2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
46 * For CPUs with transition latency > 10mS (mostly drivers
47 * with CPUFREQ_ETERNAL), this governor will not work.
48 * All times here are in uS.
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO (2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE \
54 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE \
56 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
59 #define DEF_SAMPLING_DOWN_FACTOR (1)
60 #define MAX_SAMPLING_DOWN_FACTOR (10)
61 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
63 static void do_dbs_timer(struct work_struct *work);
65 struct cpu_dbs_info_s {
66 struct cpufreq_policy *cur_policy;
67 unsigned int prev_cpu_idle_up;
68 unsigned int prev_cpu_idle_down;
70 unsigned int down_skip;
71 unsigned int requested_freq;
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
75 static unsigned int dbs_enable; /* number of CPUs using this policy */
78 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79 * lock and dbs_mutex. cpu_hotplug lock should always be held before
80 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83 * is recursive for the same process. -Venki
85 static DEFINE_MUTEX (dbs_mutex);
86 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
89 unsigned int sampling_rate;
90 unsigned int sampling_down_factor;
91 unsigned int up_threshold;
92 unsigned int down_threshold;
93 unsigned int ignore_nice;
94 unsigned int freq_step;
97 static struct dbs_tuners dbs_tuners_ins = {
98 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
99 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
100 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
105 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
107 unsigned int add_nice = 0, ret;
109 if (dbs_tuners_ins.ignore_nice)
110 add_nice = kstat_cpu(cpu).cpustat.nice;
112 ret = kstat_cpu(cpu).cpustat.idle +
113 kstat_cpu(cpu).cpustat.iowait +
119 /* keep track of frequency transitions */
121 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
124 struct cpufreq_freqs *freq = data;
125 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
128 if (!this_dbs_info->enable)
131 this_dbs_info->requested_freq = freq->new;
136 static struct notifier_block dbs_cpufreq_notifier_block = {
137 .notifier_call = dbs_cpufreq_notifier
140 /************************** sysfs interface ************************/
141 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
143 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
146 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
148 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
151 #define define_one_ro(_name) \
152 static struct freq_attr _name = \
153 __ATTR(_name, 0444, show_##_name, NULL)
155 define_one_ro(sampling_rate_max);
156 define_one_ro(sampling_rate_min);
158 /* cpufreq_conservative Governor Tunables */
159 #define show_one(file_name, object) \
160 static ssize_t show_##file_name \
161 (struct cpufreq_policy *unused, char *buf) \
163 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
165 show_one(sampling_rate, sampling_rate);
166 show_one(sampling_down_factor, sampling_down_factor);
167 show_one(up_threshold, up_threshold);
168 show_one(down_threshold, down_threshold);
169 show_one(ignore_nice_load, ignore_nice);
170 show_one(freq_step, freq_step);
172 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
173 const char *buf, size_t count)
177 ret = sscanf (buf, "%u", &input);
178 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
181 mutex_lock(&dbs_mutex);
182 dbs_tuners_ins.sampling_down_factor = input;
183 mutex_unlock(&dbs_mutex);
188 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
189 const char *buf, size_t count)
193 ret = sscanf (buf, "%u", &input);
195 mutex_lock(&dbs_mutex);
196 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
197 mutex_unlock(&dbs_mutex);
201 dbs_tuners_ins.sampling_rate = input;
202 mutex_unlock(&dbs_mutex);
207 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
208 const char *buf, size_t count)
212 ret = sscanf (buf, "%u", &input);
214 mutex_lock(&dbs_mutex);
215 if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
216 mutex_unlock(&dbs_mutex);
220 dbs_tuners_ins.up_threshold = input;
221 mutex_unlock(&dbs_mutex);
226 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
227 const char *buf, size_t count)
231 ret = sscanf (buf, "%u", &input);
233 mutex_lock(&dbs_mutex);
234 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
