long time are categorised as
750 * idle and will get just interactive status to stay active &
751 * prevent them suddenly becoming cpu hogs and starving
754 if (p->mm && p->activated != -1 &&
755 sleep_time > INTERACTIVE_SLEEP(p)) {
756 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
760 * The lower the sleep avg a task has the more
761 * rapidly it will rise with sleep time.
763 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
766 * Tasks waking from uninterruptible sleep are
767 * limited in their sleep_avg rise as they
768 * are likely to be waiting on I/O
770 if (p->activated == -1 && p->mm) {
771 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
773 else if (p->sleep_avg + sleep_time >=
774 INTERACTIVE_SLEEP(p)) {
775 p->sleep_avg = INTERACTIVE_SLEEP(p);
781 * This code gives a bonus to interactive tasks.
783 * The boost works by updating the 'average sleep time'
784 * value here, based on ->timestamp. The more time a
785 * task spends sleeping, the higher the average gets -
786 * and the higher the priority boost gets as well.
788 p->sleep_avg += sleep_time;
790 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
791 p->sleep_avg = NS_MAX_SLEEP_AVG;
795 return effective_prio(p);
799 * activate_task - move a task to the runqueue and do priority recalculation
801 * Update all the scheduling statistics stuff. (sleep average
802 * calculation, priority modifiers, etc.)
804 static void activate_task(task_t *p, runqueue_t *rq, int local)
806 unsigned long long now;
811 /* Compensate for drifting sched_clock */
812 runqueue_t *this_rq = this_rq();
813 now = (now - this_rq->timestamp_last_tick)
814 + rq->timestamp_last_tick;
818 p->prio = recalc_task_prio(p, now);
821 * This checks to make sure it's not an uninterruptible task
822 * that is now waking up.
826 * Tasks which were woken up by interrupts (ie. hw events)
827 * are most likely of interactive nature. So we give them
828 * the credit of extending their sleep time to the period
829 * of time they spend on the runqueue, waiting for execution
830 * on a CPU, first time around:
836 * Normal first-time wakeups get a credit too for
837 * on-runqueue time, but it will be weighted down:
844 __activate_task(p, rq);
848 * deactivate_task - remove a task from the runqueue.
850 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
852 dec_nr_running(p, rq);
853 dequeue_task(p, p->array);
858 * resched_task - mark a task 'to be rescheduled now'.
860 * On UP this means the setting of the need_resched flag, on SMP it
861 * might also involve a cross-CPU call to trigger the scheduler on
865 static void resched_task(task_t *p)
869 assert_spin_locked(&task_rq(p)->lock);
871 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
874 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
877 if (cpu == smp_processor_id())
880 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
882 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
883 smp_send_reschedule(cpu);
886 static inline void resched_task(task_t *p)
888 assert_spin_locked(&task_rq(p)->lock);
889 set_tsk_need_resched(p);
894 * task_curr - is this task currently executing on a CPU?
895 * @p: the task in question.
897 inline int task_curr(const task_t *p)
899 return cpu_curr(task_cpu(p)) == p;
904 struct list_head list;
909 struct completion done;
913 * The task's runqueue lock must be held.
914 * Returns true if you have to wait for migration thread.
916 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
918 runqueue_t *rq = task_rq(p);
921 * If the task is not on a runqueue (and not running), then
922 * it is sufficient to simply update the task's cpu field.
924 if (!p->array && !task_running(rq, p)) {
925 set_task_cpu(p, dest_cpu);
929 init_completion(&req->done);
931 req->dest_cpu = dest_cpu;
932 list_add(&req->list, &rq->migration_queue);
937 * wait_task_inactive - wait for a thread to unschedule.
939 * The caller must ensure that the task *will* unschedule sometime soon,
940 * else this function might spin for a *long* time. This function can't
941 * be called with interrupts off, or it may introduce deadlock with
942 * smp_call_function() if an IPI is sent by the same process we are
943 * waiting to become inactive.
945 void wait_task_inactive(task_t *p)
952 rq = task_rq_lock(p, &flags);
953 /* Must be off runqueue entirely, not preempted. */
954 if (unlikely(p->array || task_running(rq, p))) {
955 /* If it's preempted, we yield. It could be a while. */
956 preempted = !task_running(rq, p);
957 task_rq_unlock(rq, &flags);
963 task_rq_unlock(rq, &flags);
967 * kick_process - kick a running thread to enter/exit the kernel
968 * @p: the to-be-kicked thread
970 * Cause a process which is running on another CPU to enter
971 * kernel-mode, without any delay. (to get signals handled.)
973 * NOTE: this function doesnt have to take the runqueue lock,
974 * because all it wants to ensure is that the remote task enters
975 * the kernel. If the IPI races and the task has been migrated
976 * to another CPU then no harm is done and the purpose has been
979 void kick_process(task_t *p)
985 if ((cpu != smp_processor_id()) && task_curr(p))
986 smp_send_reschedule(cpu);
991 * Return a low guess at the load of a migration-source cpu.
993 * We want to under-estimate the load of migration sources, to
994 * balance conservatively.
996 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
998 runqueue_t *rq = cpu_rq(cpu);
999 unsigned long running = rq->nr_running;
1000 unsigned long source_load, cpu_load = rq->cpu_load[type-1],
1001 load_now = running * SCHED_LOAD_SCALE;
1004 source_load = load_now;
1006 source_load = min(cpu_load, load_now);
1008 if (running > 1 || (idle == NOT_IDLE && running))
1010 * If we are busy rebalancing the load is biased by
1011 * priority to create 'nice' support across cpus. When
1012 * idle rebalancing we should only bias the source_load if
1013 * there is more than one task running on that queue to
1014 * prevent idle rebalance from trying to pull tasks from a
1015 * queue with only one running task.
1017 source_load = source_load * rq->prio_bias / running;
1022 static inline unsigned long source_load(int cpu, int type)
1024 return __source_load(cpu, type, NOT_IDLE);
1028 * Return a high guess at the load of a migration-target cpu
1030 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
1032 runqueue_t *rq = cpu_rq(cpu);
1033 unsigned long running = rq->nr_running;
1034 unsigned long target_load, cpu_load = rq->cpu_load[type-1],
1035 load_now = running * SCHED_LOAD_SCALE;
1038 target_load = load_now;
1040 target_load = max(cpu_load, load_now);
1042 if (running > 1 || (idle == NOT_IDLE && running))
1043 target_load = target_load * rq->prio_bias / running;
1048 static inline unsigned long target_load(int cpu, int type)
1050 return __target_load(cpu, type, NOT_IDLE);
1054 * find_idlest_group finds and returns the least busy CPU group within the
1057 static struct sched_group *
1058 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1060 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1061 unsigned long min_load = ULONG_MAX, this_load = 0;
1062 int load_idx = sd->forkexec_idx;
1063 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1066 unsigned long load, avg_load;
1070 /* Skip over this group if it has no CPUs allowed */
1071 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1074 local_group = cpu_isset(this_cpu, group->cpumask);
1076 /* Tally up the load of all CPUs in the group */
1079 for_each_cpu_mask(i, group->cpumask) {
1080 /* Bias balancing toward cpus of our domain */
1082 load = source_load(i, load_idx);
1084 load = target_load(i, load_idx);
1089 /* Adjust by relative CPU power of the group */
1090 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1093 this_load = avg_load;
1095 } else if (avg_load < min_load) {
1096 min_load = avg_load;
1100 group = group->next;
1101 } while (group != sd->groups);
1103 if (!idlest || 100*this_load < imbalance*min_load)
1109 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1112 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1115 unsigned long load, min_load = ULONG_MAX;
1119 /* Traverse only the allowed CPUs */
1120 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1122 for_each_cpu_mask(i, tmp) {
1123 load = source_load(i, 0);
1125 if (load < min_load || (load == min_load && i == this_cpu)) {
1135 * sched_balance_self: balance the current task (running on cpu) in domains
1136 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1139 * Balance, ie. select the least loaded group.
1141 * Returns the target CPU number, or the same CPU if no balancing is needed.
1143 * preempt must be disabled.
1145 static int sched_balance_self(int cpu, int flag)
1147 struct task_struct *t = current;
1148 struct sched_domain *tmp, *sd = NULL;
1150 for_each_domain(cpu, tmp)
1151 if (tmp->flags & flag)
1156 struct sched_group *group;
1161 group = find_idlest_group(sd, t, cpu);
1165 new_cpu = find_idlest_cpu(group, t, cpu);
1166 if (new_cpu == -1 || new_cpu == cpu)
1169 /* Now try balancing at a lower domain level */
1173 weight = cpus_weight(span);
1174 for_each_domain(cpu, tmp) {
1175 if (weight <= cpus_weight(tmp->span))
1177 if (tmp->flags & flag)
1180 /* while loop will break here if sd == NULL */
1186 #endif /* CONFIG_SMP */
1189 * wake_idle() will wake a task on an idle cpu if task->cpu is
1190 * not idle and an idle cpu is available. The span of cpus to
1191 * search starts with cpus closest then further out as needed,
1192 * so we always favor a closer, idle cpu.
1194 * Returns the CPU we should wake onto.
1196 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1197 static int wake_idle(int cpu, task_t *p)
1200 struct sched_domain *sd;
1206 for_each_domain(cpu, sd) {
1207 if (sd->flags & SD_WAKE_IDLE) {
1208 cpus_and(tmp, sd->span, p->cpus_allowed);
1209 for_each_cpu_mask(i, tmp) {
1220 static inline int wake_idle(int cpu, task_t *p)
1227 * try_to_wake_up - wake up a thread
1228 * @p: the to-be-woken-up thread
1229 * @state: the mask of task states that can be woken
1230 * @sync: do a synchronous wakeup?
1232 * Put it on the run-queue if it's not already there. The "current"
1233 * thread is always on the run-queue (except when the actual
1234 * re-schedule is in progress), and as such you're allowed to do
1235 * the simpler "current->state = TASK_RUNNING" to mark yourself
1236 * runnable without the overhead of this.
1238 * returns failure only if the task is already active.
1240 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1242 int cpu, this_cpu, success = 0;
1243 unsigned long flags;
1247 unsigned long load, this_load;
1248 struct sched_domain *sd, *this_sd = NULL;
1252 rq = task_rq_lock(p, &flags);
1253 old_state = p->state;
1254 if (!(old_state & state))
1261 this_cpu = smp_processor_id();
1264 if (unlikely(task_running(rq, p)))
1269 schedstat_inc(rq, ttwu_cnt);
1270 if (cpu == this_cpu) {
1271 schedstat_inc(rq, ttwu_local);
1275 for_each_domain(this_cpu, sd) {
1276 if (cpu_isset(cpu, sd->span)) {
1277 schedstat_inc(sd, ttwu_wake_remote);
1283 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1287 * Check for affine wakeup and passive balancing possibilities.
1290 int idx = this_sd->wake_idx;
1291 unsigned int imbalance;
1293 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1295 load = source_load(cpu, idx);
1296 this_load = target_load(this_cpu, idx);
1298 new_cpu = this_cpu; /* Wake to this CPU if we can */
1300 if (this_sd->flags & SD_WAKE_AFFINE) {
1301 unsigned long tl = this_load;
1303 * If sync wakeup then subtract the (maximum possible)
1304 * effect of the currently running task from the load
1305 * of the current CPU:
1308 tl -= SCHED_LOAD_SCALE;
1311 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1312 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1314 * This domain has SD_WAKE_AFFINE and
1315 * p is cache cold in this domain, and
1316 * there is no bad imbalance.
1318 schedstat_inc(this_sd, ttwu_move_affine);
1324 * Start passive balancing when half the imbalance_pct
1327 if (this_sd->flags & SD_WAKE_BALANCE) {
1328 if (imbalance*this_load <= 100*load) {
1329 schedstat_inc(this_sd, ttwu_move_balance);
1335 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1337 new_cpu = wake_idle(new_cpu, p);
1338 if (new_cpu != cpu) {
1339 set_task_cpu(p, new_cpu);
1340 task_rq_unlock(rq, &flags);
1341 /* might preempt at this point */
1342 rq = task_rq_lock(p, &flags);
1343 old_state = p->state;
1344 if (!(old_state & state))
1349 this_cpu = smp_processor_id();
1354 #endif /* CONFIG_SMP */
1355 if (old_state == TASK_UNINTERRUPTIBLE) {
1356 rq->nr_uninterruptible--;
1358 * Tasks on involuntary sleep don't earn
1359 * sleep_avg beyond just interactive state.
1365 * Tasks that have marked their sleep as noninteractive get
1366 * woken up without updating their sleep average. (i.e. their
1367 * sleep is handled in a priority-neutral manner, no priority
1368 * boost and no penalty.)
1370 if (old_state & TASK_NONINTERACTIVE)
1371 __activate_task(p, rq);
1373 activate_task(p, rq, cpu == this_cpu);
1375 * Sync wakeups (i.e. those types of wakeups where the waker
1376 * has indicated that it will leave the CPU in short order)
1377 * don't trigger a preemption, if the woken up task will run on
1378 * this cpu. (in this case the 'I will reschedule' promise of
1379 * the waker guarantees that the freshly woken up task is going
1380 * to be considered on this CPU.)
1382 if (!sync || cpu != this_cpu) {
1383 if (TASK_PREEMPTS_CURR(p, rq))
1384 resched_task(rq->curr);
1389 p->state = TASK_RUNNING;
1391 task_rq_unlock(rq, &flags);
1396 int fastcall wake_up_process(task_t *p)
1398 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1399 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1402 EXPORT_SYMBOL(wake_up_process);
1404 int fastcall wake_up_state(task_t *p, unsigned int state)
1406 return try_to_wake_up(p, state, 0);
1410 * Perform scheduler related setup for a newly forked process p.
1411 * p is forked by current.
1413 void fastcall sched_fork(task_t *p, int clone_flags)
1415 int cpu = get_cpu();
1418 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1420 set_task_cpu(p, cpu);
1423 * We mark the process as running here, but have not actually
1424 * inserted it onto the runqueue yet. This guarantees that
1425 * nobody will actually run it, and a signal or other external
1426 * event cannot wake it up and insert it on the runqueue either.
