Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / arch / powerpc / kernel / rtas-proc.c
1 /*
2  *   Copyright (C) 2000 Tilmann Bitterberg
3  *   (tilmann@bitterberg.de)
4  *
5  *   RTAS (Runtime Abstraction Services) stuff
6  *   Intention is to provide a clean user interface
7  *   to use the RTAS.
8  *
9  *   TODO:
10  *   Split off a header file and maybe move it to a different
11  *   location. Write Documentation on what the /proc/rtas/ entries
12  *   actually do.
13  */
14
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/proc_fs.h>
18 #include <linux/stat.h>
19 #include <linux/ctype.h>
20 #include <linux/time.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/seq_file.h>
24 #include <linux/bitops.h>
25 #include <linux/rtc.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34
35 /* Token for Sensors */
36 #define KEY_SWITCH              0x0001
37 #define ENCLOSURE_SWITCH        0x0002
38 #define THERMAL_SENSOR          0x0003
39 #define LID_STATUS              0x0004
40 #define POWER_SOURCE            0x0005
41 #define BATTERY_VOLTAGE         0x0006
42 #define BATTERY_REMAINING       0x0007
43 #define BATTERY_PERCENTAGE      0x0008
44 #define EPOW_SENSOR             0x0009
45 #define BATTERY_CYCLESTATE      0x000a
46 #define BATTERY_CHARGING        0x000b
47
48 /* IBM specific sensors */
49 #define IBM_SURVEILLANCE        0x2328 /* 9000 */
50 #define IBM_FANRPM              0x2329 /* 9001 */
51 #define IBM_VOLTAGE             0x232a /* 9002 */
52 #define IBM_DRCONNECTOR         0x232b /* 9003 */
53 #define IBM_POWERSUPPLY         0x232c /* 9004 */
54
55 /* Status return values */
56 #define SENSOR_CRITICAL_HIGH    13
57 #define SENSOR_WARNING_HIGH     12
58 #define SENSOR_NORMAL           11
59 #define SENSOR_WARNING_LOW      10
60 #define SENSOR_CRITICAL_LOW      9
61 #define SENSOR_SUCCESS           0
62 #define SENSOR_HW_ERROR         -1
63 #define SENSOR_BUSY             -2
64 #define SENSOR_NOT_EXIST        -3
65 #define SENSOR_DR_ENTITY        -9000
66
67 /* Location Codes */
68 #define LOC_SCSI_DEV_ADDR       'A'
69 #define LOC_SCSI_DEV_LOC        'B'
70 #define LOC_CPU                 'C'
71 #define LOC_DISKETTE            'D'
72 #define LOC_ETHERNET            'E'
73 #define LOC_FAN                 'F'
74 #define LOC_GRAPHICS            'G'
75 /* reserved / not used          'H' */
76 #define LOC_IO_ADAPTER          'I'
77 /* reserved / not used          'J' */
78 #define LOC_KEYBOARD            'K'
79 #define LOC_LCD                 'L'
80 #define LOC_MEMORY              'M'
81 #define LOC_NV_MEMORY           'N'
82 #define LOC_MOUSE               'O'
83 #define LOC_PLANAR              'P'
84 #define LOC_OTHER_IO            'Q'
85 #define LOC_PARALLEL            'R'
86 #define LOC_SERIAL              'S'
87 #define LOC_DEAD_RING           'T'
88 #define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
89 #define LOC_VOLTAGE             'V'
90 #define LOC_SWITCH_ADAPTER      'W'
91 #define LOC_OTHER               'X'
92 #define LOC_FIRMWARE            'Y'
93 #define LOC_SCSI                'Z'
94
95 /* Tokens for indicators */
96 #define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
97 #define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
98 #define SYSTEM_POWER_STATE      0x0003 
99 #define WARNING_LIGHT           0x0004
100 #define DISK_ACTIVITY_LIGHT     0x0005
101 #define HEX_DISPLAY_UNIT        0x0006
102 #define BATTERY_WARNING_TIME    0x0007
103 #define CONDITION_CYCLE_REQUEST 0x0008
104 #define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
105 #define DR_ACTION               0x2329 /* 9001 */
106 #define DR_INDICATOR            0x232a /* 9002 */
107 /* 9003 - 9004: Vendor specific */
108 /* 9006 - 9999: Vendor specific */
109
110 /* other */
111 #define MAX_SENSORS              17  /* I only know of 17 sensors */    
112 #define MAX_LINELENGTH          256
113 #define SENSOR_PREFIX           "ibm,sensor-"
114 #define cel_to_fahr(x)          ((x*9/5)+32)
115
116
117 /* Globals */
118 static struct rtas_sensors sensors;
119 static struct device_node *rtas_node = NULL;
120 static unsigned long power_on_time = 0; /* Save the time the user set */
121 static char progress_led[MAX_LINELENGTH];
122
123 static unsigned long rtas_tone_frequency = 1000;
124 static unsigned long rtas_tone_volume = 0;
125
126 /* ****************STRUCTS******************************************* */
127 struct individual_sensor {
128         unsigned int token;
129         unsigned int quant;
130 };
131
132 struct rtas_sensors {
133         struct individual_sensor sensor[MAX_SENSORS];
134         unsigned int quant;
135 };
136
137 /* ****************************************************************** */
138 /* Declarations */
139 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
140 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
141 static ssize_t ppc_rtas_clock_write(struct file *file,
142                 const char __user *buf, size_t count, loff_t *ppos);
143 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
144 static ssize_t ppc_rtas_progress_write(struct file *file,
145                 const char __user *buf, size_t count, loff_t *ppos);
146 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
147 static ssize_t ppc_rtas_poweron_write(struct file *file,
148                 const char __user *buf, size_t count, loff_t *ppos);
