2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/smp_lock.h>
27 #include <linux/proc_fs.h>
28 #include <linux/seq_file.h>
29 #include <linux/init.h>
30 #include <linux/vmalloc.h>
32 #include <linux/sysctl.h>
33 #include <linux/list.h>
34 #include <linux/file.h>
35 #include <linux/poll.h>
36 #include <linux/vfs.h>
37 #include <linux/smp.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
41 #include <linux/capability.h>
42 #include <linux/rcupdate.h>
43 #include <linux/completion.h>
45 #include <asm/errno.h>
46 #include <asm/intrinsics.h>
48 #include <asm/perfmon.h>
49 #include <asm/processor.h>
50 #include <asm/signal.h>
51 #include <asm/system.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
57 * perfmon context state
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64 #define PFM_INVALID_ACTIVATION (~0UL)
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
70 * depth of message queue
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
76 * type of a PMU register (bitmask).
78 * bit0 : register implemented
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
140 #define RDEP(x) (1UL<<(x))
143 * context protection macros
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * spin_lock_irqsave()/spin_lock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
160 #define PROTECT_CTX(c, f) \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
167 #define UNPROTECT_CTX(c, f) \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
173 #define PROTECT_CTX_NOPRINT(c, f) \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 #define PROTECT_CTX_NOIRQ(c) \
187 spin_lock(&(c)->ctx_lock); \
190 #define UNPROTECT_CTX_NOIRQ(c) \
192 spin_unlock(&(c)->ctx_lock); \
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
218 * cmp0 must be the value of pmc0
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
222 #define PFMFS_MAGIC 0xa0b4d889
227 #define PFM_DEBUGGING 1
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
234 #define DPRINT_ovfl(a) \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
241 * 64-bit software counter structure
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272 } pfm_context_flags_t;
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280 * perfmon context: encapsulates all the state of a monitoring session
283 typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
289 struct task_struct *ctx_task; /* task to which context is attached */
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
293 struct completion ctx_restart_done; /* use for blocking notification mode */
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
333 struct fasync_struct *ctx_async_queue;
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
339 * magic number used to verify that structure is really
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
373 spinlock_t pfs_lock; /* lock the structure */
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
415 unsigned long ovfl_val; /* overflow value for counters */
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
440 * debug register related type definitions
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
465 * perfmon command descriptions
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
471 unsigned int cmd_narg;
473 int (*cmd_getsize)(void *arg, size_t *sz);
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503 * perfmon internal variables
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
517 static pmu_config_t *pmu_conf;
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
523 static ctl_table pfm_ctl_table[]={
524 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
525 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
526 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
527 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
530 static ctl_table pfm_sysctl_dir[] = {
531 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
534 static ctl_table pfm_sysctl_root[] = {
535 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
538 static struct ctl_table_header *pfm_sysctl_header;
540 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
542 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
543 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
546 pfm_put_task(struct task_struct *task)
548 if (task != current) put_task_struct(task);
552 pfm_set_task_notify(struct task_struct *task)
554 struct thread_info *info;
556 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
557 set_bit(TIF_NOTIFY_RESUME, &info->flags);
561 pfm_clear_task_notify(void)
563 clear_thread_flag(TIF_NOTIFY_RESUME);
567 pfm_reserve_page(unsigned long a)
569 SetPageReserved(vmalloc_to_page((void *)a));
572 pfm_unreserve_page(unsigned long a)
574 ClearPageReserved(vmalloc_to_page((void*)a));
577 static inline unsigned long
578 pfm_protect_ctx_ctxsw(pfm_context_t *x)
580 spin_lock(&(x)->ctx_lock);
585 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
587 spin_unlock(&(x)->ctx_lock);
590 static inline unsigned int
591 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
593 return do_munmap(mm, addr, len);
596 static inline unsigned long
597 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
599 return get_unmapped_area(file, addr, len, pgoff, flags);
604 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
605 struct vfsmount *mnt)
607 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
610 static struct file_system_type pfm_fs_type = {
612 .get_sb = pfmfs_get_sb,
613 .kill_sb = kill_anon_super,
616 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
617 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
618 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
619 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
620 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
623 /* forward declaration */
624 static struct file_operations pfm_file_ops;
627 * forward declarations
630 static void pfm_lazy_save_regs (struct task_struct *ta);
633 void dump_pmu_state(const char *);
634 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
636 #include "perfmon_itanium.h"
637 #include "perfmon_mckinley.h"
638 #include "perfmon_montecito.h"
639 #include "perfmon_generic.h"
641 static pmu_config_t *pmu_confs[]={
645 &pmu_conf_gen, /* must be last */
650 static int pfm_end_notify_user(pfm_context_t *ctx);
653 pfm_clear_psr_pp(void)
655 ia64_rsm(IA64_PSR_PP);
662 ia64_ssm(IA64_PSR_PP);
667 pfm_clear_psr_up(void)
669 ia64_rsm(IA64_PSR_UP);
676 ia64_ssm(IA64_PSR_UP);
680 static inline unsigned long
684 tmp = ia64_getreg(_IA64_REG_PSR);
690 pfm_set_psr_l(unsigned long val)
692 ia64_setreg(_IA64_REG_PSR_L, val);
704 pfm_unfreeze_pmu(void)
711 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
715 for (i=0; i < nibrs; i++) {
716 ia64_set_ibr(i, ibrs[i]);
717 ia64_dv_serialize_instruction();
723 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
727 for (i=0; i < ndbrs; i++) {
728 ia64_set_dbr(i, dbrs[i]);
729 ia64_dv_serialize_data();
735 * PMD[i] must be a counter. no check is made
737 static inline unsigned long
738 pfm_read_soft_counter(pfm_context_t *ctx, int i)
740 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
744 * PMD[i] must be a counter. no check is made
747 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
749 unsigned long ovfl_val = pmu_conf->ovfl_val;
751 ctx->ctx_pmds[i].val = val & ~ovfl_val;
753 * writing to unimplemented part is ignore, so we do not need to
756 ia64_set_pmd(i, val & ovfl_val);
760 pfm_get_new_msg(pfm_context_t *ctx)
764 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
766 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
767 if (next == ctx->ctx_msgq_head) return NULL;
769 idx = ctx->ctx_msgq_tail;
770 ctx->ctx_msgq_tail = next;
772 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
774 return ctx->ctx_msgq+idx;
778 pfm_get_next_msg(pfm_context_t *ctx)
782 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
784 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
789 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
794 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
796 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
802 pfm_reset_msgq(pfm_context_t *ctx)
804 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
805 DPRINT(("ctx=%p msgq reset\n", ctx));
809 pfm_rvmalloc(unsigned long size)
814 size = PAGE_ALIGN(size);
817 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
818 memset(mem, 0, size);
819 addr = (unsigned long)mem;
821 pfm_reserve_page(addr);
830 pfm_rvfree(void *mem, unsigned long size)
835 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
836 addr = (unsigned long) mem;
837 while ((long) size > 0) {
838 pfm_unreserve_page(addr);
847 static pfm_context_t *
848 pfm_context_alloc(void)
853 * allocate context descriptor
854 * must be able to free with interrupts disabled
856 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
858 DPRINT(("alloc ctx @%p\n", ctx));
864 pfm_context_free(pfm_context_t *ctx)
867 DPRINT(("free ctx @%p\n", ctx));
873 pfm_mask_monitoring(struct task_struct *task)
875 pfm_context_t *ctx = PFM_GET_CTX(task);
876 unsigned long mask, val, ovfl_mask;
879 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
881 ovfl_mask = pmu_conf->ovfl_val;
883 * monitoring can only be masked as a result of a valid
884 * counter overflow. In UP, it means that the PMU still
885 * has an owner. Note that the owner can be different
886 * from the current task. However the PMU state belongs
888 * In SMP, a valid overflow only happens when task is
889 * current. Therefore if we come here, we know that
890 * the PMU state belongs to the current task, therefore
891 * we can access the live registers.
893 * So in both cases, the live register contains the owner's
894 * state. We can ONLY touch the PMU registers and NOT the PSR.
896 * As a consequence to this call, the ctx->th_pmds[] array
897 * contains stale information which must be ignored
898 * when context is reloaded AND monitoring is active (see
901 mask = ctx->ctx_used_pmds[0];
902 for (i = 0; mask; i++, mask>>=1) {
903 /* skip non used pmds */
904 if ((mask & 0x1) == 0) continue;
905 val = ia64_get_pmd(i);
907 if (PMD_IS_COUNTING(i)) {
909 * we rebuild the full 64 bit value of the counter
911 ctx->ctx_pmds[i].val += (val & ovfl_mask);
913 ctx->ctx_pmds[i].val = val;
915 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
917 ctx->ctx_pmds[i].val,
921 * mask monitoring by setting the privilege level to 0
922 * we cannot use psr.pp/psr.up for this, it is controlled by
925 * if task is current, modify actual registers, otherwise modify
926 * thread save state, i.e., what will be restored in pfm_load_regs()
928 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
929 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
930 if ((mask & 0x1) == 0UL) continue;
931 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
932 ctx->th_pmcs[i] &= ~0xfUL;
933 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
936 * make all of this visible
942 * must always be done with task == current
944 * context must be in MASKED state when calling
947 pfm_restore_monitoring(struct task_struct *task)
949 pfm_context_t *ctx = PFM_GET_CTX(task);
950 unsigned long mask, ovfl_mask;
951 unsigned long psr, val;
954 is_system = ctx->ctx_fl_system;
955 ovfl_mask = pmu_conf->ovfl_val;
957 if (task != current) {
958 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
961 if (ctx->ctx_state != PFM_CTX_MASKED) {
962 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
963 task->pid, current->pid, ctx->ctx_state);
968 * monitoring is masked via the PMC.
969 * As we restore their value, we do not want each counter to
970 * restart right away. We stop monitoring using the PSR,
971 * restore the PMC (and PMD) and then re-establish the psr
972 * as it was. Note that there can be no pending overflow at
973 * this point, because monitoring was MASKED.
975 * system-wide session are pinned and self-monitoring
977 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
979 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
985 * first, we restore the PMD
987 mask = ctx->ctx_used_pmds[0];
988 for (i = 0; mask; i++, mask>>=1) {
989 /* skip non used pmds */
990 if ((mask & 0x1) == 0) continue;
992 if (PMD_IS_COUNTING(i)) {
994 * we split the 64bit value according to
997 val = ctx->ctx_pmds[i].val & ovfl_mask;
998 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1000 val = ctx->ctx_pmds[i].val;
1002 ia64_set_pmd(i, val);
1004 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1006 ctx->ctx_pmds[i].val,
1012 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1013 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1014 if ((mask & 0x1) == 0UL) continue;
1015 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1016 ia64_set_pmc(i, ctx->th_pmcs[i]);
1017 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
1022 * must restore DBR/IBR because could be modified while masked
1023 * XXX: need to optimize
1025 if (ctx->ctx_fl_using_dbreg) {
1026 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1027 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1033 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1035 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1042 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1048 for (i=0; mask; i++, mask>>=1) {
1049 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1054 * reload from thread state (used for ctxw only)
1057 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1060 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1062 for (i=0; mask; i++, mask>>=1) {
1063 if ((mask & 0x1) == 0) continue;
1064 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1065 ia64_set_pmd(i, val);
1071 * propagate PMD from context to thread-state
1074 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1076 unsigned long ovfl_val = pmu_conf->ovfl_val;
1077 unsigned long mask = ctx->ctx_all_pmds[0];
1081 DPRINT(("mask=0x%lx\n", mask));
1083 for (i=0; mask; i++, mask>>=1) {
1085 val = ctx->ctx_pmds[i].val;
1088 * We break up the 64 bit value into 2 pieces
1089 * the lower bits go to the machine state in the
1090 * thread (will be reloaded on ctxsw in).
1091 * The upper part stays in the soft-counter.
1093 if (PMD_IS_COUNTING(i)) {
1094 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1097 ctx->th_pmds[i] = val;
1099 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1102 ctx->ctx_pmds[i].val));
1107 * propagate PMC from context to thread-state
1110 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1112 unsigned long mask = ctx->ctx_all_pmcs[0];
1115 DPRINT(("mask=0x%lx\n", mask));
1117 for (i=0; mask; i++, mask>>=1) {
1118 /* masking 0 with ovfl_val yields 0 */
1119 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1120 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1127 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1131 for (i=0; mask; i++, mask>>=1) {
1132 if ((mask & 0x1) == 0) continue;
1133 ia64_set_pmc(i, pmcs[i]);
1139 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1141 return memcmp(a, b, sizeof(pfm_uuid_t));
1145 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1148 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1153 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1156 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1162 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1166 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1171 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1175 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1180 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1183 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1188 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1191 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1195 static pfm_buffer_fmt_t *
1196 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1198 struct list_head * pos;
1199 pfm_buffer_fmt_t * entry;
1201 list_for_each(pos, &pfm_buffer_fmt_list) {
1202 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1203 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1210 * find a buffer format based on its uuid
1212 static pfm_buffer_fmt_t *
1213 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1215 pfm_buffer_fmt_t * fmt;
1216 spin_lock(&pfm_buffer_fmt_lock);
1217 fmt = __pfm_find_buffer_fmt(uuid);
1218 spin_unlock(&pfm_buffer_fmt_lock);
1223 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1227 /* some sanity checks */
1228 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1230 /* we need at least a handler */
1231 if (fmt->fmt_handler == NULL) return -EINVAL;
1234 * XXX: need check validity of fmt_arg_size
1237 spin_lock(&pfm_buffer_fmt_lock);
1239 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1240 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1244 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1245 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1248 spin_unlock(&pfm_buffer_fmt_lock);
1251 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1254 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1256 pfm_buffer_fmt_t *fmt;
1259 spin_lock(&pfm_buffer_fmt_lock);
1261 fmt = __pfm_find_buffer_fmt(uuid);
1263 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1267 list_del_init(&fmt->fmt_list);
1268 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1271 spin_unlock(&pfm_buffer_fmt_lock);
1275 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1277 extern void update_pal_halt_status(int);
1280 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1282 unsigned long flags;
1284 * validy checks on cpu_mask have been done upstream
1288 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1289 pfm_sessions.pfs_sys_sessions,
1290 pfm_sessions.pfs_task_sessions,
1291 pfm_sessions.pfs_sys_use_dbregs,
1297 * cannot mix system wide and per-task sessions
1299 if (pfm_sessions.pfs_task_sessions > 0UL) {
1300 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1301 pfm_sessions.pfs_task_sessions));
1305 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1307 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1309 pfm_sessions.pfs_sys_session[cpu] = task;
1311 pfm_sessions.pfs_sys_sessions++ ;
1314 if (pfm_sessions.pfs_sys_sessions) goto abort;
1315 pfm_sessions.pfs_task_sessions++;
1318 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1319 pfm_sessions.pfs_sys_sessions,
1320 pfm_sessions.pfs_task_sessions,
1321 pfm_sessions.pfs_sys_use_dbregs,
1326 * disable default_idle() to go to PAL_HALT
1328 update_pal_halt_status(0);
1335 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1336 pfm_sessions.pfs_sys_session[cpu]->pid,
1346 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1348 unsigned long flags;
1350 * validy checks on cpu_mask have been done upstream
1354 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1355 pfm_sessions.pfs_sys_sessions,
1356 pfm_sessions.pfs_task_sessions,
1357 pfm_sessions.pfs_sys_use_dbregs,
1363 pfm_sessions.pfs_sys_session[cpu] = NULL;
1365 * would not work with perfmon+more than one bit in cpu_mask
1367 if (ctx && ctx->ctx_fl_using_dbreg) {
1368 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1369 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1371 pfm_sessions.pfs_sys_use_dbregs--;
1374 pfm_sessions.pfs_sys_sessions--;
1376 pfm_sessions.pfs_task_sessions--;
1378 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1379 pfm_sessions.pfs_sys_sessions,
1380 pfm_sessions.pfs_task_sessions,
1381 pfm_sessions.pfs_sys_use_dbregs,
1386 * if possible, enable default_idle() to go into PAL_HALT
1388 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1389 update_pal_halt_status(1);
1397 * removes virtual mapping of the sampling buffer.