1428 p->state = TASK_RUNNING;
1429 INIT_LIST_HEAD(&p->run_list);
1431 #ifdef CONFIG_SCHEDSTATS
1432 memset(&p->sched_info, 0, sizeof(p->sched_info));
1434 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1437 #ifdef CONFIG_PREEMPT
1438 /* Want to start with kernel preemption disabled. */
1439 p->thread_info->preempt_count = 1;
1442 * Share the timeslice between parent and child, thus the
1443 * total amount of pending timeslices in the system doesn't change,
1444 * resulting in more scheduling fairness.
1446 local_irq_disable();
1447 p->time_slice = (current->time_slice + 1) >> 1;
1449 * The remainder of the first timeslice might be recovered by
1450 * the parent if the child exits early enough.
1452 p->first_time_slice = 1;
1453 current->time_slice >>= 1;
1454 p->timestamp = sched_clock();
1455 if (unlikely(!current->time_slice)) {
1457 * This case is rare, it happens when the parent has only
1458 * a single jiffy left from its timeslice. Taking the
1459 * runqueue lock is not a problem.
1461 current->time_slice = 1;
1469 * wake_up_new_task - wake up a newly created task for the first time.
1471 * This function will do some initial scheduler statistics housekeeping
1472 * that must be done for every newly created context, then puts the task
1473 * on the runqueue and wakes it.
1475 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1477 unsigned long flags;
1479 runqueue_t *rq, *this_rq;
1481 rq = task_rq_lock(p, &flags);
1482 BUG_ON(p->state != TASK_RUNNING);
1483 this_cpu = smp_processor_id();
1487 * We decrease the sleep average of forking parents
1488 * and children as well, to keep max-interactive tasks
1489 * from forking tasks that are max-interactive. The parent
1490 * (current) is done further down, under its lock.
1492 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1493 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1495 p->prio = effective_prio(p);
1497 if (likely(cpu == this_cpu)) {
1498 if (!(clone_flags & CLONE_VM)) {
1500 * The VM isn't cloned, so we're in a good position to
1501 * do child-runs-first in anticipation of an exec. This
1502 * usually avoids a lot of COW overhead.
1504 if (unlikely(!current->array))
1505 __activate_task(p, rq);
1507 p->prio = current->prio;
1508 list_add_tail(&p->run_list, ¤t->run_list);
1509 p->array = current->array;
1510 p->array->nr_active++;
1511 inc_nr_running(p, rq);
1515 /* Run child last */
1516 __activate_task(p, rq);
1518 * We skip the following code due to cpu == this_cpu
1520 * task_rq_unlock(rq, &flags);
1521 * this_rq = task_rq_lock(current, &flags);
1525 this_rq = cpu_rq(this_cpu);
1528 * Not the local CPU - must adjust timestamp. This should
1529 * get optimised away in the !CONFIG_SMP case.
1531 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1532 + rq->timestamp_last_tick;
1533 __activate_task(p, rq);
1534 if (TASK_PREEMPTS_CURR(p, rq))
1535 resched_task(rq->curr);
1538 * Parent and child are on different CPUs, now get the
1539 * parent runqueue to update the parent's ->sleep_avg:
1541 task_rq_unlock(rq, &flags);
1542 this_rq = task_rq_lock(current, &flags);
1544 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1545 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1546 task_rq_unlock(this_rq, &flags);
1550 * Potentially available exiting-child timeslices are
1551 * retrieved here - this way the parent does not get
1552 * penalized for creating too many threads.
1554 * (this cannot be used to 'generate' timeslices
1555 * artificially, because any timeslice recovered here
1556 * was given away by the parent in the first place.)
1558 void fastcall sched_exit(task_t *p)
1560 unsigned long flags;
1564 * If the child was a (relative-) CPU hog then decrease
1565 * the sleep_avg of the parent as well.
1567 rq = task_rq_lock(p->parent, &flags);
1568 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1569 p->parent->time_slice += p->time_slice;
1570 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1571 p->parent->time_slice = task_timeslice(p);
1573 if (p->sleep_avg < p->parent->sleep_avg)
1574 p->parent->sleep_avg = p->parent->sleep_avg /
1575 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1577 task_rq_unlock(rq, &flags);
1581 * prepare_task_switch - prepare to switch tasks
1582 * @rq: the runqueue preparing to switch
1583 * @next: the task we are going to switch to.
1585 * This is called with the rq lock held and interrupts off. It must
1586 * be paired with a subsequent finish_task_switch after the context
1589 * prepare_task_switch sets up locking and calls architecture specific
1592 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1594 prepare_lock_switch(rq, next);
1595 prepare_arch_switch(next);
1599 * finish_task_switch - clean up after a task-switch
1600 * @rq: runqueue associated with task-switch
1601 * @prev: the thread we just switched away from.
1603 * finish_task_switch must be called after the context switch, paired
1604 * with a prepare_task_switch call before the context switch.
1605 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1606 * and do any other architecture-specific cleanup actions.
1608 * Note that we may have delayed dropping an mm in context_switch(). If
1609 * so, we finish that here outside of the runqueue lock. (Doing it
1610 * with the lock held can cause deadlocks; see schedule() for
1613 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1614 __releases(rq->lock)
1616 struct mm_struct *mm = rq->prev_mm;
1617 unsigned long prev_task_flags;
1622 * A task struct has one reference for the use as "current".
1623 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1624 * calls schedule one last time. The schedule call will never return,
1625 * and the scheduled task must drop that reference.
1626 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1627 * still held, otherwise prev could be scheduled on another cpu, die
1628 * there before we look at prev->state, and then the reference would
1630 * Manfred Spraul <manfred@colorfullife.com>
1632 prev_task_flags = prev->flags;
1633 finish_arch_switch(prev);
1634 finish_lock_switch(rq, prev);
1637 if (unlikely(prev_task_flags & PF_DEAD))
1638 put_task_struct(prev);
1642 * schedule_tail - first thing a freshly forked thread must call.
1643 * @prev: the thread we just switched away from.
1645 asmlinkage void schedule_tail(task_t *prev)
1646 __releases(rq->lock)
1648 runqueue_t *rq = this_rq();
1649 finish_task_switch(rq, prev);
1650 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1651 /* In this case, finish_task_switch does not reenable preemption */
1654 if (current->set_child_tid)
1655 put_user(current->pid, current->set_child_tid);
1659 * context_switch - switch to the new MM and the new
1660 * thread's register state.
1663 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1665 struct mm_struct *mm = next->mm;
1666 struct mm_struct *oldmm = prev->active_mm;
1668 if (unlikely(!mm)) {
1669 next->active_mm = oldmm;
1670 atomic_inc(&oldmm->mm_count);
1671 enter_lazy_tlb(oldmm, next);
1673 switch_mm(oldmm, mm, next);
1675 if (unlikely(!prev->mm)) {
1676 prev->active_mm = NULL;
1677 WARN_ON(rq->prev_mm);
1678 rq->prev_mm = oldmm;
1681 /* Here we just switch the register state and the stack. */
1682 switch_to(prev, next, prev);
1688 * nr_running, nr_uninterruptible and nr_context_switches:
1690 * externally visible scheduler statistics: current number of runnable
1691 * threads, current number of uninterruptible-sleeping threads, total
1692 * number of context switches performed since bootup.
1694 unsigned long nr_running(void)
1696 unsigned long i, sum = 0;
1698 for_each_online_cpu(i)
1699 sum += cpu_rq(i)->nr_running;
1704 unsigned long nr_uninterruptible(void)
1706 unsigned long i, sum = 0;
1709 sum += cpu_rq(i)->nr_uninterruptible;
1712 * Since we read the counters lockless, it might be slightly
1713 * inaccurate. Do not allow it to go below zero though:
1715 if (unlikely((long)sum < 0))
1721 unsigned long long nr_context_switches(void)
1723 unsigned long long i, sum = 0;
1726 sum += cpu_rq(i)->nr_switches;
1731 unsigned long nr_iowait(void)
1733 unsigned long i, sum = 0;
1736 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1744 * double_rq_lock - safely lock two runqueues
1746 * Note this does not disable interrupts like task_rq_lock,
1747 * you need to do so manually before calling.
1749 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1750 __acquires(rq1->lock)
1751 __acquires(rq2->lock)
1754 spin_lock(&rq1->lock);
1755 __acquire(rq2->lock); /* Fake it out ;) */
1758 spin_lock(&rq1->lock);
1759 spin_lock(&rq2->lock);
1761 spin_lock(&rq2->lock);
1762 spin_lock(&rq1->lock);
1768 * double_rq_unlock - safely unlock two runqueues
1770 * Note this does not restore interrupts like task_rq_unlock,
1771 * you need to do so manually after calling.
1773 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1774 __releases(rq1->lock)
1775 __releases(rq2->lock)
1777 spin_unlock(&rq1->lock);
1779 spin_unlock(&rq2->lock);
1781 __release(rq2->lock);
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1787 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1788 __releases(this_rq->lock)
1789 __acquires(busiest->lock)
1790 __acquires(this_rq->lock)
1792 if (unlikely(!spin_trylock(&busiest->lock))) {
1793 if (busiest < this_rq) {
1794 spin_unlock(&this_rq->lock);
1795 spin_lock(&busiest->lock);
1796 spin_lock(&this_rq->lock);
1798 spin_lock(&busiest->lock);
1803 * If dest_cpu is allowed for this process, migrate the task to it.
1804 * This is accomplished by forcing the cpu_allowed mask to only
1805 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1806 * the cpu_allowed mask is restored.
1808 static void sched_migrate_task(task_t *p, int dest_cpu)
1810 migration_req_t req;
1812 unsigned long flags;
1814 rq = task_rq_lock(p, &flags);
1815 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1816 || unlikely(cpu_is_offline(dest_cpu)))
1819 /* force the process onto the specified CPU */
1820 if (migrate_task(p, dest_cpu, &req)) {
1821 /* Need to wait for migration thread (might exit: take ref). */
1822 struct task_struct *mt = rq->migration_thread;
1823 get_task_struct(mt);
1824 task_rq_unlock(rq, &flags);
1825 wake_up_process(mt);
1826 put_task_struct(mt);
1827 wait_for_completion(&req.done);
1831 task_rq_unlock(rq, &flags);
1835 * sched_exec - execve() is a valuable balancing opportunity, because at
1836 * this point the task has the smallest effective memory and cache footprint.
1838 void sched_exec(void)
1840 int new_cpu, this_cpu = get_cpu();
1841 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1843 if (new_cpu != this_cpu)
1844 sched_migrate_task(current, new_cpu);
1848 * pull_task - move a task from a remote runqueue to the local runqueue.
1849 * Both runqueues must be locked.
1852 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1853 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1855 dequeue_task(p, src_array);
1856 dec_nr_running(p, src_rq);
1857 set_task_cpu(p, this_cpu);
1858 inc_nr_running(p, this_rq);
1859 enqueue_task(p, this_array);
1860 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1861 + this_rq->timestamp_last_tick;
1863 * Note that idle threads have a prio of MAX_PRIO, for this test
1864 * to be always true for them.
1866 if (TASK_PREEMPTS_CURR(p, this_rq))
1867 resched_task(this_rq->curr);
1871 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1874 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1875 struct sched_domain *sd, enum idle_type idle,
1879 * We do not migrate tasks that are:
1880 * 1) running (obviously), or
1881 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1882 * 3) are cache-hot on their current CPU.
1884 if (!cpu_isset(this_cpu, p->cpus_allowed))
1888 if (task_running(rq, p))
1892 * Aggressive migration if:
1893 * 1) task is cache cold, or
1894 * 2) too many balance attempts have failed.
1897 if (sd->nr_balance_failed > sd->cache_nice_tries)
1900 if (task_hot(p, rq->timestamp_last_tick, sd))
1906 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1907 * as part of a balancing operation within "domain". Returns the number of
1910 * Called with both runqueues locked.
1912 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1913 unsigned long max_nr_move, struct sched_domain *sd,
1914 enum idle_type idle, int *all_pinned)
1916 prio_array_t *array, *dst_array;
1917 struct list_head *head, *curr;
1918 int idx, pulled = 0, pinned = 0;
1921 if (max_nr_move == 0)
1927 * We first consider expired tasks. Those will likely not be
1928 * executed in the near future, and they are most likely to
1929 * be cache-cold, thus switching CPUs has the least effect
1932 if (busiest->expired->nr_active) {
1933 array = busiest->expired;
1934 dst_array = this_rq->expired;
1936 array = busiest->active;
1937 dst_array = this_rq->active;
1941 /* Start searching at priority 0: */
1945 idx = sched_find_first_bit(array->bitmap);
1947 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1948 if (idx >= MAX_PRIO) {
1949 if (array == busiest->expired && busiest->active->nr_active) {
1950 array = busiest->active;
1951 dst_array = this_rq->active;
1957 head = array->queue + idx;
1960 tmp = list_entry(curr, task_t, run_list);
1964 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1971 #ifdef CONFIG_SCHEDSTATS
1972 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1973 schedstat_inc(sd, lb_hot_gained[idle]);
1976 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1979 /* We only want to steal up to the prescribed number of tasks. */
1980 if (pulled < max_nr_move) {
1988 * Right now, this is the only place pull_task() is called,
1989 * so we can safely collect pull_task() stats here rather than
1990 * inside pull_task().
1992 schedstat_add(sd, lb_gained[idle], pulled);
1995 *all_pinned = pinned;
2000 * find_busiest_group finds and returns the busiest CPU group within the
2001 * domain. It calculates and returns the number of tasks which should be
2002 * moved to restore balance via the imbalance parameter.
2004 static struct sched_group *
2005 find_busiest_group(struct sched_domain *sd, int this_cpu,
2006 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2008 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2009 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2010 unsigned long max_pull;
2013 max_load = this_load = total_load = total_pwr = 0;
2014 if (idle == NOT_IDLE)
2015 load_idx = sd->busy_idx;
2016 else if (idle == NEWLY_IDLE)
2017 load_idx = sd->newidle_idx;
2019 load_idx = sd->idle_idx;
2026 local_group = cpu_isset(this_cpu, group->cpumask);
2028 /* Tally up the load of all CPUs in the group */
2031 for_each_cpu_mask(i, group->cpumask) {
2032 if (*sd_idle && !idle_cpu(i))
2035 /* Bias balancing toward cpus of our domain */
2037 load = __target_load(i, load_idx, idle);
2039 load = __source_load(i, load_idx, idle);
2044 total_load += avg_load;
2045 total_pwr += group->cpu_power;
2047 /* Adjust by relative CPU power of the group */
2048 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2051 this_load = avg_load;
2053 } else if (avg_load > max_load) {
2054 max_load = avg_load;
2057 group = group->next;
2058 } while (group != sd->groups);
2060 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2063 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2065 if (this_load >= avg_load ||
2066 100*max_load <= sd->imbalance_pct*this_load)
2070 * We're trying to get all the cpus to the average_load, so we don't
2071 * want to push ourselves above the average load, nor do we wish to
2072 * reduce the max loaded cpu below the average load, as either of these
2073 * actions would just result in more rebalancing later, and ping-pong
2074 * tasks around. Thus we look for the minimum possible imbalance.
