2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
44 #include <asm/processor.h>
47 #include <asm/uaccess.h>
50 MODULE_AUTHOR("Qumranet");
51 MODULE_LICENSE("GPL");
53 static DEFINE_SPINLOCK(kvm_lock);
54 static LIST_HEAD(vm_list);
56 static cpumask_t cpus_hardware_enabled;
58 struct kvm_x86_ops *kvm_x86_ops;
59 struct kmem_cache *kvm_vcpu_cache;
60 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
62 static __read_mostly struct preempt_ops kvm_preempt_ops;
64 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
66 static struct kvm_stats_debugfs_item {
69 struct dentry *dentry;
70 } debugfs_entries[] = {
71 { "pf_fixed", STAT_OFFSET(pf_fixed) },
72 { "pf_guest", STAT_OFFSET(pf_guest) },
73 { "tlb_flush", STAT_OFFSET(tlb_flush) },
74 { "invlpg", STAT_OFFSET(invlpg) },
75 { "exits", STAT_OFFSET(exits) },
76 { "io_exits", STAT_OFFSET(io_exits) },
77 { "mmio_exits", STAT_OFFSET(mmio_exits) },
78 { "signal_exits", STAT_OFFSET(signal_exits) },
79 { "irq_window", STAT_OFFSET(irq_window_exits) },
80 { "halt_exits", STAT_OFFSET(halt_exits) },
81 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
82 { "request_irq", STAT_OFFSET(request_irq_exits) },
83 { "irq_exits", STAT_OFFSET(irq_exits) },
84 { "light_exits", STAT_OFFSET(light_exits) },
85 { "efer_reload", STAT_OFFSET(efer_reload) },
89 static struct dentry *debugfs_dir;
91 #define MAX_IO_MSRS 256
93 #define CR0_RESERVED_BITS \
94 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
95 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
96 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
97 #define CR4_RESERVED_BITS \
98 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
99 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
100 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
101 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
103 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
104 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
107 // LDT or TSS descriptor in the GDT. 16 bytes.
108 struct segment_descriptor_64 {
109 struct segment_descriptor s;
116 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long segment_base(u16 selector)
121 struct descriptor_table gdt;
122 struct segment_descriptor *d;
123 unsigned long table_base;
124 typedef unsigned long ul;
130 asm ("sgdt %0" : "=m"(gdt));
131 table_base = gdt.base;
133 if (selector & 4) { /* from ldt */
136 asm ("sldt %0" : "=g"(ldt_selector));
137 table_base = segment_base(ldt_selector);
139 d = (struct segment_descriptor *)(table_base + (selector & ~7));
140 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
143 && (d->type == 2 || d->type == 9 || d->type == 11))
144 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
148 EXPORT_SYMBOL_GPL(segment_base);
150 static inline int valid_vcpu(int n)
152 return likely(n >= 0 && n < KVM_MAX_VCPUS);
155 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
157 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
160 vcpu->guest_fpu_loaded = 1;
161 fx_save(&vcpu->host_fx_image);
162 fx_restore(&vcpu->guest_fx_image);
164 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
166 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
168 if (!vcpu->guest_fpu_loaded)
171 vcpu->guest_fpu_loaded = 0;
172 fx_save(&vcpu->guest_fx_image);
173 fx_restore(&vcpu->host_fx_image);
175 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
178 * Switches to specified vcpu, until a matching vcpu_put()
180 static void vcpu_load(struct kvm_vcpu *vcpu)
184 mutex_lock(&vcpu->mutex);
186 preempt_notifier_register(&vcpu->preempt_notifier);
187 kvm_x86_ops->vcpu_load(vcpu, cpu);
191 static void vcpu_put(struct kvm_vcpu *vcpu)
194 kvm_x86_ops->vcpu_put(vcpu);
195 preempt_notifier_unregister(&vcpu->preempt_notifier);
197 mutex_unlock(&vcpu->mutex);
200 static void ack_flush(void *_completed)
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
208 struct kvm_vcpu *vcpu;
211 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
212 vcpu = kvm->vcpus[i];
215 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
218 if (cpu != -1 && cpu != raw_smp_processor_id())
221 smp_call_function_mask(cpus, ack_flush, NULL, 1);
224 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
229 mutex_init(&vcpu->mutex);
231 vcpu->mmu.root_hpa = INVALID_PAGE;
234 if (!irqchip_in_kernel(kvm) || id == 0)
235 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
237 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
238 init_waitqueue_head(&vcpu->wq);
240 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
245 vcpu->run = page_address(page);
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
252 vcpu->pio_data = page_address(page);
254 r = kvm_mmu_create(vcpu);
256 goto fail_free_pio_data;
258 if (irqchip_in_kernel(kvm)) {
259 r = kvm_create_lapic(vcpu);
261 goto fail_mmu_destroy;
267 kvm_mmu_destroy(vcpu);
269 free_page((unsigned long)vcpu->pio_data);
271 free_page((unsigned long)vcpu->run);
275 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
277 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
279 kvm_free_lapic(vcpu);
280 kvm_mmu_destroy(vcpu);
281 free_page((unsigned long)vcpu->pio_data);
282 free_page((unsigned long)vcpu->run);
284 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
286 static struct kvm *kvm_create_vm(void)
288 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
291 return ERR_PTR(-ENOMEM);
293 kvm_io_bus_init(&kvm->pio_bus);
294 mutex_init(&kvm->lock);
295 INIT_LIST_HEAD(&kvm->active_mmu_pages);
296 kvm_io_bus_init(&kvm->mmio_bus);
297 spin_lock(&kvm_lock);
298 list_add(&kvm->vm_list, &vm_list);
299 spin_unlock(&kvm_lock);
304 * Free any memory in @free but not in @dont.