1398 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1399 * a PROTECT_CTX() section.
1402 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1407 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1408 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1412 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1415 * does the actual unmapping
1417 down_write(&task->mm->mmap_sem);
1419 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1421 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1423 up_write(&task->mm->mmap_sem);
1425 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1428 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1434 * free actual physical storage used by sampling buffer
1438 pfm_free_smpl_buffer(pfm_context_t *ctx)
1440 pfm_buffer_fmt_t *fmt;
1442 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1445 * we won't use the buffer format anymore
1447 fmt = ctx->ctx_buf_fmt;
1449 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1452 ctx->ctx_smpl_vaddr));
1454 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1459 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1461 ctx->ctx_smpl_hdr = NULL;
1462 ctx->ctx_smpl_size = 0UL;
1467 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1473 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1475 if (fmt == NULL) return;
1477 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1482 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1483 * no real gain from having the whole whorehouse mounted. So we don't need
1484 * any operations on the root directory. However, we need a non-trivial
1485 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1487 static struct vfsmount *pfmfs_mnt;
1492 int err = register_filesystem(&pfm_fs_type);
1494 pfmfs_mnt = kern_mount(&pfm_fs_type);
1495 err = PTR_ERR(pfmfs_mnt);
1496 if (IS_ERR(pfmfs_mnt))
1497 unregister_filesystem(&pfm_fs_type);
1507 unregister_filesystem(&pfm_fs_type);
1512 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1517 unsigned long flags;
1518 DECLARE_WAITQUEUE(wait, current);
1519 if (PFM_IS_FILE(filp) == 0) {
1520 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1524 ctx = (pfm_context_t *)filp->private_data;
1526 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1531 * check even when there is no message
1533 if (size < sizeof(pfm_msg_t)) {
1534 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1538 PROTECT_CTX(ctx, flags);
1541 * put ourselves on the wait queue
1543 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1551 set_current_state(TASK_INTERRUPTIBLE);
1553 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1556 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1558 UNPROTECT_CTX(ctx, flags);
1561 * check non-blocking read
1564 if(filp->f_flags & O_NONBLOCK) break;
1567 * check pending signals
1569 if(signal_pending(current)) {
1574 * no message, so wait
1578 PROTECT_CTX(ctx, flags);
1580 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1581 set_current_state(TASK_RUNNING);
1582 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1584 if (ret < 0) goto abort;
1587 msg = pfm_get_next_msg(ctx);
1589 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1593 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1596 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1599 UNPROTECT_CTX(ctx, flags);
1605 pfm_write(struct file *file, const char __user *ubuf,
1606 size_t size, loff_t *ppos)
1608 DPRINT(("pfm_write called\n"));
1613 pfm_poll(struct file *filp, poll_table * wait)
1616 unsigned long flags;
1617 unsigned int mask = 0;
1619 if (PFM_IS_FILE(filp) == 0) {
1620 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1624 ctx = (pfm_context_t *)filp->private_data;
1626 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1631 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1633 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1635 PROTECT_CTX(ctx, flags);
1637 if (PFM_CTXQ_EMPTY(ctx) == 0)
1638 mask = POLLIN | POLLRDNORM;
1640 UNPROTECT_CTX(ctx, flags);
1642 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1648 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1650 DPRINT(("pfm_ioctl called\n"));
1655 * interrupt cannot be masked when coming here
1658 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1662 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1664 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1668 ctx->ctx_async_queue, ret));
1674 pfm_fasync(int fd, struct file *filp, int on)
1679 if (PFM_IS_FILE(filp) == 0) {
1680 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1684 ctx = (pfm_context_t *)filp->private_data;
1686 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1690 * we cannot mask interrupts during this call because this may
1691 * may go to sleep if memory is not readily avalaible.
1693 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1694 * done in caller. Serialization of this function is ensured by caller.
1696 ret = pfm_do_fasync(fd, filp, ctx, on);
1699 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1702 ctx->ctx_async_queue, ret));
1709 * this function is exclusively called from pfm_close().
1710 * The context is not protected at that time, nor are interrupts
1711 * on the remote CPU. That's necessary to avoid deadlocks.
1714 pfm_syswide_force_stop(void *info)
1716 pfm_context_t *ctx = (pfm_context_t *)info;
1717 struct pt_regs *regs = task_pt_regs(current);
1718 struct task_struct *owner;
1719 unsigned long flags;
1722 if (ctx->ctx_cpu != smp_processor_id()) {
1723 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1725 smp_processor_id());
1728 owner = GET_PMU_OWNER();
1729 if (owner != ctx->ctx_task) {
1730 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1732 owner->pid, ctx->ctx_task->pid);
1735 if (GET_PMU_CTX() != ctx) {
1736 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1738 GET_PMU_CTX(), ctx);
1742 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1744 * the context is already protected in pfm_close(), we simply
1745 * need to mask interrupts to avoid a PMU interrupt race on
1748 local_irq_save(flags);
1750 ret = pfm_context_unload(ctx, NULL, 0, regs);
1752 DPRINT(("context_unload returned %d\n", ret));
1756 * unmask interrupts, PMU interrupts are now spurious here
1758 local_irq_restore(flags);
1762 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1766 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1767 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1768 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1770 #endif /* CONFIG_SMP */
1773 * called for each close(). Partially free resources.
1774 * When caller is self-monitoring, the context is unloaded.
1777 pfm_flush(struct file *filp, fl_owner_t id)
1780 struct task_struct *task;
1781 struct pt_regs *regs;
1782 unsigned long flags;
1783 unsigned long smpl_buf_size = 0UL;
1784 void *smpl_buf_vaddr = NULL;
1785 int state, is_system;
1787 if (PFM_IS_FILE(filp) == 0) {
1788 DPRINT(("bad magic for\n"));
1792 ctx = (pfm_context_t *)filp->private_data;
1794 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1799 * remove our file from the async queue, if we use this mode.
1800 * This can be done without the context being protected. We come
1801 * here when the context has become unreacheable by other tasks.
1803 * We may still have active monitoring at this point and we may
1804 * end up in pfm_overflow_handler(). However, fasync_helper()
1805 * operates with interrupts disabled and it cleans up the
1806 * queue. If the PMU handler is called prior to entering
1807 * fasync_helper() then it will send a signal. If it is
1808 * invoked after, it will find an empty queue and no
1809 * signal will be sent. In both case, we are safe
1811 if (filp->f_flags & FASYNC) {
1812 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1813 pfm_do_fasync (-1, filp, ctx, 0);
1816 PROTECT_CTX(ctx, flags);
1818 state = ctx->ctx_state;
1819 is_system = ctx->ctx_fl_system;
1821 task = PFM_CTX_TASK(ctx);
1822 regs = task_pt_regs(task);
1824 DPRINT(("ctx_state=%d is_current=%d\n",
1826 task == current ? 1 : 0));
1829 * if state == UNLOADED, then task is NULL
1833 * we must stop and unload because we are losing access to the context.
1835 if (task == current) {
1838 * the task IS the owner but it migrated to another CPU: that's bad
1839 * but we must handle this cleanly. Unfortunately, the kernel does
1840 * not provide a mechanism to block migration (while the context is loaded).
1842 * We need to release the resource on the ORIGINAL cpu.
1844 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1846 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1848 * keep context protected but unmask interrupt for IPI
1850 local_irq_restore(flags);
1852 pfm_syswide_cleanup_other_cpu(ctx);
1855 * restore interrupt masking
1857 local_irq_save(flags);
1860 * context is unloaded at this point
1863 #endif /* CONFIG_SMP */
1866 DPRINT(("forcing unload\n"));
1868 * stop and unload, returning with state UNLOADED
1869 * and session unreserved.
1871 pfm_context_unload(ctx, NULL, 0, regs);
1873 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1878 * remove virtual mapping, if any, for the calling task.
1879 * cannot reset ctx field until last user is calling close().
1881 * ctx_smpl_vaddr must never be cleared because it is needed
1882 * by every task with access to the context
1884 * When called from do_exit(), the mm context is gone already, therefore
1885 * mm is NULL, i.e., the VMA is already gone and we do not have to
1888 if (ctx->ctx_smpl_vaddr && current->mm) {
1889 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1890 smpl_buf_size = ctx->ctx_smpl_size;
1893 UNPROTECT_CTX(ctx, flags);
1896 * if there was a mapping, then we systematically remove it
1897 * at this point. Cannot be done inside critical section
1898 * because some VM function reenables interrupts.
1901 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1906 * called either on explicit close() or from exit_files().
1907 * Only the LAST user of the file gets to this point, i.e., it is
1910 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1911 * (fput()),i.e, last task to access the file. Nobody else can access the
1912 * file at this point.
1914 * When called from exit_files(), the VMA has been freed because exit_mm()
1915 * is executed before exit_files().
1917 * When called from exit_files(), the current task is not yet ZOMBIE but we
1918 * flush the PMU state to the context.
1921 pfm_close(struct inode *inode, struct file *filp)
1924 struct task_struct *task;
1925 struct pt_regs *regs;
1926 DECLARE_WAITQUEUE(wait, current);
1927 unsigned long flags;
1928 unsigned long smpl_buf_size = 0UL;
1929 void *smpl_buf_addr = NULL;
1930 int free_possible = 1;
1931 int state, is_system;
1933 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1935 if (PFM_IS_FILE(filp) == 0) {
1936 DPRINT(("bad magic\n"));
1940 ctx = (pfm_context_t *)filp->private_data;
1942 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1946 PROTECT_CTX(ctx, flags);
1948 state = ctx->ctx_state;
1949 is_system = ctx->ctx_fl_system;
1951 task = PFM_CTX_TASK(ctx);
1952 regs = task_pt_regs(task);
1954 DPRINT(("ctx_state=%d is_current=%d\n",
1956 task == current ? 1 : 0));
1959 * if task == current, then pfm_flush() unloaded the context
1961 if (state == PFM_CTX_UNLOADED) goto doit;
1964 * context is loaded/masked and task != current, we need to
1965 * either force an unload or go zombie
1969 * The task is currently blocked or will block after an overflow.
1970 * we must force it to wakeup to get out of the
1971 * MASKED state and transition to the unloaded state by itself.
1973 * This situation is only possible for per-task mode
1975 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1978 * set a "partial" zombie state to be checked
1979 * upon return from down() in pfm_handle_work().
1981 * We cannot use the ZOMBIE state, because it is checked
1982 * by pfm_load_regs() which is called upon wakeup from down().
1983 * In such case, it would free the context and then we would
1984 * return to pfm_handle_work() which would access the
1985 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1986 * but visible to pfm_handle_work().
1988 * For some window of time, we have a zombie context with
1989 * ctx_state = MASKED and not ZOMBIE
1991 ctx->ctx_fl_going_zombie = 1;
1994 * force task to wake up from MASKED state
1996 complete(&ctx->ctx_restart_done);
1998 DPRINT(("waking up ctx_state=%d\n", state));
2001 * put ourself to sleep waiting for the other
2002 * task to report completion
2004 * the context is protected by mutex, therefore there
2005 * is no risk of being notified of completion before
2006 * begin actually on the waitq.
2008 set_current_state(TASK_INTERRUPTIBLE);
2009 add_wait_queue(&ctx->ctx_zombieq, &wait);
2011 UNPROTECT_CTX(ctx, flags);
2014 * XXX: check for signals :
2015 * - ok for explicit close
2016 * - not ok when coming from exit_files()
2021 PROTECT_CTX(ctx, flags);
2024 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2025 set_current_state(TASK_RUNNING);
2028 * context is unloaded at this point
2030 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2032 else if (task != current) {
2035 * switch context to zombie state
2037 ctx->ctx_state = PFM_CTX_ZOMBIE;
2039 DPRINT(("zombie ctx for [%d]\n", task->pid));
2041 * cannot free the context on the spot. deferred until
2042 * the task notices the ZOMBIE state
2046 pfm_context_unload(ctx, NULL, 0, regs);
2051 /* reload state, may have changed during opening of critical section */
2052 state = ctx->ctx_state;
2055 * the context is still attached to a task (possibly current)
2056 * we cannot destroy it right now
2060 * we must free the sampling buffer right here because
2061 * we cannot rely on it being cleaned up later by the
2062 * monitored task. It is not possible to free vmalloc'ed
2063 * memory in pfm_load_regs(). Instead, we remove the buffer
2064 * now. should there be subsequent PMU overflow originally
2065 * meant for sampling, the will be converted to spurious
2066 * and that's fine because the monitoring tools is gone anyway.
2068 if (ctx->ctx_smpl_hdr) {
2069 smpl_buf_addr = ctx->ctx_smpl_hdr;
2070 smpl_buf_size = ctx->ctx_smpl_size;
2071 /* no more sampling */
2072 ctx->ctx_smpl_hdr = NULL;
2073 ctx->ctx_fl_is_sampling = 0;
2076 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2082 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2085 * UNLOADED that the session has already been unreserved.