2075 * Negative imbalances (*we* are more loaded than anyone else) will
2076 * be counted as no imbalance for these purposes -- we can't fix that
2077 * by pulling tasks to us. Be careful of negative numbers as they'll
2078 * appear as very large values with unsigned longs.
2081 /* Don't want to pull so many tasks that a group would go idle */
2082 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2084 /* How much load to actually move to equalise the imbalance */
2085 *imbalance = min(max_pull * busiest->cpu_power,
2086 (avg_load - this_load) * this->cpu_power)
2089 if (*imbalance < SCHED_LOAD_SCALE) {
2090 unsigned long pwr_now = 0, pwr_move = 0;
2093 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2099 * OK, we don't have enough imbalance to justify moving tasks,
2100 * however we may be able to increase total CPU power used by
2104 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2105 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2106 pwr_now /= SCHED_LOAD_SCALE;
2108 /* Amount of load we'd subtract */
2109 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2111 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2114 /* Amount of load we'd add */
2115 if (max_load*busiest->cpu_power <
2116 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2117 tmp = max_load*busiest->cpu_power/this->cpu_power;
2119 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2120 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2121 pwr_move /= SCHED_LOAD_SCALE;
2123 /* Move if we gain throughput */
2124 if (pwr_move <= pwr_now)
2131 /* Get rid of the scaling factor, rounding down as we divide */
2132 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2142 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2144 static runqueue_t *find_busiest_queue(struct sched_group *group,
2145 enum idle_type idle)
2147 unsigned long load, max_load = 0;
2148 runqueue_t *busiest = NULL;
2151 for_each_cpu_mask(i, group->cpumask) {
2152 load = __source_load(i, 0, idle);
2154 if (load > max_load) {
2156 busiest = cpu_rq(i);
2164 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2165 * so long as it is large enough.
2167 #define MAX_PINNED_INTERVAL 512
2170 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2171 * tasks if there is an imbalance.
2173 * Called with this_rq unlocked.
2175 static int load_balance(int this_cpu, runqueue_t *this_rq,
2176 struct sched_domain *sd, enum idle_type idle)
2178 struct sched_group *group;
2179 runqueue_t *busiest;
2180 unsigned long imbalance;
2181 int nr_moved, all_pinned = 0;
2182 int active_balance = 0;
2185 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2188 schedstat_inc(sd, lb_cnt[idle]);
2190 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2192 schedstat_inc(sd, lb_nobusyg[idle]);
2196 busiest = find_busiest_queue(group, idle);
2198 schedstat_inc(sd, lb_nobusyq[idle]);
2202 BUG_ON(busiest == this_rq);
2204 schedstat_add(sd, lb_imbalance[idle], imbalance);
2207 if (busiest->nr_running > 1) {
2209 * Attempt to move tasks. If find_busiest_group has found
2210 * an imbalance but busiest->nr_running <= 1, the group is
2211 * still unbalanced. nr_moved simply stays zero, so it is
2212 * correctly treated as an imbalance.
2214 double_rq_lock(this_rq, busiest);
2215 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2216 imbalance, sd, idle, &all_pinned);
2217 double_rq_unlock(this_rq, busiest);
2219 /* All tasks on this runqueue were pinned by CPU affinity */
2220 if (unlikely(all_pinned))
2225 schedstat_inc(sd, lb_failed[idle]);
2226 sd->nr_balance_failed++;
2228 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2230 spin_lock(&busiest->lock);
2232 /* don't kick the migration_thread, if the curr
2233 * task on busiest cpu can't be moved to this_cpu
2235 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2236 spin_unlock(&busiest->lock);
2238 goto out_one_pinned;
2241 if (!busiest->active_balance) {
2242 busiest->active_balance = 1;
2243 busiest->push_cpu = this_cpu;
2246 spin_unlock(&busiest->lock);
2248 wake_up_process(busiest->migration_thread);
2251 * We've kicked active balancing, reset the failure
2254 sd->nr_balance_failed = sd->cache_nice_tries+1;
2257 sd->nr_balance_failed = 0;
2259 if (likely(!active_balance)) {
2260 /* We were unbalanced, so reset the balancing interval */
2261 sd->balance_interval = sd->min_interval;
2264 * If we've begun active balancing, start to back off. This
2265 * case may not be covered by the all_pinned logic if there
2266 * is only 1 task on the busy runqueue (because we don't call
2269 if (sd->balance_interval < sd->max_interval)
2270 sd->balance_interval *= 2;
2273 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2278 schedstat_inc(sd, lb_balanced[idle]);
2280 sd->nr_balance_failed = 0;
2283 /* tune up the balancing interval */
2284 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2285 (sd->balance_interval < sd->max_interval))
2286 sd->balance_interval *= 2;
2288 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2294 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2295 * tasks if there is an imbalance.
2297 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2298 * this_rq is locked.
2300 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2301 struct sched_domain *sd)
2303 struct sched_group *group;
2304 runqueue_t *busiest = NULL;
2305 unsigned long imbalance;
2309 if (sd->flags & SD_SHARE_CPUPOWER)
2312 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2313 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2315 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2319 busiest = find_busiest_queue(group, NEWLY_IDLE);
2321 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2325 BUG_ON(busiest == this_rq);
2327 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2330 if (busiest->nr_running > 1) {
2331 /* Attempt to move tasks */
2332 double_lock_balance(this_rq, busiest);
2333 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2334 imbalance, sd, NEWLY_IDLE, NULL);
2335 spin_unlock(&busiest->lock);
2339 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2340 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2343 sd->nr_balance_failed = 0;
2348 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2349 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2351 sd->nr_balance_failed = 0;
2356 * idle_balance is called by schedule() if this_cpu is about to become
2357 * idle. Attempts to pull tasks from other CPUs.
2359 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2361 struct sched_domain *sd;
2363 for_each_domain(this_cpu, sd) {
2364 if (sd->flags & SD_BALANCE_NEWIDLE) {
2365 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2366 /* We've pulled tasks over so stop searching */
2374 * active_load_balance is run by migration threads. It pushes running tasks
2375 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2376 * running on each physical CPU where possible, and avoids physical /
2377 * logical imbalances.
2379 * Called with busiest_rq locked.
2381 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2383 struct sched_domain *sd;
2384 runqueue_t *target_rq;
2385 int target_cpu = busiest_rq->push_cpu;
2387 if (busiest_rq->nr_running <= 1)
2388 /* no task to move */
2391 target_rq = cpu_rq(target_cpu);
2394 * This condition is "impossible", if it occurs
2395 * we need to fix it. Originally reported by
2396 * Bjorn Helgaas on a 128-cpu setup.
2398 BUG_ON(busiest_rq == target_rq);
2400 /* move a task from busiest_rq to target_rq */
2401 double_lock_balance(busiest_rq, target_rq);
2403 /* Search for an sd spanning us and the target CPU. */
2404 for_each_domain(target_cpu, sd)
2405 if ((sd->flags & SD_LOAD_BALANCE) &&
2406 cpu_isset(busiest_cpu, sd->span))
2409 if (unlikely(sd == NULL))
2412 schedstat_inc(sd, alb_cnt);
2414 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2415 schedstat_inc(sd, alb_pushed);
2417 schedstat_inc(sd, alb_failed);
2419 spin_unlock(&target_rq->lock);
2423 * rebalance_tick will get called every timer tick, on every CPU.
2425 * It checks each scheduling domain to see if it is due to be balanced,
2426 * and initiates a balancing operation if so.
2428 * Balancing parameters are set up in arch_init_sched_domains.
2431 /* Don't have all balancing operations going off at once */
2432 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2434 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2435 enum idle_type idle)
2437 unsigned long old_load, this_load;
2438 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2439 struct sched_domain *sd;
2442 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2443 /* Update our load */
2444 for (i = 0; i < 3; i++) {
2445 unsigned long new_load = this_load;
2447 old_load = this_rq->cpu_load[i];
2449 * Round up the averaging division if load is increasing. This
2450 * prevents us from getting stuck on 9 if the load is 10, for
2453 if (new_load > old_load)
2454 new_load += scale-1;
2455 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2458 for_each_domain(this_cpu, sd) {
2459 unsigned long interval;
2461 if (!(sd->flags & SD_LOAD_BALANCE))
2464 interval = sd->balance_interval;
2465 if (idle != SCHED_IDLE)
2466 interval *= sd->busy_factor;
2468 /* scale ms to jiffies */
2469 interval = msecs_to_jiffies(interval);
2470 if (unlikely(!interval))
2473 if (j - sd->last_balance >= interval) {
2474 if (load_balance(this_cpu, this_rq, sd, idle)) {
2476 * We've pulled tasks over so either we're no
2477 * longer idle, or one of our SMT siblings is
2482 sd->last_balance += interval;
2488 * on UP we do not need to balance between CPUs:
2490 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2493 static inline void idle_balance(int cpu, runqueue_t *rq)
2498 static inline int wake_priority_sleeper(runqueue_t *rq)
2501 #ifdef CONFIG_SCHED_SMT
2502 spin_lock(&rq->lock);
2504 * If an SMT sibling task has been put to sleep for priority
2505 * reasons reschedule the idle task to see if it can now run.
2507 if (rq->nr_running) {
2508 resched_task(rq->idle);
2511 spin_unlock(&rq->lock);
2516 DEFINE_PER_CPU(struct kernel_stat, kstat);
2518 EXPORT_PER_CPU_SYMBOL(kstat);
2521 * This is called on clock ticks and on context switches.
2522 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2524 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2525 unsigned long long now)
2527 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2528 p->sched_time += now - last;
2532 * Return current->sched_time plus any more ns on the sched_clock
2533 * that have not yet been banked.
2535 unsigned long long current_sched_time(const task_t *tsk)
2537 unsigned long long ns;
2538 unsigned long flags;
2539 local_irq_save(flags);
2540 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2541 ns = tsk->sched_time + (sched_clock() - ns);
2542 local_irq_restore(flags);
2547 * We place interactive tasks back into the active array, if possible.
2549 * To guarantee that this does not starve expired tasks we ignore the
2550 * interactivity of a task if the first expired task had to wait more
2551 * than a 'reasonable' amount of time. This deadline timeout is
2552 * load-dependent, as the frequency of array switched decreases with
2553 * increasing number of running tasks. We also ignore the interactivity
2554 * if a better static_prio task has expired:
2556 #define EXPIRED_STARVING(rq) \
2557 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2558 (jiffies - (rq)->expired_timestamp >= \
2559 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2560 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2563 * Account user cpu time to a process.
2564 * @p: the process that the cpu time gets accounted to
2565 * @hardirq_offset: the offset to subtract from hardirq_count()
2566 * @cputime: the cpu time spent in user space since the last update
2568 void account_user_time(struct task_struct *p, cputime_t cputime)
2570 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2573 p->utime = cputime_add(p->utime, cputime);
2575 /* Add user time to cpustat. */
2576 tmp = cputime_to_cputime64(cputime);
2577 if (TASK_NICE(p) > 0)
2578 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2580 cpustat->user = cputime64_add(cpustat->user, tmp);
2584 * Account system cpu time to a process.
2585 * @p: the process that the cpu time gets accounted to
2586 * @hardirq_offset: the offset to subtract from hardirq_count()
2587 * @cputime: the cpu time spent in kernel space since the last update
2589 void account_system_time(struct task_struct *p, int hardirq_offset,
2592 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2593 runqueue_t *rq = this_rq();
2596 p->stime = cputime_add(p->stime, cputime);
2598 /* Add system time to cpustat. */
2599 tmp = cputime_to_cputime64(cputime);
2600 if (hardirq_count() - hardirq_offset)
2601 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2602 else if (softirq_count())
2603 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2604 else if (p != rq->idle)
2605 cpustat->system = cputime64_add(cpustat->system, tmp);
2606 else if (atomic_read(&rq->nr_iowait) > 0)
2607 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2609 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2610 /* Account for system time used */
2611 acct_update_integrals(p);
2615 * Account for involuntary wait time.
2616 * @p: the process from which the cpu time has been stolen
2617 * @steal: the cpu time spent in involuntary wait
2619 void account_steal_time(struct task_struct *p, cputime_t steal)
2621 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2622 cputime64_t tmp = cputime_to_cputime64(steal);
2623 runqueue_t *rq = this_rq();
2625 if (p == rq->idle) {
2626 p->stime = cputime_add(p->stime, steal);
2627 if (atomic_read(&rq->nr_iowait) > 0)
2628 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2630 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2632 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2636 * This function gets called by the timer code, with HZ frequency.
2637 * We call it with interrupts disabled.
2639 * It also gets called by the fork code, when changing the parent's
2642 void scheduler_tick(void)
2644 int cpu = smp_processor_id();
2645 runqueue_t *rq = this_rq();
2646 task_t *p = current;
2647 unsigned long long now = sched_clock();
2649 update_cpu_clock(p, rq, now);
2651 rq->timestamp_last_tick = now;
2653 if (p == rq->idle) {
2654 if (wake_priority_sleeper(rq))
2656 rebalance_tick(cpu, rq, SCHED_IDLE);
2660 /* Task might have expired already, but not scheduled off yet */
2661 if (p->array != rq->active) {
2662 set_tsk_need_resched(p);
2665 spin_lock(&rq->lock);
2667 * The task was running during this tick - update the
2668 * time slice counter. Note: we do not update a thread's
2669 * priority until it either goes to sleep or uses up its
2670 * timeslice. This makes it possible for interactive tasks
2671 * to use up their timeslices at their highest priority levels.