306 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
307 struct kvm_memory_slot *dont)
311 if (!dont || free->phys_mem != dont->phys_mem)
312 if (free->phys_mem) {
313 for (i = 0; i < free->npages; ++i)
314 if (free->phys_mem[i])
315 __free_page(free->phys_mem[i]);
316 vfree(free->phys_mem);
318 if (!dont || free->rmap != dont->rmap)
321 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
322 vfree(free->dirty_bitmap);
324 free->phys_mem = NULL;
326 free->dirty_bitmap = NULL;
329 static void kvm_free_physmem(struct kvm *kvm)
333 for (i = 0; i < kvm->nmemslots; ++i)
334 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
337 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
341 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
342 if (vcpu->pio.guest_pages[i]) {
343 __free_page(vcpu->pio.guest_pages[i]);
344 vcpu->pio.guest_pages[i] = NULL;
348 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
351 kvm_mmu_unload(vcpu);
355 static void kvm_free_vcpus(struct kvm *kvm)
360 * Unpin any mmu pages first.
362 for (i = 0; i < KVM_MAX_VCPUS; ++i)
364 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
365 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
367 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
368 kvm->vcpus[i] = NULL;
374 static void kvm_destroy_vm(struct kvm *kvm)
376 spin_lock(&kvm_lock);
377 list_del(&kvm->vm_list);
378 spin_unlock(&kvm_lock);
379 kvm_io_bus_destroy(&kvm->pio_bus);
380 kvm_io_bus_destroy(&kvm->mmio_bus);
384 kvm_free_physmem(kvm);
388 static int kvm_vm_release(struct inode *inode, struct file *filp)
390 struct kvm *kvm = filp->private_data;
396 static void inject_gp(struct kvm_vcpu *vcpu)
398 kvm_x86_ops->inject_gp(vcpu, 0);
402 * Load the pae pdptrs. Return true is they are all valid.
404 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
406 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
407 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
410 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
412 mutex_lock(&vcpu->kvm->lock);
413 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
414 offset * sizeof(u64), sizeof(pdpte));
419 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
420 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
427 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
429 mutex_unlock(&vcpu->kvm->lock);
434 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
436 if (cr0 & CR0_RESERVED_BITS) {
437 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
443 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
444 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
449 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
450 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
451 "and a clear PE flag\n");
456 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
458 if ((vcpu->shadow_efer & EFER_LME)) {
462 printk(KERN_DEBUG "set_cr0: #GP, start paging "
463 "in long mode while PAE is disabled\n");
467 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
469 printk(KERN_DEBUG "set_cr0: #GP, start paging "
470 "in long mode while CS.L == 1\n");
477 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
478 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
486 kvm_x86_ops->set_cr0(vcpu, cr0);
489 mutex_lock(&vcpu->kvm->lock);
490 kvm_mmu_reset_context(vcpu);
491 mutex_unlock(&vcpu->kvm->lock);
494 EXPORT_SYMBOL_GPL(set_cr0);
496 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
498 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
500 EXPORT_SYMBOL_GPL(lmsw);
502 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
504 if (cr4 & CR4_RESERVED_BITS) {
505 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
510 if (is_long_mode(vcpu)) {
511 if (!(cr4 & X86_CR4_PAE)) {
512 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
517 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
518 && !load_pdptrs(vcpu, vcpu->cr3)) {
519 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
524 if (cr4 & X86_CR4_VMXE) {
525 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
529 kvm_x86_ops->set_cr4(vcpu, cr4);
531 mutex_lock(&vcpu->kvm->lock);
532 kvm_mmu_reset_context(vcpu);
533 mutex_unlock(&vcpu->kvm->lock);
535 EXPORT_SYMBOL_GPL(set_cr4);
537 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
539 if (is_long_mode(vcpu)) {
540 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
541 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
547 if (cr3 & CR3_PAE_RESERVED_BITS) {
549 "set_cr3: #GP, reserved bits\n");
553 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
554 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
561 * We don't check reserved bits in nonpae mode, because
562 * this isn't enforced, and VMware depends on this.
566 mutex_lock(&vcpu->kvm->lock);
568 * Does the new cr3 value map to physical memory? (Note, we
569 * catch an invalid cr3 even in real-mode, because it would
570 * cause trouble later on when we turn on paging anyway.)
572 * A real CPU would silently accept an invalid cr3 and would
573 * attempt to use it - with largely undefined (and often hard
574 * to debug) behavior on the guest side.