2087 if (state == PFM_CTX_ZOMBIE) {
2088 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2092 * disconnect file descriptor from context must be done
2095 filp->private_data = NULL;
2098 * if we free on the spot, the context is now completely unreacheable
2099 * from the callers side. The monitored task side is also cut, so we
2102 * If we have a deferred free, only the caller side is disconnected.
2104 UNPROTECT_CTX(ctx, flags);
2107 * All memory free operations (especially for vmalloc'ed memory)
2108 * MUST be done with interrupts ENABLED.
2110 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2113 * return the memory used by the context
2115 if (free_possible) pfm_context_free(ctx);
2121 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2123 DPRINT(("pfm_no_open called\n"));
2129 static struct file_operations pfm_file_ops = {
2130 .llseek = no_llseek,
2135 .open = pfm_no_open, /* special open code to disallow open via /proc */
2136 .fasync = pfm_fasync,
2137 .release = pfm_close,
2142 pfmfs_delete_dentry(struct dentry *dentry)
2147 static struct dentry_operations pfmfs_dentry_operations = {
2148 .d_delete = pfmfs_delete_dentry,
2153 pfm_alloc_fd(struct file **cfile)
2156 struct file *file = NULL;
2157 struct inode * inode;
2161 fd = get_unused_fd();
2162 if (fd < 0) return -ENFILE;
2166 file = get_empty_filp();
2167 if (!file) goto out;
2170 * allocate a new inode
2172 inode = new_inode(pfmfs_mnt->mnt_sb);
2173 if (!inode) goto out;
2175 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2177 inode->i_mode = S_IFCHR|S_IRUGO;
2178 inode->i_uid = current->fsuid;
2179 inode->i_gid = current->fsgid;
2181 sprintf(name, "[%lu]", inode->i_ino);
2183 this.len = strlen(name);
2184 this.hash = inode->i_ino;
2189 * allocate a new dcache entry
2191 file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2192 if (!file->f_path.dentry) goto out;
2194 file->f_path.dentry->d_op = &pfmfs_dentry_operations;
2196 d_add(file->f_path.dentry, inode);
2197 file->f_path.mnt = mntget(pfmfs_mnt);
2198 file->f_mapping = inode->i_mapping;
2200 file->f_op = &pfm_file_ops;
2201 file->f_mode = FMODE_READ;
2202 file->f_flags = O_RDONLY;
2206 * may have to delay until context is attached?
2208 fd_install(fd, file);
2211 * the file structure we will use
2217 if (file) put_filp(file);
2223 pfm_free_fd(int fd, struct file *file)
2225 struct files_struct *files = current->files;
2226 struct fdtable *fdt;
2229 * there ie no fd_uninstall(), so we do it here
2231 spin_lock(&files->file_lock);
2232 fdt = files_fdtable(files);
2233 rcu_assign_pointer(fdt->fd[fd], NULL);
2234 spin_unlock(&files->file_lock);
2242 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2244 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2247 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2250 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2261 * allocate a sampling buffer and remaps it into the user address space of the task
2264 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2266 struct mm_struct *mm = task->mm;
2267 struct vm_area_struct *vma = NULL;
2273 * the fixed header + requested size and align to page boundary
2275 size = PAGE_ALIGN(rsize);
2277 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2280 * check requested size to avoid Denial-of-service attacks
2281 * XXX: may have to refine this test
2282 * Check against address space limit.
2284 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2287 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2291 * We do the easy to undo allocations first.
2293 * pfm_rvmalloc(), clears the buffer, so there is no leak
2295 smpl_buf = pfm_rvmalloc(size);
2296 if (smpl_buf == NULL) {
2297 DPRINT(("Can't allocate sampling buffer\n"));
2301 DPRINT(("smpl_buf @%p\n", smpl_buf));
2304 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2306 DPRINT(("Cannot allocate vma\n"));
2309 memset(vma, 0, sizeof(*vma));
2312 * partially initialize the vma for the sampling buffer
2315 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2316 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2319 * Now we have everything we need and we can initialize
2320 * and connect all the data structures
2323 ctx->ctx_smpl_hdr = smpl_buf;
2324 ctx->ctx_smpl_size = size; /* aligned size */
2327 * Let's do the difficult operations next.
2329 * now we atomically find some area in the address space and
2330 * remap the buffer in it.
2332 down_write(&task->mm->mmap_sem);
2334 /* find some free area in address space, must have mmap sem held */
2335 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2336 if (vma->vm_start == 0UL) {
2337 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2338 up_write(&task->mm->mmap_sem);
2341 vma->vm_end = vma->vm_start + size;
2342 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2344 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2346 /* can only be applied to current task, need to have the mm semaphore held when called */
2347 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2348 DPRINT(("Can't remap buffer\n"));
2349 up_write(&task->mm->mmap_sem);
2354 * now insert the vma in the vm list for the process, must be
2355 * done with mmap lock held
2357 insert_vm_struct(mm, vma);
2359 mm->total_vm += size >> PAGE_SHIFT;
2360 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2362 up_write(&task->mm->mmap_sem);
2365 * keep track of user level virtual address
2367 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2368 *(unsigned long *)user_vaddr = vma->vm_start;
2373 kmem_cache_free(vm_area_cachep, vma);
2375 pfm_rvfree(smpl_buf, size);
2381 * XXX: do something better here
2384 pfm_bad_permissions(struct task_struct *task)
2386 /* inspired by ptrace_attach() */
2387 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2396 return ((current->uid != task->euid)
2397 || (current->uid != task->suid)
2398 || (current->uid != task->uid)
2399 || (current->gid != task->egid)
2400 || (current->gid != task->sgid)
2401 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2405 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2411 ctx_flags = pfx->ctx_flags;
2413 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2416 * cannot block in this mode
2418 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2419 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2424 /* probably more to add here */
2430 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2431 unsigned int cpu, pfarg_context_t *arg)
2433 pfm_buffer_fmt_t *fmt = NULL;
2434 unsigned long size = 0UL;
2436 void *fmt_arg = NULL;
2438 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2440 /* invoke and lock buffer format, if found */
2441 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2443 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2448 * buffer argument MUST be contiguous to pfarg_context_t
2450 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2452 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2454 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2456 if (ret) goto error;
2458 /* link buffer format and context */
2459 ctx->ctx_buf_fmt = fmt;
2462 * check if buffer format wants to use perfmon buffer allocation/mapping service
2464 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2465 if (ret) goto error;
2469 * buffer is always remapped into the caller's address space
2471 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2472 if (ret) goto error;
2474 /* keep track of user address of buffer */
2475 arg->ctx_smpl_vaddr = uaddr;
2477 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2484 pfm_reset_pmu_state(pfm_context_t *ctx)
2489 * install reset values for PMC.
2491 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2492 if (PMC_IS_IMPL(i) == 0) continue;
2493 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2494 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2497 * PMD registers are set to 0UL when the context in memset()
2501 * On context switched restore, we must restore ALL pmc and ALL pmd even
2502 * when they are not actively used by the task. In UP, the incoming process
2503 * may otherwise pick up left over PMC, PMD state from the previous process.
2504 * As opposed to PMD, stale PMC can cause harm to the incoming
2505 * process because they may change what is being measured.
2506 * Therefore, we must systematically reinstall the entire
2507 * PMC state. In SMP, the same thing is possible on the
2508 * same CPU but also on between 2 CPUs.
2510 * The problem with PMD is information leaking especially
2511 * to user level when psr.sp=0
2513 * There is unfortunately no easy way to avoid this problem
2514 * on either UP or SMP. This definitively slows down the
2515 * pfm_load_regs() function.
2519 * bitmask of all PMCs accessible to this context
2521 * PMC0 is treated differently.
2523 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2526 * bitmask of all PMDs that are accesible to this context
2528 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2530 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2533 * useful in case of re-enable after disable
2535 ctx->ctx_used_ibrs[0] = 0UL;
2536 ctx->ctx_used_dbrs[0] = 0UL;
2540 pfm_ctx_getsize(void *arg, size_t *sz)
2542 pfarg_context_t *req = (pfarg_context_t *)arg;
2543 pfm_buffer_fmt_t *fmt;
2547 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2549 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2551 DPRINT(("cannot find buffer format\n"));
2554 /* get just enough to copy in user parameters */
2555 *sz = fmt->fmt_arg_size;
2556 DPRINT(("arg_size=%lu\n", *sz));
2564 * cannot attach if :
2566 * - task not owned by caller
2567 * - task incompatible with context mode
2570 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2573 * no kernel task or task not owner by caller
2575 if (task->mm == NULL) {
2576 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2579 if (pfm_bad_permissions(task)) {
2580 DPRINT(("no permission to attach to [%d]\n", task->pid));
2584 * cannot block in self-monitoring mode
2586 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2587 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2591 if (task->exit_state == EXIT_ZOMBIE) {
2592 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2597 * always ok for self
2599 if (task == current) return 0;
2601 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2602 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2606 * make sure the task is off any CPU
2608 wait_task_inactive(task);
2610 /* more to come... */
2616 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2618 struct task_struct *p = current;
2621 /* XXX: need to add more checks here */
2622 if (pid < 2) return -EPERM;
2624 if (pid != current->pid) {
2626 read_lock(&tasklist_lock);
2628 p = find_task_by_pid(pid);
2630 /* make sure task cannot go away while we operate on it */
2631 if (p) get_task_struct(p);
2633 read_unlock(&tasklist_lock);
2635 if (p == NULL) return -ESRCH;
2638 ret = pfm_task_incompatible(ctx, p);
2641 } else if (p != current) {
2650 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2652 pfarg_context_t *req = (pfarg_context_t *)arg;
2657 /* let's check the arguments first */
2658 ret = pfarg_is_sane(current, req);
2659 if (ret < 0) return ret;
2661 ctx_flags = req->ctx_flags;
2665 ctx = pfm_context_alloc();
2666 if (!ctx) goto error;
2668 ret = pfm_alloc_fd(&filp);
2669 if (ret < 0) goto error_file;
2671 req->ctx_fd = ctx->ctx_fd = ret;
2674 * attach context to file
2676 filp->private_data = ctx;
2679 * does the user want to sample?
2681 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2682 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2683 if (ret) goto buffer_error;
2687 * init context protection lock
2689 spin_lock_init(&ctx->ctx_lock);
2692 * context is unloaded
2694 ctx->ctx_state = PFM_CTX_UNLOADED;
2697 * initialization of context's flags
2699 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2700 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2701 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2702 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2704 * will move to set properties
2705 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2709 * init restart semaphore to locked
2711 init_completion(&ctx->ctx_restart_done);
2714 * activation is used in SMP only
2716 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2717 SET_LAST_CPU(ctx, -1);
2720 * initialize notification message queue
2722 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2723 init_waitqueue_head(&ctx->ctx_msgq_wait);
2724 init_waitqueue_head(&ctx->ctx_zombieq);
2726 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2731 ctx->ctx_fl_excl_idle,
2736 * initialize soft PMU state
2738 pfm_reset_pmu_state(ctx);
2743 pfm_free_fd(ctx->ctx_fd, filp);
2745 if (ctx->ctx_buf_fmt) {
2746 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2749 pfm_context_free(ctx);
2755 static inline unsigned long
2756 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2758 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2759 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2760 extern unsigned long carta_random32 (unsigned long seed);
2762 if (reg->flags & PFM_REGFL_RANDOM) {
2763 new_seed = carta_random32(old_seed);
2764 val -= (old_seed & mask); /* counter values are negative numbers! */
2765 if ((mask >> 32) != 0)
2766 /* construct a full 64-bit random value: */
2767 new_seed |= carta_random32(old_seed >> 32) << 32;
2768 reg->seed = new_seed;
2775 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2777 unsigned long mask = ovfl_regs[0];
2778 unsigned long reset_others = 0UL;
2783 * now restore reset value on sampling overflowed counters
2785 mask >>= PMU_FIRST_COUNTER;
2786 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2788 if ((mask & 0x1UL) == 0UL) continue;
2790 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2791 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2793 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2797 * Now take care of resetting the other registers
2799 for(i = 0; reset_others; i++, reset_others >>= 1) {
2801 if ((reset_others & 0x1) == 0) continue;
2803 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2805 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2806 is_long_reset ? "long" : "short", i, val));
2811 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2813 unsigned long mask = ovfl_regs[0];
2814 unsigned long reset_others = 0UL;
2818 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2820 if (ctx->ctx_state == PFM_CTX_MASKED) {
2821 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2826 * now restore reset value on sampling overflowed counters
2828 mask >>= PMU_FIRST_COUNTER;
2829 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2831 if ((mask & 0x1UL) == 0UL) continue;
2833 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2834 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2836 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2838 pfm_write_soft_counter(ctx, i, val);
2842 * Now take care of resetting the other registers
2844 for(i = 0; reset_others; i++, reset_others >>= 1) {
2846 if ((reset_others & 0x1) == 0) continue;
2848 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2850 if (PMD_IS_COUNTING(i)) {
2851 pfm_write_soft_counter(ctx, i, val);
2853 ia64_set_pmd(i, val);
2855 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2856 is_long_reset ? "long" : "short", i, val));
2862 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2864 struct task_struct *task;
2865 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2866 unsigned long value, pmc_pm;
2867 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2868 unsigned int cnum, reg_flags, flags, pmc_type;
2869 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2870 int is_monitor, is_counting, state;
2872 pfm_reg_check_t wr_func;
2873 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2875 state = ctx->ctx_state;
2876 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2877 is_system = ctx->ctx_fl_system;
2878 task = ctx->ctx_task;
2879 impl_pmds = pmu_conf->impl_pmds[0];
2881 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2885 * In system wide and when the context is loaded, access can only happen
2886 * when the caller is running on the CPU being monitored by the session.
2887 * It does not have to be the owner (ctx_task) of the context per se.
