2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/slab.h>
17 #include <linux/pagemap.h>
18 #include <linux/crc32.h>
19 #include <linux/compiler.h>
20 #include <linux/stat.h>
24 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 struct jffs2_inode_cache *ic,
26 struct jffs2_raw_node_ref *raw);
27 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 uint32_t start, uint32_t end);
36 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 uint32_t start, uint32_t end);
39 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
40 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
42 /* Called with erase_completion_lock held */
43 static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
45 struct jffs2_eraseblock *ret;
46 struct list_head *nextlist = NULL;
47 int n = jiffies % 128;
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
54 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 nextlist = &c->bad_used_list;
57 } else if (n < 50 && !list_empty(&c->erasable_list)) {
58 /* Note that most of them will have gone directly to be erased.
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 nextlist = &c->erasable_list;
62 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 nextlist = &c->very_dirty_list;
66 } else if (n < 126 && !list_empty(&c->dirty_list)) {
67 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 nextlist = &c->dirty_list;
69 } else if (!list_empty(&c->clean_list)) {
70 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 nextlist = &c->clean_list;
72 } else if (!list_empty(&c->dirty_list)) {
73 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
75 nextlist = &c->dirty_list;
76 } else if (!list_empty(&c->very_dirty_list)) {
77 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist = &c->very_dirty_list;
79 } else if (!list_empty(&c->erasable_list)) {
80 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
82 nextlist = &c->erasable_list;
83 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
86 spin_unlock(&c->erase_completion_lock);
87 jffs2_flush_wbuf_pad(c);
88 spin_lock(&c->erase_completion_lock);
91 /* Eep. All were empty */
92 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
96 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
99 ret->gc_node = ret->first_node;
101 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
105 /* Have we accidentally picked a clean block with wasted space ? */
106 if (ret->wasted_size) {
107 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 ret->dirty_size += ret->wasted_size;
109 c->wasted_size -= ret->wasted_size;
110 c->dirty_size += ret->wasted_size;
111 ret->wasted_size = 0;
117 /* jffs2_garbage_collect_pass
118 * Make a single attempt to progress GC. Move one node, and possibly
119 * start erasing one eraseblock.
121 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
123 struct jffs2_inode_info *f;
124 struct jffs2_inode_cache *ic;
125 struct jffs2_eraseblock *jeb;
126 struct jffs2_raw_node_ref *raw;
127 int ret = 0, inum, nlink;
130 if (down_interruptible(&c->alloc_sem))
134 spin_lock(&c->erase_completion_lock);
135 if (!c->unchecked_size)
138 /* We can't start doing GC yet. We haven't finished checking
139 the node CRCs etc. Do it now. */
141 /* checked_ino is protected by the alloc_sem */
142 if (c->checked_ino > c->highest_ino && xattr) {
143 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
145 jffs2_dbg_dump_block_lists_nolock(c);
146 spin_unlock(&c->erase_completion_lock);
150 spin_unlock(&c->erase_completion_lock);
153 xattr = jffs2_verify_xattr(c);
155 spin_lock(&c->inocache_lock);
157 ic = jffs2_get_ino_cache(c, c->checked_ino++);
160 spin_unlock(&c->inocache_lock);
165 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
167 spin_unlock(&c->inocache_lock);
168 jffs2_xattr_delete_inode(c, ic);
172 case INO_STATE_CHECKEDABSENT:
173 case INO_STATE_PRESENT:
174 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
175 spin_unlock(&c->inocache_lock);
179 case INO_STATE_CHECKING:
180 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
181 spin_unlock(&c->inocache_lock);
184 case INO_STATE_READING:
185 /* We need to wait for it to finish, lest we move on
186 and trigger the BUG() above while we haven't yet
187 finished checking all its nodes */
188 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
189 /* We need to come back again for the _same_ inode. We've
190 made no progress in this case, but that should be OK */
194 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
200 case INO_STATE_UNCHECKED:
203 ic->state = INO_STATE_CHECKING;
204 spin_unlock(&c->inocache_lock);
206 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
208 ret = jffs2_do_crccheck_inode(c, ic);
210 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
212 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
217 /* First, work out which block we're garbage-collecting */
221 jeb = jffs2_find_gc_block(c);
224 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
225 spin_unlock(&c->erase_completion_lock);
230 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
232 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
234 if (!jeb->used_size) {
241 while(ref_obsolete(raw)) {
242 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
244 if (unlikely(!raw)) {
245 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
246 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
247 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
249 spin_unlock(&c->erase_completion_lock);
256 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
258 if (!raw->next_in_ino) {
259 /* Inode-less node. Clean marker, snapshot or something like that */
260 spin_unlock(&c->erase_completion_lock);
261 if (ref_flags(raw) == REF_PRISTINE) {
262 /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */
263 jffs2_garbage_collect_pristine(c, NULL, raw);
265 /* Just mark it obsolete */
266 jffs2_mark_node_obsolete(c, raw);
272 ic = jffs2_raw_ref_to_ic(raw);
274 #ifdef CONFIG_JFFS2_FS_XATTR
275 /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr.
