2 * Exception handling for Microblaze
4 * Rewriten interrupt handling
6 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
7 * Copyright (C) 2008-2009 PetaLogix
9 * uClinux customisation (C) 2005 John Williams
11 * MMU code derived from arch/ppc/kernel/head_4xx.S:
12 * Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org>
13 * Initial PowerPC version.
14 * Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
16 * Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
17 * Low-level exception handers, MMU support, and rewrite.
18 * Copyright (C) 1997 Dan Malek <dmalek@jlc.net>
19 * PowerPC 8xx modifications.
20 * Copyright (C) 1998-1999 TiVo, Inc.
21 * PowerPC 403GCX modifications.
22 * Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu>
23 * PowerPC 403GCX/405GP modifications.
24 * Copyright 2000 MontaVista Software Inc.
25 * PPC405 modifications
26 * PowerPC 403GCX/405GP modifications.
27 * Author: MontaVista Software, Inc.
28 * frank_rowand@mvista.com or source@mvista.com
29 * debbie_chu@mvista.com
32 * Copyright (C) 2004 Xilinx, Inc.
34 * This program is free software; you can redistribute it and/or modify it
35 * under the terms of the GNU General Public License version 2 as published
36 * by the Free Software Foundation.
40 * Here are the handlers which don't require enabling translation
41 * and calling other kernel code thus we can keep their design very simple
42 * and do all processing in real mode. All what they need is a valid current
43 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
44 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
45 * these registers are saved/restored
46 * The handlers which require translation are in entry.S --KAA
48 * Microblaze HW Exception Handler
49 * - Non self-modifying exception handler for the following exception conditions
51 * - Instruction bus error
53 * - Illegal instruction opcode
56 * - Privileged instruction exception (MMU)
57 * - Data storage exception (MMU)
58 * - Instruction storage exception (MMU)
59 * - Data TLB miss exception (MMU)
60 * - Instruction TLB miss exception (MMU)
62 * Note we disable interrupts during exception handling, otherwise we will
63 * possibly get multiple re-entrancy if interrupt handles themselves cause
67 #include <asm/exceptions.h>
68 #include <asm/unistd.h>
71 #include <asm/entry.h>
72 #include <asm/current.h>
73 #include <linux/linkage.h>
76 #include <asm/pgtable.h>
77 #include <asm/asm-offsets.h>
81 #define EX_HANDLER_STACK_SIZ (4*19)
83 #define NUM_TO_REG(num) r ## num
86 /* FIXME you can't change first load of MSR because there is
87 * hardcoded jump bri 4 */
88 #define RESTORE_STATE \
93 lwi r11, r1, PT_R11; \
94 lwi r31, r1, PT_R31; \
95 lwi r1, r0, TOPHYS(r0_ram + 0);
96 #endif /* CONFIG_MMU */
99 bri ex_handler_unhandled; \
103 bri ex_handler_unhandled; \
106 /* FIXME this is weird - for noMMU kernel is not possible to use brid
107 * instruction which can shorten executed time
110 /* r3 is the source */
111 #define R3_TO_LWREG_V(regnum) \
112 swi r3, r1, 4 * regnum; \
115 /* r3 is the source */
116 #define R3_TO_LWREG(regnum) \
117 or NUM_TO_REG (regnum), r0, r3; \
120 /* r3 is the target */
121 #define SWREG_TO_R3_V(regnum) \
122 lwi r3, r1, 4 * regnum; \
125 /* r3 is the target */
126 #define SWREG_TO_R3(regnum) \
127 or r3, r0, NUM_TO_REG (regnum); \
131 #define R3_TO_LWREG_VM_V(regnum) \
133 swi r3, r7, 4 * regnum;
135 #define R3_TO_LWREG_VM(regnum) \
137 or NUM_TO_REG (regnum), r0, r3;
139 #define SWREG_TO_R3_VM_V(regnum) \
140 brid ex_sw_tail_vm; \
141 lwi r3, r7, 4 * regnum;
143 #define SWREG_TO_R3_VM(regnum) \
144 brid ex_sw_tail_vm; \
145 or r3, r0, NUM_TO_REG (regnum);
147 /* Shift right instruction depending on available configuration */
148 #if CONFIG_XILINX_MICROBLAZE0_USE_BARREL > 0
149 #define BSRLI(rD, rA, imm) \
151 #elif CONFIG_XILINX_MICROBLAZE0_USE_DIV > 0
152 #define BSRLI(rD, rA, imm) \
153 ori rD, r0, (1 << imm); \
156 #define BSRLI(rD, rA, imm) BSRLI ## imm (rD, rA)
157 /* Only the used shift constants defined here - add more if needed */
158 #define BSRLI2(rD, rA) \
159 srl rD, rA; /* << 1 */ \
160 srl rD, rD; /* << 2 */
161 #define BSRLI10(rD, rA) \
162 srl rD, rA; /* << 1 */ \
163 srl rD, rD; /* << 2 */ \
164 srl rD, rD; /* << 3 */ \
165 srl rD, rD; /* << 4 */ \
166 srl rD, rD; /* << 5 */ \
167 srl rD, rD; /* << 6 */ \
168 srl rD, rD; /* << 7 */ \
169 srl rD, rD; /* << 8 */ \
170 srl rD, rD; /* << 9 */ \
171 srl rD, rD /* << 10 */
172 #define BSRLI20(rD, rA) \
176 #endif /* CONFIG_MMU */
178 .extern other_exception_handler /* Defined in exception.c */
181 * hw_exception_handler - Handler for exceptions
183 * Exception handler notes:
184 * - Handles all exceptions
185 * - Does not handle unaligned exceptions during load into r17, r1, r0.