2889 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2890 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2893 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2895 expert_mode = pfm_sysctl.expert_mode;
2897 for (i = 0; i < count; i++, req++) {
2899 cnum = req->reg_num;
2900 reg_flags = req->reg_flags;
2901 value = req->reg_value;
2902 smpl_pmds = req->reg_smpl_pmds[0];
2903 reset_pmds = req->reg_reset_pmds[0];
2907 if (cnum >= PMU_MAX_PMCS) {
2908 DPRINT(("pmc%u is invalid\n", cnum));
2912 pmc_type = pmu_conf->pmc_desc[cnum].type;
2913 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2914 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2915 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2918 * we reject all non implemented PMC as well
2919 * as attempts to modify PMC[0-3] which are used
2920 * as status registers by the PMU
2922 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2923 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2926 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2928 * If the PMC is a monitor, then if the value is not the default:
2929 * - system-wide session: PMCx.pm=1 (privileged monitor)
2930 * - per-task : PMCx.pm=0 (user monitor)
2932 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2933 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2942 * enforce generation of overflow interrupt. Necessary on all
2945 value |= 1 << PMU_PMC_OI;
2947 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2948 flags |= PFM_REGFL_OVFL_NOTIFY;
2951 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2953 /* verify validity of smpl_pmds */
2954 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2955 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2959 /* verify validity of reset_pmds */
2960 if ((reset_pmds & impl_pmds) != reset_pmds) {
2961 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2965 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2966 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2969 /* eventid on non-counting monitors are ignored */
2973 * execute write checker, if any
2975 if (likely(expert_mode == 0 && wr_func)) {
2976 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2977 if (ret) goto error;
2982 * no error on this register
2984 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2987 * Now we commit the changes to the software state
2991 * update overflow information
2995 * full flag update each time a register is programmed
2997 ctx->ctx_pmds[cnum].flags = flags;
2999 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3000 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3001 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3004 * Mark all PMDS to be accessed as used.
3006 * We do not keep track of PMC because we have to
3007 * systematically restore ALL of them.
3009 * We do not update the used_monitors mask, because
3010 * if we have not programmed them, then will be in
3011 * a quiescent state, therefore we will not need to
3012 * mask/restore then when context is MASKED.
3014 CTX_USED_PMD(ctx, reset_pmds);
3015 CTX_USED_PMD(ctx, smpl_pmds);
3017 * make sure we do not try to reset on
3018 * restart because we have established new values
3020 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3023 * Needed in case the user does not initialize the equivalent
3024 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3025 * possible leak here.
3027 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3030 * keep track of the monitor PMC that we are using.
3031 * we save the value of the pmc in ctx_pmcs[] and if
3032 * the monitoring is not stopped for the context we also
3033 * place it in the saved state area so that it will be
3034 * picked up later by the context switch code.
3036 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3038 * The value in th_pmcs[] may be modified on overflow, i.e., when
3039 * monitoring needs to be stopped.
3041 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3044 * update context state
3046 ctx->ctx_pmcs[cnum] = value;
3050 * write thread state
3052 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3055 * write hardware register if we can
3057 if (can_access_pmu) {
3058 ia64_set_pmc(cnum, value);
3063 * per-task SMP only here
3065 * we are guaranteed that the task is not running on the other CPU,
3066 * we indicate that this PMD will need to be reloaded if the task
3067 * is rescheduled on the CPU it ran last on.
3069 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3074 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3080 ctx->ctx_all_pmcs[0],
3081 ctx->ctx_used_pmds[0],
3082 ctx->ctx_pmds[cnum].eventid,
3085 ctx->ctx_reload_pmcs[0],
3086 ctx->ctx_used_monitors[0],
3087 ctx->ctx_ovfl_regs[0]));
3091 * make sure the changes are visible
3093 if (can_access_pmu) ia64_srlz_d();
3097 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3102 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3104 struct task_struct *task;
3105 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3106 unsigned long value, hw_value, ovfl_mask;
3108 int i, can_access_pmu = 0, state;
3109 int is_counting, is_loaded, is_system, expert_mode;
3111 pfm_reg_check_t wr_func;
3114 state = ctx->ctx_state;
3115 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3116 is_system = ctx->ctx_fl_system;
3117 ovfl_mask = pmu_conf->ovfl_val;
3118 task = ctx->ctx_task;
3120 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3123 * on both UP and SMP, we can only write to the PMC when the task is
3124 * the owner of the local PMU.
3126 if (likely(is_loaded)) {
3128 * In system wide and when the context is loaded, access can only happen
3129 * when the caller is running on the CPU being monitored by the session.
3130 * It does not have to be the owner (ctx_task) of the context per se.
3132 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3133 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3136 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3138 expert_mode = pfm_sysctl.expert_mode;
3140 for (i = 0; i < count; i++, req++) {
3142 cnum = req->reg_num;
3143 value = req->reg_value;
3145 if (!PMD_IS_IMPL(cnum)) {
3146 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3149 is_counting = PMD_IS_COUNTING(cnum);
3150 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3153 * execute write checker, if any
3155 if (unlikely(expert_mode == 0 && wr_func)) {
3156 unsigned long v = value;
3158 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3159 if (ret) goto abort_mission;
3166 * no error on this register
3168 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3171 * now commit changes to software state
3176 * update virtualized (64bits) counter
3180 * write context state
3182 ctx->ctx_pmds[cnum].lval = value;
3185 * when context is load we use the split value
3188 hw_value = value & ovfl_mask;
3189 value = value & ~ovfl_mask;
3193 * update reset values (not just for counters)
3195 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3196 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3199 * update randomization parameters (not just for counters)
3201 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3202 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3205 * update context value
3207 ctx->ctx_pmds[cnum].val = value;
3210 * Keep track of what we use
3212 * We do not keep track of PMC because we have to
3213 * systematically restore ALL of them.
3215 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3218 * mark this PMD register used as well
3220 CTX_USED_PMD(ctx, RDEP(cnum));
3223 * make sure we do not try to reset on
3224 * restart because we have established new values
3226 if (is_counting && state == PFM_CTX_MASKED) {
3227 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3232 * write thread state
3234 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3237 * write hardware register if we can
3239 if (can_access_pmu) {
3240 ia64_set_pmd(cnum, hw_value);
3244 * we are guaranteed that the task is not running on the other CPU,
3245 * we indicate that this PMD will need to be reloaded if the task
3246 * is rescheduled on the CPU it ran last on.
3248 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3253 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3254 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3260 ctx->ctx_pmds[cnum].val,
3261 ctx->ctx_pmds[cnum].short_reset,
3262 ctx->ctx_pmds[cnum].long_reset,
3263 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3264 ctx->ctx_pmds[cnum].seed,
3265 ctx->ctx_pmds[cnum].mask,
3266 ctx->ctx_used_pmds[0],
3267 ctx->ctx_pmds[cnum].reset_pmds[0],
3268 ctx->ctx_reload_pmds[0],
3269 ctx->ctx_all_pmds[0],
3270 ctx->ctx_ovfl_regs[0]));
3274 * make changes visible
3276 if (can_access_pmu) ia64_srlz_d();
3282 * for now, we have only one possibility for error
3284 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3289 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3290 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3291 * interrupt is delivered during the call, it will be kept pending until we leave, making
3292 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3293 * guaranteed to return consistent data to the user, it may simply be old. It is not
3294 * trivial to treat the overflow while inside the call because you may end up in
3295 * some module sampling buffer code causing deadlocks.
3298 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3300 struct task_struct *task;
3301 unsigned long val = 0UL, lval, ovfl_mask, sval;
3302 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3303 unsigned int cnum, reg_flags = 0;
3304 int i, can_access_pmu = 0, state;
3305 int is_loaded, is_system, is_counting, expert_mode;
3307 pfm_reg_check_t rd_func;
3310 * access is possible when loaded only for
3311 * self-monitoring tasks or in UP mode
3314 state = ctx->ctx_state;
3315 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3316 is_system = ctx->ctx_fl_system;
3317 ovfl_mask = pmu_conf->ovfl_val;
3318 task = ctx->ctx_task;
3320 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3322 if (likely(is_loaded)) {
3324 * In system wide and when the context is loaded, access can only happen
3325 * when the caller is running on the CPU being monitored by the session.
3326 * It does not have to be the owner (ctx_task) of the context per se.
3328 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3329 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3333 * this can be true when not self-monitoring only in UP
3335 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3337 if (can_access_pmu) ia64_srlz_d();
3339 expert_mode = pfm_sysctl.expert_mode;
3341 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3347 * on both UP and SMP, we can only read the PMD from the hardware register when
3348 * the task is the owner of the local PMU.
3351 for (i = 0; i < count; i++, req++) {
3353 cnum = req->reg_num;
3354 reg_flags = req->reg_flags;
3356 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3358 * we can only read the register that we use. That includes
3359 * the one we explicitely initialize AND the one we want included
3360 * in the sampling buffer (smpl_regs).
3362 * Having this restriction allows optimization in the ctxsw routine
3363 * without compromising security (leaks)
3365 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3367 sval = ctx->ctx_pmds[cnum].val;
3368 lval = ctx->ctx_pmds[cnum].lval;
3369 is_counting = PMD_IS_COUNTING(cnum);
3372 * If the task is not the current one, then we check if the
3373 * PMU state is still in the local live register due to lazy ctxsw.
3374 * If true, then we read directly from the registers.
3376 if (can_access_pmu){
3377 val = ia64_get_pmd(cnum);
3380 * context has been saved
3381 * if context is zombie, then task does not exist anymore.
3382 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3384 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3386 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3390 * XXX: need to check for overflow when loaded
3397 * execute read checker, if any
3399 if (unlikely(expert_mode == 0 && rd_func)) {
3400 unsigned long v = val;
3401 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3402 if (ret) goto error;
3407 PFM_REG_RETFLAG_SET(reg_flags, 0);
3409 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3412 * update register return value, abort all if problem during copy.
3413 * we only modify the reg_flags field. no check mode is fine because
3414 * access has been verified upfront in sys_perfmonctl().
3416 req->reg_value = val;
3417 req->reg_flags = reg_flags;
3418 req->reg_last_reset_val = lval;
3424 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3429 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3433 if (req == NULL) return -EINVAL;
3435 ctx = GET_PMU_CTX();
3437 if (ctx == NULL) return -EINVAL;
3440 * for now limit to current task, which is enough when calling
3441 * from overflow handler
3443 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3445 return pfm_write_pmcs(ctx, req, nreq, regs);
3447 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3450 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3454 if (req == NULL) return -EINVAL;
3456 ctx = GET_PMU_CTX();
3458 if (ctx == NULL) return -EINVAL;
3461 * for now limit to current task, which is enough when calling
3462 * from overflow handler
3464 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3466 return pfm_read_pmds(ctx, req, nreq, regs);
3468 EXPORT_SYMBOL(pfm_mod_read_pmds);
3471 * Only call this function when a process it trying to
3472 * write the debug registers (reading is always allowed)
3475 pfm_use_debug_registers(struct task_struct *task)
3477 pfm_context_t *ctx = task->thread.pfm_context;
3478 unsigned long flags;
3481 if (pmu_conf->use_rr_dbregs == 0) return 0;
3483 DPRINT(("called for [%d]\n", task->pid));
3488 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3491 * Even on SMP, we do not need to use an atomic here because
3492 * the only way in is via ptrace() and this is possible only when the
3493 * process is stopped. Even in the case where the ctxsw out is not totally
3494 * completed by the time we come here, there is no way the 'stopped' process
3495 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3496 * So this is always safe.
3498 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3503 * We cannot allow setting breakpoints when system wide monitoring
3504 * sessions are using the debug registers.
3506 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3509 pfm_sessions.pfs_ptrace_use_dbregs++;
3511 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3512 pfm_sessions.pfs_ptrace_use_dbregs,
3513 pfm_sessions.pfs_sys_use_dbregs,
3522 * This function is called for every task that exits with the
3523 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3524 * able to use the debug registers for debugging purposes via
3525 * ptrace(). Therefore we know it was not using them for
3526 * perfmormance monitoring, so we only decrement the number
3527 * of "ptraced" debug register users to keep the count up to date
3530 pfm_release_debug_registers(struct task_struct *task)
3532 unsigned long flags;
3535 if (pmu_conf->use_rr_dbregs == 0) return 0;
3538 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3539 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3542 pfm_sessions.pfs_ptrace_use_dbregs--;
3551 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3553 struct task_struct *task;
3554 pfm_buffer_fmt_t *fmt;
3555 pfm_ovfl_ctrl_t rst_ctrl;
3556 int state, is_system;
3559 state = ctx->ctx_state;
3560 fmt = ctx->ctx_buf_fmt;
3561 is_system = ctx->ctx_fl_system;
3562 task = PFM_CTX_TASK(ctx);
3565 case PFM_CTX_MASKED:
3567 case PFM_CTX_LOADED:
3568 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3570 case PFM_CTX_UNLOADED:
3571 case PFM_CTX_ZOMBIE:
3572 DPRINT(("invalid state=%d\n", state));
3575 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3580 * In system wide and when the context is loaded, access can only happen
3581 * when the caller is running on the CPU being monitored by the session.
3582 * It does not have to be the owner (ctx_task) of the context per se.
3584 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3585 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3590 if (unlikely(task == NULL)) {
3591 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3595 if (task == current || is_system) {
3597 fmt = ctx->ctx_buf_fmt;
3599 DPRINT(("restarting self %d ovfl=0x%lx\n",
3601 ctx->ctx_ovfl_regs[0]));
3603 if (CTX_HAS_SMPL(ctx)) {
3605 prefetch(ctx->ctx_smpl_hdr);
3607 rst_ctrl.bits.mask_monitoring = 0;
3608 rst_ctrl.bits.reset_ovfl_pmds = 0;
3610 if (state == PFM_CTX_LOADED)
3611 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3613 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3615 rst_ctrl.bits.mask_monitoring = 0;
3616 rst_ctrl.bits.reset_ovfl_pmds = 1;
3620 if (rst_ctrl.bits.reset_ovfl_pmds)
3621 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3623 if (rst_ctrl.bits.mask_monitoring == 0) {
3624 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3626 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3628 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3630 // cannot use pfm_stop_monitoring(task, regs);
3634 * clear overflowed PMD mask to remove any stale information
3636 ctx->ctx_ovfl_regs[0] = 0UL;
3639 * back to LOADED state
3641 ctx->ctx_state = PFM_CTX_LOADED;
3644 * XXX: not really useful for self monitoring
3646 ctx->ctx_fl_can_restart = 0;
3652 * restart another task
3656 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3657 * one is seen by the task.
3659 if (state == PFM_CTX_MASKED) {
3660 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3662 * will prevent subsequent restart before this one is
3663 * seen by other task
3665 ctx->ctx_fl_can_restart = 0;
3669 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3670 * the task is blocked or on its way to block. That's the normal
3671 * restart path. If the monitoring is not masked, then the task
3672 * can be actively monitoring and we cannot directly intervene.
3673 * Therefore we use the trap mechanism to catch the task and
3674 * force it to reset the buffer/reset PMDs.
3676 * if non-blocking, then we ensure that the task will go into
3677 * pfm_handle_work() before returning to user mode.