576 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
580 vcpu->mmu.new_cr3(vcpu);
582 mutex_unlock(&vcpu->kvm->lock);
584 EXPORT_SYMBOL_GPL(set_cr3);
586 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
588 if (cr8 & CR8_RESERVED_BITS) {
589 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
593 if (irqchip_in_kernel(vcpu->kvm))
594 kvm_lapic_set_tpr(vcpu, cr8);
598 EXPORT_SYMBOL_GPL(set_cr8);
600 unsigned long get_cr8(struct kvm_vcpu *vcpu)
602 if (irqchip_in_kernel(vcpu->kvm))
603 return kvm_lapic_get_cr8(vcpu);
607 EXPORT_SYMBOL_GPL(get_cr8);
609 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
611 if (irqchip_in_kernel(vcpu->kvm))
612 return vcpu->apic_base;
614 return vcpu->apic_base;
616 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
618 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
620 /* TODO: reserve bits check */
621 if (irqchip_in_kernel(vcpu->kvm))
622 kvm_lapic_set_base(vcpu, data);
624 vcpu->apic_base = data;
626 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
628 void fx_init(struct kvm_vcpu *vcpu)
630 unsigned after_mxcsr_mask;
632 /* Initialize guest FPU by resetting ours and saving into guest's */
634 fx_save(&vcpu->host_fx_image);
636 fx_save(&vcpu->guest_fx_image);
637 fx_restore(&vcpu->host_fx_image);
640 vcpu->cr0 |= X86_CR0_ET;
641 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
642 vcpu->guest_fx_image.mxcsr = 0x1f80;
643 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
644 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
646 EXPORT_SYMBOL_GPL(fx_init);
649 * Allocate some memory and give it an address in the guest physical address
652 * Discontiguous memory is allowed, mostly for framebuffers.
654 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
655 struct kvm_memory_region *mem)
659 unsigned long npages;
661 struct kvm_memory_slot *memslot;
662 struct kvm_memory_slot old, new;
665 /* General sanity checks */
666 if (mem->memory_size & (PAGE_SIZE - 1))
668 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
670 if (mem->slot >= KVM_MEMORY_SLOTS)
672 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
675 memslot = &kvm->memslots[mem->slot];
676 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
677 npages = mem->memory_size >> PAGE_SHIFT;
680 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
682 mutex_lock(&kvm->lock);
684 new = old = *memslot;
686 new.base_gfn = base_gfn;
688 new.flags = mem->flags;
690 /* Disallow changing a memory slot's size. */
692 if (npages && old.npages && npages != old.npages)
695 /* Check for overlaps */
697 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
698 struct kvm_memory_slot *s = &kvm->memslots[i];
702 if (!((base_gfn + npages <= s->base_gfn) ||
703 (base_gfn >= s->base_gfn + s->npages)))
707 /* Deallocate if slot is being removed */
711 /* Free page dirty bitmap if unneeded */
712 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
713 new.dirty_bitmap = NULL;
717 /* Allocate if a slot is being created */
718 if (npages && !new.phys_mem) {
719 new.phys_mem = vmalloc(npages * sizeof(struct page *));
724 new.rmap = vmalloc(npages * sizeof(struct page*));
729 memset(new.phys_mem, 0, npages * sizeof(struct page *));
730 memset(new.rmap, 0, npages * sizeof(*new.rmap));
731 for (i = 0; i < npages; ++i) {
732 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
734 if (!new.phys_mem[i])
739 /* Allocate page dirty bitmap if needed */
740 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
741 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
743 new.dirty_bitmap = vmalloc(dirty_bytes);
744 if (!new.dirty_bitmap)
746 memset(new.dirty_bitmap, 0, dirty_bytes);
749 if (mem->slot >= kvm->nmemslots)
750 kvm->nmemslots = mem->slot + 1;
752 if (!kvm->n_requested_mmu_pages) {
753 unsigned int n_pages;
756 n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
757 kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
760 unsigned int nr_mmu_pages;
762 n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
763 nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
764 nr_mmu_pages = max(nr_mmu_pages,
765 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
766 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
772 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
773 kvm_flush_remote_tlbs(kvm);
775 mutex_unlock(&kvm->lock);
777 kvm_free_physmem_slot(&old, &new);
781 mutex_unlock(&kvm->lock);
782 kvm_free_physmem_slot(&new, &old);
787 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
788 u32 kvm_nr_mmu_pages)
790 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
793 mutex_lock(&kvm->lock);
795 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
796 kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
798 mutex_unlock(&kvm->lock);
802 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
804 return kvm->n_alloc_mmu_pages;
808 * Get (and clear) the dirty memory log for a memory slot.