186 * - Does not handle unaligned exceptions during store from r17 (cannot be
187 * done) and r1 (slows down common case)
189 * Relevant register structures
191 * EAR - |----|----|----|----|----|----|----|----|
192 * - < ## 32 bit faulting address ## >
194 * ESR - |----|----|----|----|----| - | - |-----|-----|
198 * STACK FRAME STRUCTURE (for NO_MMU)
199 * ---------------------------------
201 * +-------------+ + 0
203 * +-------------+ + 4
210 * +-------------+ + 76
214 * NO_MMU kernel use the same r0_ram pointed space - look to vmlinux.lds.S
215 * which is used for storing register values - old style was, that value were
216 * stored in stack but in case of failure you lost information about register.
217 * Currently you can see register value in memory in specific place.
218 * In compare to with previous solution the speed should be the same.
220 * MMU exception handler has different handling compare to no MMU kernel.
221 * Exception handler use jump table for directing of what happen. For MMU kernel
222 * is this approach better because MMU relate exception are handled by asm code
223 * in this file. In compare to with MMU expect of unaligned exception
224 * is everything handled by C code.
228 * every of these handlers is entered having R3/4/5/6/11/current saved on stack
229 * and clobbered so care should be taken to restore them if someone is going to
230 * return from exception
233 /* wrappers to restore state before coming to entry.S */
238 _MB_HW_ExceptionVectorTable:
240 .long TOPHYS(ex_handler_unhandled)
241 /* 1 - Unaligned data access exception */
242 .long TOPHYS(handle_unaligned_ex)
243 /* 2 - Illegal op-code exception */
244 .long TOPHYS(full_exception_trapw)
245 /* 3 - Instruction bus error exception */
246 .long TOPHYS(full_exception_trapw)
247 /* 4 - Data bus error exception */
248 .long TOPHYS(full_exception_trapw)
249 /* 5 - Divide by zero exception */
250 .long TOPHYS(full_exception_trapw)
251 /* 6 - Floating point unit exception */
252 .long TOPHYS(full_exception_trapw)
253 /* 7 - Privileged instruction exception */
254 .long TOPHYS(full_exception_trapw)
255 /* 8 - 15 - Undefined */
256 .long TOPHYS(ex_handler_unhandled)
257 .long TOPHYS(ex_handler_unhandled)
258 .long TOPHYS(ex_handler_unhandled)
259 .long TOPHYS(ex_handler_unhandled)
260 .long TOPHYS(ex_handler_unhandled)
261 .long TOPHYS(ex_handler_unhandled)
262 .long TOPHYS(ex_handler_unhandled)
263 .long TOPHYS(ex_handler_unhandled)
264 /* 16 - Data storage exception */
265 .long TOPHYS(handle_data_storage_exception)
266 /* 17 - Instruction storage exception */
267 .long TOPHYS(handle_instruction_storage_exception)
268 /* 18 - Data TLB miss exception */
269 .long TOPHYS(handle_data_tlb_miss_exception)
270 /* 19 - Instruction TLB miss exception */
271 .long TOPHYS(handle_instruction_tlb_miss_exception)
272 /* 20 - 31 - Undefined */
273 .long TOPHYS(ex_handler_unhandled)
274 .long TOPHYS(ex_handler_unhandled)
275 .long TOPHYS(ex_handler_unhandled)
276 .long TOPHYS(ex_handler_unhandled)
277 .long TOPHYS(ex_handler_unhandled)
278 .long TOPHYS(ex_handler_unhandled)
279 .long TOPHYS(ex_handler_unhandled)
280 .long TOPHYS(ex_handler_unhandled)
281 .long TOPHYS(ex_handler_unhandled)
282 .long TOPHYS(ex_handler_unhandled)