149
150 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
151                 const char __user *buf, size_t count, loff_t *ppos);
152 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
153 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
154                 const char __user *buf, size_t count, loff_t *ppos);
155 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
156 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
157
158 static int sensors_open(struct inode *inode, struct file *file)
159 {
160         return single_open(file, ppc_rtas_sensors_show, NULL);
161 }
162
163 static const struct file_operations ppc_rtas_sensors_operations = {
164         .open           = sensors_open,
165         .read           = seq_read,
166         .llseek         = seq_lseek,
167         .release        = single_release,
168 };
169
170 static int poweron_open(struct inode *inode, struct file *file)
171 {
172         return single_open(file, ppc_rtas_poweron_show, NULL);
173 }
174
175 static const struct file_operations ppc_rtas_poweron_operations = {
176         .open           = poweron_open,
177         .read           = seq_read,
178         .llseek         = seq_lseek,
179         .write          = ppc_rtas_poweron_write,
180         .release        = single_release,
181 };
182
183 static int progress_open(struct inode *inode, struct file *file)
184 {
185         return single_open(file, ppc_rtas_progress_show, NULL);
186 }
187
188 static const struct file_operations ppc_rtas_progress_operations = {
189         .open           = progress_open,
190         .read           = seq_read,
191         .llseek         = seq_lseek,
192         .write          = ppc_rtas_progress_write,
193         .release        = single_release,
194 };
195
196 static int clock_open(struct inode *inode, struct file *file)
197 {
198         return single_open(file, ppc_rtas_clock_show, NULL);
199 }
200
201 static const struct file_operations ppc_rtas_clock_operations = {
202         .open           = clock_open,
203         .read           = seq_read,
204         .llseek         = seq_lseek,
205         .write          = ppc_rtas_clock_write,
206         .release        = single_release,
207 };
208
209 static int tone_freq_open(struct inode *inode, struct file *file)
210 {
211         return single_open(file, ppc_rtas_tone_freq_show, NULL);
212 }
213
214 static const struct file_operations ppc_rtas_tone_freq_operations = {
215         .open           = tone_freq_open,
216         .read           = seq_read,
217         .llseek         = seq_lseek,
218         .write          = ppc_rtas_tone_freq_write,
219         .release        = single_release,
220 };
221
222 static int tone_volume_open(struct inode *inode, struct file *file)
223 {
224         return single_open(file, ppc_rtas_tone_volume_show, NULL);
225 }
226
227 static const struct file_operations ppc_rtas_tone_volume_operations = {
228         .open           = tone_volume_open,
229         .read           = seq_read,
230         .llseek         = seq_lseek,
231         .write          = ppc_rtas_tone_volume_write,
232         .release        = single_release,
233 };
234
235 static int rmo_buf_open(struct inode *inode, struct file *file)
236 {
237         return single_open(file, ppc_rtas_rmo_buf_show, NULL);
238 }
239
240 static const struct file_operations ppc_rtas_rmo_buf_ops = {
241         .open           = rmo_buf_open,
242         .read           = seq_read,
243         .llseek         = seq_lseek,
244         .release        = single_release,
245 };
246
247 static int ppc_rtas_find_all_sensors(void);
248 static void ppc_rtas_process_sensor(struct seq_file *m,
249         struct individual_sensor *s, int state, int error, const char *loc);
250 static char *ppc_rtas_process_error(int error);
251 static void get_location_code(struct seq_file *m,
252         struct individual_sensor *s, const char *loc);
253 static void check_location_string(struct seq_file *m, const char *c);
254 static void check_location(struct seq_file *m, const char *c);
255
256 static int __init proc_rtas_init(void)
257 {
258         if (!machine_is(pseries))
259                 return -ENODEV;
260
261         rtas_node = of_find_node_by_name(NULL, "rtas");
262         if (rtas_node == NULL)
263                 return -ENODEV;
264
265         proc_create("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL,
266                     &ppc_rtas_progress_operations);
267         proc_create("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL,
268                     &ppc_rtas_clock_operations);
269         proc_create("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
270                     &ppc_rtas_poweron_operations);
271         proc_create("ppc64/rtas/sensors", S_IRUGO, NULL,
272                     &ppc_rtas_sensors_operations);
273         proc_create("ppc64/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
274                     &ppc_rtas_tone_freq_operations);
275         proc_create("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL,
276                     &ppc_rtas_tone_volume_operations);
277         proc_create("ppc64/rtas/rmo_buffer", S_IRUSR, NULL,
278                     &ppc_rtas_rmo_buf_ops);
279         return 0;
280 }
281
282 __initcall(proc_rtas_init);
283
284 static int parse_number(const char __user *p, size_t count, unsigned long *val)