2675 * RR tasks need a special form of timeslice management.
2676 * FIFO tasks have no timeslices.
2678 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2679 p->time_slice = task_timeslice(p);
2680 p->first_time_slice = 0;
2681 set_tsk_need_resched(p);
2683 /* put it at the end of the queue: */
2684 requeue_task(p, rq->active);
2688 if (!--p->time_slice) {
2689 dequeue_task(p, rq->active);
2690 set_tsk_need_resched(p);
2691 p->prio = effective_prio(p);
2692 p->time_slice = task_timeslice(p);
2693 p->first_time_slice = 0;
2695 if (!rq->expired_timestamp)
2696 rq->expired_timestamp = jiffies;
2697 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2698 enqueue_task(p, rq->expired);
2699 if (p->static_prio < rq->best_expired_prio)
2700 rq->best_expired_prio = p->static_prio;
2702 enqueue_task(p, rq->active);
2705 * Prevent a too long timeslice allowing a task to monopolize
2706 * the CPU. We do this by splitting up the timeslice into
2709 * Note: this does not mean the task's timeslices expire or
2710 * get lost in any way, they just might be preempted by
2711 * another task of equal priority. (one with higher
2712 * priority would have preempted this task already.) We
2713 * requeue this task to the end of the list on this priority
2714 * level, which is in essence a round-robin of tasks with
2717 * This only applies to tasks in the interactive
2718 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2720 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2721 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2722 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2723 (p->array == rq->active)) {
2725 requeue_task(p, rq->active);
2726 set_tsk_need_resched(p);
2730 spin_unlock(&rq->lock);
2732 rebalance_tick(cpu, rq, NOT_IDLE);
2735 #ifdef CONFIG_SCHED_SMT
2736 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2738 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2739 if (rq->curr == rq->idle && rq->nr_running)
2740 resched_task(rq->idle);
2743 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2745 struct sched_domain *tmp, *sd = NULL;
2746 cpumask_t sibling_map;
2749 for_each_domain(this_cpu, tmp)
2750 if (tmp->flags & SD_SHARE_CPUPOWER)
2757 * Unlock the current runqueue because we have to lock in
2758 * CPU order to avoid deadlocks. Caller knows that we might
2759 * unlock. We keep IRQs disabled.
2761 spin_unlock(&this_rq->lock);
2763 sibling_map = sd->span;
2765 for_each_cpu_mask(i, sibling_map)
2766 spin_lock(&cpu_rq(i)->lock);
2768 * We clear this CPU from the mask. This both simplifies the
2769 * inner loop and keps this_rq locked when we exit:
2771 cpu_clear(this_cpu, sibling_map);
2773 for_each_cpu_mask(i, sibling_map) {
2774 runqueue_t *smt_rq = cpu_rq(i);
2776 wakeup_busy_runqueue(smt_rq);
2779 for_each_cpu_mask(i, sibling_map)
2780 spin_unlock(&cpu_rq(i)->lock);
2782 * We exit with this_cpu's rq still held and IRQs
2788 * number of 'lost' timeslices this task wont be able to fully
2789 * utilize, if another task runs on a sibling. This models the
2790 * slowdown effect of other tasks running on siblings:
2792 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2794 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2797 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2799 struct sched_domain *tmp, *sd = NULL;
2800 cpumask_t sibling_map;
2801 prio_array_t *array;
2805 for_each_domain(this_cpu, tmp)
2806 if (tmp->flags & SD_SHARE_CPUPOWER)
2813 * The same locking rules and details apply as for
2814 * wake_sleeping_dependent():
2816 spin_unlock(&this_rq->lock);
2817 sibling_map = sd->span;
2818 for_each_cpu_mask(i, sibling_map)
2819 spin_lock(&cpu_rq(i)->lock);
2820 cpu_clear(this_cpu, sibling_map);
2823 * Establish next task to be run - it might have gone away because
2824 * we released the runqueue lock above:
2826 if (!this_rq->nr_running)
2828 array = this_rq->active;
2829 if (!array->nr_active)
2830 array = this_rq->expired;
2831 BUG_ON(!array->nr_active);
2833 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2836 for_each_cpu_mask(i, sibling_map) {
2837 runqueue_t *smt_rq = cpu_rq(i);
2838 task_t *smt_curr = smt_rq->curr;
2840 /* Kernel threads do not participate in dependent sleeping */
2841 if (!p->mm || !smt_curr->mm || rt_task(p))
2842 goto check_smt_task;
2845 * If a user task with lower static priority than the
2846 * running task on the SMT sibling is trying to schedule,
2847 * delay it till there is proportionately less timeslice
2848 * left of the sibling task to prevent a lower priority
2849 * task from using an unfair proportion of the
2850 * physical cpu's resources. -ck
2852 if (rt_task(smt_curr)) {
2854 * With real time tasks we run non-rt tasks only
2855 * per_cpu_gain% of the time.
2857 if ((jiffies % DEF_TIMESLICE) >
2858 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2861 if (smt_curr->static_prio < p->static_prio &&
2862 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2863 smt_slice(smt_curr, sd) > task_timeslice(p))
2867 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2871 wakeup_busy_runqueue(smt_rq);
2876 * Reschedule a lower priority task on the SMT sibling for
2877 * it to be put to sleep, or wake it up if it has been put to
2878 * sleep for priority reasons to see if it should run now.
2881 if ((jiffies % DEF_TIMESLICE) >
2882 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2883 resched_task(smt_curr);
2885 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2886 smt_slice(p, sd) > task_timeslice(smt_curr))
2887 resched_task(smt_curr);
2889 wakeup_busy_runqueue(smt_rq);
2893 for_each_cpu_mask(i, sibling_map)
2894 spin_unlock(&cpu_rq(i)->lock);
2898 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2902 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2908 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2910 void fastcall add_preempt_count(int val)
2915 BUG_ON((preempt_count() < 0));
2916 preempt_count() += val;
2918 * Spinlock count overflowing soon?
2920 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2922 EXPORT_SYMBOL(add_preempt_count);
2924 void fastcall sub_preempt_count(int val)
2929 BUG_ON(val > preempt_count());
2931 * Is the spinlock portion underflowing?
2933 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2934 preempt_count() -= val;
2936 EXPORT_SYMBOL(sub_preempt_count);
2941 * schedule() is the main scheduler function.
2943 asmlinkage void __sched schedule(void)
2946 task_t *prev, *next;
2948 prio_array_t *array;
2949 struct list_head *queue;
2950 unsigned long long now;
2951 unsigned long run_time;
2952 int cpu, idx, new_prio;
2955 * Test if we are atomic. Since do_exit() needs to call into
2956 * schedule() atomically, we ignore that path for now.
2957 * Otherwise, whine if we are scheduling when we should not be.
2959 if (likely(!current->exit_state)) {
2960 if (unlikely(in_atomic())) {
2961 printk(KERN_ERR "scheduling while atomic: "
2963 current->comm, preempt_count(), current->pid);
2967 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2972 release_kernel_lock(prev);
2973 need_resched_nonpreemptible:
2977 * The idle thread is not allowed to schedule!
2978 * Remove this check after it has been exercised a bit.
2980 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2981 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2985 schedstat_inc(rq, sched_cnt);
2986 now = sched_clock();
2987 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2988 run_time = now - prev->timestamp;
2989 if (unlikely((long long)(now - prev->timestamp) < 0))
2992 run_time = NS_MAX_SLEEP_AVG;
2995 * Tasks charged proportionately less run_time at high sleep_avg to
2996 * delay them losing their interactive status
2998 run_time /= (CURRENT_BONUS(prev) ? : 1);
3000 spin_lock_irq(&rq->lock);
3002 if (unlikely(prev->flags & PF_DEAD))
3003 prev->state = EXIT_DEAD;
3005 switch_count = &prev->nivcsw;
3006 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3007 switch_count = &prev->nvcsw;
3008 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3009 unlikely(signal_pending(prev))))
3010 prev->state = TASK_RUNNING;
3012 if (prev->state == TASK_UNINTERRUPTIBLE)
3013 rq->nr_uninterruptible++;
3014 deactivate_task(prev, rq);
3018 cpu = smp_processor_id();
3019 if (unlikely(!rq->nr_running)) {
3021 idle_balance(cpu, rq);
3022 if (!rq->nr_running) {
3024 rq->expired_timestamp = 0;
3025 wake_sleeping_dependent(cpu, rq);
3027 * wake_sleeping_dependent() might have released
3028 * the runqueue, so break out if we got new
3031 if (!rq->nr_running)
3035 if (dependent_sleeper(cpu, rq)) {
3040 * dependent_sleeper() releases and reacquires the runqueue
3041 * lock, hence go into the idle loop if the rq went
3044 if (unlikely(!rq->nr_running))
3049 if (unlikely(!array->nr_active)) {
3051 * Switch the active and expired arrays.
3053 schedstat_inc(rq, sched_switch);
3054 rq->active = rq->expired;
3055 rq->expired = array;
3057 rq->expired_timestamp = 0;
3058 rq->best_expired_prio = MAX_PRIO;
3061 idx = sched_find_first_bit(array->bitmap);
3062 queue = array->queue + idx;
3063 next = list_entry(queue->next, task_t, run_list);
3065 if (!rt_task(next) && next->activated > 0) {
3066 unsigned long long delta = now - next->timestamp;
3067 if (unlikely((long long)(now - next->timestamp) < 0))
3070 if (next->activated == 1)
3071 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3073 array = next->array;
3074 new_prio = recalc_task_prio(next, next->timestamp + delta);
3076 if (unlikely(next->prio != new_prio)) {
3077 dequeue_task(next, array);
3078 next->prio = new_prio;
3079 enqueue_task(next, array);
3081 requeue_task(next, array);
3083 next->activated = 0;
3085 if (next == rq->idle)
3086 schedstat_inc(rq, sched_goidle);
3088 prefetch_stack(next);
3089 clear_tsk_need_resched(prev);
3090 rcu_qsctr_inc(task_cpu(prev));
3092 update_cpu_clock(prev, rq, now);
3094 prev->sleep_avg -= run_time;
3095 if ((long)prev->sleep_avg <= 0)
3096 prev->sleep_avg = 0;
3097 prev->timestamp = prev->last_ran = now;
3099 sched_info_switch(prev, next);
3100 if (likely(prev != next)) {
3101 next->timestamp = now;
3106 prepare_task_switch(rq, next);
3107 prev = context_switch(rq, prev, next);
3110 * this_rq must be evaluated again because prev may have moved
3111 * CPUs since it called schedule(), thus the 'rq' on its stack
3112 * frame will be invalid.
3114 finish_task_switch(this_rq(), prev);
3116 spin_unlock_irq(&rq->lock);
3119 if (unlikely(reacquire_kernel_lock(prev) < 0))
3120 goto need_resched_nonpreemptible;
3121 preempt_enable_no_resched();
3122 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3126 EXPORT_SYMBOL(schedule);
3128 #ifdef CONFIG_PREEMPT
3130 * this is is the entry point to schedule() from in-kernel preemption
3131 * off of preempt_enable. Kernel preemptions off return from interrupt
3132 * occur there and call schedule directly.
3134 asmlinkage void __sched preempt_schedule(void)
3136 struct thread_info *ti = current_thread_info();
3137 #ifdef CONFIG_PREEMPT_BKL
3138 struct task_struct *task = current;
3139 int saved_lock_depth;
3142 * If there is a non-zero preempt_count or interrupts are disabled,
3143 * we do not want to preempt the current task. Just return..
3145 if (unlikely(ti->preempt_count || irqs_disabled()))
3149 add_preempt_count(PREEMPT_ACTIVE);
3151 * We keep the big kernel semaphore locked, but we
3152 * clear ->lock_depth so that schedule() doesnt
3153 * auto-release the semaphore:
3155 #ifdef CONFIG_PREEMPT_BKL
3156 saved_lock_depth = task->lock_depth;
3157 task->lock_depth = -1;
3160 #ifdef CONFIG_PREEMPT_BKL
3161 task->lock_depth = saved_lock_depth;
3163 sub_preempt_count(PREEMPT_ACTIVE);
3165 /* we could miss a preemption opportunity between schedule and now */
3167 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3171 EXPORT_SYMBOL(preempt_schedule);
3174 * this is is the entry point to schedule() from kernel preemption
3175 * off of irq context.
3176 * Note, that this is called and return with irqs disabled. This will
3177 * protect us against recursive calling from irq.
3179 asmlinkage void __sched preempt_schedule_irq(void)
3181 struct thread_info *ti = current_thread_info();
3182 #ifdef CONFIG_PREEMPT_BKL
3183 struct task_struct *task = current;
3184 int saved_lock_depth;
3186 /* Catch callers which need to be fixed*/
3187 BUG_ON(ti->preempt_count || !irqs_disabled());
3190 add_preempt_count(PREEMPT_ACTIVE);
3192 * We keep the big kernel semaphore locked, but we
3193 * clear ->lock_depth so that schedule() doesnt
3194 * auto-release the semaphore:
3196 #ifdef CONFIG_PREEMPT_BKL
3197 saved_lock_depth = task->lock_depth;
3198 task->lock_depth = -1;
3202 local_irq_disable();
3203 #ifdef CONFIG_PREEMPT_BKL
3204 task->lock_depth = saved_lock_depth;
3206 sub_preempt_count(PREEMPT_ACTIVE);
3208 /* we could miss a preemption opportunity between schedule and now */
3210 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3214 #endif /* CONFIG_PREEMPT */
3216 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3219 task_t *p = curr->private;
3220 return try_to_wake_up(p, mode, sync);
3223 EXPORT_SYMBOL(default_wake_function);
3226 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3227 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3228 * number) then we wake all the non-exclusive tasks and one exclusive task.
3230 * There are circumstances in which we can try to wake a task which has already
3231 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3232 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3234 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3235 int nr_exclusive, int sync, void *key)
3237 struct list_head *tmp, *next;
3239 list_for_each_safe(tmp, next, &q->task_list) {
3242 curr = list_entry(tmp, wait_queue_t, task_list);
3243 flags = curr->flags;
3244 if (curr->func(curr, mode, sync, key) &&
3245 (flags & WQ_FLAG_EXCLUSIVE) &&
3252 * __wake_up - wake up threads blocked on a waitqueue.