283 .long TOPHYS(ex_handler_unhandled)
284 .long TOPHYS(ex_handler_unhandled)
287 .global _hw_exception_handler
290 .ent _hw_exception_handler
291 _hw_exception_handler:
293 addik r1, r1, -(EX_HANDLER_STACK_SIZ); /* Create stack frame */
295 swi r1, r0, TOPHYS(r0_ram + 0); /* GET_SP */
296 /* Save date to kernel memory. Here is the problem
297 * when you came from user space */
298 ori r1, r0, TOPHYS(r0_ram + 28);
308 lwi r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
317 andi r5, r3, 0x1000; /* Check ESR[DS] */
318 beqi r5, not_in_delay_slot; /* Branch if ESR[DS] not set */
319 mfs r17, rbtr; /* ESR[DS] set - return address in BTR */
325 andi r5, r3, 0x1F; /* Extract ESR[EXC] */
328 /* Calculate exception vector offset = r5 << 2 */
329 addk r6, r5, r5; /* << 1 */
330 addk r6, r6, r6; /* << 2 */
332 /* counting which exception happen */
333 lwi r5, r0, 0x200 + TOPHYS(r0_ram)
335 swi r5, r0, 0x200 + TOPHYS(r0_ram)
336 lwi r5, r6, 0x200 + TOPHYS(r0_ram)
338 swi r5, r6, 0x200 + TOPHYS(r0_ram)
340 /* Load the HW Exception vector */
341 lwi r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
344 full_exception_trapw:
346 bri full_exception_trap
348 /* Exceptions enabled here. This will allow nested exceptions */
351 swi r6, r1, 0; /* RMSR_OFFSET */
352 ori r6, r6, 0x100; /* Turn ON the EE bit */
353 andi r6, r6, ~2; /* Disable interrupts */
357 xori r6, r5, 1; /* 00001 = Unaligned Exception */
358 /* Jump to unalignment exception handler */
359 beqi r6, handle_unaligned_ex;
361 handle_other_ex: /* Handle Other exceptions here */
362 /* Save other volatiles before we make procedure calls below */
374 andi r6, r3, 0x1F; /* Load ESR[EC] */
375 lwi r7, r0, PER_CPU(KM) /* MS: saving current kernel mode to regs */
379 addk r8, r17, r0; /* Load exception address */
380 bralid r15, full_exception; /* Branch to the handler */
384 * Trigger execution of the signal handler by enabling
385 * interrupts and calling an invalid syscall.
390 mts rmsr, r5; /* enable interrupt */
392 addi r12, r0, __NR_syscalls;
394 mfs r5, rmsr; /* disable interrupt */
410 bri ex_handler_done; /* Complete exception handling */
413 /* 0x01 - Unaligned data access exception
414 * This occurs when a word access is not aligned on a word boundary,
415 * or when a 16-bit access is not aligned on a 16-bit boundary.
416 * This handler perform the access, and returns, except for MMU when
417 * the unaligned address is last on a 4k page or the physical address is
418 * not found in the page table, in which case unaligned_data_trap is called.
421 /* Working registers already saved: R3, R4, R5, R6
426 andi r6, r3, 0x1000 /* Check ESR[DS] */
427 beqi r6, _no_delayslot /* Branch if ESR[DS] not set */
428 mfs r17, rbtr; /* ESR[DS] set - return address in BTR */
434 /* Check if unaligned address is last on a 4k page */
437 bnei r5, _unaligned_ex2
440 /* Another page must be accessed or physical address not in page table */
441 bri unaligned_data_trap
445 andi r6, r3, 0x3E0; /* Mask and extract the register operand */
446 srl r6, r6; /* r6 >> 5 */
451 /* Store the register operand in a temporary location */
452 sbi r6, r0, TOPHYS(ex_reg_op);
454 /* Get physical address */
455 /* If we are faulting a kernel address, we have to use the
456 * kernel page tables.