285 {
286         char buf[40];
287         char *end;
288
289         if (count > 39)
290                 return -EINVAL;
291
292         if (copy_from_user(buf, p, count))
293                 return -EFAULT;
294
295         buf[count] = 0;
296
297         *val = simple_strtoul(buf, &end, 10);
298         if (*end && *end != '\n')
299                 return -EINVAL;
300
301         return 0;
302 }
303
304 /* ****************************************************************** */
305 /* POWER-ON-TIME                                                      */
306 /* ****************************************************************** */
307 static ssize_t ppc_rtas_poweron_write(struct file *file,
308                 const char __user *buf, size_t count, loff_t *ppos)
309 {
310         struct rtc_time tm;
311         unsigned long nowtime;
312         int error = parse_number(buf, count, &nowtime);
313         if (error)
314                 return error;
315
316         power_on_time = nowtime; /* save the time */
317
318         to_tm(nowtime, &tm);
319
320         error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
321                         tm.tm_year, tm.tm_mon, tm.tm_mday, 
322                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
323         if (error)
324                 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
325                                 ppc_rtas_process_error(error));
326         return count;
327 }
328 /* ****************************************************************** */
329 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
330 {
331         if (power_on_time == 0)
332                 seq_printf(m, "Power on time not set\n");
333         else
334                 seq_printf(m, "%lu\n",power_on_time);
335         return 0;
336 }
337
338 /* ****************************************************************** */
339 /* PROGRESS                                                           */
340 /* ****************************************************************** */
341 static ssize_t ppc_rtas_progress_write(struct file *file,
342                 const char __user *buf, size_t count, loff_t *ppos)
343 {
344         unsigned long hex;
345
346         if (count >= MAX_LINELENGTH)
347                 count = MAX_LINELENGTH -1;
348         if (copy_from_user(progress_led, buf, count)) { /* save the string */
349                 return -EFAULT;
350         }
351         progress_led[count] = 0;
352
353         /* Lets see if the user passed hexdigits */
354         hex = simple_strtoul(progress_led, NULL, 10);
355
356         rtas_progress ((char *)progress_led, hex);
357         return count;
358
359         /* clear the line */
360         /* rtas_progress("                   ", 0xffff);*/
361 }
362 /* ****************************************************************** */
363 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
364 {
365         if (progress_led[0])
366                 seq_printf(m, "%s\n", progress_led);
367         return 0;
368 }
369
370 /* ****************************************************************** */
371 /* CLOCK                                                              */
372 /* ****************************************************************** */
373 static ssize_t ppc_rtas_clock_write(struct file *file,
374                 const char __user *buf, size_t count, loff_t *ppos)
375 {
376         struct rtc_time tm;
377         unsigned long nowtime;
378         int error = parse_number(buf, count, &nowtime);
379         if (error)
380                 return error;
381
382         to_tm(nowtime, &tm);
383         error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
384                         tm.tm_year, tm.tm_mon, tm.tm_mday, 
385                         tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
386         if (error)
387                 printk(KERN_WARNING "error: setting the clock returned: %s\n", 
388                                 ppc_rtas_process_error(error));
389         return count;
390 }
391 /* ****************************************************************** */
392 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
393 {
394         int ret[8];
395         int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
396
397         if (error) {
398                 printk(KERN_WARNING "error: reading the clock returned: %s\n", 
399                                 ppc_rtas_process_error(error));
400                 seq_printf(m, "0");
401         } else { 
402                 unsigned int year, mon, day, hour, min, sec;
403                 year = ret[0]; mon  = ret[1]; day  = ret[2];
404                 hour = ret[3]; min  = ret[4]; sec  = ret[5];
405                 seq_printf(m, "%lu\n",
406                                 mktime(year, mon, day, hour, min, sec));
407         }
408         return 0;
409 }
410
411 /* ****************************************************************** */
412 /* SENSOR STUFF                                                       */
413 /* ****************************************************************** */
414 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
415 {
416         int i,j;
417         int state, error;
418         int get_sensor_state = rtas_token("get-sensor-state");
419