810 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
811 struct kvm_dirty_log *log)
813 struct kvm_memory_slot *memslot;
816 unsigned long any = 0;
818 mutex_lock(&kvm->lock);
821 if (log->slot >= KVM_MEMORY_SLOTS)
824 memslot = &kvm->memslots[log->slot];
826 if (!memslot->dirty_bitmap)
829 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
831 for (i = 0; !any && i < n/sizeof(long); ++i)
832 any = memslot->dirty_bitmap[i];
835 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
838 /* If nothing is dirty, don't bother messing with page tables. */
840 kvm_mmu_slot_remove_write_access(kvm, log->slot);
841 kvm_flush_remote_tlbs(kvm);
842 memset(memslot->dirty_bitmap, 0, n);
848 mutex_unlock(&kvm->lock);
853 * Set a new alias region. Aliases map a portion of physical memory into
854 * another portion. This is useful for memory windows, for example the PC
857 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
858 struct kvm_memory_alias *alias)
861 struct kvm_mem_alias *p;
864 /* General sanity checks */
865 if (alias->memory_size & (PAGE_SIZE - 1))
867 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
869 if (alias->slot >= KVM_ALIAS_SLOTS)
871 if (alias->guest_phys_addr + alias->memory_size
872 < alias->guest_phys_addr)
874 if (alias->target_phys_addr + alias->memory_size
875 < alias->target_phys_addr)
878 mutex_lock(&kvm->lock);
880 p = &kvm->aliases[alias->slot];
881 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
882 p->npages = alias->memory_size >> PAGE_SHIFT;
883 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
885 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
886 if (kvm->aliases[n - 1].npages)
890 kvm_mmu_zap_all(kvm);
892 mutex_unlock(&kvm->lock);
900 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
905 switch (chip->chip_id) {
906 case KVM_IRQCHIP_PIC_MASTER:
907 memcpy (&chip->chip.pic,
908 &pic_irqchip(kvm)->pics[0],
909 sizeof(struct kvm_pic_state));
911 case KVM_IRQCHIP_PIC_SLAVE:
912 memcpy (&chip->chip.pic,
913 &pic_irqchip(kvm)->pics[1],
914 sizeof(struct kvm_pic_state));
916 case KVM_IRQCHIP_IOAPIC:
917 memcpy (&chip->chip.ioapic,
919 sizeof(struct kvm_ioapic_state));
928 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
933 switch (chip->chip_id) {
934 case KVM_IRQCHIP_PIC_MASTER:
935 memcpy (&pic_irqchip(kvm)->pics[0],
937 sizeof(struct kvm_pic_state));
939 case KVM_IRQCHIP_PIC_SLAVE:
940 memcpy (&pic_irqchip(kvm)->pics[1],
942 sizeof(struct kvm_pic_state));
944 case KVM_IRQCHIP_IOAPIC:
945 memcpy (ioapic_irqchip(kvm),
947 sizeof(struct kvm_ioapic_state));
953 kvm_pic_update_irq(pic_irqchip(kvm));
957 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
960 struct kvm_mem_alias *alias;
962 for (i = 0; i < kvm->naliases; ++i) {
963 alias = &kvm->aliases[i];
964 if (gfn >= alias->base_gfn
965 && gfn < alias->base_gfn + alias->npages)
966 return alias->target_gfn + gfn - alias->base_gfn;
971 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
975 for (i = 0; i < kvm->nmemslots; ++i) {
976 struct kvm_memory_slot *memslot = &kvm->memslots[i];
978 if (gfn >= memslot->base_gfn
979 && gfn < memslot->base_gfn + memslot->npages)
985 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
987 gfn = unalias_gfn(kvm, gfn);
988 return __gfn_to_memslot(kvm, gfn);
991 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
993 struct kvm_memory_slot *slot;
995 gfn = unalias_gfn(kvm, gfn);
996 slot = __gfn_to_memslot(kvm, gfn);
999 return slot->phys_mem[gfn - slot->base_gfn];
1001 EXPORT_SYMBOL_GPL(gfn_to_page);
1003 static int next_segment(unsigned long len, int offset)
1005 if (len > PAGE_SIZE - offset)
1006 return PAGE_SIZE - offset;
1011 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1017 page = gfn_to_page(kvm, gfn);
1020 page_virt = kmap_atomic(page, KM_USER0);
1022 memcpy(data, page_virt + offset, len);
1024 kunmap_atomic(page_virt, KM_USER0);
1027 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1029 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1031 gfn_t gfn = gpa >> PAGE_SHIFT;
1033 int offset = offset_in_page(gpa);
1036 while ((seg = next_segment(len, offset)) != 0) {
1037 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1047 EXPORT_SYMBOL_GPL(kvm_read_guest);
1049 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1050 int offset, int len)
1055 page = gfn_to_page(kvm, gfn);
1058 page_virt = kmap_atomic(page, KM_USER0);
1060 memcpy(page_virt + offset, data, len);
1062 kunmap_atomic(page_virt, KM_USER0);
1063 mark_page_dirty(kvm, gfn);
1066 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1068 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1071 gfn_t gfn = gpa >> PAGE_SHIFT;
1073 int offset = offset_in_page(gpa);
1076 while ((seg = next_segment(len, offset)) != 0) {
1077 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1088 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1093 page = gfn_to_page(kvm, gfn);
1096 page_virt = kmap_atomic(page, KM_USER0);
1098 memset(page_virt + offset, 0, len);
1100 kunmap_atomic(page_virt, KM_USER0);
1103 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1105 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1107 gfn_t gfn = gpa >> PAGE_SHIFT;
1109 int offset = offset_in_page(gpa);
1112 while ((seg = next_segment(len, offset)) != 0) {
1113 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1122 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1124 /* WARNING: Does not work on aliased pages. */
1125 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1127 struct kvm_memory_slot *memslot;
1129 memslot = __gfn_to_memslot(kvm, gfn);
1130 if (memslot && memslot->dirty_bitmap) {
1131 unsigned long rel_gfn = gfn - memslot->base_gfn;
1134 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1135 set_bit(rel_gfn, memslot->dirty_bitmap);
1139 int emulator_read_std(unsigned long addr,
1142 struct kvm_vcpu *vcpu)
1147 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1148 unsigned offset = addr & (PAGE_SIZE-1);
1149 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1152 if (gpa == UNMAPPED_GVA)
1153 return X86EMUL_PROPAGATE_FAULT;
1154 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1156 return X86EMUL_UNHANDLEABLE;
1163 return X86EMUL_CONTINUE;
1165 EXPORT_SYMBOL_GPL(emulator_read_std);
1167 static int emulator_write_std(unsigned long addr,
1170 struct kvm_vcpu *vcpu)
1172 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1173 return X86EMUL_UNHANDLEABLE;
1177 * Only apic need an MMIO device hook, so shortcut now..