3254 * @mode: which threads
3255 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3256 * @key: is directly passed to the wakeup function
3258 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3259 int nr_exclusive, void *key)
3261 unsigned long flags;
3263 spin_lock_irqsave(&q->lock, flags);
3264 __wake_up_common(q, mode, nr_exclusive, 0, key);
3265 spin_unlock_irqrestore(&q->lock, flags);
3268 EXPORT_SYMBOL(__wake_up);
3271 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3273 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3275 __wake_up_common(q, mode, 1, 0, NULL);
3279 * __wake_up_sync - wake up threads blocked on a waitqueue.
3281 * @mode: which threads
3282 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3284 * The sync wakeup differs that the waker knows that it will schedule
3285 * away soon, so while the target thread will be woken up, it will not
3286 * be migrated to another CPU - ie. the two threads are 'synchronized'
3287 * with each other. This can prevent needless bouncing between CPUs.
3289 * On UP it can prevent extra preemption.
3292 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3294 unsigned long flags;
3300 if (unlikely(!nr_exclusive))
3303 spin_lock_irqsave(&q->lock, flags);
3304 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3305 spin_unlock_irqrestore(&q->lock, flags);
3307 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3309 void fastcall complete(struct completion *x)
3311 unsigned long flags;
3313 spin_lock_irqsave(&x->wait.lock, flags);
3315 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3317 spin_unlock_irqrestore(&x->wait.lock, flags);
3319 EXPORT_SYMBOL(complete);
3321 void fastcall complete_all(struct completion *x)
3323 unsigned long flags;
3325 spin_lock_irqsave(&x->wait.lock, flags);
3326 x->done += UINT_MAX/2;
3327 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3329 spin_unlock_irqrestore(&x->wait.lock, flags);
3331 EXPORT_SYMBOL(complete_all);
3333 void fastcall __sched wait_for_completion(struct completion *x)
3336 spin_lock_irq(&x->wait.lock);
3338 DECLARE_WAITQUEUE(wait, current);
3340 wait.flags |= WQ_FLAG_EXCLUSIVE;
3341 __add_wait_queue_tail(&x->wait, &wait);
3343 __set_current_state(TASK_UNINTERRUPTIBLE);
3344 spin_unlock_irq(&x->wait.lock);
3346 spin_lock_irq(&x->wait.lock);
3348 __remove_wait_queue(&x->wait, &wait);
3351 spin_unlock_irq(&x->wait.lock);
3353 EXPORT_SYMBOL(wait_for_completion);
3355 unsigned long fastcall __sched
3356 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3360 spin_lock_irq(&x->wait.lock);
3362 DECLARE_WAITQUEUE(wait, current);
3364 wait.flags |= WQ_FLAG_EXCLUSIVE;
3365 __add_wait_queue_tail(&x->wait, &wait);
3367 __set_current_state(TASK_UNINTERRUPTIBLE);
3368 spin_unlock_irq(&x->wait.lock);
3369 timeout = schedule_timeout(timeout);
3370 spin_lock_irq(&x->wait.lock);
3372 __remove_wait_queue(&x->wait, &wait);
3376 __remove_wait_queue(&x->wait, &wait);
3380 spin_unlock_irq(&x->wait.lock);
3383 EXPORT_SYMBOL(wait_for_completion_timeout);
3385 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3391 spin_lock_irq(&x->wait.lock);
3393 DECLARE_WAITQUEUE(wait, current);
3395 wait.flags |= WQ_FLAG_EXCLUSIVE;
3396 __add_wait_queue_tail(&x->wait, &wait);
3398 if (signal_pending(current)) {
3400 __remove_wait_queue(&x->wait, &wait);
3403 __set_current_state(TASK_INTERRUPTIBLE);
3404 spin_unlock_irq(&x->wait.lock);
3406 spin_lock_irq(&x->wait.lock);
3408 __remove_wait_queue(&x->wait, &wait);
3412 spin_unlock_irq(&x->wait.lock);
3416 EXPORT_SYMBOL(wait_for_completion_interruptible);
3418 unsigned long fastcall __sched
3419 wait_for_completion_interruptible_timeout(struct completion *x,
3420 unsigned long timeout)
3424 spin_lock_irq(&x->wait.lock);
3426 DECLARE_WAITQUEUE(wait, current);
3428 wait.flags |= WQ_FLAG_EXCLUSIVE;
3429 __add_wait_queue_tail(&x->wait, &wait);
3431 if (signal_pending(current)) {
3432 timeout = -ERESTARTSYS;
3433 __remove_wait_queue(&x->wait, &wait);
3436 __set_current_state(TASK_INTERRUPTIBLE);
3437 spin_unlock_irq(&x->wait.lock);
3438 timeout = schedule_timeout(timeout);
3439 spin_lock_irq(&x->wait.lock);
3441 __remove_wait_queue(&x->wait, &wait);
3445 __remove_wait_queue(&x->wait, &wait);
3449 spin_unlock_irq(&x->wait.lock);
3452 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3455 #define SLEEP_ON_VAR \
3456 unsigned long flags; \
3457 wait_queue_t wait; \
3458 init_waitqueue_entry(&wait, current);
3460 #define SLEEP_ON_HEAD \
3461 spin_lock_irqsave(&q->lock,flags); \
3462 __add_wait_queue(q, &wait); \
3463 spin_unlock(&q->lock);
3465 #define SLEEP_ON_TAIL \
3466 spin_lock_irq(&q->lock); \
3467 __remove_wait_queue(q, &wait); \
3468 spin_unlock_irqrestore(&q->lock, flags);
3470 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3474 current->state = TASK_INTERRUPTIBLE;
3481 EXPORT_SYMBOL(interruptible_sleep_on);
3483 long fastcall __sched
3484 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3488 current->state = TASK_INTERRUPTIBLE;
3491 timeout = schedule_timeout(timeout);
3497 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3499 void fastcall __sched sleep_on(wait_queue_head_t *q)
3503 current->state = TASK_UNINTERRUPTIBLE;
3510 EXPORT_SYMBOL(sleep_on);
3512 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3516 current->state = TASK_UNINTERRUPTIBLE;
3519 timeout = schedule_timeout(timeout);
3525 EXPORT_SYMBOL(sleep_on_timeout);
3527 void set_user_nice(task_t *p, long nice)
3529 unsigned long flags;
3530 prio_array_t *array;
3532 int old_prio, new_prio, delta;
3534 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3537 * We have to be careful, if called from sys_setpriority(),
3538 * the task might be in the middle of scheduling on another CPU.
3540 rq = task_rq_lock(p, &flags);
3542 * The RT priorities are set via sched_setscheduler(), but we still
3543 * allow the 'normal' nice value to be set - but as expected
3544 * it wont have any effect on scheduling until the task is
3548 p->static_prio = NICE_TO_PRIO(nice);
3553 dequeue_task(p, array);
3554 dec_prio_bias(rq, p->static_prio);
3558 new_prio = NICE_TO_PRIO(nice);
3559 delta = new_prio - old_prio;
3560 p->static_prio = NICE_TO_PRIO(nice);
3564 enqueue_task(p, array);
3565 inc_prio_bias(rq, p->static_prio);
3567 * If the task increased its priority or is running and
3568 * lowered its priority, then reschedule its CPU:
3570 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3571 resched_task(rq->curr);
3574 task_rq_unlock(rq, &flags);
3577 EXPORT_SYMBOL(set_user_nice);
3580 * can_nice - check if a task can reduce its nice value
3584 int can_nice(const task_t *p, const int nice)
3586 /* convert nice value [19,-20] to rlimit style value [1,40] */
3587 int nice_rlim = 20 - nice;
3588 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3589 capable(CAP_SYS_NICE));
3592 #ifdef __ARCH_WANT_SYS_NICE
3595 * sys_nice - change the priority of the current process.
3596 * @increment: priority increment
3598 * sys_setpriority is a more generic, but much slower function that
3599 * does similar things.
3601 asmlinkage long sys_nice(int increment)
3607 * Setpriority might change our priority at the same moment.
3608 * We don't have to worry. Conceptually one call occurs first
3609 * and we have a single winner.
3611 if (increment < -40)
3616 nice = PRIO_TO_NICE(current->static_prio) + increment;
3622 if (increment < 0 && !can_nice(current, nice))
3625 retval = security_task_setnice(current, nice);
3629 set_user_nice(current, nice);
3636 * task_prio - return the priority value of a given task.
3637 * @p: the task in question.
3639 * This is the priority value as seen by users in /proc.
3640 * RT tasks are offset by -200. Normal tasks are centered
3641 * around 0, value goes from -16 to +15.
3643 int task_prio(const task_t *p)
3645 return p->prio - MAX_RT_PRIO;
3649 * task_nice - return the nice value of a given task.
3650 * @p: the task in question.
3652 int task_nice(const task_t *p)
3654 return TASK_NICE(p);
3656 EXPORT_SYMBOL_GPL(task_nice);
3659 * idle_cpu - is a given cpu idle currently?
3660 * @cpu: the processor in question.
3662 int idle_cpu(int cpu)
3664 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3668 * idle_task - return the idle task for a given cpu.
3669 * @cpu: the processor in question.
3671 task_t *idle_task(int cpu)
3673 return cpu_rq(cpu)->idle;
3677 * find_process_by_pid - find a process with a matching PID value.
3678 * @pid: the pid in question.
3680 static inline task_t *find_process_by_pid(pid_t pid)
3682 return pid ? find_task_by_pid(pid) : current;
3685 /* Actually do priority change: must hold rq lock. */
3686 static void __setscheduler(struct task_struct *p, int policy, int prio)
3690 p->rt_priority = prio;
3691 if (policy != SCHED_NORMAL)
3692 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3694 p->prio = p->static_prio;
3698 * sched_setscheduler - change the scheduling policy and/or RT priority of
3700 * @p: the task in question.
3701 * @policy: new policy.
3702 * @param: structure containing the new RT priority.
3704 int sched_setscheduler(struct task_struct *p, int policy,
3705 struct sched_param *param)
3708 int oldprio, oldpolicy = -1;
3709 prio_array_t *array;
3710 unsigned long flags;
3714 /* double check policy once rq lock held */
3716 policy = oldpolicy = p->policy;
3717 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3718 policy != SCHED_NORMAL)
3721 * Valid priorities for SCHED_FIFO and SCHED_RR are
3722 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3724 if (param->sched_priority < 0 ||
3725 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3726 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3728 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3732 * Allow unprivileged RT tasks to decrease priority:
3734 if (!capable(CAP_SYS_NICE)) {
3735 /* can't change policy */
3736 if (policy != p->policy &&
3737 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3739 /* can't increase priority */
3740 if (policy != SCHED_NORMAL &&
3741 param->sched_priority > p->rt_priority &&
3742 param->sched_priority >
3743 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3745 /* can't change other user's priorities */
3746 if ((current->euid != p->euid) &&
3747 (current->euid != p->uid))
3751 retval = security_task_setscheduler(p, policy, param);
3755 * To be able to change p->policy safely, the apropriate
3756 * runqueue lock must be held.
3758 rq = task_rq_lock(p, &flags);
3759 /* recheck policy now with rq lock held */
3760 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3761 policy = oldpolicy = -1;
3762 task_rq_unlock(rq, &flags);
3767 deactivate_task(p, rq);
3769 __setscheduler(p, policy, param->sched_priority);
3771 __activate_task(p, rq);
3773 * Reschedule if we are currently running on this runqueue and
3774 * our priority decreased, or if we are not currently running on
3775 * this runqueue and our priority is higher than the current's
3777 if (task_running(rq, p)) {
3778 if (p->prio > oldprio)
3779 resched_task(rq->curr);
3780 } else if (TASK_PREEMPTS_CURR(p, rq))
3781 resched_task(rq->curr);
3783 task_rq_unlock(rq, &flags);
3786 EXPORT_SYMBOL_GPL(sched_setscheduler);
3789 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3792 struct sched_param lparam;
3793 struct task_struct *p;
3795 if (!param || pid < 0)
3797 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3799 read_lock_irq(&tasklist_lock);
3800 p = find_process_by_pid(pid);
3802 read_unlock_irq(&tasklist_lock);
3805 retval = sched_setscheduler(p, policy, &lparam);
3806 read_unlock_irq(&tasklist_lock);
3811 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3812 * @pid: the pid in question.
3813 * @policy: new policy.
3814 * @param: structure containing the new RT priority.
3816 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3817 struct sched_param __user *param)
3819 return do_sched_setscheduler(pid, policy, param);
3823 * sys_sched_setparam - set/change the RT priority of a thread
3824 * @pid: the pid in question.
3825 * @param: structure containing the new RT priority.
3827 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3829 return do_sched_setscheduler(pid, -1, param);
3833 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3834 * @pid: the pid in question.
3836 asmlinkage long sys_sched_getscheduler(pid_t pid)
3838 int retval = -EINVAL;
3845 read_lock(&tasklist_lock);
3846 p = find_process_by_pid(pid);
3848 retval = security_task_getscheduler(p);
3852 read_unlock(&tasklist_lock);
3859 * sys_sched_getscheduler - get the RT priority of a thread
3860 * @pid: the pid in question.
3861 * @param: structure containing the RT priority.
3863 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3865 struct sched_param lp;
3866 int retval = -EINVAL;
3869 if (!param || pid < 0)
3872 read_lock(&tasklist_lock);
3873 p = find_process_by_pid(pid);
3878 retval = security_task_getscheduler(p);
3882 lp.sched_priority = p->rt_priority;
3883 read_unlock(&tasklist_lock);
3886 * This one might sleep, we cannot do it with a spinlock held ...
3888 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3894 read_unlock(&tasklist_lock);
3898 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3902 cpumask_t cpus_allowed;
3905 read_lock(&tasklist_lock);
3907 p = find_process_by_pid(pid);
3909 read_unlock(&tasklist_lock);
3910 unlock_cpu_hotplug();
3915 * It is not safe to call set_cpus_allowed with the
3916 * tasklist_lock held. We will bump the task_struct's
3917 * usage count and then drop tasklist_lock.