458 ori r5, r0, CONFIG_KERNEL_START
460 bgti r5, _unaligned_ex3
461 ori r5, r0, swapper_pg_dir
464 /* Get the PGD for the current thread. */
465 _unaligned_ex3: /* user thread */
466 addi r5 ,CURRENT_TASK, TOPHYS(0); /* get current task address */
467 lwi r5, r5, TASK_THREAD + PGDIR
470 BSRLI(r6,r4,20) /* Create L1 (pgdir/pmd) address */
472 /* Assume pgdir aligned on 4K boundary, no need for "andi r5,r5,0xfffff003" */
474 lwi r6, r5, 0 /* Get L1 entry */
475 andi r5, r6, 0xfffff000 /* Extract L2 (pte) base address. */
476 beqi r5, _unaligned_ex1 /* Bail if no table */
479 BSRLI(r6,r4,10) /* Compute PTE address */
481 andi r5, r5, 0xfffff003
483 lwi r5, r5, 0 /* Get Linux PTE */
485 andi r6, r5, _PAGE_PRESENT
486 beqi r6, _unaligned_ex1 /* Bail if no page */
488 andi r5, r5, 0xfffff000 /* Extract RPN */
489 andi r4, r4, 0x00000fff /* Extract offset */
490 or r4, r4, r5 /* Create physical address */
491 #endif /* CONFIG_MMU */
493 andi r6, r3, 0x400; /* Extract ESR[S] */
496 andi r6, r3, 0x800; /* Extract ESR[W] */
498 lbui r5, r4, 0; /* Exception address in r4 */
499 /* Load a word, byte-by-byte from destination address
500 and save it in tmp space */
501 sbi r5, r0, TOPHYS(ex_tmp_data_loc_0);
503 sbi r5, r0, TOPHYS(ex_tmp_data_loc_1);
505 sbi r5, r0, TOPHYS(ex_tmp_data_loc_2);
507 sbi r5, r0, TOPHYS(ex_tmp_data_loc_3);
508 /* Get the destination register value into r3 */
509 lwi r3, r0, TOPHYS(ex_tmp_data_loc_0);
512 lbui r5, r4, 0; /* Exception address in r4 */
513 /* Load a half-word, byte-by-byte from destination
514 address and save it in tmp space */
515 sbi r5, r0, TOPHYS(ex_tmp_data_loc_0);
517 sbi r5, r0, TOPHYS(ex_tmp_data_loc_1);
518 /* Get the destination register value into r3 */
519 lhui r3, r0, TOPHYS(ex_tmp_data_loc_0);
521 /* Get the destination register number into r5 */
522 lbui r5, r0, TOPHYS(ex_reg_op);
523 /* Form load_word jump table offset (lw_table + (8 * regnum)) */
524 la r6, r0, TOPHYS(lw_table);
530 ex_lw_end: /* Exception handling of load word, ends */
532 /* Get the destination register number into r5 */
533 lbui r5, r0, TOPHYS(ex_reg_op);
534 /* Form store_word jump table offset (sw_table + (8 * regnum)) */
535 la r6, r0, TOPHYS(sw_table);
544 andi r6, r6, 0x800; /* Extract ESR[W] */
546 /* Get the word - delay slot */
547 swi r3, r0, TOPHYS(ex_tmp_data_loc_0);
548 /* Store the word, byte-by-byte into destination address */
549 lbui r3, r0, TOPHYS(ex_tmp_data_loc_0);
551 lbui r3, r0, TOPHYS(ex_tmp_data_loc_1);
553 lbui r3, r0, TOPHYS(ex_tmp_data_loc_2);
555 lbui r3, r0, TOPHYS(ex_tmp_data_loc_3);
560 /* Store the lower half-word, byte-by-byte into destination address */
561 swi r3, r0, TOPHYS(ex_tmp_data_loc_0);
562 lbui r3, r0, TOPHYS(ex_tmp_data_loc_2);
564 lbui r3, r0, TOPHYS(ex_tmp_data_loc_3);
566 ex_sw_end: /* Exception handling of store word, ends. */
570 lwi r5, r1, 0 /* RMSR */
580 addik r1, r1, (EX_HANDLER_STACK_SIZ); /* Restore stack frame */
588 /* Exception vector entry code. This code runs with address translation
589 * turned off (i.e. using physical addresses). */
591 /* Exception vectors. */
593 /* 0x10 - Data Storage Exception
594 * This happens for just a few reasons. U0 set (but we don't do that),
595 * or zone protection fault (user violation, write to protected page).
596 * If this is just an update of modified status, we do that quickly
597 * and exit. Otherwise, we call heavyweight functions to do the work.
599 handle_data_storage_exception:
600 /* Working registers already saved: R3, R4, R5, R6
606 mfs r3, rear /* Get faulting address */
608 /* If we are faulting a kernel address, we have to use the
609 * kernel page tables.