235 mutex_unlock(&dbs_mutex);
239 dbs_tuners_ins.down_threshold = input;
240 mutex_unlock(&dbs_mutex);
245 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
246 const char *buf, size_t count)
253 ret = sscanf(buf, "%u", &input);
260 mutex_lock(&dbs_mutex);
261 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
262 mutex_unlock(&dbs_mutex);
265 dbs_tuners_ins.ignore_nice = input;
267 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
268 for_each_online_cpu(j) {
269 struct cpu_dbs_info_s *j_dbs_info;
270 j_dbs_info = &per_cpu(cpu_dbs_info, j);
271 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
272 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
274 mutex_unlock(&dbs_mutex);
279 static ssize_t store_freq_step(struct cpufreq_policy *policy,
280 const char *buf, size_t count)
285 ret = sscanf(buf, "%u", &input);
293 /* no need to test here if freq_step is zero as the user might actually
294 * want this, they would be crazy though :) */
295 mutex_lock(&dbs_mutex);
296 dbs_tuners_ins.freq_step = input;
297 mutex_unlock(&dbs_mutex);
302 #define define_one_rw(_name) \
303 static struct freq_attr _name = \
304 __ATTR(_name, 0644, show_##_name, store_##_name)
306 define_one_rw(sampling_rate);
307 define_one_rw(sampling_down_factor);
308 define_one_rw(up_threshold);
309 define_one_rw(down_threshold);
310 define_one_rw(ignore_nice_load);
311 define_one_rw(freq_step);
313 static struct attribute * dbs_attributes[] = {
314 &sampling_rate_max.attr,
315 &sampling_rate_min.attr,
317 &sampling_down_factor.attr,
319 &down_threshold.attr,
320 &ignore_nice_load.attr,
325 static struct attribute_group dbs_attr_group = {
326 .attrs = dbs_attributes,
327 .name = "conservative",
330 /************************** sysfs end ************************/
332 static void dbs_check_cpu(int cpu)
334 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
335 unsigned int tmp_idle_ticks, total_idle_ticks;
336 unsigned int freq_target;
337 unsigned int freq_down_sampling_rate;
338 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
339 struct cpufreq_policy *policy;
341 if (!this_dbs_info->enable)
344 policy = this_dbs_info->cur_policy;
347 * The default safe range is 20% to 80%
348 * Every sampling_rate, we check
349 * - If current idle time is less than 20%, then we try to
351 * Every sampling_rate*sampling_down_factor, we check
352 * - If current idle time is more than 80%, then we try to
355 * Any frequency increase takes it to the maximum frequency.
356 * Frequency reduction happens at minimum steps of
357 * 5% (default) of max_frequency
360 /* Check for frequency increase */
361 idle_ticks = UINT_MAX;
363 /* Check for frequency increase */
364 total_idle_ticks = get_cpu_idle_time(cpu);
365 tmp_idle_ticks = total_idle_ticks -
366 this_dbs_info->prev_cpu_idle_up;
367 this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
369 if (tmp_idle_ticks < idle_ticks)
370 idle_ticks = tmp_idle_ticks;
372 /* Scale idle ticks by 100 and compare with up and down ticks */
374 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
375 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
377 if (idle_ticks < up_idle_ticks) {
378 this_dbs_info->down_skip = 0;
379 this_dbs_info->prev_cpu_idle_down =
380 this_dbs_info->prev_cpu_idle_up;
382 /* if we are already at full speed then break out early */
383 if (this_dbs_info->requested_freq == policy->max)
386 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
388 /* max freq cannot be less than 100. But who knows.... */
389 if (unlikely(freq_target == 0))
392 this_dbs_info->requested_freq += freq_target;
393 if (this_dbs_info->requested_freq > policy->max)
394 this_dbs_info->requested_freq = policy->max;
396 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
401 /* Check for frequency decrease */
402 this_dbs_info->down_skip++;
403 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
406 /* Check for frequency decrease */
407 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
408 tmp_idle_ticks = total_idle_ticks -
409 this_dbs_info->prev_cpu_idle_down;
410 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
412 if (tmp_idle_ticks < idle_ticks)
413 idle_ticks = tmp_idle_ticks;
415 /* Scale idle ticks by 100 and compare with up and down ticks */
417 this_dbs_info->down_skip = 0;
419 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
420 dbs_tuners_ins.sampling_down_factor;
421 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