3920 read_unlock(&tasklist_lock);
3923 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3924 !capable(CAP_SYS_NICE))
3927 cpus_allowed = cpuset_cpus_allowed(p);
3928 cpus_and(new_mask, new_mask, cpus_allowed);
3929 retval = set_cpus_allowed(p, new_mask);
3933 unlock_cpu_hotplug();
3937 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3938 cpumask_t *new_mask)
3940 if (len < sizeof(cpumask_t)) {
3941 memset(new_mask, 0, sizeof(cpumask_t));
3942 } else if (len > sizeof(cpumask_t)) {
3943 len = sizeof(cpumask_t);
3945 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3949 * sys_sched_setaffinity - set the cpu affinity of a process
3950 * @pid: pid of the process
3951 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3952 * @user_mask_ptr: user-space pointer to the new cpu mask
3954 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3955 unsigned long __user *user_mask_ptr)
3960 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3964 return sched_setaffinity(pid, new_mask);
3968 * Represents all cpu's present in the system
3969 * In systems capable of hotplug, this map could dynamically grow
3970 * as new cpu's are detected in the system via any platform specific
3971 * method, such as ACPI for e.g.
3974 cpumask_t cpu_present_map;
3975 EXPORT_SYMBOL(cpu_present_map);
3978 cpumask_t cpu_online_map = CPU_MASK_ALL;
3979 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3982 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3988 read_lock(&tasklist_lock);
3991 p = find_process_by_pid(pid);
3996 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3999 read_unlock(&tasklist_lock);
4000 unlock_cpu_hotplug();
4008 * sys_sched_getaffinity - get the cpu affinity of a process
4009 * @pid: pid of the process
4010 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4011 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4013 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4014 unsigned long __user *user_mask_ptr)
4019 if (len < sizeof(cpumask_t))
4022 ret = sched_getaffinity(pid, &mask);
4026 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4029 return sizeof(cpumask_t);
4033 * sys_sched_yield - yield the current processor to other threads.
4035 * this function yields the current CPU by moving the calling thread
4036 * to the expired array. If there are no other threads running on this
4037 * CPU then this function will return.
4039 asmlinkage long sys_sched_yield(void)
4041 runqueue_t *rq = this_rq_lock();
4042 prio_array_t *array = current->array;
4043 prio_array_t *target = rq->expired;
4045 schedstat_inc(rq, yld_cnt);
4047 * We implement yielding by moving the task into the expired
4050 * (special rule: RT tasks will just roundrobin in the active
4053 if (rt_task(current))
4054 target = rq->active;
4056 if (array->nr_active == 1) {
4057 schedstat_inc(rq, yld_act_empty);
4058 if (!rq->expired->nr_active)
4059 schedstat_inc(rq, yld_both_empty);
4060 } else if (!rq->expired->nr_active)
4061 schedstat_inc(rq, yld_exp_empty);
4063 if (array != target) {
4064 dequeue_task(current, array);
4065 enqueue_task(current, target);
4068 * requeue_task is cheaper so perform that if possible.
4070 requeue_task(current, array);
4073 * Since we are going to call schedule() anyway, there's
4074 * no need to preempt or enable interrupts:
4076 __release(rq->lock);
4077 _raw_spin_unlock(&rq->lock);
4078 preempt_enable_no_resched();
4085 static inline void __cond_resched(void)
4088 * The BKS might be reacquired before we have dropped
4089 * PREEMPT_ACTIVE, which could trigger a second
4090 * cond_resched() call.
4092 if (unlikely(preempt_count()))
4095 add_preempt_count(PREEMPT_ACTIVE);
4097 sub_preempt_count(PREEMPT_ACTIVE);
4098 } while (need_resched());
4101 int __sched cond_resched(void)
4103 if (need_resched()) {
4110 EXPORT_SYMBOL(cond_resched);
4113 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4114 * call schedule, and on return reacquire the lock.
4116 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4117 * operations here to prevent schedule() from being called twice (once via
4118 * spin_unlock(), once by hand).
4120 int cond_resched_lock(spinlock_t *lock)
4124 if (need_lockbreak(lock)) {
4130 if (need_resched()) {
4131 _raw_spin_unlock(lock);
4132 preempt_enable_no_resched();
4140 EXPORT_SYMBOL(cond_resched_lock);
4142 int __sched cond_resched_softirq(void)
4144 BUG_ON(!in_softirq());
4146 if (need_resched()) {
4147 __local_bh_enable();
4155 EXPORT_SYMBOL(cond_resched_softirq);
4159 * yield - yield the current processor to other threads.
4161 * this is a shortcut for kernel-space yielding - it marks the
4162 * thread runnable and calls sys_sched_yield().
4164 void __sched yield(void)
4166 set_current_state(TASK_RUNNING);
4170 EXPORT_SYMBOL(yield);
4173 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4174 * that process accounting knows that this is a task in IO wait state.
4176 * But don't do that if it is a deliberate, throttling IO wait (this task
4177 * has set its backing_dev_info: the queue against which it should throttle)
4179 void __sched io_schedule(void)
4181 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4183 atomic_inc(&rq->nr_iowait);
4185 atomic_dec(&rq->nr_iowait);
4188 EXPORT_SYMBOL(io_schedule);
4190 long __sched io_schedule_timeout(long timeout)
4192 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4195 atomic_inc(&rq->nr_iowait);
4196 ret = schedule_timeout(timeout);
4197 atomic_dec(&rq->nr_iowait);
4202 * sys_sched_get_priority_max - return maximum RT priority.
4203 * @policy: scheduling class.
4205 * this syscall returns the maximum rt_priority that can be used
4206 * by a given scheduling class.
4208 asmlinkage long sys_sched_get_priority_max(int policy)
4215 ret = MAX_USER_RT_PRIO-1;
4225 * sys_sched_get_priority_min - return minimum RT priority.
4226 * @policy: scheduling class.
4228 * this syscall returns the minimum rt_priority that can be used
4229 * by a given scheduling class.
4231 asmlinkage long sys_sched_get_priority_min(int policy)
4247 * sys_sched_rr_get_interval - return the default timeslice of a process.
4248 * @pid: pid of the process.
4249 * @interval: userspace pointer to the timeslice value.
4251 * this syscall writes the default timeslice value of a given process
4252 * into the user-space timespec buffer. A value of '0' means infinity.
4255 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4257 int retval = -EINVAL;
4265 read_lock(&tasklist_lock);
4266 p = find_process_by_pid(pid);
4270 retval = security_task_getscheduler(p);
4274 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4275 0 : task_timeslice(p), &t);
4276 read_unlock(&tasklist_lock);
4277 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4281 read_unlock(&tasklist_lock);
4285 static inline struct task_struct *eldest_child(struct task_struct *p)
4287 if (list_empty(&p->children)) return NULL;
4288 return list_entry(p->children.next,struct task_struct,sibling);
4291 static inline struct task_struct *older_sibling(struct task_struct *p)
4293 if (p->sibling.prev==&p->parent->children) return NULL;
4294 return list_entry(p->sibling.prev,struct task_struct,sibling);
4297 static inline struct task_struct *younger_sibling(struct task_struct *p)
4299 if (p->sibling.next==&p->parent->children) return NULL;
4300 return list_entry(p->sibling.next,struct task_struct,sibling);
4303 static void show_task(task_t *p)
4307 unsigned long free = 0;
4308 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4310 printk("%-13.13s ", p->comm);
4311 state = p->state ? __ffs(p->state) + 1 : 0;
4312 if (state < ARRAY_SIZE(stat_nam))
4313 printk(stat_nam[state]);
4316 #if (BITS_PER_LONG == 32)
4317 if (state == TASK_RUNNING)
4318 printk(" running ");
4320 printk(" %08lX ", thread_saved_pc(p));
4322 if (state == TASK_RUNNING)
4323 printk(" running task ");
4325 printk(" %016lx ", thread_saved_pc(p));
4327 #ifdef CONFIG_DEBUG_STACK_USAGE
4329 unsigned long *n = (unsigned long *) (p->thread_info+1);
4332 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4335 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4336 if ((relative = eldest_child(p)))
4337 printk("%5d ", relative->pid);
4340 if ((relative = younger_sibling(p)))
4341 printk("%7d", relative->pid);
4344 if ((relative = older_sibling(p)))
4345 printk(" %5d", relative->pid);
4349 printk(" (L-TLB)\n");
4351 printk(" (NOTLB)\n");
4353 if (state != TASK_RUNNING)
4354 show_stack(p, NULL);
4357 void show_state(void)
4361 #if (BITS_PER_LONG == 32)
4364 printk(" task PC pid father child younger older\n");
4368 printk(" task PC pid father child younger older\n");
4370 read_lock(&tasklist_lock);
4371 do_each_thread(g, p) {
4373 * reset the NMI-timeout, listing all files on a slow
4374 * console might take alot of time:
4376 touch_nmi_watchdog();
4378 } while_each_thread(g, p);
4380 read_unlock(&tasklist_lock);
4384 * init_idle - set up an idle thread for a given CPU
4385 * @idle: task in question
4386 * @cpu: cpu the idle task belongs to
4388 * NOTE: this function does not set the idle thread's NEED_RESCHED
4389 * flag, to make booting more robust.
4391 void __devinit init_idle(task_t *idle, int cpu)
4393 runqueue_t *rq = cpu_rq(cpu);
4394 unsigned long flags;
4396 idle->sleep_avg = 0;
4398 idle->prio = MAX_PRIO;
4399 idle->state = TASK_RUNNING;
4400 idle->cpus_allowed = cpumask_of_cpu(cpu);
4401 set_task_cpu(idle, cpu);
4403 spin_lock_irqsave(&rq->lock, flags);
4404 rq->curr = rq->idle = idle;
4405 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4408 spin_unlock_irqrestore(&rq->lock, flags);
4410 /* Set the preempt count _outside_ the spinlocks! */
4411 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4412 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4414 idle->thread_info->preempt_count = 0;
4419 * In a system that switches off the HZ timer nohz_cpu_mask
4420 * indicates which cpus entered this state. This is used
4421 * in the rcu update to wait only for active cpus. For system
4422 * which do not switch off the HZ timer nohz_cpu_mask should
4423 * always be CPU_MASK_NONE.
4425 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4429 * This is how migration works:
4431 * 1) we queue a migration_req_t structure in the source CPU's
4432 * runqueue and wake up that CPU's migration thread.
4433 * 2) we down() the locked semaphore => thread blocks.
4434 * 3) migration thread wakes up (implicitly it forces the migrated
4435 * thread off the CPU)
4436 * 4) it gets the migration request and checks whether the migrated
4437 * task is still in the wrong runqueue.
4438 * 5) if it's in the wrong runqueue then the migration thread removes
4439 * it and puts it into the right queue.
4440 * 6) migration thread up()s the semaphore.
4441 * 7) we wake up and the migration is done.
4445 * Change a given task's CPU affinity. Migrate the thread to a
4446 * proper CPU and schedule it away if the CPU it's executing on
4447 * is removed from the allowed bitmask.
4449 * NOTE: the caller must have a valid reference to the task, the
4450 * task must not exit() & deallocate itself prematurely. The
4451 * call is not atomic; no spinlocks may be held.
4453 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4455 unsigned long flags;
4457 migration_req_t req;
4460 rq = task_rq_lock(p, &flags);
4461 if (!cpus_intersects(new_mask, cpu_online_map)) {
4466 p->cpus_allowed = new_mask;
4467 /* Can the task run on the task's current CPU? If so, we're done */
4468 if (cpu_isset(task_cpu(p), new_mask))
4471 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4472 /* Need help from migration thread: drop lock and wait. */
4473 task_rq_unlock(rq, &flags);
4474 wake_up_process(rq->migration_thread);
4475 wait_for_completion(&req.done);
4476 tlb_migrate_finish(p->mm);
4480 task_rq_unlock(rq, &flags);
4484 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4487 * Move (not current) task off this cpu, onto dest cpu. We're doing
4488 * this because either it can't run here any more (set_cpus_allowed()
4489 * away from this CPU, or CPU going down), or because we're
4490 * attempting to rebalance this task on exec (sched_exec).
4492 * So we race with normal scheduler movements, but that's OK, as long
4493 * as the task is no longer on this CPU.
4495 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4497 runqueue_t *rq_dest, *rq_src;
4499 if (unlikely(cpu_is_offline(dest_cpu)))
4502 rq_src = cpu_rq(src_cpu);
4503 rq_dest = cpu_rq(dest_cpu);
4505 double_rq_lock(rq_src, rq_dest);
4506 /* Already moved. */
4507 if (task_cpu(p) != src_cpu)
4509 /* Affinity changed (again). */
4510 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4513 set_task_cpu(p, dest_cpu);
4516 * Sync timestamp with rq_dest's before activating.
4517 * The same thing could be achieved by doing this step
4518 * afterwards, and pretending it was a local activate.
4519 * This way is cleaner and logically correct.