611 ori r4, r0, CONFIG_KERNEL_START
614 /* First, check if it was a zone fault (which means a user
615 * tried to access a kernel or read-protected page - always
616 * a SEGV). All other faults here must be stores, so no
617 * need to check ESR_S as well. */
620 andi r4, r4, 0x800 /* ESR_Z - zone protection */
623 ori r4, r0, swapper_pg_dir
624 mts rpid, r0 /* TLB will have 0 TID */
628 /* Get the PGD for the current thread. */
630 /* First, check if it was a zone fault (which means a user
631 * tried to access a kernel or read-protected page - always
632 * a SEGV). All other faults here must be stores, so no
633 * need to check ESR_S as well. */
636 andi r4, r4, 0x800 /* ESR_Z */
638 /* get current task address */
639 addi r4 ,CURRENT_TASK, TOPHYS(0);
640 lwi r4, r4, TASK_THREAD+PGDIR
643 BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */
645 /* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
647 lwi r4, r4, 0 /* Get L1 entry */
648 andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
649 beqi r5, ex2 /* Bail if no table */
652 BSRLI(r6,r3,10) /* Compute PTE address */
654 andi r5, r5, 0xfffff003
656 lwi r4, r5, 0 /* Get Linux PTE */
658 andi r6, r4, _PAGE_RW /* Is it writeable? */
659 beqi r6, ex2 /* Bail if not */
661 /* Update 'changed' */
662 ori r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
663 swi r4, r5, 0 /* Update Linux page table */
665 /* Most of the Linux PTE is ready to load into the TLB LO.
666 * We set ZSEL, where only the LS-bit determines user access.
667 * We set execute, because we don't have the granularity to
668 * properly set this at the page level (Linux problem).
669 * If shared is set, we cause a zero PID->TID load.
670 * Many of these bits are software only. Bits we don't set
671 * here we (properly should) assume have the appropriate value.
673 andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */
674 ori r4, r4, _PAGE_HWEXEC /* make it executable */
676 /* find the TLB index that caused the fault. It has to be here*/
679 mfs r5, rtlbx /* DEBUG: TBD */
681 mts rtlblo, r4 /* Load TLB LO */
683 /* Will sync shadow TLBs */
685 /* Done...restore registers and get out of here. */
694 /* The bailout. Restore registers to pre-exception conditions
695 * and call the heavyweights to help us out. */
700 bri page_fault_data_trap
703 /* 0x11 - Instruction Storage Exception
704 * This is caused by a fetch from non-execute or guarded pages. */
705 handle_instruction_storage_exception:
706 /* Working registers already saved: R3, R4, R5, R6
710 mfs r3, rear /* Get faulting address */
713 bri page_fault_instr_trap
715 /* 0x12 - Data TLB Miss Exception
716 * As the name implies, translation is not in the MMU, so search the
717 * page tables and fix it. The only purpose of this function is to
718 * load TLB entries from the page table if they exist.
720 handle_data_tlb_miss_exception:
721 /* Working registers already saved: R3, R4, R5, R6
727 mfs r3, rear /* Get faulting address */
730 /* If we are faulting a kernel address, we have to use the
731 * kernel page tables. */
732 ori r4, r0, CONFIG_KERNEL_START
735 ori r4, r0, swapper_pg_dir
736 mts rpid, r0 /* TLB will have 0 TID */
740 /* Get the PGD for the current thread. */
742 /* get current task address */
743 addi r4 ,CURRENT_TASK, TOPHYS(0);
744 lwi r4, r4, TASK_THREAD+PGDIR
747 BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */
749 /* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
751 lwi r4, r4, 0 /* Get L1 entry */
752 andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
753 beqi r5, ex7 /* Bail if no table */
756 BSRLI(r6,r3,10) /* Compute PTE address */
758 andi r5, r5, 0xfffff003
760 lwi r4, r5, 0 /* Get Linux PTE */
762 andi r6, r4, _PAGE_PRESENT
765 ori r4, r4, _PAGE_ACCESSED
768 /* Most of the Linux PTE is ready to load into the TLB LO.
769 * We set ZSEL, where only the LS-bit determines user access.
770 * We set execute, because we don't have the granularity to
771 * properly set this at the page level (Linux problem).
772 * If shared is set, we cause a zero PID->TID load.
773 * Many of these bits are software only. Bits we don't set
774 * here we (properly should) assume have the appropriate value.
776 andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */
780 /* The bailout. Restore registers to pre-exception conditions
781 * and call the heavyweights to help us out.
787 bri page_fault_data_trap
789 /* 0x13 - Instruction TLB Miss Exception
790 * Nearly the same as above, except we get our information from
791 * different registers and bailout to a different point.
793 handle_instruction_tlb_miss_exception:
794 /* Working registers already saved: R3, R4, R5, R6
800 mfs r3, rear /* Get faulting address */
803 /* If we are faulting a kernel address, we have to use the
804 * kernel page tables.