276 * We can decide whether this node is inode or xattr by ic->class. */
277 if (ic->class == RAWNODE_CLASS_XATTR_DATUM
278 || ic->class == RAWNODE_CLASS_XATTR_REF) {
279 spin_unlock(&c->erase_completion_lock);
281 if (ic->class == RAWNODE_CLASS_XATTR_DATUM) {
282 ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw);
284 ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw);
290 /* We need to hold the inocache. Either the erase_completion_lock or
291 the inocache_lock are sufficient; we trade down since the inocache_lock
292 causes less contention. */
293 spin_lock(&c->inocache_lock);
295 spin_unlock(&c->erase_completion_lock);
297 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
299 /* Three possibilities:
300 1. Inode is already in-core. We must iget it and do proper
301 updating to its fragtree, etc.
302 2. Inode is not in-core, node is REF_PRISTINE. We lock the
303 inocache to prevent a read_inode(), copy the node intact.
304 3. Inode is not in-core, node is not pristine. We must iget()
305 and take the slow path.
309 case INO_STATE_CHECKEDABSENT:
310 /* It's been checked, but it's not currently in-core.
311 We can just copy any pristine nodes, but have
312 to prevent anyone else from doing read_inode() while
313 we're at it, so we set the state accordingly */
314 if (ref_flags(raw) == REF_PRISTINE)
315 ic->state = INO_STATE_GC;
317 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
322 case INO_STATE_PRESENT:
323 /* It's in-core. GC must iget() it. */
326 case INO_STATE_UNCHECKED:
327 case INO_STATE_CHECKING:
329 /* Should never happen. We should have finished checking
330 by the time we actually start doing any GC, and since
331 we're holding the alloc_sem, no other garbage collection
334 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
337 spin_unlock(&c->inocache_lock);
340 case INO_STATE_READING:
341 /* Someone's currently trying to read it. We must wait for
342 them to finish and then go through the full iget() route
343 to do the GC. However, sometimes read_inode() needs to get
344 the alloc_sem() (for marking nodes invalid) so we must
345 drop the alloc_sem before sleeping. */
348 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
349 ic->ino, ic->state));
350 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
351 /* And because we dropped the alloc_sem we must start again from the
352 beginning. Ponder chance of livelock here -- we're returning success
353 without actually making any progress.
355 Q: What are the chances that the inode is back in INO_STATE_READING
356 again by the time we next enter this function? And that this happens
357 enough times to cause a real delay?
359 A: Small enough that I don't care :)
364 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
365 node intact, and we don't have to muck about with the fragtree etc.
366 because we know it's not in-core. If it _was_ in-core, we go through
367 all the iget() crap anyway */
369 if (ic->state == INO_STATE_GC) {
370 spin_unlock(&c->inocache_lock);
372 ret = jffs2_garbage_collect_pristine(c, ic, raw);
374 spin_lock(&c->inocache_lock);
375 ic->state = INO_STATE_CHECKEDABSENT;
376 wake_up(&c->inocache_wq);
378 if (ret != -EBADFD) {
379 spin_unlock(&c->inocache_lock);
383 /* Fall through if it wanted us to, with inocache_lock held */
386 /* Prevent the fairly unlikely race where the gcblock is
387 entirely obsoleted by the final close of a file which had
388 the only valid nodes in the block, followed by erasure,
389 followed by freeing of the ic because the erased block(s)
390 held _all_ the nodes of that inode.... never been seen but
391 it's vaguely possible. */
395 spin_unlock(&c->inocache_lock);
397 f = jffs2_gc_fetch_inode(c, inum, nlink);
407 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
409 jffs2_gc_release_inode(c, f);
415 /* If we've finished this block, start it erasing */
416 spin_lock(&c->erase_completion_lock);
419 if (c->gcblock && !c->gcblock->used_size) {
420 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
421 /* We're GC'ing an empty block? */
422 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
424 c->nr_erasing_blocks++;
425 jffs2_erase_pending_trigger(c);
427 spin_unlock(&c->erase_completion_lock);
432 static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
433 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
435 struct jffs2_node_frag *frag;
436 struct jffs2_full_dnode *fn = NULL;
437 struct jffs2_full_dirent *fd;
438 uint32_t start = 0, end = 0, nrfrags = 0;
443 /* Now we have the lock for this inode. Check that it's still the one at the head
446 spin_lock(&c->erase_completion_lock);
448 if (c->gcblock != jeb) {
449 spin_unlock(&c->erase_completion_lock);
450 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
453 if (ref_obsolete(raw)) {
454 spin_unlock(&c->erase_completion_lock);
455 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
456 /* They'll call again */
459 spin_unlock(&c->erase_completion_lock);
461 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
462 if (f->metadata && f->metadata->raw == raw) {
464 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
468 /* FIXME. Read node and do lookup? */
469 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
470 if (frag->node && frag->node->raw == raw) {
472 end = frag->ofs + frag->size;
475 if (nrfrags == frag->node->frags)
476 break; /* We've found them all */
480 if (ref_flags(raw) == REF_PRISTINE) {
481 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
483 /* Urgh. Return it sensibly. */
484 frag->node->raw = f->inocache->nodes;
489 /* We found a datanode. Do the GC */
490 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
491 /* It crosses a page boundary. Therefore, it must be a hole. */
492 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