420         seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
421         seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
422         seq_printf(m, "********************************************************\n");
423
424         if (ppc_rtas_find_all_sensors() != 0) {
425                 seq_printf(m, "\nNo sensors are available\n");
426                 return 0;
427         }
428
429         for (i=0; i<sensors.quant; i++) {
430                 struct individual_sensor *p = &sensors.sensor[i];
431                 char rstr[64];
432                 const char *loc;
433                 int llen, offs;
434
435                 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
436                 loc = of_get_property(rtas_node, rstr, &llen);
437
438                 /* A sensor may have multiple instances */
439                 for (j = 0, offs = 0; j <= p->quant; j++) {
440                         error = rtas_call(get_sensor_state, 2, 2, &state, 
441                                           p->token, j);
442
443                         ppc_rtas_process_sensor(m, p, state, error, loc);
444                         seq_putc(m, '\n');
445                         if (loc) {
446                                 offs += strlen(loc) + 1;
447                                 loc += strlen(loc) + 1;
448                                 if (offs >= llen)
449                                         loc = NULL;
450                         }
451                 }
452         }
453         return 0;
454 }
455
456 /* ****************************************************************** */
457
458 static int ppc_rtas_find_all_sensors(void)
459 {
460         const unsigned int *utmp;
461         int len, i;
462
463         utmp = of_get_property(rtas_node, "rtas-sensors", &len);
464         if (utmp == NULL) {
465                 printk (KERN_ERR "error: could not get rtas-sensors\n");
466                 return 1;
467         }
468
469         sensors.quant = len / 8;      /* int + int */
470
471         for (i=0; i<sensors.quant; i++) {
472                 sensors.sensor[i].token = *utmp++;
473                 sensors.sensor[i].quant = *utmp++;
474         }
475         return 0;
476 }
477
478 /* ****************************************************************** */
479 /*
480  * Builds a string of what rtas returned
481  */
482 static char *ppc_rtas_process_error(int error)
483 {
484         switch (error) {
485                 case SENSOR_CRITICAL_HIGH:
486                         return "(critical high)";
487                 case SENSOR_WARNING_HIGH:
488                         return "(warning high)";
489                 case SENSOR_NORMAL:
490                         return "(normal)";
491                 case SENSOR_WARNING_LOW:
492                         return "(warning low)";
493                 case SENSOR_CRITICAL_LOW:
494                         return "(critical low)";
495                 case SENSOR_SUCCESS:
496                         return "(read ok)";
497                 case SENSOR_HW_ERROR:
498                         return "(hardware error)";
499                 case SENSOR_BUSY:
500                         return "(busy)";
501                 case SENSOR_NOT_EXIST:
502                         return "(non existent)";
503                 case SENSOR_DR_ENTITY:
504                         return "(dr entity removed)";
505                 default:
506                         return "(UNKNOWN)";
507         }
508 }
509
510 /* ****************************************************************** */
511 /*
512  * Builds a string out of what the sensor said
513  */
514
515 static void ppc_rtas_process_sensor(struct seq_file *m,
516         struct individual_sensor *s, int state, int error, const char *loc)
517 {
518         /* Defined return vales */
519         const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
520                                                 "Maintenance" };
521         const char * enclosure_switch[]  = { "Closed", "Open" };
522         const char * lid_status[]        = { " ", "Open", "Closed" };
523         const char * power_source[]      = { "AC\t", "Battery", 
524                                                 "AC & Battery" };
525         const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
526         const char * epow_sensor[]       = { 
527                 "EPOW Reset", "Cooling warning", "Power warning",
528                 "System shutdown", "System halt", "EPOW main enclosure",
529                 "EPOW power off" };
530         const char * battery_cyclestate[]  = { "None", "In progress", 
531                                                 "Requested" };
532         const char * battery_charging[]    = { "Charging", "Discharching", 
533                                                 "No current flow" };
534         const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
535                                                 "Exchange" };
536
537         int have_strings = 0;
538         int num_states = 0;
539         int temperature = 0;
540         int unknown = 0;
541
542         /* What kind of sensor do we have here? */
543         
544         switch (s->token) {
545                 case KEY_SWITCH:
546                         seq_printf(m, "Key switch:\t");
547                         num_states = sizeof(key_switch) / sizeof(char *);