806 ori r4, r0, CONFIG_KERNEL_START
809 ori r4, r0, swapper_pg_dir
810 mts rpid, r0 /* TLB will have 0 TID */
814 /* Get the PGD for the current thread. */
816 /* get current task address */
817 addi r4 ,CURRENT_TASK, TOPHYS(0);
818 lwi r4, r4, TASK_THREAD+PGDIR
821 BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */
823 /* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
825 lwi r4, r4, 0 /* Get L1 entry */
826 andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
827 beqi r5, ex10 /* Bail if no table */
830 BSRLI(r6,r3,10) /* Compute PTE address */
832 andi r5, r5, 0xfffff003
834 lwi r4, r5, 0 /* Get Linux PTE */
836 andi r6, r4, _PAGE_PRESENT
839 ori r4, r4, _PAGE_ACCESSED
842 /* Most of the Linux PTE is ready to load into the TLB LO.
843 * We set ZSEL, where only the LS-bit determines user access.
844 * We set execute, because we don't have the granularity to
845 * properly set this at the page level (Linux problem).
846 * If shared is set, we cause a zero PID->TID load.
847 * Many of these bits are software only. Bits we don't set
848 * here we (properly should) assume have the appropriate value.
850 andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */
854 /* The bailout. Restore registers to pre-exception conditions
855 * and call the heavyweights to help us out.
861 bri page_fault_instr_trap
863 /* Both the instruction and data TLB miss get to this point to load the TLB.
865 * r4 - TLB LO (info from Linux PTE)
866 * r5, r6 - available to use
867 * PID - loaded with proper value when we get here
868 * Upon exit, we reload everything and RFI.
869 * A common place to load the TLB.
872 .long 1 /* MS: storing last used tlb index */
874 /* MS: load the last used TLB index. */
875 lwi r5, r0, TOPHYS(tlb_index)
876 addik r5, r5, 1 /* MS: inc tlb_index -> use next one */
878 /* MS: FIXME this is potential fault, because this is mask not count */
879 andi r5, r5, (MICROBLAZE_TLB_SIZE-1)
885 /* MS: save back current TLB index */
886 swi r5, r0, TOPHYS(tlb_index)
888 ori r4, r4, _PAGE_HWEXEC /* make it executable */
889 mts rtlbx, r5 /* MS: save current TLB */
891 mts rtlblo, r4 /* MS: save to TLB LO */
894 /* Create EPN. This is the faulting address plus a static
895 * set of bits. These are size, valid, E, U0, and ensure
896 * bits 20 and 21 are zero.
898 andi r3, r3, 0xfffff000
900 mts rtlbhi, r3 /* Load TLB HI */
903 /* Done...restore registers and get out of here. */
912 /* extern void giveup_fpu(struct task_struct *prev)
914 * The MicroBlaze processor may have an FPU, so this should not just
920 bralid r15,0 /* TBD */
923 /* At present, this routine just hangs. - extern void abort(void) */
932 mts rpid, r5 /* Shadow TLBs are automatically */
934 bri 4 /* flushed by changing PID */
939 .end _hw_exception_handler
942 /* Unaligned data access exception last on a 4k page for MMU.
943 * When this is called, we are in virtual mode with exceptions enabled
944 * and registers 1-13,15,17,18 saved.
948 * R7 = pointer to saved registers (struct pt_regs *regs)
950 * This handler perform the access, and returns via ret_from_exc.
952 .global _unaligned_data_exception
953 .ent _unaligned_data_exception
954 _unaligned_data_exception:
955 andi r8, r3, 0x3E0; /* Mask and extract the register operand */
956 BSRLI(r8,r8,2); /* r8 >> 2 = register operand * 8 */
957 andi r6, r3, 0x400; /* Extract ESR[S] */
959 andi r6, r3, 0x800; /* Extract ESR[W] - delay slot */
962 lbui r5, r4, 0; /* Exception address in r4 - delay slot */
963 /* Load a word, byte-by-byte from destination address and save it in tmp space*/
964 la r6, r0, ex_tmp_data_loc_0;
973 /* Get the destination register value into r3 - delay slot */
976 /* Load a half-word, byte-by-byte from destination address and
977 * save it in tmp space */
978 la r6, r0, ex_tmp_data_loc_0;
982 lhui r3, r6, 0; /* Get the destination register value into r3 */
984 /* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
985 addik r5, r8, lw_table_vm;
987 ex_lw_end_vm: /* Exception handling of load word, ends */
990 /* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
991 addik r5, r8, sw_table_vm;
994 la r5, r0, ex_tmp_data_loc_0;
996 swi r3, r5, 0; /* Get the word - delay slot */
997 /* Store the word, byte-by-byte into destination address */
1006 sbi r3, r4, 3; /* Delay slot */
1008 /* Store the lower half-word, byte-by-byte into destination address */
1013 sbi r3, r4, 1; /* Delay slot */
1014 ex_sw_end_vm: /* Exception handling of store word, ends. */
1015 .end _unaligned_data_exception
1016 #endif /* CONFIG_MMU */
1018 ex_handler_unhandled:
1019 /* FIXME add handle function for unhandled exception - dump register */
1023 * hw_exception_handler Jump Table
1024 * - Contains code snippets for each register that caused the unalign exception
1025 * - Hence exception handler is NOT self-modifying
1026 * - Separate table for load exceptions and store exceptions.