494 /* It could still be a hole. But we GC the page this way anyway */
495 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
500 /* Wasn't a dnode. Try dirent */
501 for (fd = f->dents; fd; fd=fd->next) {
507 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
509 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
511 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
512 ref_offset(raw), f->inocache->ino);
513 if (ref_obsolete(raw)) {
514 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
516 jffs2_dbg_dump_node(c, ref_offset(raw));
526 static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
527 struct jffs2_inode_cache *ic,
528 struct jffs2_raw_node_ref *raw)
530 union jffs2_node_union *node;
533 uint32_t phys_ofs, alloclen;
534 uint32_t crc, rawlen;
537 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
539 alloclen = rawlen = ref_totlen(c, c->gcblock, raw);
541 /* Ask for a small amount of space (or the totlen if smaller) because we
542 don't want to force wastage of the end of a block if splitting would
544 if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
545 alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN;
547 ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen);
548 /* 'rawlen' is not the exact summary size; it is only an upper estimation */
553 if (alloclen < rawlen) {
554 /* Doesn't fit untouched. We'll go the old route and split it */
558 node = kmalloc(rawlen, GFP_KERNEL);
562 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
563 if (!ret && retlen != rawlen)
568 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
569 if (je32_to_cpu(node->u.hdr_crc) != crc) {
570 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
571 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
575 switch(je16_to_cpu(node->u.nodetype)) {
576 case JFFS2_NODETYPE_INODE:
577 crc = crc32(0, node, sizeof(node->i)-8);
578 if (je32_to_cpu(node->i.node_crc) != crc) {
579 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
580 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
584 if (je32_to_cpu(node->i.dsize)) {
585 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
586 if (je32_to_cpu(node->i.data_crc) != crc) {
587 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
588 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
594 case JFFS2_NODETYPE_DIRENT:
595 crc = crc32(0, node, sizeof(node->d)-8);
596 if (je32_to_cpu(node->d.node_crc) != crc) {
597 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
598 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
603 crc = crc32(0, node->d.name, node->d.nsize);
604 if (je32_to_cpu(node->d.name_crc) != crc) {
605 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
606 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
612 /* If it's inode-less, we don't _know_ what it is. Just copy it intact */
614 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
615 ref_offset(raw), je16_to_cpu(node->u.nodetype));
620 /* OK, all the CRCs are good; this node can just be copied as-is. */
622 phys_ofs = write_ofs(c);
624 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
626 if (ret || (retlen != rawlen)) {
627 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
628 rawlen, phys_ofs, ret, retlen);
630 jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL);
632 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs);
635 /* Try to reallocate space and retry */
637 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
641 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
643 jffs2_dbg_acct_sanity_check(c,jeb);
644 jffs2_dbg_acct_paranoia_check(c, jeb);
646 ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen);
647 /* this is not the exact summary size of it,
648 it is only an upper estimation */
651 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
653 jffs2_dbg_acct_sanity_check(c,jeb);
654 jffs2_dbg_acct_paranoia_check(c, jeb);
658 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
665 jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic);
667 jffs2_mark_node_obsolete(c, raw);
668 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
678 static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
679 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
681 struct jffs2_full_dnode *new_fn;
682 struct jffs2_raw_inode ri;
683 struct jffs2_node_frag *last_frag;
684 union jffs2_device_node dev;
685 char *mdata = NULL, mdatalen = 0;
686 uint32_t alloclen, ilen;
689 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
690 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
691 /* For these, we don't actually need to read the old node */
692 mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f));
693 mdata = (char *)&dev;
694 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
695 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
697 mdata = kmalloc(fn->size, GFP_KERNEL);
699 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
702 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
704 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
708 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
712 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen,
713 JFFS2_SUMMARY_INODE_SIZE);
715 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
716 sizeof(ri)+ mdatalen, ret);
720 last_frag = frag_last(&f->fragtree);
722 /* Fetch the inode length from the fragtree rather then
723 * from i_size since i_size may have not been updated yet */
724 ilen = last_frag->ofs + last_frag->size;
726 ilen = JFFS2_F_I_SIZE(f);
728 memset(&ri, 0, sizeof(ri));
729 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
730 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
731 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
732 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