3679 * We cannot explicitely reset another task, it MUST always
3680 * be done by the task itself. This works for system wide because
3681 * the tool that is controlling the session is logically doing
3682 * "self-monitoring".
3684 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3685 DPRINT(("unblocking [%d] \n", task->pid));
3686 complete(&ctx->ctx_restart_done);
3688 DPRINT(("[%d] armed exit trap\n", task->pid));
3690 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3692 PFM_SET_WORK_PENDING(task, 1);
3694 pfm_set_task_notify(task);
3697 * XXX: send reschedule if task runs on another CPU
3704 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3706 unsigned int m = *(unsigned int *)arg;
3708 pfm_sysctl.debug = m == 0 ? 0 : 1;
3710 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3713 memset(pfm_stats, 0, sizeof(pfm_stats));
3714 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3720 * arg can be NULL and count can be zero for this function
3723 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3725 struct thread_struct *thread = NULL;
3726 struct task_struct *task;
3727 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3728 unsigned long flags;
3733 int i, can_access_pmu = 0;
3734 int is_system, is_loaded;
3736 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3738 state = ctx->ctx_state;
3739 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3740 is_system = ctx->ctx_fl_system;
3741 task = ctx->ctx_task;
3743 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3746 * on both UP and SMP, we can only write to the PMC when the task is
3747 * the owner of the local PMU.
3750 thread = &task->thread;
3752 * In system wide and when the context is loaded, access can only happen
3753 * when the caller is running on the CPU being monitored by the session.
3754 * It does not have to be the owner (ctx_task) of the context per se.
3756 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3757 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3760 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3764 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3765 * ensuring that no real breakpoint can be installed via this call.
3767 * IMPORTANT: regs can be NULL in this function
3770 first_time = ctx->ctx_fl_using_dbreg == 0;
3773 * don't bother if we are loaded and task is being debugged
3775 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3776 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3781 * check for debug registers in system wide mode
3783 * If though a check is done in pfm_context_load(),
3784 * we must repeat it here, in case the registers are
3785 * written after the context is loaded
3790 if (first_time && is_system) {
3791 if (pfm_sessions.pfs_ptrace_use_dbregs)
3794 pfm_sessions.pfs_sys_use_dbregs++;
3799 if (ret != 0) return ret;
3802 * mark ourself as user of the debug registers for
3805 ctx->ctx_fl_using_dbreg = 1;
3808 * clear hardware registers to make sure we don't
3809 * pick up stale state.
3811 * for a system wide session, we do not use
3812 * thread.dbr, thread.ibr because this process
3813 * never leaves the current CPU and the state
3814 * is shared by all processes running on it
3816 if (first_time && can_access_pmu) {
3817 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3818 for (i=0; i < pmu_conf->num_ibrs; i++) {
3819 ia64_set_ibr(i, 0UL);
3820 ia64_dv_serialize_instruction();
3823 for (i=0; i < pmu_conf->num_dbrs; i++) {
3824 ia64_set_dbr(i, 0UL);
3825 ia64_dv_serialize_data();
3831 * Now install the values into the registers
3833 for (i = 0; i < count; i++, req++) {
3835 rnum = req->dbreg_num;
3836 dbreg.val = req->dbreg_value;
3840 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3841 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3842 rnum, dbreg.val, mode, i, count));
3848 * make sure we do not install enabled breakpoint
3851 if (mode == PFM_CODE_RR)
3852 dbreg.ibr.ibr_x = 0;
3854 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3857 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3860 * Debug registers, just like PMC, can only be modified
3861 * by a kernel call. Moreover, perfmon() access to those
3862 * registers are centralized in this routine. The hardware
3863 * does not modify the value of these registers, therefore,
3864 * if we save them as they are written, we can avoid having
3865 * to save them on context switch out. This is made possible
3866 * by the fact that when perfmon uses debug registers, ptrace()
3867 * won't be able to modify them concurrently.
3869 if (mode == PFM_CODE_RR) {
3870 CTX_USED_IBR(ctx, rnum);
3872 if (can_access_pmu) {
3873 ia64_set_ibr(rnum, dbreg.val);
3874 ia64_dv_serialize_instruction();
3877 ctx->ctx_ibrs[rnum] = dbreg.val;
3879 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3880 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3882 CTX_USED_DBR(ctx, rnum);
3884 if (can_access_pmu) {
3885 ia64_set_dbr(rnum, dbreg.val);
3886 ia64_dv_serialize_data();
3888 ctx->ctx_dbrs[rnum] = dbreg.val;
3890 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3891 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3899 * in case it was our first attempt, we undo the global modifications
3903 if (ctx->ctx_fl_system) {
3904 pfm_sessions.pfs_sys_use_dbregs--;
3907 ctx->ctx_fl_using_dbreg = 0;
3910 * install error return flag
3912 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3918 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3920 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3924 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3926 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3930 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3934 if (req == NULL) return -EINVAL;
3936 ctx = GET_PMU_CTX();
3938 if (ctx == NULL) return -EINVAL;
3941 * for now limit to current task, which is enough when calling
3942 * from overflow handler
3944 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3946 return pfm_write_ibrs(ctx, req, nreq, regs);
3948 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3951 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3955 if (req == NULL) return -EINVAL;
3957 ctx = GET_PMU_CTX();
3959 if (ctx == NULL) return -EINVAL;
3962 * for now limit to current task, which is enough when calling
3963 * from overflow handler
3965 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3967 return pfm_write_dbrs(ctx, req, nreq, regs);
3969 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3973 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3975 pfarg_features_t *req = (pfarg_features_t *)arg;
3977 req->ft_version = PFM_VERSION;
3982 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3984 struct pt_regs *tregs;
3985 struct task_struct *task = PFM_CTX_TASK(ctx);
3986 int state, is_system;
3988 state = ctx->ctx_state;
3989 is_system = ctx->ctx_fl_system;
3992 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3994 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3997 * In system wide and when the context is loaded, access can only happen
3998 * when the caller is running on the CPU being monitored by the session.
3999 * It does not have to be the owner (ctx_task) of the context per se.
4001 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4002 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4005 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4006 PFM_CTX_TASK(ctx)->pid,
4010 * in system mode, we need to update the PMU directly
4011 * and the user level state of the caller, which may not
4012 * necessarily be the creator of the context.
4016 * Update local PMU first
4020 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4024 * update local cpuinfo
4026 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4029 * stop monitoring, does srlz.i
4034 * stop monitoring in the caller
4036 ia64_psr(regs)->pp = 0;
4044 if (task == current) {
4045 /* stop monitoring at kernel level */
4049 * stop monitoring at the user level
4051 ia64_psr(regs)->up = 0;
4053 tregs = task_pt_regs(task);
4056 * stop monitoring at the user level
4058 ia64_psr(tregs)->up = 0;
4061 * monitoring disabled in kernel at next reschedule
4063 ctx->ctx_saved_psr_up = 0;
4064 DPRINT(("task=[%d]\n", task->pid));
4071 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4073 struct pt_regs *tregs;
4074 int state, is_system;
4076 state = ctx->ctx_state;
4077 is_system = ctx->ctx_fl_system;
4079 if (state != PFM_CTX_LOADED) return -EINVAL;
4082 * In system wide and when the context is loaded, access can only happen
4083 * when the caller is running on the CPU being monitored by the session.
4084 * It does not have to be the owner (ctx_task) of the context per se.
4086 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4087 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4092 * in system mode, we need to update the PMU directly
4093 * and the user level state of the caller, which may not
4094 * necessarily be the creator of the context.
4099 * set user level psr.pp for the caller
4101 ia64_psr(regs)->pp = 1;
4104 * now update the local PMU and cpuinfo
4106 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4109 * start monitoring at kernel level
4114 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4124 if (ctx->ctx_task == current) {
4126 /* start monitoring at kernel level */
4130 * activate monitoring at user level
4132 ia64_psr(regs)->up = 1;
4135 tregs = task_pt_regs(ctx->ctx_task);
4138 * start monitoring at the kernel level the next
4139 * time the task is scheduled
4141 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4144 * activate monitoring at user level
4146 ia64_psr(tregs)->up = 1;
4152 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4154 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4159 for (i = 0; i < count; i++, req++) {
4161 cnum = req->reg_num;
4163 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4165 req->reg_value = PMC_DFL_VAL(cnum);
4167 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4169 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4174 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4179 pfm_check_task_exist(pfm_context_t *ctx)
4181 struct task_struct *g, *t;
4184 read_lock(&tasklist_lock);
4186 do_each_thread (g, t) {
4187 if (t->thread.pfm_context == ctx) {
4191 } while_each_thread (g, t);
4193 read_unlock(&tasklist_lock);
4195 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4201 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4203 struct task_struct *task;
4204 struct thread_struct *thread;
4205 struct pfm_context_t *old;
4206 unsigned long flags;
4208 struct task_struct *owner_task = NULL;
4210 pfarg_load_t *req = (pfarg_load_t *)arg;
4211 unsigned long *pmcs_source, *pmds_source;
4214 int state, is_system, set_dbregs = 0;
4216 state = ctx->ctx_state;
4217 is_system = ctx->ctx_fl_system;
4219 * can only load from unloaded or terminated state
4221 if (state != PFM_CTX_UNLOADED) {
4222 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4228 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4230 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4231 DPRINT(("cannot use blocking mode on self\n"));
4235 ret = pfm_get_task(ctx, req->load_pid, &task);
4237 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4244 * system wide is self monitoring only
4246 if (is_system && task != current) {
4247 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4252 thread = &task->thread;
4256 * cannot load a context which is using range restrictions,
4257 * into a task that is being debugged.
4259 if (ctx->ctx_fl_using_dbreg) {
4260 if (thread->flags & IA64_THREAD_DBG_VALID) {
4262 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4268 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4269 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4272 pfm_sessions.pfs_sys_use_dbregs++;
4273 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4280 if (ret) goto error;
4284 * SMP system-wide monitoring implies self-monitoring.
4286 * The programming model expects the task to
4287 * be pinned on a CPU throughout the session.
4288 * Here we take note of the current CPU at the
4289 * time the context is loaded. No call from
4290 * another CPU will be allowed.
4292 * The pinning via shed_setaffinity()
4293 * must be done by the calling task prior
4296 * systemwide: keep track of CPU this session is supposed to run on
4298 the_cpu = ctx->ctx_cpu = smp_processor_id();
4302 * now reserve the session
4304 ret = pfm_reserve_session(current, is_system, the_cpu);
4305 if (ret) goto error;
4308 * task is necessarily stopped at this point.
4310 * If the previous context was zombie, then it got removed in
4311 * pfm_save_regs(). Therefore we should not see it here.
4312 * If we see a context, then this is an active context
4314 * XXX: needs to be atomic
4316 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4317 thread->pfm_context, ctx));
4320 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4322 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4326 pfm_reset_msgq(ctx);
4328 ctx->ctx_state = PFM_CTX_LOADED;
4331 * link context to task
4333 ctx->ctx_task = task;
4337 * we load as stopped
4339 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4340 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4342 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4344 thread->flags |= IA64_THREAD_PM_VALID;
4348 * propagate into thread-state
4350 pfm_copy_pmds(task, ctx);
4351 pfm_copy_pmcs(task, ctx);
4353 pmcs_source = ctx->th_pmcs;
4354 pmds_source = ctx->th_pmds;
4357 * always the case for system-wide
4359 if (task == current) {
4361 if (is_system == 0) {
4363 /* allow user level control */
4364 ia64_psr(regs)->sp = 0;
4365 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4367 SET_LAST_CPU(ctx, smp_processor_id());
4369 SET_ACTIVATION(ctx);
4372 * push the other task out, if any
4374 owner_task = GET_PMU_OWNER();
4375 if (owner_task) pfm_lazy_save_regs(owner_task);
4379 * load all PMD from ctx to PMU (as opposed to thread state)
4380 * restore all PMC from ctx to PMU
4382 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4383 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4385 ctx->ctx_reload_pmcs[0] = 0UL;
4386 ctx->ctx_reload_pmds[0] = 0UL;
4389 * guaranteed safe by earlier check against DBG_VALID
4391 if (ctx->ctx_fl_using_dbreg) {
4392 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4393 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4398 SET_PMU_OWNER(task, ctx);
4400 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4403 * when not current, task MUST be stopped, so this is safe
4405 regs = task_pt_regs(task);
4407 /* force a full reload */
4408 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4409 SET_LAST_CPU(ctx, -1);
4411 /* initial saved psr (stopped) */
4412 ctx->ctx_saved_psr_up = 0UL;
4413 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4419 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4422 * we must undo the dbregs setting (for system-wide)
4424 if (ret && set_dbregs) {
4426 pfm_sessions.pfs_sys_use_dbregs--;
4430 * release task, there is now a link with the context
4432 if (is_system == 0 && task != current) {
4436 ret = pfm_check_task_exist(ctx);
4438 ctx->ctx_state = PFM_CTX_UNLOADED;
4439 ctx->ctx_task = NULL;
4447 * in this function, we do not need to increase the use count
4448 * for the task via get_task_struct(), because we hold the
4449 * context lock. If the task were to disappear while having
4450 * a context attached, it would go through pfm_exit_thread()
4451 * which also grabs the context lock and would therefore be blocked
4452 * until we are here.
4454 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4457 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4459 struct task_struct *task = PFM_CTX_TASK(ctx);
4460 struct pt_regs *tregs;
4461 int prev_state, is_system;
4464 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4466 prev_state = ctx->ctx_state;
4467 is_system = ctx->ctx_fl_system;
4470 * unload only when necessary
4472 if (prev_state == PFM_CTX_UNLOADED) {
4473 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4478 * clear psr and dcr bits
4480 ret = pfm_stop(ctx, NULL, 0, regs);
4481 if (ret) return ret;
4483 ctx->ctx_state = PFM_CTX_UNLOADED;
4486 * in system mode, we need to update the PMU directly
4487 * and the user level state of the caller, which may not
4488 * necessarily be the creator of the context.
4495 * local PMU is taken care of in pfm_stop()
4497 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4498 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4501 * save PMDs in context
4504 pfm_flush_pmds(current, ctx);
4507 * at this point we are done with the PMU
4508 * so we can unreserve the resource.
4510 if (prev_state != PFM_CTX_ZOMBIE)
4511 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4514 * disconnect context from task
4516 task->thread.pfm_context = NULL;
4518 * disconnect task from context
4520 ctx->ctx_task = NULL;
4523 * There is nothing more to cleanup here.