1179 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1182 struct kvm_io_device *dev;
1185 dev = &vcpu->apic->dev;
1186 if (dev->in_range(dev, addr))
1192 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1195 struct kvm_io_device *dev;
1197 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1199 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1203 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1206 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1209 static int emulator_read_emulated(unsigned long addr,
1212 struct kvm_vcpu *vcpu)
1214 struct kvm_io_device *mmio_dev;
1217 if (vcpu->mmio_read_completed) {
1218 memcpy(val, vcpu->mmio_data, bytes);
1219 vcpu->mmio_read_completed = 0;
1220 return X86EMUL_CONTINUE;
1221 } else if (emulator_read_std(addr, val, bytes, vcpu)
1222 == X86EMUL_CONTINUE)
1223 return X86EMUL_CONTINUE;
1225 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1226 if (gpa == UNMAPPED_GVA)
1227 return X86EMUL_PROPAGATE_FAULT;
1230 * Is this MMIO handled locally?
1232 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1234 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1235 return X86EMUL_CONTINUE;
1238 vcpu->mmio_needed = 1;
1239 vcpu->mmio_phys_addr = gpa;
1240 vcpu->mmio_size = bytes;
1241 vcpu->mmio_is_write = 0;
1243 return X86EMUL_UNHANDLEABLE;
1246 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1247 const void *val, int bytes)
1251 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1254 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1258 static int emulator_write_emulated_onepage(unsigned long addr,
1261 struct kvm_vcpu *vcpu)
1263 struct kvm_io_device *mmio_dev;
1264 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1266 if (gpa == UNMAPPED_GVA) {
1267 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1268 return X86EMUL_PROPAGATE_FAULT;
1271 if (emulator_write_phys(vcpu, gpa, val, bytes))
1272 return X86EMUL_CONTINUE;
1275 * Is this MMIO handled locally?
1277 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1279 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1280 return X86EMUL_CONTINUE;
1283 vcpu->mmio_needed = 1;
1284 vcpu->mmio_phys_addr = gpa;
1285 vcpu->mmio_size = bytes;
1286 vcpu->mmio_is_write = 1;
1287 memcpy(vcpu->mmio_data, val, bytes);
1289 return X86EMUL_CONTINUE;
1292 int emulator_write_emulated(unsigned long addr,
1295 struct kvm_vcpu *vcpu)
1297 /* Crossing a page boundary? */
1298 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1301 now = -addr & ~PAGE_MASK;
1302 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1303 if (rc != X86EMUL_CONTINUE)
1309 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1311 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1313 static int emulator_cmpxchg_emulated(unsigned long addr,
1317 struct kvm_vcpu *vcpu)
1319 static int reported;
1323 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1325 return emulator_write_emulated(addr, new, bytes, vcpu);
1328 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1330 return kvm_x86_ops->get_segment_base(vcpu, seg);
1333 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1335 return X86EMUL_CONTINUE;
1338 int emulate_clts(struct kvm_vcpu *vcpu)
1340 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
1341 return X86EMUL_CONTINUE;
1344 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1346 struct kvm_vcpu *vcpu = ctxt->vcpu;
1350 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1351 return X86EMUL_CONTINUE;
1353 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1354 return X86EMUL_UNHANDLEABLE;
1358 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1360 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1363 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1365 /* FIXME: better handling */
1366 return X86EMUL_UNHANDLEABLE;
1368 return X86EMUL_CONTINUE;
1371 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1373 static int reported;
1375 unsigned long rip = vcpu->rip;
1376 unsigned long rip_linear;
1378 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1383 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1385 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1386 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1389 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1391 struct x86_emulate_ops emulate_ops = {
1392 .read_std = emulator_read_std,
1393 .write_std = emulator_write_std,
1394 .read_emulated = emulator_read_emulated,
1395 .write_emulated = emulator_write_emulated,
1396 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1399 int emulate_instruction(struct kvm_vcpu *vcpu,
1400 struct kvm_run *run,
1407 vcpu->mmio_fault_cr2 = cr2;
1408 kvm_x86_ops->cache_regs(vcpu);
1410 vcpu->mmio_is_write = 0;
1411 vcpu->pio.string = 0;
1415 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1417 vcpu->emulate_ctxt.vcpu = vcpu;
1418 vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1419 vcpu->emulate_ctxt.cr2 = cr2;
1420 vcpu->emulate_ctxt.mode =
1421 (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
1422 ? X86EMUL_MODE_REAL : cs_l
1423 ? X86EMUL_MODE_PROT64 : cs_db
1424 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1426 if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1427 vcpu->emulate_ctxt.cs_base = 0;
1428 vcpu->emulate_ctxt.ds_base = 0;
1429 vcpu->emulate_ctxt.es_base = 0;
1430 vcpu->emulate_ctxt.ss_base = 0;
1432 vcpu->emulate_ctxt.cs_base =
1433 get_segment_base(vcpu, VCPU_SREG_CS);