734 ri.ino = cpu_to_je32(f->inocache->ino);
735 ri.version = cpu_to_je32(++f->highest_version);
736 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
737 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
738 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
739 ri.isize = cpu_to_je32(ilen);
740 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
741 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
742 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
743 ri.offset = cpu_to_je32(0);
744 ri.csize = cpu_to_je32(mdatalen);
745 ri.dsize = cpu_to_je32(mdatalen);
746 ri.compr = JFFS2_COMPR_NONE;
747 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
748 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
750 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC);
752 if (IS_ERR(new_fn)) {
753 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
754 ret = PTR_ERR(new_fn);
757 jffs2_mark_node_obsolete(c, fn->raw);
758 jffs2_free_full_dnode(fn);
759 f->metadata = new_fn;
761 if (S_ISLNK(JFFS2_F_I_MODE(f)))
766 static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
767 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
769 struct jffs2_full_dirent *new_fd;
770 struct jffs2_raw_dirent rd;
774 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
775 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
776 rd.nsize = strlen(fd->name);
777 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
778 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
780 rd.pino = cpu_to_je32(f->inocache->ino);
781 rd.version = cpu_to_je32(++f->highest_version);
782 rd.ino = cpu_to_je32(fd->ino);
783 /* If the times on this inode were set by explicit utime() they can be different,
784 so refrain from splatting them. */
785 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
786 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
788 rd.mctime = cpu_to_je32(0);
790 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
791 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
793 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen,
794 JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize));
796 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
797 sizeof(rd)+rd.nsize, ret);
800 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC);
802 if (IS_ERR(new_fd)) {
803 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
804 return PTR_ERR(new_fd);
806 jffs2_add_fd_to_list(c, new_fd, &f->dents);
810 static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
811 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
813 struct jffs2_full_dirent **fdp = &f->dents;
816 /* On a medium where we can't actually mark nodes obsolete
817 pernamently, such as NAND flash, we need to work out
818 whether this deletion dirent is still needed to actively
819 delete a 'real' dirent with the same name that's still
820 somewhere else on the flash. */
821 if (!jffs2_can_mark_obsolete(c)) {
822 struct jffs2_raw_dirent *rd;
823 struct jffs2_raw_node_ref *raw;
826 int name_len = strlen(fd->name);
827 uint32_t name_crc = crc32(0, fd->name, name_len);
828 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
830 rd = kmalloc(rawlen, GFP_KERNEL);
834 /* Prevent the erase code from nicking the obsolete node refs while
835 we're looking at them. I really don't like this extra lock but
836 can't see any alternative. Suggestions on a postcard to... */
837 down(&c->erase_free_sem);
839 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
843 /* We only care about obsolete ones */
844 if (!(ref_obsolete(raw)))
847 /* Any dirent with the same name is going to have the same length... */
848 if (ref_totlen(c, NULL, raw) != rawlen)
851 /* Doesn't matter if there's one in the same erase block. We're going to
852 delete it too at the same time. */
853 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
856 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
858 /* This is an obsolete node belonging to the same directory, and it's of the right
859 length. We need to take a closer look...*/
860 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
862 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
863 /* If we can't read it, we don't need to continue to obsolete it. Continue */
866 if (retlen != rawlen) {
867 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
868 retlen, rawlen, ref_offset(raw));
872 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
875 /* If the name CRC doesn't match, skip */
876 if (je32_to_cpu(rd->name_crc) != name_crc)
879 /* If the name length doesn't match, or it's another deletion dirent, skip */
880 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
883 /* OK, check the actual name now */
884 if (memcmp(rd->name, fd->name, name_len))
887 /* OK. The name really does match. There really is still an older node on
888 the flash which our deletion dirent obsoletes. So we have to write out
889 a new deletion dirent to replace it */
890 up(&c->erase_free_sem);
892 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
893 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
896 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
899 up(&c->erase_free_sem);
903 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
904 we should update the metadata node with those times accordingly */
906 /* No need for it any more. Just mark it obsolete and remove it from the list */
916 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
918 jffs2_mark_node_obsolete(c, fd->raw);
919 jffs2_free_full_dirent(fd);
923 static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
924 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
925 uint32_t start, uint32_t end)
927 struct jffs2_raw_inode ri;
928 struct jffs2_node_frag *frag;
929 struct jffs2_full_dnode *new_fn;