548                         if (state < num_states) {
549                                 seq_printf(m, "%s\t", key_switch[state]);
550                                 have_strings = 1;
551                         }
552                         break;
553                 case ENCLOSURE_SWITCH:
554                         seq_printf(m, "Enclosure switch:\t");
555                         num_states = sizeof(enclosure_switch) / sizeof(char *);
556                         if (state < num_states) {
557                                 seq_printf(m, "%s\t", 
558                                                 enclosure_switch[state]);
559                                 have_strings = 1;
560                         }
561                         break;
562                 case THERMAL_SENSOR:
563                         seq_printf(m, "Temp. (C/F):\t");
564                         temperature = 1;
565                         break;
566                 case LID_STATUS:
567                         seq_printf(m, "Lid status:\t");
568                         num_states = sizeof(lid_status) / sizeof(char *);
569                         if (state < num_states) {
570                                 seq_printf(m, "%s\t", lid_status[state]);
571                                 have_strings = 1;
572                         }
573                         break;
574                 case POWER_SOURCE:
575                         seq_printf(m, "Power source:\t");
576                         num_states = sizeof(power_source) / sizeof(char *);
577                         if (state < num_states) {
578                                 seq_printf(m, "%s\t", 
579                                                 power_source[state]);
580                                 have_strings = 1;
581                         }
582                         break;
583                 case BATTERY_VOLTAGE:
584                         seq_printf(m, "Battery voltage:\t");
585                         break;
586                 case BATTERY_REMAINING:
587                         seq_printf(m, "Battery remaining:\t");
588                         num_states = sizeof(battery_remaining) / sizeof(char *);
589                         if (state < num_states)
590                         {
591                                 seq_printf(m, "%s\t", 
592                                                 battery_remaining[state]);
593                                 have_strings = 1;
594                         }
595                         break;
596                 case BATTERY_PERCENTAGE:
597                         seq_printf(m, "Battery percentage:\t");
598                         break;
599                 case EPOW_SENSOR:
600                         seq_printf(m, "EPOW Sensor:\t");
601                         num_states = sizeof(epow_sensor) / sizeof(char *);
602                         if (state < num_states) {
603                                 seq_printf(m, "%s\t", epow_sensor[state]);
604                                 have_strings = 1;
605                         }
606                         break;
607                 case BATTERY_CYCLESTATE:
608                         seq_printf(m, "Battery cyclestate:\t");
609                         num_states = sizeof(battery_cyclestate) / 
610                                         sizeof(char *);
611                         if (state < num_states) {
612                                 seq_printf(m, "%s\t", 
613                                                 battery_cyclestate[state]);
614                                 have_strings = 1;
615                         }
616                         break;
617                 case BATTERY_CHARGING:
618                         seq_printf(m, "Battery Charging:\t");
619                         num_states = sizeof(battery_charging) / sizeof(char *);
620                         if (state < num_states) {
621                                 seq_printf(m, "%s\t", 
622                                                 battery_charging[state]);
623                                 have_strings = 1;
624                         }
625                         break;
626                 case IBM_SURVEILLANCE:
627                         seq_printf(m, "Surveillance:\t");
628                         break;
629                 case IBM_FANRPM:
630                         seq_printf(m, "Fan (rpm):\t");
631                         break;
632                 case IBM_VOLTAGE:
633                         seq_printf(m, "Voltage (mv):\t");
634                         break;
635                 case IBM_DRCONNECTOR:
636                         seq_printf(m, "DR connector:\t");
637                         num_states = sizeof(ibm_drconnector) / sizeof(char *);
638                         if (state < num_states) {
639                                 seq_printf(m, "%s\t", 
640                                                 ibm_drconnector[state]);
641                                 have_strings = 1;
642                         }
643                         break;
644                 case IBM_POWERSUPPLY:
645                         seq_printf(m, "Powersupply:\t");
646                         break;
647                 default:
648                         seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
649                                         s->token);