1434 vcpu->emulate_ctxt.ds_base =
1435 get_segment_base(vcpu, VCPU_SREG_DS);
1436 vcpu->emulate_ctxt.es_base =
1437 get_segment_base(vcpu, VCPU_SREG_ES);
1438 vcpu->emulate_ctxt.ss_base =
1439 get_segment_base(vcpu, VCPU_SREG_SS);
1442 vcpu->emulate_ctxt.gs_base =
1443 get_segment_base(vcpu, VCPU_SREG_GS);
1444 vcpu->emulate_ctxt.fs_base =
1445 get_segment_base(vcpu, VCPU_SREG_FS);
1447 r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
1449 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1450 return EMULATE_DONE;
1451 return EMULATE_FAIL;
1455 r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
1457 if (vcpu->pio.string)
1458 return EMULATE_DO_MMIO;
1460 if ((r || vcpu->mmio_is_write) && run) {
1461 run->exit_reason = KVM_EXIT_MMIO;
1462 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1463 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1464 run->mmio.len = vcpu->mmio_size;
1465 run->mmio.is_write = vcpu->mmio_is_write;
1469 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1470 return EMULATE_DONE;
1471 if (!vcpu->mmio_needed) {
1472 kvm_report_emulation_failure(vcpu, "mmio");
1473 return EMULATE_FAIL;
1475 return EMULATE_DO_MMIO;
1478 kvm_x86_ops->decache_regs(vcpu);
1479 kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
1481 if (vcpu->mmio_is_write) {
1482 vcpu->mmio_needed = 0;
1483 return EMULATE_DO_MMIO;
1486 return EMULATE_DONE;
1488 EXPORT_SYMBOL_GPL(emulate_instruction);
1491 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1493 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1495 DECLARE_WAITQUEUE(wait, current);
1497 add_wait_queue(&vcpu->wq, &wait);
1500 * We will block until either an interrupt or a signal wakes us up
1502 while (!kvm_cpu_has_interrupt(vcpu)
1503 && !signal_pending(current)
1504 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1505 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1506 set_current_state(TASK_INTERRUPTIBLE);
1512 __set_current_state(TASK_RUNNING);
1513 remove_wait_queue(&vcpu->wq, &wait);
1516 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1518 ++vcpu->stat.halt_exits;
1519 if (irqchip_in_kernel(vcpu->kvm)) {
1520 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1521 kvm_vcpu_block(vcpu);
1522 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1526 vcpu->run->exit_reason = KVM_EXIT_HLT;
1530 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1532 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
1534 unsigned long nr, a0, a1, a2, a3, ret;
1536 kvm_x86_ops->cache_regs(vcpu);
1538 nr = vcpu->regs[VCPU_REGS_RAX];
1539 a0 = vcpu->regs[VCPU_REGS_RBX];
1540 a1 = vcpu->regs[VCPU_REGS_RCX];
1541 a2 = vcpu->regs[VCPU_REGS_RDX];
1542 a3 = vcpu->regs[VCPU_REGS_RSI];
1544 if (!is_long_mode(vcpu)) {
1557 vcpu->regs[VCPU_REGS_RAX] = ret;
1558 kvm_x86_ops->decache_regs(vcpu);
1561 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
1563 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
1565 char instruction[3];
1568 mutex_lock(&vcpu->kvm->lock);
1571 * Blow out the MMU to ensure that no other VCPU has an active mapping
1572 * to ensure that the updated hypercall appears atomically across all
1575 kvm_mmu_zap_all(vcpu->kvm);
1577 kvm_x86_ops->cache_regs(vcpu);
1578 kvm_x86_ops->patch_hypercall(vcpu, instruction);
1579 if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
1580 != X86EMUL_CONTINUE)
1583 mutex_unlock(&vcpu->kvm->lock);
1588 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1590 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1593 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1595 struct descriptor_table dt = { limit, base };
1597 kvm_x86_ops->set_gdt(vcpu, &dt);
1600 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1602 struct descriptor_table dt = { limit, base };
1604 kvm_x86_ops->set_idt(vcpu, &dt);
1607 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1608 unsigned long *rflags)
1611 *rflags = kvm_x86_ops->get_rflags(vcpu);
1614 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1616 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1627 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1632 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1633 unsigned long *rflags)
1637 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1638 *rflags = kvm_x86_ops->get_rflags(vcpu);
1647 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1650 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1654 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1659 case 0xc0010010: /* SYSCFG */
1660 case 0xc0010015: /* HWCR */
1661 case MSR_IA32_PLATFORM_ID:
1662 case MSR_IA32_P5_MC_ADDR:
1663 case MSR_IA32_P5_MC_TYPE:
1664 case MSR_IA32_MC0_CTL:
1665 case MSR_IA32_MCG_STATUS:
1666 case MSR_IA32_MCG_CAP:
1667 case MSR_IA32_MC0_MISC:
1668 case MSR_IA32_MC0_MISC+4:
1669 case MSR_IA32_MC0_MISC+8:
1670 case MSR_IA32_MC0_MISC+12:
1671 case MSR_IA32_MC0_MISC+16:
1672 case MSR_IA32_UCODE_REV:
1673 case MSR_IA32_PERF_STATUS:
1674 case MSR_IA32_EBL_CR_POWERON:
1675 /* MTRR registers */
1677 case 0x200 ... 0x2ff:
1680 case 0xcd: /* fsb frequency */
1683 case MSR_IA32_APICBASE:
1684 data = kvm_get_apic_base(vcpu);
1686 case MSR_IA32_MISC_ENABLE:
1687 data = vcpu->ia32_misc_enable_msr;
1689 #ifdef CONFIG_X86_64
1691 data = vcpu->shadow_efer;
1695 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1701 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1704 * Reads an msr value (of 'msr_index') into 'pdata'.