4531 tregs = task == current ? regs : task_pt_regs(task);
4533 if (task == current) {
4535 * cancel user level control
4537 ia64_psr(regs)->sp = 1;
4539 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4542 * save PMDs to context
4545 pfm_flush_pmds(task, ctx);
4548 * at this point we are done with the PMU
4549 * so we can unreserve the resource.
4551 * when state was ZOMBIE, we have already unreserved.
4553 if (prev_state != PFM_CTX_ZOMBIE)
4554 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4557 * reset activation counter and psr
4559 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4560 SET_LAST_CPU(ctx, -1);
4563 * PMU state will not be restored
4565 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4568 * break links between context and task
4570 task->thread.pfm_context = NULL;
4571 ctx->ctx_task = NULL;
4573 PFM_SET_WORK_PENDING(task, 0);
4575 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4576 ctx->ctx_fl_can_restart = 0;
4577 ctx->ctx_fl_going_zombie = 0;
4579 DPRINT(("disconnected [%d] from context\n", task->pid));
4586 * called only from exit_thread(): task == current
4587 * we come here only if current has a context attached (loaded or masked)
4590 pfm_exit_thread(struct task_struct *task)
4593 unsigned long flags;
4594 struct pt_regs *regs = task_pt_regs(task);
4598 ctx = PFM_GET_CTX(task);
4600 PROTECT_CTX(ctx, flags);
4602 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4604 state = ctx->ctx_state;
4606 case PFM_CTX_UNLOADED:
4608 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4609 * be in unloaded state
4611 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4613 case PFM_CTX_LOADED:
4614 case PFM_CTX_MASKED:
4615 ret = pfm_context_unload(ctx, NULL, 0, regs);
4617 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4619 DPRINT(("ctx unloaded for current state was %d\n", state));
4621 pfm_end_notify_user(ctx);
4623 case PFM_CTX_ZOMBIE:
4624 ret = pfm_context_unload(ctx, NULL, 0, regs);
4626 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4631 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4634 UNPROTECT_CTX(ctx, flags);
4636 { u64 psr = pfm_get_psr();
4637 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4638 BUG_ON(GET_PMU_OWNER());
4639 BUG_ON(ia64_psr(regs)->up);
4640 BUG_ON(ia64_psr(regs)->pp);
4644 * All memory free operations (especially for vmalloc'ed memory)
4645 * MUST be done with interrupts ENABLED.
4647 if (free_ok) pfm_context_free(ctx);
4651 * functions MUST be listed in the increasing order of their index (see permfon.h)
4653 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4654 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4655 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4656 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4657 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4659 static pfm_cmd_desc_t pfm_cmd_tab[]={
4660 /* 0 */PFM_CMD_NONE,
4661 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4662 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4665 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4666 /* 6 */PFM_CMD_NONE,
4667 /* 7 */PFM_CMD_NONE,
4668 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4669 /* 9 */PFM_CMD_NONE,
4670 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4671 /* 11 */PFM_CMD_NONE,
4672 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4673 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4674 /* 14 */PFM_CMD_NONE,
4675 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4676 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4677 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4678 /* 18 */PFM_CMD_NONE,
4679 /* 19 */PFM_CMD_NONE,
4680 /* 20 */PFM_CMD_NONE,
4681 /* 21 */PFM_CMD_NONE,
4682 /* 22 */PFM_CMD_NONE,
4683 /* 23 */PFM_CMD_NONE,
4684 /* 24 */PFM_CMD_NONE,
4685 /* 25 */PFM_CMD_NONE,
4686 /* 26 */PFM_CMD_NONE,
4687 /* 27 */PFM_CMD_NONE,
4688 /* 28 */PFM_CMD_NONE,
4689 /* 29 */PFM_CMD_NONE,
4690 /* 30 */PFM_CMD_NONE,
4691 /* 31 */PFM_CMD_NONE,
4692 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4693 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4695 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4698 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4700 struct task_struct *task;
4701 int state, old_state;
4704 state = ctx->ctx_state;
4705 task = ctx->ctx_task;
4708 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4712 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4716 task->state, PFM_CMD_STOPPED(cmd)));
4719 * self-monitoring always ok.
4721 * for system-wide the caller can either be the creator of the
4722 * context (to one to which the context is attached to) OR
4723 * a task running on the same CPU as the session.
4725 if (task == current || ctx->ctx_fl_system) return 0;
4728 * we are monitoring another thread
4731 case PFM_CTX_UNLOADED:
4733 * if context is UNLOADED we are safe to go
4736 case PFM_CTX_ZOMBIE:
4738 * no command can operate on a zombie context
4740 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4742 case PFM_CTX_MASKED:
4744 * PMU state has been saved to software even though
4745 * the thread may still be running.
4747 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4751 * context is LOADED or MASKED. Some commands may need to have
4754 * We could lift this restriction for UP but it would mean that
4755 * the user has no guarantee the task would not run between
4756 * two successive calls to perfmonctl(). That's probably OK.
4757 * If this user wants to ensure the task does not run, then
4758 * the task must be stopped.
4760 if (PFM_CMD_STOPPED(cmd)) {
4761 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4762 DPRINT(("[%d] task not in stopped state\n", task->pid));
4766 * task is now stopped, wait for ctxsw out
4768 * This is an interesting point in the code.
4769 * We need to unprotect the context because
4770 * the pfm_save_regs() routines needs to grab
4771 * the same lock. There are danger in doing
4772 * this because it leaves a window open for
4773 * another task to get access to the context
4774 * and possibly change its state. The one thing
4775 * that is not possible is for the context to disappear
4776 * because we are protected by the VFS layer, i.e.,
4777 * get_fd()/put_fd().
4781 UNPROTECT_CTX(ctx, flags);
4783 wait_task_inactive(task);
4785 PROTECT_CTX(ctx, flags);
4788 * we must recheck to verify if state has changed
4790 if (ctx->ctx_state != old_state) {
4791 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4799 * system-call entry point (must return long)
4802 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4804 struct file *file = NULL;
4805 pfm_context_t *ctx = NULL;
4806 unsigned long flags = 0UL;
4807 void *args_k = NULL;
4808 long ret; /* will expand int return types */
4809 size_t base_sz, sz, xtra_sz = 0;
4810 int narg, completed_args = 0, call_made = 0, cmd_flags;
4811 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4812 int (*getsize)(void *arg, size_t *sz);
4813 #define PFM_MAX_ARGSIZE 4096
4816 * reject any call if perfmon was disabled at initialization
4818 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4820 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4821 DPRINT(("invalid cmd=%d\n", cmd));
4825 func = pfm_cmd_tab[cmd].cmd_func;
4826 narg = pfm_cmd_tab[cmd].cmd_narg;
4827 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4828 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4829 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4831 if (unlikely(func == NULL)) {
4832 DPRINT(("invalid cmd=%d\n", cmd));
4836 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4844 * check if number of arguments matches what the command expects
4846 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4850 sz = xtra_sz + base_sz*count;
4852 * limit abuse to min page size
4854 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4855 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4860 * allocate default-sized argument buffer
4862 if (likely(count && args_k == NULL)) {
4863 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4864 if (args_k == NULL) return -ENOMEM;
4872 * assume sz = 0 for command without parameters
4874 if (sz && copy_from_user(args_k, arg, sz)) {
4875 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4880 * check if command supports extra parameters
4882 if (completed_args == 0 && getsize) {
4884 * get extra parameters size (based on main argument)
4886 ret = (*getsize)(args_k, &xtra_sz);
4887 if (ret) goto error_args;
4891 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4893 /* retry if necessary */
4894 if (likely(xtra_sz)) goto restart_args;
4897 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4902 if (unlikely(file == NULL)) {
4903 DPRINT(("invalid fd %d\n", fd));
4906 if (unlikely(PFM_IS_FILE(file) == 0)) {
4907 DPRINT(("fd %d not related to perfmon\n", fd));
4911 ctx = (pfm_context_t *)file->private_data;
4912 if (unlikely(ctx == NULL)) {
4913 DPRINT(("no context for fd %d\n", fd));
4916 prefetch(&ctx->ctx_state);
4918 PROTECT_CTX(ctx, flags);
4921 * check task is stopped
4923 ret = pfm_check_task_state(ctx, cmd, flags);
4924 if (unlikely(ret)) goto abort_locked;
4927 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4933 DPRINT(("context unlocked\n"));
4934 UNPROTECT_CTX(ctx, flags);
4937 /* copy argument back to user, if needed */
4938 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4946 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4952 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4954 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4955 pfm_ovfl_ctrl_t rst_ctrl;
4959 state = ctx->ctx_state;
4961 * Unlock sampling buffer and reset index atomically
4962 * XXX: not really needed when blocking
4964 if (CTX_HAS_SMPL(ctx)) {
4966 rst_ctrl.bits.mask_monitoring = 0;
4967 rst_ctrl.bits.reset_ovfl_pmds = 0;
4969 if (state == PFM_CTX_LOADED)
4970 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4974 rst_ctrl.bits.mask_monitoring = 0;
4975 rst_ctrl.bits.reset_ovfl_pmds = 1;
4979 if (rst_ctrl.bits.reset_ovfl_pmds) {
4980 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4982 if (rst_ctrl.bits.mask_monitoring == 0) {
4983 DPRINT(("resuming monitoring\n"));
4984 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4986 DPRINT(("stopping monitoring\n"));
4987 //pfm_stop_monitoring(current, regs);
4989 ctx->ctx_state = PFM_CTX_LOADED;
4994 * context MUST BE LOCKED when calling
4995 * can only be called for current
4998 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5002 DPRINT(("entering for [%d]\n", current->pid));
5004 ret = pfm_context_unload(ctx, NULL, 0, regs);
5006 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5010 * and wakeup controlling task, indicating we are now disconnected
5012 wake_up_interruptible(&ctx->ctx_zombieq);
5015 * given that context is still locked, the controlling
5016 * task will only get access when we return from
5017 * pfm_handle_work().
5021 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5023 * pfm_handle_work() can be called with interrupts enabled
5024 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5025 * call may sleep, therefore we must re-enable interrupts
5026 * to avoid deadlocks. It is safe to do so because this function
5027 * is called ONLY when returning to user level (PUStk=1), in which case
5028 * there is no risk of kernel stack overflow due to deep
5029 * interrupt nesting.
5032 pfm_handle_work(void)
5035 struct pt_regs *regs;
5036 unsigned long flags, dummy_flags;
5037 unsigned long ovfl_regs;
5038 unsigned int reason;
5041 ctx = PFM_GET_CTX(current);
5043 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5047 PROTECT_CTX(ctx, flags);
5049 PFM_SET_WORK_PENDING(current, 0);
5051 pfm_clear_task_notify();
5053 regs = task_pt_regs(current);
5056 * extract reason for being here and clear
5058 reason = ctx->ctx_fl_trap_reason;
5059 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5060 ovfl_regs = ctx->ctx_ovfl_regs[0];
5062 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5065 * must be done before we check for simple-reset mode
5067 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5070 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5071 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5074 * restore interrupt mask to what it was on entry.
5075 * Could be enabled/diasbled.
5077 UNPROTECT_CTX(ctx, flags);
5080 * force interrupt enable because of down_interruptible()
5084 DPRINT(("before block sleeping\n"));
5087 * may go through without blocking on SMP systems
5088 * if restart has been received already by the time we call down()
5090 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5092 DPRINT(("after block sleeping ret=%d\n", ret));
5095 * lock context and mask interrupts again
5096 * We save flags into a dummy because we may have
5097 * altered interrupts mask compared to entry in this
5100 PROTECT_CTX(ctx, dummy_flags);
5103 * we need to read the ovfl_regs only after wake-up
5104 * because we may have had pfm_write_pmds() in between
5105 * and that can changed PMD values and therefore
5106 * ovfl_regs is reset for these new PMD values.
5108 ovfl_regs = ctx->ctx_ovfl_regs[0];
5110 if (ctx->ctx_fl_going_zombie) {
5112 DPRINT(("context is zombie, bailing out\n"));
5113 pfm_context_force_terminate(ctx, regs);
5117 * in case of interruption of down() we don't restart anything
5119 if (ret < 0) goto nothing_to_do;
5122 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5123 ctx->ctx_ovfl_regs[0] = 0UL;
5127 * restore flags as they were upon entry
5129 UNPROTECT_CTX(ctx, flags);
5133 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5135 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5136 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5140 DPRINT(("waking up somebody\n"));
5142 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5145 * safe, we are not in intr handler, nor in ctxsw when
5148 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5154 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5156 pfm_msg_t *msg = NULL;
5158 if (ctx->ctx_fl_no_msg == 0) {
5159 msg = pfm_get_new_msg(ctx);
5161 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5165 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5166 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5167 msg->pfm_ovfl_msg.msg_active_set = 0;
5168 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5169 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5170 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5171 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5172 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5175 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5181 return pfm_notify_user(ctx, msg);
5185 pfm_end_notify_user(pfm_context_t *ctx)
5189 msg = pfm_get_new_msg(ctx);
5191 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5195 memset(msg, 0, sizeof(*msg));
5197 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5198 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5199 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5201 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5206 return pfm_notify_user(ctx, msg);
5210 * main overflow processing routine.
5211 * it can be called from the interrupt path or explicitely during the context switch code
5214 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5216 pfm_ovfl_arg_t *ovfl_arg;
5218 unsigned long old_val, ovfl_val, new_val;
5219 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5220 unsigned long tstamp;
5221 pfm_ovfl_ctrl_t ovfl_ctrl;
5222 unsigned int i, has_smpl;
5223 int must_notify = 0;
5225 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5228 * sanity test. Should never happen
5230 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5232 tstamp = ia64_get_itc();
5233 mask = pmc0 >> PMU_FIRST_COUNTER;
5234 ovfl_val = pmu_conf->ovfl_val;
5235 has_smpl = CTX_HAS_SMPL(ctx);
5237 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5238 "used_pmds=0x%lx\n",
5240 task ? task->pid: -1,
5241 (regs ? regs->cr_iip : 0),
5242 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5243 ctx->ctx_used_pmds[0]));
5247 * first we update the virtual counters
5248 * assume there was a prior ia64_srlz_d() issued
5250 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5252 /* skip pmd which did not overflow */
5253 if ((mask & 0x1) == 0) continue;
5256 * Note that the pmd is not necessarily 0 at this point as qualified events
5257 * may have happened before the PMU was frozen. The residual count is not
5258 * taken into consideration here but will be with any read of the pmd via
5261 old_val = new_val = ctx->ctx_pmds[i].val;
5262 new_val += 1 + ovfl_val;
5263 ctx->ctx_pmds[i].val = new_val;
5266 * check for overflow condition
5268 if (likely(old_val > new_val)) {
5269 ovfl_pmds |= 1UL << i;
5270 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5273 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5277 ia64_get_pmd(i) & ovfl_val,
5283 * there was no 64-bit overflow, nothing else to do
5285 if (ovfl_pmds == 0UL) return;
5288 * reset all control bits
5294 * if a sampling format module exists, then we "cache" the overflow by
5295 * calling the module's handler() routine.