1027 * - Each table is of size: (8 * 32) = 256 bytes
1033 lw_r0: R3_TO_LWREG (0);
1035 lw_r2: R3_TO_LWREG (2);
1036 lw_r3: R3_TO_LWREG_V (3);
1037 lw_r4: R3_TO_LWREG_V (4);
1038 lw_r5: R3_TO_LWREG_V (5);
1039 lw_r6: R3_TO_LWREG_V (6);
1040 lw_r7: R3_TO_LWREG (7);
1041 lw_r8: R3_TO_LWREG (8);
1042 lw_r9: R3_TO_LWREG (9);
1043 lw_r10: R3_TO_LWREG (10);
1044 lw_r11: R3_TO_LWREG (11);
1045 lw_r12: R3_TO_LWREG (12);
1046 lw_r13: R3_TO_LWREG (13);
1047 lw_r14: R3_TO_LWREG (14);
1048 lw_r15: R3_TO_LWREG (15);
1049 lw_r16: R3_TO_LWREG (16);
1051 lw_r18: R3_TO_LWREG (18);
1052 lw_r19: R3_TO_LWREG (19);
1053 lw_r20: R3_TO_LWREG (20);
1054 lw_r21: R3_TO_LWREG (21);
1055 lw_r22: R3_TO_LWREG (22);
1056 lw_r23: R3_TO_LWREG (23);
1057 lw_r24: R3_TO_LWREG (24);
1058 lw_r25: R3_TO_LWREG (25);
1059 lw_r26: R3_TO_LWREG (26);
1060 lw_r27: R3_TO_LWREG (27);
1061 lw_r28: R3_TO_LWREG (28);
1062 lw_r29: R3_TO_LWREG (29);
1063 lw_r30: R3_TO_LWREG (30);
1065 lw_r31: R3_TO_LWREG_V (31);
1067 lw_r31: R3_TO_LWREG (31);
1071 sw_r0: SWREG_TO_R3 (0);
1073 sw_r2: SWREG_TO_R3 (2);
1074 sw_r3: SWREG_TO_R3_V (3);
1075 sw_r4: SWREG_TO_R3_V (4);
1076 sw_r5: SWREG_TO_R3_V (5);
1077 sw_r6: SWREG_TO_R3_V (6);
1078 sw_r7: SWREG_TO_R3 (7);
1079 sw_r8: SWREG_TO_R3 (8);
1080 sw_r9: SWREG_TO_R3 (9);
1081 sw_r10: SWREG_TO_R3 (10);
1082 sw_r11: SWREG_TO_R3 (11);
1083 sw_r12: SWREG_TO_R3 (12);
1084 sw_r13: SWREG_TO_R3 (13);
1085 sw_r14: SWREG_TO_R3 (14);
1086 sw_r15: SWREG_TO_R3 (15);
1087 sw_r16: SWREG_TO_R3 (16);
1089 sw_r18: SWREG_TO_R3 (18);
1090 sw_r19: SWREG_TO_R3 (19);
1091 sw_r20: SWREG_TO_R3 (20);
1092 sw_r21: SWREG_TO_R3 (21);
1093 sw_r22: SWREG_TO_R3 (22);
1094 sw_r23: SWREG_TO_R3 (23);
1095 sw_r24: SWREG_TO_R3 (24);
1096 sw_r25: SWREG_TO_R3 (25);
1097 sw_r26: SWREG_TO_R3 (26);
1098 sw_r27: SWREG_TO_R3 (27);
1099 sw_r28: SWREG_TO_R3 (28);
1100 sw_r29: SWREG_TO_R3 (29);
1101 sw_r30: SWREG_TO_R3 (30);
1103 sw_r31: SWREG_TO_R3_V (31);
1105 sw_r31: SWREG_TO_R3 (31);
1110 lw_r0_vm: R3_TO_LWREG_VM (0);
1111 lw_r1_vm: R3_TO_LWREG_VM_V (1);
1112 lw_r2_vm: R3_TO_LWREG_VM_V (2);
1113 lw_r3_vm: R3_TO_LWREG_VM_V (3);
1114 lw_r4_vm: R3_TO_LWREG_VM_V (4);
1115 lw_r5_vm: R3_TO_LWREG_VM_V (5);
1116 lw_r6_vm: R3_TO_LWREG_VM_V (6);