1705 * Returns 0 on success, non-0 otherwise.
1706 * Assumes vcpu_load() was already called.
1708 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1710 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1713 #ifdef CONFIG_X86_64
1715 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1717 if (efer & EFER_RESERVED_BITS) {
1718 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1725 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1726 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1731 kvm_x86_ops->set_efer(vcpu, efer);
1734 efer |= vcpu->shadow_efer & EFER_LMA;
1736 vcpu->shadow_efer = efer;
1741 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1744 #ifdef CONFIG_X86_64
1746 set_efer(vcpu, data);
1749 case MSR_IA32_MC0_STATUS:
1750 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1751 __FUNCTION__, data);
1753 case MSR_IA32_MCG_STATUS:
1754 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1755 __FUNCTION__, data);
1757 case MSR_IA32_UCODE_REV:
1758 case MSR_IA32_UCODE_WRITE:
1759 case 0x200 ... 0x2ff: /* MTRRs */
1761 case MSR_IA32_APICBASE:
1762 kvm_set_apic_base(vcpu, data);
1764 case MSR_IA32_MISC_ENABLE:
1765 vcpu->ia32_misc_enable_msr = data;
1768 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1773 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1776 * Writes msr value into into the appropriate "register".
1777 * Returns 0 on success, non-0 otherwise.
1778 * Assumes vcpu_load() was already called.
1780 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1782 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1785 void kvm_resched(struct kvm_vcpu *vcpu)
1787 if (!need_resched())
1791 EXPORT_SYMBOL_GPL(kvm_resched);
1793 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1797 struct kvm_cpuid_entry *e, *best;
1799 kvm_x86_ops->cache_regs(vcpu);
1800 function = vcpu->regs[VCPU_REGS_RAX];
1801 vcpu->regs[VCPU_REGS_RAX] = 0;
1802 vcpu->regs[VCPU_REGS_RBX] = 0;
1803 vcpu->regs[VCPU_REGS_RCX] = 0;
1804 vcpu->regs[VCPU_REGS_RDX] = 0;
1806 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1807 e = &vcpu->cpuid_entries[i];
1808 if (e->function == function) {
1813 * Both basic or both extended?
1815 if (((e->function ^ function) & 0x80000000) == 0)
1816 if (!best || e->function > best->function)
1820 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1821 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1822 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1823 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1825 kvm_x86_ops->decache_regs(vcpu);
1826 kvm_x86_ops->skip_emulated_instruction(vcpu);
1828 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1830 static int pio_copy_data(struct kvm_vcpu *vcpu)
1832 void *p = vcpu->pio_data;
1835 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1837 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1840 free_pio_guest_pages(vcpu);
1843 q += vcpu->pio.guest_page_offset;
1844 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1846 memcpy(q, p, bytes);
1848 memcpy(p, q, bytes);
1849 q -= vcpu->pio.guest_page_offset;
1851 free_pio_guest_pages(vcpu);
1855 static int complete_pio(struct kvm_vcpu *vcpu)
1857 struct kvm_pio_request *io = &vcpu->pio;
1861 kvm_x86_ops->cache_regs(vcpu);
1865 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1869 r = pio_copy_data(vcpu);
1871 kvm_x86_ops->cache_regs(vcpu);
1878 delta *= io->cur_count;
1880 * The size of the register should really depend on
1881 * current address size.