5298 unsigned long start_cycles, end_cycles;
5299 unsigned long pmd_mask;
5301 int this_cpu = smp_processor_id();
5303 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5304 ovfl_arg = &ctx->ctx_ovfl_arg;
5306 prefetch(ctx->ctx_smpl_hdr);
5308 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5312 if ((pmd_mask & 0x1) == 0) continue;
5314 ovfl_arg->ovfl_pmd = (unsigned char )i;
5315 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5316 ovfl_arg->active_set = 0;
5317 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5318 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5320 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5321 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5322 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5325 * copy values of pmds of interest. Sampling format may copy them
5326 * into sampling buffer.
5329 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5330 if ((smpl_pmds & 0x1) == 0) continue;
5331 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5332 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5336 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5338 start_cycles = ia64_get_itc();
5341 * call custom buffer format record (handler) routine
5343 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5345 end_cycles = ia64_get_itc();
5348 * For those controls, we take the union because they have
5349 * an all or nothing behavior.
5351 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5352 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5353 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5355 * build the bitmask of pmds to reset now
5357 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5359 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5362 * when the module cannot handle the rest of the overflows, we abort right here
5364 if (ret && pmd_mask) {
5365 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5366 pmd_mask<<PMU_FIRST_COUNTER));
5369 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5371 ovfl_pmds &= ~reset_pmds;
5374 * when no sampling module is used, then the default
5375 * is to notify on overflow if requested by user
5377 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5378 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5379 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5380 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5382 * if needed, we reset all overflowed pmds
5384 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5387 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5390 * reset the requested PMD registers using the short reset values
5393 unsigned long bm = reset_pmds;
5394 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5397 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5399 * keep track of what to reset when unblocking
5401 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5404 * check for blocking context
5406 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5408 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5411 * set the perfmon specific checking pending work for the task
5413 PFM_SET_WORK_PENDING(task, 1);
5416 * when coming from ctxsw, current still points to the
5417 * previous task, therefore we must work with task and not current.
5419 pfm_set_task_notify(task);
5422 * defer until state is changed (shorten spin window). the context is locked
5423 * anyway, so the signal receiver would come spin for nothing.
5428 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5429 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5430 PFM_GET_WORK_PENDING(task),
5431 ctx->ctx_fl_trap_reason,
5434 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5436 * in case monitoring must be stopped, we toggle the psr bits
5438 if (ovfl_ctrl.bits.mask_monitoring) {
5439 pfm_mask_monitoring(task);
5440 ctx->ctx_state = PFM_CTX_MASKED;
5441 ctx->ctx_fl_can_restart = 1;
5445 * send notification now
5447 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5452 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5454 task ? task->pid : -1,
5460 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5461 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5462 * come here as zombie only if the task is the current task. In which case, we
5463 * can access the PMU hardware directly.
5465 * Note that zombies do have PM_VALID set. So here we do the minimal.
5467 * In case the context was zombified it could not be reclaimed at the time
5468 * the monitoring program exited. At this point, the PMU reservation has been
5469 * returned, the sampiing buffer has been freed. We must convert this call
5470 * into a spurious interrupt. However, we must also avoid infinite overflows
5471 * by stopping monitoring for this task. We can only come here for a per-task
5472 * context. All we need to do is to stop monitoring using the psr bits which
5473 * are always task private. By re-enabling secure montioring, we ensure that
5474 * the monitored task will not be able to re-activate monitoring.
5475 * The task will eventually be context switched out, at which point the context
5476 * will be reclaimed (that includes releasing ownership of the PMU).
5478 * So there might be a window of time where the number of per-task session is zero
5479 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5480 * context. This is safe because if a per-task session comes in, it will push this one
5481 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5482 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5483 * also push our zombie context out.
5485 * Overall pretty hairy stuff....
5487 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5489 ia64_psr(regs)->up = 0;
5490 ia64_psr(regs)->sp = 1;
5495 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5497 struct task_struct *task;
5499 unsigned long flags;
5501 int this_cpu = smp_processor_id();
5504 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5507 * srlz.d done before arriving here
5509 pmc0 = ia64_get_pmc(0);
5511 task = GET_PMU_OWNER();
5512 ctx = GET_PMU_CTX();
5515 * if we have some pending bits set
5516 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5518 if (PMC0_HAS_OVFL(pmc0) && task) {
5520 * we assume that pmc0.fr is always set here
5524 if (!ctx) goto report_spurious1;
5526 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5527 goto report_spurious2;
5529 PROTECT_CTX_NOPRINT(ctx, flags);
5531 pfm_overflow_handler(task, ctx, pmc0, regs);
5533 UNPROTECT_CTX_NOPRINT(ctx, flags);
5536 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5540 * keep it unfrozen at all times
5547 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5548 this_cpu, task->pid);
5552 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5560 pfm_interrupt_handler(int irq, void *arg)
5562 unsigned long start_cycles, total_cycles;
5563 unsigned long min, max;
5566 struct pt_regs *regs = get_irq_regs();
5568 this_cpu = get_cpu();
5569 if (likely(!pfm_alt_intr_handler)) {
5570 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5571 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5573 start_cycles = ia64_get_itc();
5575 ret = pfm_do_interrupt_handler(irq, arg, regs);
5577 total_cycles = ia64_get_itc();
5580 * don't measure spurious interrupts
5582 if (likely(ret == 0)) {
5583 total_cycles -= start_cycles;
5585 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5586 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5588 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5592 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5595 put_cpu_no_resched();
5600 * /proc/perfmon interface, for debug only
5603 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5606 pfm_proc_start(struct seq_file *m, loff_t *pos)
5609 return PFM_PROC_SHOW_HEADER;
5612 while (*pos <= NR_CPUS) {
5613 if (cpu_online(*pos - 1)) {
5614 return (void *)*pos;
5622 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5625 return pfm_proc_start(m, pos);
5629 pfm_proc_stop(struct seq_file *m, void *v)
5634 pfm_proc_show_header(struct seq_file *m)
5636 struct list_head * pos;
5637 pfm_buffer_fmt_t * entry;
5638 unsigned long flags;
5641 "perfmon version : %u.%u\n"
5644 "expert mode : %s\n"
5645 "ovfl_mask : 0x%lx\n"
5646 "PMU flags : 0x%x\n",
5647 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5649 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5650 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5657 "proc_sessions : %u\n"
5658 "sys_sessions : %u\n"
5659 "sys_use_dbregs : %u\n"
5660 "ptrace_use_dbregs : %u\n",
5661 pfm_sessions.pfs_task_sessions,
5662 pfm_sessions.pfs_sys_sessions,
5663 pfm_sessions.pfs_sys_use_dbregs,
5664 pfm_sessions.pfs_ptrace_use_dbregs);
5668 spin_lock(&pfm_buffer_fmt_lock);
5670 list_for_each(pos, &pfm_buffer_fmt_list) {
5671 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5672 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5683 entry->fmt_uuid[10],
5684 entry->fmt_uuid[11],
5685 entry->fmt_uuid[12],
5686 entry->fmt_uuid[13],
5687 entry->fmt_uuid[14],
5688 entry->fmt_uuid[15],
5691 spin_unlock(&pfm_buffer_fmt_lock);
5696 pfm_proc_show(struct seq_file *m, void *v)
5702 if (v == PFM_PROC_SHOW_HEADER) {
5703 pfm_proc_show_header(m);
5707 /* show info for CPU (v - 1) */
5711 "CPU%-2d overflow intrs : %lu\n"
5712 "CPU%-2d overflow cycles : %lu\n"
5713 "CPU%-2d overflow min : %lu\n"
5714 "CPU%-2d overflow max : %lu\n"
5715 "CPU%-2d smpl handler calls : %lu\n"
5716 "CPU%-2d smpl handler cycles : %lu\n"
5717 "CPU%-2d spurious intrs : %lu\n"
5718 "CPU%-2d replay intrs : %lu\n"
5719 "CPU%-2d syst_wide : %d\n"
5720 "CPU%-2d dcr_pp : %d\n"
5721 "CPU%-2d exclude idle : %d\n"
5722 "CPU%-2d owner : %d\n"
5723 "CPU%-2d context : %p\n"
5724 "CPU%-2d activations : %lu\n",
5725 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5726 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5727 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5728 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5729 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5730 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5731 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5732 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5733 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5734 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5735 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5736 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5737 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5738 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5740 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5742 psr = pfm_get_psr();
5747 "CPU%-2d psr : 0x%lx\n"
5748 "CPU%-2d pmc0 : 0x%lx\n",
5750 cpu, ia64_get_pmc(0));
5752 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5753 if (PMC_IS_COUNTING(i) == 0) continue;
5755 "CPU%-2d pmc%u : 0x%lx\n"
5756 "CPU%-2d pmd%u : 0x%lx\n",
5757 cpu, i, ia64_get_pmc(i),
5758 cpu, i, ia64_get_pmd(i));
5764 struct seq_operations pfm_seq_ops = {
5765 .start = pfm_proc_start,
5766 .next = pfm_proc_next,
5767 .stop = pfm_proc_stop,
5768 .show = pfm_proc_show
5772 pfm_proc_open(struct inode *inode, struct file *file)
5774 return seq_open(file, &pfm_seq_ops);
5779 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5780 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5781 * is active or inactive based on mode. We must rely on the value in
5782 * local_cpu_data->pfm_syst_info
5785 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5787 struct pt_regs *regs;
5789 unsigned long dcr_pp;
5791 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5794 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5795 * on every CPU, so we can rely on the pid to identify the idle task.
5797 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5798 regs = task_pt_regs(task);
5799 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5803 * if monitoring has started
5806 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5808 * context switching in?
5811 /* mask monitoring for the idle task */
5812 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5818 * context switching out
5819 * restore monitoring for next task
5821 * Due to inlining this odd if-then-else construction generates
5824 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5833 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5835 struct task_struct *task = ctx->ctx_task;
5837 ia64_psr(regs)->up = 0;
5838 ia64_psr(regs)->sp = 1;
5840 if (GET_PMU_OWNER() == task) {
5841 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5842 SET_PMU_OWNER(NULL, NULL);
5846 * disconnect the task from the context and vice-versa
5848 PFM_SET_WORK_PENDING(task, 0);
5850 task->thread.pfm_context = NULL;
5851 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5853 DPRINT(("force cleanup for [%d]\n", task->pid));
5858 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5861 pfm_save_regs(struct task_struct *task)
5864 unsigned long flags;
5868 ctx = PFM_GET_CTX(task);
5869 if (ctx == NULL) return;
5872 * we always come here with interrupts ALREADY disabled by
5873 * the scheduler. So we simply need to protect against concurrent
5874 * access, not CPU concurrency.
5876 flags = pfm_protect_ctx_ctxsw(ctx);
5878 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5879 struct pt_regs *regs = task_pt_regs(task);
5883 pfm_force_cleanup(ctx, regs);
5885 BUG_ON(ctx->ctx_smpl_hdr);
5887 pfm_unprotect_ctx_ctxsw(ctx, flags);
5889 pfm_context_free(ctx);
5894 * save current PSR: needed because we modify it
5897 psr = pfm_get_psr();
5899 BUG_ON(psr & (IA64_PSR_I));
5903 * This is the last instruction which may generate an overflow
5905 * We do not need to set psr.sp because, it is irrelevant in kernel.
5906 * It will be restored from ipsr when going back to user level
5911 * keep a copy of psr.up (for reload)
5913 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5916 * release ownership of this PMU.
5917 * PM interrupts are masked, so nothing
5920 SET_PMU_OWNER(NULL, NULL);
5923 * we systematically save the PMD as we have no
5924 * guarantee we will be schedule at that same
5927 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5930 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5931 * we will need it on the restore path to check
5932 * for pending overflow.
5934 ctx->th_pmcs[0] = ia64_get_pmc(0);
5937 * unfreeze PMU if had pending overflows
5939 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5942 * finally, allow context access.
5943 * interrupts will still be masked after this call.
5945 pfm_unprotect_ctx_ctxsw(ctx, flags);
5948 #else /* !CONFIG_SMP */
5950 pfm_save_regs(struct task_struct *task)
5955 ctx = PFM_GET_CTX(task);
5956 if (ctx == NULL) return;
5959 * save current PSR: needed because we modify it
5961 psr = pfm_get_psr();
5963 BUG_ON(psr & (IA64_PSR_I));
5967 * This is the last instruction which may generate an overflow
5969 * We do not need to set psr.sp because, it is irrelevant in kernel.
5970 * It will be restored from ipsr when going back to user level
5975 * keep a copy of psr.up (for reload)
5977 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5981 pfm_lazy_save_regs (struct task_struct *task)
5984 unsigned long flags;
5986 { u64 psr = pfm_get_psr();
5987 BUG_ON(psr & IA64_PSR_UP);
5990 ctx = PFM_GET_CTX(task);
5993 * we need to mask PMU overflow here to
5994 * make sure that we maintain pmc0 until
5995 * we save it. overflow interrupts are
5996 * treated as spurious if there is no
5999 * XXX: I don't think this is necessary
6001 PROTECT_CTX(ctx,flags);
6004 * release ownership of this PMU.
6005 * must be done before we save the registers.
6007 * after this call any PMU interrupt is treated
6010 SET_PMU_OWNER(NULL, NULL);
6013 * save all the pmds we use
6015 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6018 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6019 * it is needed to check for pended overflow
6020 * on the restore path
6022 ctx->th_pmcs[0] = ia64_get_pmc(0);
6025 * unfreeze PMU if had pending overflows
6027 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6030 * now get can unmask PMU interrupts, they will
6031 * be treated as purely spurious and we will not
6032 * lose any information
6034 UNPROTECT_CTX(ctx,flags);
6036 #endif /* CONFIG_SMP */
6040 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6043 pfm_load_regs (struct task_struct *task)
6046 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6047 unsigned long flags;
6049 int need_irq_resend;
6051 ctx = PFM_GET_CTX(task);
6052 if (unlikely(ctx == NULL)) return;
6054 BUG_ON(GET_PMU_OWNER());
6057 * possible on unload
6059 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6062 * we always come here with interrupts ALREADY disabled by
6063 * the scheduler. So we simply need to protect against concurrent
6064 * access, not CPU concurrency.