422 usecs_to_jiffies(freq_down_sampling_rate);
424 if (idle_ticks > down_idle_ticks) {
426 * if we are already at the lowest speed then break out early
427 * or if we 'cannot' reduce the speed as the user might want
428 * freq_target to be zero
430 if (this_dbs_info->requested_freq == policy->min
431 || dbs_tuners_ins.freq_step == 0)
434 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
436 /* max freq cannot be less than 100. But who knows.... */
437 if (unlikely(freq_target == 0))
440 this_dbs_info->requested_freq -= freq_target;
441 if (this_dbs_info->requested_freq < policy->min)
442 this_dbs_info->requested_freq = policy->min;
444 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
450 static void do_dbs_timer(struct work_struct *work)
453 mutex_lock(&dbs_mutex);
454 for_each_online_cpu(i)
456 schedule_delayed_work(&dbs_work,
457 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
458 mutex_unlock(&dbs_mutex);
461 static inline void dbs_timer_init(void)
463 init_timer_deferrable(&dbs_work.timer);
464 schedule_delayed_work(&dbs_work,
465 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
469 static inline void dbs_timer_exit(void)
471 cancel_delayed_work(&dbs_work);
475 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
478 unsigned int cpu = policy->cpu;
479 struct cpu_dbs_info_s *this_dbs_info;
483 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
486 case CPUFREQ_GOV_START:
487 if ((!cpu_online(cpu)) || (!policy->cur))
490 if (this_dbs_info->enable) /* Already enabled */
493 mutex_lock(&dbs_mutex);
495 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
497 mutex_unlock(&dbs_mutex);
501 for_each_cpu(j, policy->cpus) {
502 struct cpu_dbs_info_s *j_dbs_info;
503 j_dbs_info = &per_cpu(cpu_dbs_info, j);
504 j_dbs_info->cur_policy = policy;
506 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
507 j_dbs_info->prev_cpu_idle_down
508 = j_dbs_info->prev_cpu_idle_up;
510 this_dbs_info->enable = 1;
511 this_dbs_info->down_skip = 0;
512 this_dbs_info->requested_freq = policy->cur;
516 * Start the timerschedule work, when this governor
517 * is used for first time
519 if (dbs_enable == 1) {
520 unsigned int latency;
521 /* policy latency is in nS. Convert it to uS first */
522 latency = policy->cpuinfo.transition_latency / 1000;
526 def_sampling_rate = 10 * latency *
527 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
529 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
530 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
532 dbs_tuners_ins.sampling_rate = def_sampling_rate;
535 cpufreq_register_notifier(
536 &dbs_cpufreq_notifier_block,
537 CPUFREQ_TRANSITION_NOTIFIER);
540 mutex_unlock(&dbs_mutex);
543 case CPUFREQ_GOV_STOP:
544 mutex_lock(&dbs_mutex);
545 this_dbs_info->enable = 0;
546 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
549 * Stop the timerschedule work, when this governor
550 * is used for first time
552 if (dbs_enable == 0) {
554 cpufreq_unregister_notifier(
555 &dbs_cpufreq_notifier_block,
556 CPUFREQ_TRANSITION_NOTIFIER);
559 mutex_unlock(&dbs_mutex);
563 case CPUFREQ_GOV_LIMITS:
564 mutex_lock(&dbs_mutex);
565 if (policy->max < this_dbs_info->cur_policy->cur)
566 __cpufreq_driver_target(
567 this_dbs_info->cur_policy,
568 policy->max, CPUFREQ_RELATION_H);
569 else if (policy->min > this_dbs_info->cur_policy->cur)
570 __cpufreq_driver_target(
571 this_dbs_info->cur_policy,
572 policy->min, CPUFREQ_RELATION_L);
573 mutex_unlock(&dbs_mutex);
579 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
582 struct cpufreq_governor cpufreq_gov_conservative = {
583 .name = "conservative",
584 .governor = cpufreq_governor_dbs,
585 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
586 .owner = THIS_MODULE,
589 static int __init cpufreq_gov_dbs_init(void)
591 return cpufreq_register_governor(&cpufreq_gov_conservative);
594 static void __exit cpufreq_gov_dbs_exit(void)
596 /* Make sure that the scheduled work is indeed not running */
597 flush_scheduled_work();
599 cpufreq_unregister_governor(&cpufreq_gov_conservative);
603 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
604 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
605 "Low Latency Frequency Transition capable processors "
606 "optimised for use in a battery environment");
607 MODULE_LICENSE ("GPL");
609 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
610 fs_initcall(cpufreq_gov_dbs_init);
612 module_init(cpufreq_gov_dbs_init);
614 module_exit(cpufreq_gov_dbs_exit);