930 uint32_t alloclen, ilen;
933 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
934 f->inocache->ino, start, end));
936 memset(&ri, 0, sizeof(ri));
941 /* It's partially obsoleted by a later write. So we have to
942 write it out again with the _same_ version as before */
943 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
944 if (readlen != sizeof(ri) || ret) {
945 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
948 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
949 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
951 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
954 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
955 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
957 je32_to_cpu(ri.totlen), sizeof(ri));
960 crc = crc32(0, &ri, sizeof(ri)-8);
961 if (crc != je32_to_cpu(ri.node_crc)) {
962 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
964 je32_to_cpu(ri.node_crc), crc);
965 /* FIXME: We could possibly deal with this by writing new holes for each frag */
966 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
967 start, end, f->inocache->ino);
970 if (ri.compr != JFFS2_COMPR_ZERO) {
971 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
972 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
973 start, end, f->inocache->ino);
978 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
979 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
980 ri.totlen = cpu_to_je32(sizeof(ri));
981 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
983 ri.ino = cpu_to_je32(f->inocache->ino);
984 ri.version = cpu_to_je32(++f->highest_version);
985 ri.offset = cpu_to_je32(start);
986 ri.dsize = cpu_to_je32(end - start);
987 ri.csize = cpu_to_je32(0);
988 ri.compr = JFFS2_COMPR_ZERO;
991 frag = frag_last(&f->fragtree);
993 /* Fetch the inode length from the fragtree rather then
994 * from i_size since i_size may have not been updated yet */
995 ilen = frag->ofs + frag->size;
997 ilen = JFFS2_F_I_SIZE(f);
999 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1000 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1001 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1002 ri.isize = cpu_to_je32(ilen);
1003 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1004 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1005 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1006 ri.data_crc = cpu_to_je32(0);
1007 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1009 ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen,
1010 JFFS2_SUMMARY_INODE_SIZE);
1012 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1016 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC);
1018 if (IS_ERR(new_fn)) {
1019 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1020 return PTR_ERR(new_fn);
1022 if (je32_to_cpu(ri.version) == f->highest_version) {
1023 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1025 jffs2_mark_node_obsolete(c, f->metadata->raw);
1026 jffs2_free_full_dnode(f->metadata);
1033 * We should only get here in the case where the node we are
1034 * replacing had more than one frag, so we kept the same version
1035 * number as before. (Except in case of error -- see 'goto fill;'
1038 D1(if(unlikely(fn->frags <= 1)) {
1039 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1040 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1041 je32_to_cpu(ri.ino));
1044 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1045 mark_ref_normal(new_fn->raw);
1047 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1048 frag; frag = frag_next(frag)) {
1049 if (frag->ofs > fn->size + fn->ofs)
1051 if (frag->node == fn) {
1052 frag->node = new_fn;
1058 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1061 if (!new_fn->frags) {
1062 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1066 jffs2_mark_node_obsolete(c, fn->raw);
1067 jffs2_free_full_dnode(fn);
1072 static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1073 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1074 uint32_t start, uint32_t end)
1076 struct jffs2_full_dnode *new_fn;
1077 struct jffs2_raw_inode ri;
1078 uint32_t alloclen, offset, orig_end, orig_start;
1080 unsigned char *comprbuf = NULL, *writebuf;
1082 unsigned char *pg_ptr;
1084 memset(&ri, 0, sizeof(ri));
1086 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1087 f->inocache->ino, start, end));
1092 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1093 /* Attempt to do some merging. But only expand to cover logically
1094 adjacent frags if the block containing them is already considered
1095 to be dirty. Otherwise we end up with GC just going round in
1096 circles dirtying the nodes it already wrote out, especially
1097 on NAND where we have small eraseblocks and hence a much higher
1098 chance of nodes having to be split to cross boundaries. */
1100 struct jffs2_node_frag *frag;
1103 min = start & ~(PAGE_CACHE_SIZE-1);
1104 max = min + PAGE_CACHE_SIZE;
1106 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1108 /* BUG_ON(!frag) but that'll happen anyway... */
1110 BUG_ON(frag->ofs != start);
1112 /* First grow down... */
1113 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1115 /* If the previous frag doesn't even reach the beginning, there's
1116 excessive fragmentation. Just merge. */
1117 if (frag->ofs > min) {
1118 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1119 frag->ofs, frag->ofs+frag->size));
1123 /* OK. This frag holds the first byte of the page. */
1124 if (!frag->node || !frag->node->raw) {
1125 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1126 frag->ofs, frag->ofs+frag->size));
1130 /* OK, it's a frag which extends to the beginning of the page. Does it live
1131 in a block which is still considered clean? If so, don't obsolete it.