6066 flags = pfm_protect_ctx_ctxsw(ctx);
6067 psr = pfm_get_psr();
6069 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6071 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6072 BUG_ON(psr & IA64_PSR_I);
6074 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6075 struct pt_regs *regs = task_pt_regs(task);
6077 BUG_ON(ctx->ctx_smpl_hdr);
6079 pfm_force_cleanup(ctx, regs);
6081 pfm_unprotect_ctx_ctxsw(ctx, flags);
6084 * this one (kmalloc'ed) is fine with interrupts disabled
6086 pfm_context_free(ctx);
6092 * we restore ALL the debug registers to avoid picking up
6095 if (ctx->ctx_fl_using_dbreg) {
6096 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6097 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6100 * retrieve saved psr.up
6102 psr_up = ctx->ctx_saved_psr_up;
6105 * if we were the last user of the PMU on that CPU,
6106 * then nothing to do except restore psr
6108 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6111 * retrieve partial reload masks (due to user modifications)
6113 pmc_mask = ctx->ctx_reload_pmcs[0];
6114 pmd_mask = ctx->ctx_reload_pmds[0];
6118 * To avoid leaking information to the user level when psr.sp=0,
6119 * we must reload ALL implemented pmds (even the ones we don't use).
6120 * In the kernel we only allow PFM_READ_PMDS on registers which
6121 * we initialized or requested (sampling) so there is no risk there.
6123 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6126 * ALL accessible PMCs are systematically reloaded, unused registers
6127 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6128 * up stale configuration.
6130 * PMC0 is never in the mask. It is always restored separately.
6132 pmc_mask = ctx->ctx_all_pmcs[0];
6135 * when context is MASKED, we will restore PMC with plm=0
6136 * and PMD with stale information, but that's ok, nothing
6139 * XXX: optimize here
6141 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6142 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6145 * check for pending overflow at the time the state
6148 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6150 * reload pmc0 with the overflow information
6151 * On McKinley PMU, this will trigger a PMU interrupt
6153 ia64_set_pmc(0, ctx->th_pmcs[0]);
6155 ctx->th_pmcs[0] = 0UL;
6158 * will replay the PMU interrupt
6160 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6162 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6166 * we just did a reload, so we reset the partial reload fields
6168 ctx->ctx_reload_pmcs[0] = 0UL;
6169 ctx->ctx_reload_pmds[0] = 0UL;
6171 SET_LAST_CPU(ctx, smp_processor_id());
6174 * dump activation value for this PMU
6178 * record current activation for this context
6180 SET_ACTIVATION(ctx);
6183 * establish new ownership.
6185 SET_PMU_OWNER(task, ctx);
6188 * restore the psr.up bit. measurement
6190 * no PMU interrupt can happen at this point
6191 * because we still have interrupts disabled.
6193 if (likely(psr_up)) pfm_set_psr_up();
6196 * allow concurrent access to context
6198 pfm_unprotect_ctx_ctxsw(ctx, flags);
6200 #else /* !CONFIG_SMP */
6202 * reload PMU state for UP kernels
6203 * in 2.5 we come here with interrupts disabled
6206 pfm_load_regs (struct task_struct *task)
6209 struct task_struct *owner;
6210 unsigned long pmd_mask, pmc_mask;
6212 int need_irq_resend;
6214 owner = GET_PMU_OWNER();
6215 ctx = PFM_GET_CTX(task);
6216 psr = pfm_get_psr();
6218 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6219 BUG_ON(psr & IA64_PSR_I);
6222 * we restore ALL the debug registers to avoid picking up
6225 * This must be done even when the task is still the owner
6226 * as the registers may have been modified via ptrace()
6227 * (not perfmon) by the previous task.
6229 if (ctx->ctx_fl_using_dbreg) {
6230 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6231 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6235 * retrieved saved psr.up
6237 psr_up = ctx->ctx_saved_psr_up;
6238 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6241 * short path, our state is still there, just
6242 * need to restore psr and we go
6244 * we do not touch either PMC nor PMD. the psr is not touched
6245 * by the overflow_handler. So we are safe w.r.t. to interrupt
6246 * concurrency even without interrupt masking.
6248 if (likely(owner == task)) {
6249 if (likely(psr_up)) pfm_set_psr_up();
6254 * someone else is still using the PMU, first push it out and
6255 * then we'll be able to install our stuff !
6257 * Upon return, there will be no owner for the current PMU
6259 if (owner) pfm_lazy_save_regs(owner);
6262 * To avoid leaking information to the user level when psr.sp=0,
6263 * we must reload ALL implemented pmds (even the ones we don't use).
6264 * In the kernel we only allow PFM_READ_PMDS on registers which
6265 * we initialized or requested (sampling) so there is no risk there.
6267 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6270 * ALL accessible PMCs are systematically reloaded, unused registers
6271 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6272 * up stale configuration.
6274 * PMC0 is never in the mask. It is always restored separately
6276 pmc_mask = ctx->ctx_all_pmcs[0];
6278 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6279 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6282 * check for pending overflow at the time the state
6285 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6287 * reload pmc0 with the overflow information
6288 * On McKinley PMU, this will trigger a PMU interrupt
6290 ia64_set_pmc(0, ctx->th_pmcs[0]);
6293 ctx->th_pmcs[0] = 0UL;
6296 * will replay the PMU interrupt
6298 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6300 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6304 * establish new ownership.
6306 SET_PMU_OWNER(task, ctx);
6309 * restore the psr.up bit. measurement
6311 * no PMU interrupt can happen at this point
6312 * because we still have interrupts disabled.
6314 if (likely(psr_up)) pfm_set_psr_up();
6316 #endif /* CONFIG_SMP */
6319 * this function assumes monitoring is stopped
6322 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6325 unsigned long mask2, val, pmd_val, ovfl_val;
6326 int i, can_access_pmu = 0;
6330 * is the caller the task being monitored (or which initiated the
6331 * session for system wide measurements)
6333 is_self = ctx->ctx_task == task ? 1 : 0;
6336 * can access PMU is task is the owner of the PMU state on the current CPU
6337 * or if we are running on the CPU bound to the context in system-wide mode
6338 * (that is not necessarily the task the context is attached to in this mode).
6339 * In system-wide we always have can_access_pmu true because a task running on an
6340 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6342 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6343 if (can_access_pmu) {
6345 * Mark the PMU as not owned
6346 * This will cause the interrupt handler to do nothing in case an overflow
6347 * interrupt was in-flight
6348 * This also guarantees that pmc0 will contain the final state
6349 * It virtually gives us full control on overflow processing from that point
6352 SET_PMU_OWNER(NULL, NULL);
6353 DPRINT(("releasing ownership\n"));
6356 * read current overflow status:
6358 * we are guaranteed to read the final stable state
6361 pmc0 = ia64_get_pmc(0); /* slow */
6364 * reset freeze bit, overflow status information destroyed
6368 pmc0 = ctx->th_pmcs[0];
6370 * clear whatever overflow status bits there were
6372 ctx->th_pmcs[0] = 0;
6374 ovfl_val = pmu_conf->ovfl_val;
6376 * we save all the used pmds
6377 * we take care of overflows for counting PMDs
6379 * XXX: sampling situation is not taken into account here
6381 mask2 = ctx->ctx_used_pmds[0];
6383 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6385 for (i = 0; mask2; i++, mask2>>=1) {
6387 /* skip non used pmds */
6388 if ((mask2 & 0x1) == 0) continue;
6391 * can access PMU always true in system wide mode
6393 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6395 if (PMD_IS_COUNTING(i)) {
6396 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6399 ctx->ctx_pmds[i].val,
6403 * we rebuild the full 64 bit value of the counter
6405 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6408 * now everything is in ctx_pmds[] and we need
6409 * to clear the saved context from save_regs() such that
6410 * pfm_read_pmds() gets the correct value
6415 * take care of overflow inline
6417 if (pmc0 & (1UL << i)) {
6418 val += 1 + ovfl_val;
6419 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6423 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6425 if (is_self) ctx->th_pmds[i] = pmd_val;
6427 ctx->ctx_pmds[i].val = val;
6431 static struct irqaction perfmon_irqaction = {
6432 .handler = pfm_interrupt_handler,
6433 .flags = IRQF_DISABLED,
6438 pfm_alt_save_pmu_state(void *data)
6440 struct pt_regs *regs;
6442 regs = task_pt_regs(current);
6444 DPRINT(("called\n"));
6447 * should not be necessary but
6448 * let's take not risk
6452 ia64_psr(regs)->pp = 0;
6455 * This call is required
6456 * May cause a spurious interrupt on some processors
6464 pfm_alt_restore_pmu_state(void *data)
6466 struct pt_regs *regs;
6468 regs = task_pt_regs(current);
6470 DPRINT(("called\n"));
6473 * put PMU back in state expected
6478 ia64_psr(regs)->pp = 0;
6481 * perfmon runs with PMU unfrozen at all times
6489 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6494 /* some sanity checks */
6495 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6497 /* do the easy test first */
6498 if (pfm_alt_intr_handler) return -EBUSY;
6500 /* one at a time in the install or remove, just fail the others */
6501 if (!spin_trylock(&pfm_alt_install_check)) {
6505 /* reserve our session */
6506 for_each_online_cpu(reserve_cpu) {
6507 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6508 if (ret) goto cleanup_reserve;
6511 /* save the current system wide pmu states */
6512 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6514 DPRINT(("on_each_cpu() failed: %d\n", ret));
6515 goto cleanup_reserve;
6518 /* officially change to the alternate interrupt handler */
6519 pfm_alt_intr_handler = hdl;
6521 spin_unlock(&pfm_alt_install_check);
6526 for_each_online_cpu(i) {
6527 /* don't unreserve more than we reserved */
6528 if (i >= reserve_cpu) break;
6530 pfm_unreserve_session(NULL, 1, i);
6533 spin_unlock(&pfm_alt_install_check);
6537 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6540 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6545 if (hdl == NULL) return -EINVAL;
6547 /* cannot remove someone else's handler! */
6548 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6550 /* one at a time in the install or remove, just fail the others */
6551 if (!spin_trylock(&pfm_alt_install_check)) {
6555 pfm_alt_intr_handler = NULL;
6557 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6559 DPRINT(("on_each_cpu() failed: %d\n", ret));
6562 for_each_online_cpu(i) {
6563 pfm_unreserve_session(NULL, 1, i);
6566 spin_unlock(&pfm_alt_install_check);
6570 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6573 * perfmon initialization routine, called from the initcall() table
6575 static int init_pfm_fs(void);
6583 family = local_cpu_data->family;
6588 if ((*p)->probe() == 0) goto found;
6589 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6600 static struct file_operations pfm_proc_fops = {
6601 .open = pfm_proc_open,
6603 .llseek = seq_lseek,
6604 .release = seq_release,
6610 unsigned int n, n_counters, i;
6612 printk("perfmon: version %u.%u IRQ %u\n",
6615 IA64_PERFMON_VECTOR);
6617 if (pfm_probe_pmu()) {
6618 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6619 local_cpu_data->family);
6624 * compute the number of implemented PMD/PMC from the
6625 * description tables
6628 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6629 if (PMC_IS_IMPL(i) == 0) continue;
6630 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6633 pmu_conf->num_pmcs = n;
6635 n = 0; n_counters = 0;
6636 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6637 if (PMD_IS_IMPL(i) == 0) continue;
6638 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6640 if (PMD_IS_COUNTING(i)) n_counters++;
6642 pmu_conf->num_pmds = n;
6643 pmu_conf->num_counters = n_counters;
6646 * sanity checks on the number of debug registers
6648 if (pmu_conf->use_rr_dbregs) {
6649 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6650 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6654 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6655 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6661 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6665 pmu_conf->num_counters,
6666 ffz(pmu_conf->ovfl_val));
6669 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6670 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6676 * create /proc/perfmon (mostly for debugging purposes)
6678 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6679 if (perfmon_dir == NULL) {
6680 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6685 * install customized file operations for /proc/perfmon entry
6687 perfmon_dir->proc_fops = &pfm_proc_fops;
6690 * create /proc/sys/kernel/perfmon (for debugging purposes)
6692 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6695 * initialize all our spinlocks
6697 spin_lock_init(&pfm_sessions.pfs_lock);
6698 spin_lock_init(&pfm_buffer_fmt_lock);
6702 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6707 __initcall(pfm_init);
6710 * this function is called before pfm_init()
6713 pfm_init_percpu (void)
6715 static int first_time=1;
6717 * make sure no measurement is active
6718 * (may inherit programmed PMCs from EFI).
6724 * we run with the PMU not frozen at all times
6729 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6733 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6738 * used for debug purposes only
6741 dump_pmu_state(const char *from)
6743 struct task_struct *task;
6744 struct pt_regs *regs;
6746 unsigned long psr, dcr, info, flags;
6749 local_irq_save(flags);
6751 this_cpu = smp_processor_id();
6752 regs = task_pt_regs(current);
6753 info = PFM_CPUINFO_GET();
6754 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6756 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6757 local_irq_restore(flags);
6761 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6768 task = GET_PMU_OWNER();
6769 ctx = GET_PMU_CTX();
6771 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6773 psr = pfm_get_psr();
6775 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6778 psr & IA64_PSR_PP ? 1 : 0,
6779 psr & IA64_PSR_UP ? 1 : 0,
6780 dcr & IA64_DCR_PP ? 1 : 0,
6783 ia64_psr(regs)->pp);
6785 ia64_psr(regs)->up = 0;
6786 ia64_psr(regs)->pp = 0;
6788 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6789 if (PMC_IS_IMPL(i) == 0) continue;
6790 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6793 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6794 if (PMD_IS_IMPL(i) == 0) continue;
6795 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6799 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6802 ctx->ctx_smpl_vaddr,
6806 ctx->ctx_saved_psr_up);
6808 local_irq_restore(flags);
6812 * called from process.c:copy_thread(). task is new child.
6815 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6817 struct thread_struct *thread;
6819 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6821 thread = &task->thread;
6824 * cut links inherited from parent (current)
6826 thread->pfm_context = NULL;
6828 PFM_SET_WORK_PENDING(task, 0);
6831 * the psr bits are already set properly in copy_threads()
6834 #else /* !CONFIG_PERFMON */
6836 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6840 #endif /* CONFIG_PERFMON */