4521 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4522 + rq_dest->timestamp_last_tick;
4523 deactivate_task(p, rq_src);
4524 activate_task(p, rq_dest, 0);
4525 if (TASK_PREEMPTS_CURR(p, rq_dest))
4526 resched_task(rq_dest->curr);
4530 double_rq_unlock(rq_src, rq_dest);
4534 * migration_thread - this is a highprio system thread that performs
4535 * thread migration by bumping thread off CPU then 'pushing' onto
4538 static int migration_thread(void *data)
4541 int cpu = (long)data;
4544 BUG_ON(rq->migration_thread != current);
4546 set_current_state(TASK_INTERRUPTIBLE);
4547 while (!kthread_should_stop()) {
4548 struct list_head *head;
4549 migration_req_t *req;
4553 spin_lock_irq(&rq->lock);
4555 if (cpu_is_offline(cpu)) {
4556 spin_unlock_irq(&rq->lock);
4560 if (rq->active_balance) {
4561 active_load_balance(rq, cpu);
4562 rq->active_balance = 0;
4565 head = &rq->migration_queue;
4567 if (list_empty(head)) {
4568 spin_unlock_irq(&rq->lock);
4570 set_current_state(TASK_INTERRUPTIBLE);
4573 req = list_entry(head->next, migration_req_t, list);
4574 list_del_init(head->next);
4576 spin_unlock(&rq->lock);
4577 __migrate_task(req->task, cpu, req->dest_cpu);
4580 complete(&req->done);
4582 __set_current_state(TASK_RUNNING);
4586 /* Wait for kthread_stop */
4587 set_current_state(TASK_INTERRUPTIBLE);
4588 while (!kthread_should_stop()) {
4590 set_current_state(TASK_INTERRUPTIBLE);
4592 __set_current_state(TASK_RUNNING);
4596 #ifdef CONFIG_HOTPLUG_CPU
4597 /* Figure out where task on dead CPU should go, use force if neccessary. */
4598 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4604 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4605 cpus_and(mask, mask, tsk->cpus_allowed);
4606 dest_cpu = any_online_cpu(mask);
4608 /* On any allowed CPU? */
4609 if (dest_cpu == NR_CPUS)
4610 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4612 /* No more Mr. Nice Guy. */
4613 if (dest_cpu == NR_CPUS) {
4614 cpus_setall(tsk->cpus_allowed);
4615 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4618 * Don't tell them about moving exiting tasks or
4619 * kernel threads (both mm NULL), since they never
4622 if (tsk->mm && printk_ratelimit())
4623 printk(KERN_INFO "process %d (%s) no "
4624 "longer affine to cpu%d\n",
4625 tsk->pid, tsk->comm, dead_cpu);
4627 __migrate_task(tsk, dead_cpu, dest_cpu);
4631 * While a dead CPU has no uninterruptible tasks queued at this point,
4632 * it might still have a nonzero ->nr_uninterruptible counter, because
4633 * for performance reasons the counter is not stricly tracking tasks to
4634 * their home CPUs. So we just add the counter to another CPU's counter,
4635 * to keep the global sum constant after CPU-down:
4637 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4639 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4640 unsigned long flags;
4642 local_irq_save(flags);
4643 double_rq_lock(rq_src, rq_dest);
4644 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4645 rq_src->nr_uninterruptible = 0;
4646 double_rq_unlock(rq_src, rq_dest);
4647 local_irq_restore(flags);
4650 /* Run through task list and migrate tasks from the dead cpu. */
4651 static void migrate_live_tasks(int src_cpu)
4653 struct task_struct *tsk, *t;
4655 write_lock_irq(&tasklist_lock);
4657 do_each_thread(t, tsk) {
4661 if (task_cpu(tsk) == src_cpu)
4662 move_task_off_dead_cpu(src_cpu, tsk);
4663 } while_each_thread(t, tsk);
4665 write_unlock_irq(&tasklist_lock);
4668 /* Schedules idle task to be the next runnable task on current CPU.
4669 * It does so by boosting its priority to highest possible and adding it to
4670 * the _front_ of runqueue. Used by CPU offline code.
4672 void sched_idle_next(void)
4674 int cpu = smp_processor_id();
4675 runqueue_t *rq = this_rq();
4676 struct task_struct *p = rq->idle;
4677 unsigned long flags;
4679 /* cpu has to be offline */
4680 BUG_ON(cpu_online(cpu));
4682 /* Strictly not necessary since rest of the CPUs are stopped by now
4683 * and interrupts disabled on current cpu.
4685 spin_lock_irqsave(&rq->lock, flags);
4687 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4688 /* Add idle task to _front_ of it's priority queue */
4689 __activate_idle_task(p, rq);
4691 spin_unlock_irqrestore(&rq->lock, flags);
4694 /* Ensures that the idle task is using init_mm right before its cpu goes
4697 void idle_task_exit(void)
4699 struct mm_struct *mm = current->active_mm;
4701 BUG_ON(cpu_online(smp_processor_id()));
4704 switch_mm(mm, &init_mm, current);
4708 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4710 struct runqueue *rq = cpu_rq(dead_cpu);
4712 /* Must be exiting, otherwise would be on tasklist. */
4713 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4715 /* Cannot have done final schedule yet: would have vanished. */
4716 BUG_ON(tsk->flags & PF_DEAD);
4718 get_task_struct(tsk);
4721 * Drop lock around migration; if someone else moves it,
4722 * that's OK. No task can be added to this CPU, so iteration is
4725 spin_unlock_irq(&rq->lock);
4726 move_task_off_dead_cpu(dead_cpu, tsk);
4727 spin_lock_irq(&rq->lock);
4729 put_task_struct(tsk);
4732 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4733 static void migrate_dead_tasks(unsigned int dead_cpu)
4736 struct runqueue *rq = cpu_rq(dead_cpu);
4738 for (arr = 0; arr < 2; arr++) {
4739 for (i = 0; i < MAX_PRIO; i++) {
4740 struct list_head *list = &rq->arrays[arr].queue[i];
4741 while (!list_empty(list))
4742 migrate_dead(dead_cpu,
4743 list_entry(list->next, task_t,
4748 #endif /* CONFIG_HOTPLUG_CPU */
4751 * migration_call - callback that gets triggered when a CPU is added.
4752 * Here we can start up the necessary migration thread for the new CPU.
4754 static int migration_call(struct notifier_block *nfb, unsigned long action,
4757 int cpu = (long)hcpu;
4758 struct task_struct *p;
4759 struct runqueue *rq;
4760 unsigned long flags;
4763 case CPU_UP_PREPARE:
4764 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4767 p->flags |= PF_NOFREEZE;
4768 kthread_bind(p, cpu);
4769 /* Must be high prio: stop_machine expects to yield to it. */
4770 rq = task_rq_lock(p, &flags);
4771 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4772 task_rq_unlock(rq, &flags);
4773 cpu_rq(cpu)->migration_thread = p;
4776 /* Strictly unneccessary, as first user will wake it. */
4777 wake_up_process(cpu_rq(cpu)->migration_thread);
4779 #ifdef CONFIG_HOTPLUG_CPU
4780 case CPU_UP_CANCELED:
4781 /* Unbind it from offline cpu so it can run. Fall thru. */
4782 kthread_bind(cpu_rq(cpu)->migration_thread,
4783 any_online_cpu(cpu_online_map));
4784 kthread_stop(cpu_rq(cpu)->migration_thread);
4785 cpu_rq(cpu)->migration_thread = NULL;
4788 migrate_live_tasks(cpu);
4790 kthread_stop(rq->migration_thread);
4791 rq->migration_thread = NULL;
4792 /* Idle task back to normal (off runqueue, low prio) */
4793 rq = task_rq_lock(rq->idle, &flags);
4794 deactivate_task(rq->idle, rq);
4795 rq->idle->static_prio = MAX_PRIO;
4796 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4797 migrate_dead_tasks(cpu);
4798 task_rq_unlock(rq, &flags);
4799 migrate_nr_uninterruptible(rq);
4800 BUG_ON(rq->nr_running != 0);
4802 /* No need to migrate the tasks: it was best-effort if
4803 * they didn't do lock_cpu_hotplug(). Just wake up
4804 * the requestors. */
4805 spin_lock_irq(&rq->lock);
4806 while (!list_empty(&rq->migration_queue)) {
4807 migration_req_t *req;
4808 req = list_entry(rq->migration_queue.next,
4809 migration_req_t, list);
4810 list_del_init(&req->list);
4811 complete(&req->done);
4813 spin_unlock_irq(&rq->lock);
4820 /* Register at highest priority so that task migration (migrate_all_tasks)
4821 * happens before everything else.
4823 static struct notifier_block __devinitdata migration_notifier = {
4824 .notifier_call = migration_call,
4828 int __init migration_init(void)
4830 void *cpu = (void *)(long)smp_processor_id();
4831 /* Start one for boot CPU. */
4832 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4833 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4834 register_cpu_notifier(&migration_notifier);
4840 #undef SCHED_DOMAIN_DEBUG
4841 #ifdef SCHED_DOMAIN_DEBUG
4842 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4847 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4851 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4856 struct sched_group *group = sd->groups;
4857 cpumask_t groupmask;
4859 cpumask_scnprintf(str, NR_CPUS, sd->span);
4860 cpus_clear(groupmask);
4863 for (i = 0; i < level + 1; i++)
4865 printk("domain %d: ", level);
4867 if (!(sd->flags & SD_LOAD_BALANCE)) {
4868 printk("does not load-balance\n");
4870 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4874 printk("span %s\n", str);
4876 if (!cpu_isset(cpu, sd->span))
4877 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4878 if (!cpu_isset(cpu, group->cpumask))
4879 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4882 for (i = 0; i < level + 2; i++)
4888 printk(KERN_ERR "ERROR: group is NULL\n");
4892 if (!group->cpu_power) {
4894 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4897 if (!cpus_weight(group->cpumask)) {
4899 printk(KERN_ERR "ERROR: empty group\n");
4902 if (cpus_intersects(groupmask, group->cpumask)) {
4904 printk(KERN_ERR "ERROR: repeated CPUs\n");
4907 cpus_or(groupmask, groupmask, group->cpumask);
4909 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4912 group = group->next;
4913 } while (group != sd->groups);
4916 if (!cpus_equal(sd->span, groupmask))
4917 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4923 if (!cpus_subset(groupmask, sd->span))
4924 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4930 #define sched_domain_debug(sd, cpu) {}
4933 static int sd_degenerate(struct sched_domain *sd)
4935 if (cpus_weight(sd->span) == 1)
4938 /* Following flags need at least 2 groups */
4939 if (sd->flags & (SD_LOAD_BALANCE |
4940 SD_BALANCE_NEWIDLE |
4943 if (sd->groups != sd->groups->next)
4947 /* Following flags don't use groups */
4948 if (sd->flags & (SD_WAKE_IDLE |
4956 static int sd_parent_degenerate(struct sched_domain *sd,
4957 struct sched_domain *parent)
4959 unsigned long cflags = sd->flags, pflags = parent->flags;
4961 if (sd_degenerate(parent))
4964 if (!cpus_equal(sd->span, parent->span))
4967 /* Does parent contain flags not in child? */
4968 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4969 if (cflags & SD_WAKE_AFFINE)
4970 pflags &= ~SD_WAKE_BALANCE;
4971 /* Flags needing groups don't count if only 1 group in parent */
4972 if (parent->groups == parent->groups->next) {
4973 pflags &= ~(SD_LOAD_BALANCE |
4974 SD_BALANCE_NEWIDLE |
4978 if (~cflags & pflags)
4985 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4986 * hold the hotplug lock.
4988 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4990 runqueue_t *rq = cpu_rq(cpu);
4991 struct sched_domain *tmp;
4993 /* Remove the sched domains which do not contribute to scheduling. */
4994 for (tmp = sd; tmp; tmp = tmp->parent) {
4995 struct sched_domain *parent = tmp->parent;
4998 if (sd_parent_degenerate(tmp, parent))
4999 tmp->parent = parent->parent;
5002 if (sd && sd_degenerate(sd))
5005 sched_domain_debug(sd, cpu);
5007 rcu_assign_pointer(rq->sd, sd);
5010 /* cpus with isolated domains */
5011 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5013 /* Setup the mask of cpus configured for isolated domains */
5014 static int __init isolated_cpu_setup(char *str)
5016 int ints[NR_CPUS], i;
5018 str = get_options(str, ARRAY_SIZE(ints), ints);
5019 cpus_clear(cpu_isolated_map);
5020 for (i = 1; i <= ints[0]; i++)
5021 if (ints[i] < NR_CPUS)
5022 cpu_set(ints[i], cpu_isolated_map);
5026 __setup ("isolcpus=", isolated_cpu_setup);
5029 * init_sched_build_groups takes an array of groups, the cpumask we wish
5030 * to span, and a pointer to a function which identifies what group a CPU
5031 * belongs to. The return value of group_fn must be a valid index into the
5032 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5033 * keep track of groups covered with a cpumask_t).
5035 * init_sched_build_groups will build a circular linked list of the groups
5036 * covered by the given span, and will set each group's ->cpumask correctly,
5037 * and ->cpu_power to 0.
5039 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5040 int (*group_fn)(int cpu))
5042 struct sched_group *first = NULL, *last = NULL;
5043 cpumask_t covered = CPU_MASK_NONE;
5046 for_each_cpu_mask(i, span) {
5047 int group = group_fn(i);
5048 struct sched_group *sg = &groups[group];
5051 if (cpu_isset(i, covered))
5054 sg->cpumask = CPU_MASK_NONE;
5057 for_each_cpu_mask(j, span) {
5058 if (group_fn(j) != group)
5061 cpu_set(j, covered);
5062 cpu_set(j, sg->cpumask);
5073 #define SD_NODES_PER_DOMAIN 16
5077 * find_next_best_node - find the next node to include in a sched_domain
5078 * @node: node whose sched_domain we're building
5079 * @used_nodes: nodes already in the sched_domain
5081 * Find the next node to include in a given scheduling domain. Simply
5082 * finds the closest node not already in the @used_nodes map.
5084 * Should use nodemask_t.
5086 static int find_next_best_node(int node, unsigned long *used_nodes)
5088 int i, n, val, min_val, best_node = 0;
5092 for (i = 0; i < MAX_NUMNODES; i++) {
5093 /* Start at @node */
5094 n = (node + i) % MAX_NUMNODES;
5096 if (!nr_cpus_node(n))
5099 /* Skip already used nodes */
5100 if (test_bit(n, used_nodes))
5103 /* Simple min distance search */
5104 val = node_distance(node, n);
5106 if (val < min_val) {
5112 set_bit(best_node, used_nodes);
5117 * sched_domain_node_span - get a cpumask for a node's sched_domain
5118 * @node: node whose cpumask we're constructing
5119 * @size: number of nodes to include in this span
5121 * Given a node, construct a good cpumask for its sched_domain to span. It
5122 * should be one that prevents unnecessary balancing, but also spreads tasks
5125 static cpumask_t sched_domain_node_span(int node)
5128 cpumask_t span, nodemask;
5129 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5132 bitmap_zero(used_nodes, MAX_NUMNODES);
5134 nodemask = node_to_cpumask(node);
5135 cpus_or(span, span, nodemask);
5136 set_bit(node, used_nodes);
5138 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5139 int next_node = find_next_best_node(node, used_nodes);
5140 nodemask = node_to_cpumask(next_node);
5141 cpus_or(span, span, nodemask);
5149 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5150 * can switch it on easily if needed.
5152 #ifdef CONFIG_SCHED_SMT
5153 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5154 static struct sched_group sched_group_cpus[NR_CPUS];
5155 static int cpu_to_cpu_group(int cpu)
5161 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5162 static struct sched_group sched_group_phys[NR_CPUS];
5163 static int cpu_to_phys_group(int cpu)
5165 #ifdef CONFIG_SCHED_SMT
5166 return first_cpu(cpu_sibling_map[cpu]);
5174 * The init_sched_build_groups can't handle what we want to do with node
5175 * groups, so roll our own. Now each node has its own list of groups which
5176 * gets dynamically allocated.