650                         unknown = 1;
651                         have_strings = 1;
652                         break;
653         }
654         if (have_strings == 0) {
655                 if (temperature) {
656                         seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
657                 } else
658                         seq_printf(m, "%10d\t", state);
659         }
660         if (unknown == 0) {
661                 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
662                 get_location_code(m, s, loc);
663         }
664 }
665
666 /* ****************************************************************** */
667
668 static void check_location(struct seq_file *m, const char *c)
669 {
670         switch (c[0]) {
671                 case LOC_PLANAR:
672                         seq_printf(m, "Planar #%c", c[1]);
673                         break;
674                 case LOC_CPU:
675                         seq_printf(m, "CPU #%c", c[1]);
676                         break;
677                 case LOC_FAN:
678                         seq_printf(m, "Fan #%c", c[1]);
679                         break;
680                 case LOC_RACKMOUNTED:
681                         seq_printf(m, "Rack #%c", c[1]);
682                         break;
683                 case LOC_VOLTAGE:
684                         seq_printf(m, "Voltage #%c", c[1]);
685                         break;
686                 case LOC_LCD:
687                         seq_printf(m, "LCD #%c", c[1]);
688                         break;
689                 case '.':
690                         seq_printf(m, "- %c", c[1]);
691                         break;
692                 default:
693                         seq_printf(m, "Unknown location");
694                         break;
695         }
696 }
697
698
699 /* ****************************************************************** */
700 /* 
701  * Format: 
702  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
703  * the '.' may be an abbrevation
704  */
705 static void check_location_string(struct seq_file *m, const char *c)
706 {
707         while (*c) {
708                 if (isalpha(*c) || *c == '.')
709                         check_location(m, c);
710                 else if (*c == '/' || *c == '-')
711                         seq_printf(m, " at ");
712                 c++;
713         }
714 }
715
716
717 /* ****************************************************************** */
718
719 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
720                 const char *loc)
721 {
722         if (!loc || !*loc) {
723                 seq_printf(m, "---");/* does not have a location */
724         } else {
725                 check_location_string(m, loc);
726         }
727         seq_putc(m, ' ');
728 }
729 /* ****************************************************************** */
730 /* INDICATORS - Tone Frequency                                        */
731 /* ****************************************************************** */
732 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
733                 const char __user *buf, size_t count, loff_t *ppos)
734 {
735         unsigned long freq;
736         int error = parse_number(buf, count, &freq);
737         if (error)
738                 return error;
739
740         rtas_tone_frequency = freq; /* save it for later */
741         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
742                         TONE_FREQUENCY, 0, freq);
743         if (error)
744                 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
745                                 ppc_rtas_process_error(error));
746         return count;
747 }
748 /* ****************************************************************** */
749 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
750 {
751         seq_printf(m, "%lu\n", rtas_tone_frequency);
752         return 0;
753 }
754 /* ****************************************************************** */
755 /* INDICATORS - Tone Volume                                           */
756 /* ****************************************************************** */
757 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
758                 const char __user *buf, size_t count, loff_t *ppos)
759 {
760         unsigned long volume;
761         int error = parse_number(buf, count, &volume);
762         if (error)
763                 return error;
764
765         if (volume > 100)
766                 volume = 100;
767         
768         rtas_tone_volume = volume; /* save it for later */
769         error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
770                         TONE_VOLUME, 0, volume);
771         if (error)
772                 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
773                                 ppc_rtas_process_error(error));
774         return count;
775 }
776 /* ****************************************************************** */
777 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
778 {
779         seq_printf(m, "%lu\n", rtas_tone_volume);
780         return 0;
781 }
782
783 #define RMO_READ_BUF_MAX 30
784
785 /* RTAS Userspace access */
786 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
787 {
788         seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
789         return 0;
790 }