1132 If not, cover it anyway. */
1134 struct jffs2_raw_node_ref *raw = frag->node->raw;
1135 struct jffs2_eraseblock *jeb;
1137 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1139 if (jeb == c->gcblock) {
1140 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1141 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1145 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1146 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1147 frag->ofs, frag->ofs+frag->size, jeb->offset));
1151 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1152 frag->ofs, frag->ofs+frag->size, jeb->offset));
1160 /* Find last frag which is actually part of the node we're to GC. */
1161 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1163 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1165 /* If the previous frag doesn't even reach the beginning, there's lots
1166 of fragmentation. Just merge. */
1167 if (frag->ofs+frag->size < max) {
1168 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1169 frag->ofs, frag->ofs+frag->size));
1170 end = frag->ofs + frag->size;
1174 if (!frag->node || !frag->node->raw) {
1175 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1176 frag->ofs, frag->ofs+frag->size));
1180 /* OK, it's a frag which extends to the beginning of the page. Does it live
1181 in a block which is still considered clean? If so, don't obsolete it.
1182 If not, cover it anyway. */
1184 struct jffs2_raw_node_ref *raw = frag->node->raw;
1185 struct jffs2_eraseblock *jeb;
1187 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1189 if (jeb == c->gcblock) {
1190 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1191 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1192 end = frag->ofs + frag->size;
1195 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1196 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1197 frag->ofs, frag->ofs+frag->size, jeb->offset));
1201 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1202 frag->ofs, frag->ofs+frag->size, jeb->offset));
1203 end = frag->ofs + frag->size;
1207 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1208 orig_start, orig_end, start, end));
1210 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1211 BUG_ON(end < orig_end);
1212 BUG_ON(start > orig_start);
1215 /* First, use readpage() to read the appropriate page into the page cache */
1216 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1217 * triggered garbage collection in the first place?
1218 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1219 * page OK. We'll actually write it out again in commit_write, which is a little
1220 * suboptimal, but at least we're correct.
1222 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1224 if (IS_ERR(pg_ptr)) {
1225 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1226 return PTR_ERR(pg_ptr);
1230 while(offset < orig_end) {
1233 uint16_t comprtype = JFFS2_COMPR_NONE;
1235 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN,
1236 &alloclen, JFFS2_SUMMARY_INODE_SIZE);
1239 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1240 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1243 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1244 datalen = end - offset;
1246 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1248 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1250 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1251 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1252 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1253 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1255 ri.ino = cpu_to_je32(f->inocache->ino);
1256 ri.version = cpu_to_je32(++f->highest_version);
1257 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1258 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1259 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1260 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1261 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1262 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1263 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1264 ri.offset = cpu_to_je32(offset);
1265 ri.csize = cpu_to_je32(cdatalen);
1266 ri.dsize = cpu_to_je32(datalen);
1267 ri.compr = comprtype & 0xff;
1268 ri.usercompr = (comprtype >> 8) & 0xff;
1269 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1270 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1272 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC);
1274 jffs2_free_comprbuf(comprbuf, writebuf);
1276 if (IS_ERR(new_fn)) {
1277 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1278 ret = PTR_ERR(new_fn);
1281 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1284 jffs2_mark_node_obsolete(c, f->metadata->raw);
1285 jffs2_free_full_dnode(f->metadata);
1290 jffs2_gc_release_page(c, pg_ptr, &pg);