5178 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5179 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5181 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5182 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5184 static int cpu_to_allnodes_group(int cpu)
5186 return cpu_to_node(cpu);
5191 * Build sched domains for a given set of cpus and attach the sched domains
5192 * to the individual cpus
5194 void build_sched_domains(const cpumask_t *cpu_map)
5198 struct sched_group **sched_group_nodes = NULL;
5199 struct sched_group *sched_group_allnodes = NULL;
5202 * Allocate the per-node list of sched groups
5204 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5206 if (!sched_group_nodes) {
5207 printk(KERN_WARNING "Can not alloc sched group node list\n");
5210 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5214 * Set up domains for cpus specified by the cpu_map.
5216 for_each_cpu_mask(i, *cpu_map) {
5218 struct sched_domain *sd = NULL, *p;
5219 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5221 cpus_and(nodemask, nodemask, *cpu_map);
5224 if (cpus_weight(*cpu_map)
5225 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5226 if (!sched_group_allnodes) {
5227 sched_group_allnodes
5228 = kmalloc(sizeof(struct sched_group)
5231 if (!sched_group_allnodes) {
5233 "Can not alloc allnodes sched group\n");
5236 sched_group_allnodes_bycpu[i]
5237 = sched_group_allnodes;
5239 sd = &per_cpu(allnodes_domains, i);
5240 *sd = SD_ALLNODES_INIT;
5241 sd->span = *cpu_map;
5242 group = cpu_to_allnodes_group(i);
5243 sd->groups = &sched_group_allnodes[group];
5248 sd = &per_cpu(node_domains, i);
5250 sd->span = sched_domain_node_span(cpu_to_node(i));
5252 cpus_and(sd->span, sd->span, *cpu_map);
5256 sd = &per_cpu(phys_domains, i);
5257 group = cpu_to_phys_group(i);
5259 sd->span = nodemask;
5261 sd->groups = &sched_group_phys[group];
5263 #ifdef CONFIG_SCHED_SMT
5265 sd = &per_cpu(cpu_domains, i);
5266 group = cpu_to_cpu_group(i);
5267 *sd = SD_SIBLING_INIT;
5268 sd->span = cpu_sibling_map[i];
5269 cpus_and(sd->span, sd->span, *cpu_map);
5271 sd->groups = &sched_group_cpus[group];
5275 #ifdef CONFIG_SCHED_SMT
5276 /* Set up CPU (sibling) groups */
5277 for_each_cpu_mask(i, *cpu_map) {
5278 cpumask_t this_sibling_map = cpu_sibling_map[i];
5279 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5280 if (i != first_cpu(this_sibling_map))
5283 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5288 /* Set up physical groups */
5289 for (i = 0; i < MAX_NUMNODES; i++) {
5290 cpumask_t nodemask = node_to_cpumask(i);
5292 cpus_and(nodemask, nodemask, *cpu_map);
5293 if (cpus_empty(nodemask))
5296 init_sched_build_groups(sched_group_phys, nodemask,
5297 &cpu_to_phys_group);
5301 /* Set up node groups */
5302 if (sched_group_allnodes)
5303 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5304 &cpu_to_allnodes_group);
5306 for (i = 0; i < MAX_NUMNODES; i++) {
5307 /* Set up node groups */
5308 struct sched_group *sg, *prev;
5309 cpumask_t nodemask = node_to_cpumask(i);
5310 cpumask_t domainspan;
5311 cpumask_t covered = CPU_MASK_NONE;
5314 cpus_and(nodemask, nodemask, *cpu_map);
5315 if (cpus_empty(nodemask)) {
5316 sched_group_nodes[i] = NULL;
5320 domainspan = sched_domain_node_span(i);
5321 cpus_and(domainspan, domainspan, *cpu_map);
5323 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5324 sched_group_nodes[i] = sg;
5325 for_each_cpu_mask(j, nodemask) {
5326 struct sched_domain *sd;
5327 sd = &per_cpu(node_domains, j);
5329 if (sd->groups == NULL) {
5330 /* Turn off balancing if we have no groups */
5336 "Can not alloc domain group for node %d\n", i);
5340 sg->cpumask = nodemask;
5341 cpus_or(covered, covered, nodemask);
5344 for (j = 0; j < MAX_NUMNODES; j++) {
5345 cpumask_t tmp, notcovered;
5346 int n = (i + j) % MAX_NUMNODES;
5348 cpus_complement(notcovered, covered);
5349 cpus_and(tmp, notcovered, *cpu_map);
5350 cpus_and(tmp, tmp, domainspan);
5351 if (cpus_empty(tmp))
5354 nodemask = node_to_cpumask(n);
5355 cpus_and(tmp, tmp, nodemask);
5356 if (cpus_empty(tmp))
5359 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5362 "Can not alloc domain group for node %d\n", j);
5367 cpus_or(covered, covered, tmp);
5371 prev->next = sched_group_nodes[i];
5375 /* Calculate CPU power for physical packages and nodes */
5376 for_each_cpu_mask(i, *cpu_map) {
5378 struct sched_domain *sd;
5379 #ifdef CONFIG_SCHED_SMT
5380 sd = &per_cpu(cpu_domains, i);
5381 power = SCHED_LOAD_SCALE;
5382 sd->groups->cpu_power = power;
5385 sd = &per_cpu(phys_domains, i);
5386 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5387 (cpus_weight(sd->groups->cpumask)-1) / 10;
5388 sd->groups->cpu_power = power;
5391 sd = &per_cpu(allnodes_domains, i);
5393 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5394 (cpus_weight(sd->groups->cpumask)-1) / 10;
5395 sd->groups->cpu_power = power;
5401 for (i = 0; i < MAX_NUMNODES; i++) {
5402 struct sched_group *sg = sched_group_nodes[i];
5408 for_each_cpu_mask(j, sg->cpumask) {
5409 struct sched_domain *sd;
5412 sd = &per_cpu(phys_domains, j);
5413 if (j != first_cpu(sd->groups->cpumask)) {
5415 * Only add "power" once for each
5420 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5421 (cpus_weight(sd->groups->cpumask)-1) / 10;
5423 sg->cpu_power += power;
5426 if (sg != sched_group_nodes[i])
5431 /* Attach the domains */
5432 for_each_cpu_mask(i, *cpu_map) {
5433 struct sched_domain *sd;
5434 #ifdef CONFIG_SCHED_SMT
5435 sd = &per_cpu(cpu_domains, i);
5437 sd = &per_cpu(phys_domains, i);
5439 cpu_attach_domain(sd, i);
5443 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5445 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5447 cpumask_t cpu_default_map;
5450 * Setup mask for cpus without special case scheduling requirements.
5451 * For now this just excludes isolated cpus, but could be used to
5452 * exclude other special cases in the future.
5454 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5456 build_sched_domains(&cpu_default_map);
5459 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5465 for_each_cpu_mask(cpu, *cpu_map) {
5466 struct sched_group *sched_group_allnodes
5467 = sched_group_allnodes_bycpu[cpu];
5468 struct sched_group **sched_group_nodes
5469 = sched_group_nodes_bycpu[cpu];
5471 if (sched_group_allnodes) {
5472 kfree(sched_group_allnodes);
5473 sched_group_allnodes_bycpu[cpu] = NULL;
5476 if (!sched_group_nodes)
5479 for (i = 0; i < MAX_NUMNODES; i++) {
5480 cpumask_t nodemask = node_to_cpumask(i);
5481 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5483 cpus_and(nodemask, nodemask, *cpu_map);
5484 if (cpus_empty(nodemask))
5494 if (oldsg != sched_group_nodes[i])
5497 kfree(sched_group_nodes);
5498 sched_group_nodes_bycpu[cpu] = NULL;
5504 * Detach sched domains from a group of cpus specified in cpu_map
5505 * These cpus will now be attached to the NULL domain
5507 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5511 for_each_cpu_mask(i, *cpu_map)
5512 cpu_attach_domain(NULL, i);
5513 synchronize_sched();
5514 arch_destroy_sched_domains(cpu_map);
5518 * Partition sched domains as specified by the cpumasks below.
5519 * This attaches all cpus from the cpumasks to the NULL domain,
5520 * waits for a RCU quiescent period, recalculates sched
5521 * domain information and then attaches them back to the
5522 * correct sched domains
5523 * Call with hotplug lock held
5525 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5527 cpumask_t change_map;
5529 cpus_and(*partition1, *partition1, cpu_online_map);
5530 cpus_and(*partition2, *partition2, cpu_online_map);
5531 cpus_or(change_map, *partition1, *partition2);
5533 /* Detach sched domains from all of the affected cpus */
5534 detach_destroy_domains(&change_map);
5535 if (!cpus_empty(*partition1))
5536 build_sched_domains(partition1);
5537 if (!cpus_empty(*partition2))
5538 build_sched_domains(partition2);
5541 #ifdef CONFIG_HOTPLUG_CPU
5543 * Force a reinitialization of the sched domains hierarchy. The domains
5544 * and groups cannot be updated in place without racing with the balancing
5545 * code, so we temporarily attach all running cpus to the NULL domain
5546 * which will prevent rebalancing while the sched domains are recalculated.
5548 static int update_sched_domains(struct notifier_block *nfb,
5549 unsigned long action, void *hcpu)
5552 case CPU_UP_PREPARE:
5553 case CPU_DOWN_PREPARE:
5554 detach_destroy_domains(&cpu_online_map);
5557 case CPU_UP_CANCELED:
5558 case CPU_DOWN_FAILED:
5562 * Fall through and re-initialise the domains.
5569 /* The hotplug lock is already held by cpu_up/cpu_down */
5570 arch_init_sched_domains(&cpu_online_map);
5576 void __init sched_init_smp(void)
5579 arch_init_sched_domains(&cpu_online_map);
5580 unlock_cpu_hotplug();
5581 /* XXX: Theoretical race here - CPU may be hotplugged now */
5582 hotcpu_notifier(update_sched_domains, 0);
5585 void __init sched_init_smp(void)
5588 #endif /* CONFIG_SMP */
5590 int in_sched_functions(unsigned long addr)
5592 /* Linker adds these: start and end of __sched functions */
5593 extern char __sched_text_start[], __sched_text_end[];
5594 return in_lock_functions(addr) ||
5595 (addr >= (unsigned long)__sched_text_start
5596 && addr < (unsigned long)__sched_text_end);
5599 void __init sched_init(void)
5604 for (i = 0; i < NR_CPUS; i++) {
5605 prio_array_t *array;
5608 spin_lock_init(&rq->lock);
5610 rq->active = rq->arrays;
5611 rq->expired = rq->arrays + 1;
5612 rq->best_expired_prio = MAX_PRIO;
5616 for (j = 1; j < 3; j++)
5617 rq->cpu_load[j] = 0;
5618 rq->active_balance = 0;
5620 rq->migration_thread = NULL;
5621 INIT_LIST_HEAD(&rq->migration_queue);
5623 atomic_set(&rq->nr_iowait, 0);
5625 for (j = 0; j < 2; j++) {
5626 array = rq->arrays + j;
5627 for (k = 0; k < MAX_PRIO; k++) {
5628 INIT_LIST_HEAD(array->queue + k);
5629 __clear_bit(k, array->bitmap);
5631 // delimiter for bitsearch
5632 __set_bit(MAX_PRIO, array->bitmap);
5637 * The boot idle thread does lazy MMU switching as well:
5639 atomic_inc(&init_mm.mm_count);
5640 enter_lazy_tlb(&init_mm, current);
5643 * Make us the idle thread. Technically, schedule() should not be
5644 * called from this thread, however somewhere below it might be,
5645 * but because we are the idle thread, we just pick up running again
5646 * when this runqueue becomes "idle".
5648 init_idle(current, smp_processor_id());
5651 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5652 void __might_sleep(char *file, int line)
5654 #if defined(in_atomic)
5655 static unsigned long prev_jiffy; /* ratelimiting */
5657 if ((in_atomic() || irqs_disabled()) &&
5658 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5659 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5661 prev_jiffy = jiffies;
5662 printk(KERN_ERR "Debug: sleeping function called from invalid"
5663 " context at %s:%d\n", file, line);
5664 printk("in_atomic():%d, irqs_disabled():%d\n",
5665 in_atomic(), irqs_disabled());
5670 EXPORT_SYMBOL(__might_sleep);
5673 #ifdef CONFIG_MAGIC_SYSRQ
5674 void normalize_rt_tasks(void)
5676 struct task_struct *p;
5677 prio_array_t *array;
5678 unsigned long flags;
5681 read_lock_irq(&tasklist_lock);
5682 for_each_process (p) {
5686 rq = task_rq_lock(p, &flags);
5690 deactivate_task(p, task_rq(p));
5691 __setscheduler(p, SCHED_NORMAL, 0);
5693 __activate_task(p, task_rq(p));
5694 resched_task(rq->curr);
5697 task_rq_unlock(rq, &flags);
5699 read_unlock_irq(&tasklist_lock);
5702 #endif /* CONFIG_MAGIC_SYSRQ */
5706 * These functions are only useful for the IA64 MCA handling.
5708 * They can only be called when the whole system has been
5709 * stopped - every CPU needs to be quiescent, and no scheduling
5710 * activity can take place. Using them for anything else would
5711 * be a serious bug, and as a result, they aren't even visible
5712 * under any other configuration.
5716 * curr_task - return the current task for a given cpu.
5717 * @cpu: the processor in question.
5719 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5721 task_t *curr_task(int cpu)
5723 return cpu_curr(cpu);
5727 * set_curr_task - set the current task for a given cpu.
5728 * @cpu: the processor in question.
5729 * @p: the task pointer to set.
5731 * Description: This function must only be used when non-maskable interrupts
5732 * are serviced on a separate stack. It allows the architecture to switch the
5733 * notion of the current task on a cpu in a non-blocking manner. This function
5734 * must be called with all CPU's synchronized, and interrupts disabled, the
5735 * and caller must save the original value of the current task (see
5736 * curr_task() above) and restore that value before reenabling interrupts and
5737 * re-starting the system.
5739 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5741 void set_curr_task(int cpu, task_t *p)