1117 lw_r7_vm: R3_TO_LWREG_VM_V (7);
1118 lw_r8_vm: R3_TO_LWREG_VM_V (8);
1119 lw_r9_vm: R3_TO_LWREG_VM_V (9);
1120 lw_r10_vm: R3_TO_LWREG_VM_V (10);
1121 lw_r11_vm: R3_TO_LWREG_VM_V (11);
1122 lw_r12_vm: R3_TO_LWREG_VM_V (12);
1123 lw_r13_vm: R3_TO_LWREG_VM_V (13);
1124 lw_r14_vm: R3_TO_LWREG_VM (14);
1125 lw_r15_vm: R3_TO_LWREG_VM_V (15);
1126 lw_r16_vm: R3_TO_LWREG_VM (16);
1127 lw_r17_vm: R3_TO_LWREG_VM_V (17);
1128 lw_r18_vm: R3_TO_LWREG_VM_V (18);
1129 lw_r19_vm: R3_TO_LWREG_VM (19);
1130 lw_r20_vm: R3_TO_LWREG_VM (20);
1131 lw_r21_vm: R3_TO_LWREG_VM (21);
1132 lw_r22_vm: R3_TO_LWREG_VM (22);
1133 lw_r23_vm: R3_TO_LWREG_VM (23);
1134 lw_r24_vm: R3_TO_LWREG_VM (24);
1135 lw_r25_vm: R3_TO_LWREG_VM (25);
1136 lw_r26_vm: R3_TO_LWREG_VM (26);
1137 lw_r27_vm: R3_TO_LWREG_VM (27);
1138 lw_r28_vm: R3_TO_LWREG_VM (28);
1139 lw_r29_vm: R3_TO_LWREG_VM (29);
1140 lw_r30_vm: R3_TO_LWREG_VM (30);
1141 lw_r31_vm: R3_TO_LWREG_VM_V (31);
1144 sw_r0_vm: SWREG_TO_R3_VM (0);
1145 sw_r1_vm: SWREG_TO_R3_VM_V (1);
1146 sw_r2_vm: SWREG_TO_R3_VM_V (2);
1147 sw_r3_vm: SWREG_TO_R3_VM_V (3);
1148 sw_r4_vm: SWREG_TO_R3_VM_V (4);
1149 sw_r5_vm: SWREG_TO_R3_VM_V (5);
1150 sw_r6_vm: SWREG_TO_R3_VM_V (6);
1151 sw_r7_vm: SWREG_TO_R3_VM_V (7);
1152 sw_r8_vm: SWREG_TO_R3_VM_V (8);
1153 sw_r9_vm: SWREG_TO_R3_VM_V (9);
1154 sw_r10_vm: SWREG_TO_R3_VM_V (10);
1155 sw_r11_vm: SWREG_TO_R3_VM_V (11);
1156 sw_r12_vm: SWREG_TO_R3_VM_V (12);
1157 sw_r13_vm: SWREG_TO_R3_VM_V (13);
1158 sw_r14_vm: SWREG_TO_R3_VM (14);
1159 sw_r15_vm: SWREG_TO_R3_VM_V (15);
1160 sw_r16_vm: SWREG_TO_R3_VM (16);
1161 sw_r17_vm: SWREG_TO_R3_VM_V (17);
1162 sw_r18_vm: SWREG_TO_R3_VM_V (18);
1163 sw_r19_vm: SWREG_TO_R3_VM (19);
1164 sw_r20_vm: SWREG_TO_R3_VM (20);
1165 sw_r21_vm: SWREG_TO_R3_VM (21);
1166 sw_r22_vm: SWREG_TO_R3_VM (22);
1167 sw_r23_vm: SWREG_TO_R3_VM (23);
1168 sw_r24_vm: SWREG_TO_R3_VM (24);
1169 sw_r25_vm: SWREG_TO_R3_VM (25);
1170 sw_r26_vm: SWREG_TO_R3_VM (26);
1171 sw_r27_vm: SWREG_TO_R3_VM (27);
1172 sw_r28_vm: SWREG_TO_R3_VM (28);
1173 sw_r29_vm: SWREG_TO_R3_VM (29);
1174 sw_r30_vm: SWREG_TO_R3_VM (30);
1175 sw_r31_vm: SWREG_TO_R3_VM_V (31);
1176 #endif /* CONFIG_MMU */
1178 /* Temporary data structures used in the handler */