1883 vcpu->regs[VCPU_REGS_RCX] -= delta;
1889 vcpu->regs[VCPU_REGS_RDI] += delta;
1891 vcpu->regs[VCPU_REGS_RSI] += delta;
1894 kvm_x86_ops->decache_regs(vcpu);
1896 io->count -= io->cur_count;
1902 static void kernel_pio(struct kvm_io_device *pio_dev,
1903 struct kvm_vcpu *vcpu,
1906 /* TODO: String I/O for in kernel device */
1908 mutex_lock(&vcpu->kvm->lock);
1910 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1914 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1917 mutex_unlock(&vcpu->kvm->lock);
1920 static void pio_string_write(struct kvm_io_device *pio_dev,
1921 struct kvm_vcpu *vcpu)
1923 struct kvm_pio_request *io = &vcpu->pio;
1924 void *pd = vcpu->pio_data;
1927 mutex_lock(&vcpu->kvm->lock);
1928 for (i = 0; i < io->cur_count; i++) {
1929 kvm_iodevice_write(pio_dev, io->port,
1934 mutex_unlock(&vcpu->kvm->lock);
1937 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1938 int size, unsigned port)
1940 struct kvm_io_device *pio_dev;
1942 vcpu->run->exit_reason = KVM_EXIT_IO;
1943 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1944 vcpu->run->io.size = vcpu->pio.size = size;
1945 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1946 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1947 vcpu->run->io.port = vcpu->pio.port = port;
1949 vcpu->pio.string = 0;
1951 vcpu->pio.guest_page_offset = 0;
1954 kvm_x86_ops->cache_regs(vcpu);
1955 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1956 kvm_x86_ops->decache_regs(vcpu);
1958 kvm_x86_ops->skip_emulated_instruction(vcpu);
1960 pio_dev = vcpu_find_pio_dev(vcpu, port);
1962 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1968 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1970 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1971 int size, unsigned long count, int down,
1972 gva_t address, int rep, unsigned port)
1974 unsigned now, in_page;
1978 struct kvm_io_device *pio_dev;
1980 vcpu->run->exit_reason = KVM_EXIT_IO;
1981 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1982 vcpu->run->io.size = vcpu->pio.size = size;
1983 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1984 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1985 vcpu->run->io.port = vcpu->pio.port = port;
1987 vcpu->pio.string = 1;
1988 vcpu->pio.down = down;
1989 vcpu->pio.guest_page_offset = offset_in_page(address);
1990 vcpu->pio.rep = rep;
1993 kvm_x86_ops->skip_emulated_instruction(vcpu);
1998 in_page = PAGE_SIZE - offset_in_page(address);
2000 in_page = offset_in_page(address) + size;
2001 now = min(count, (unsigned long)in_page / size);
2004 * String I/O straddles page boundary. Pin two guest pages
2005 * so that we satisfy atomicity constraints. Do just one
2006 * transaction to avoid complexity.
2013 * String I/O in reverse. Yuck. Kill the guest, fix later.
2015 pr_unimpl(vcpu, "guest string pio down\n");
2019 vcpu->run->io.count = now;
2020 vcpu->pio.cur_count = now;
2022 if (vcpu->pio.cur_count == vcpu->pio.count)
2023 kvm_x86_ops->skip_emulated_instruction(vcpu);
2025 for (i = 0; i < nr_pages; ++i) {
2026 mutex_lock(&vcpu->kvm->lock);
2027 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2030 vcpu->pio.guest_pages[i] = page;
2031 mutex_unlock(&vcpu->kvm->lock);
2034 free_pio_guest_pages(vcpu);
2039 pio_dev = vcpu_find_pio_dev(vcpu, port);
2040 if (!vcpu->pio.in) {
2041 /* string PIO write */
2042 ret = pio_copy_data(vcpu);
2043 if (ret >= 0 && pio_dev) {
2044 pio_string_write(pio_dev, vcpu);
2046 if (vcpu->pio.count == 0)
2050 pr_unimpl(vcpu, "no string pio read support yet, "
2051 "port %x size %d count %ld\n",
2056 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2059 * Check if userspace requested an interrupt window, and that the
2060 * interrupt window is open.
2062 * No need to exit to userspace if we already have an interrupt queued.
2064 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2065 struct kvm_run *kvm_run)
2067 return (!vcpu->irq_summary &&
2068 kvm_run->request_interrupt_window &&
2069 vcpu->interrupt_window_open &&
2070 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2073 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2074 struct kvm_run *kvm_run)
2076 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2077 kvm_run->cr8 = get_cr8(vcpu);
2078 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2079 if (irqchip_in_kernel(vcpu->kvm))
2080 kvm_run->ready_for_interrupt_injection = 1;
2082 kvm_run->ready_for_interrupt_injection =
2083 (vcpu->interrupt_window_open &&
2084 vcpu->irq_summary == 0);
2087 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2091 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2092 printk("vcpu %d received sipi with vector # %x\n",
2093 vcpu->vcpu_id, vcpu->sipi_vector);
2094 kvm_lapic_reset(vcpu);
2095 kvm_x86_ops->vcpu_reset(vcpu);
2096 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
2100 if (vcpu->guest_debug.enabled)
2101 kvm_x86_ops->guest_debug_pre(vcpu);
2104 r = kvm_mmu_reload(vcpu);
2110 kvm_x86_ops->prepare_guest_switch(vcpu);
2111 kvm_load_guest_fpu(vcpu);
2113 local_irq_disable();
2115 if (signal_pending(current)) {
2119 kvm_run->exit_reason = KVM_EXIT_INTR;
2120 ++vcpu->stat.signal_exits;
2124 if (irqchip_in_kernel(vcpu->kvm))
2125 kvm_x86_ops->inject_pending_irq(vcpu);
2126 else if (!vcpu->mmio_read_completed)
2127 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2129 vcpu->guest_mode = 1;
2133 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2134 kvm_x86_ops->tlb_flush(vcpu);
2136 kvm_x86_ops->run(vcpu, kvm_run);
2138 vcpu->guest_mode = 0;
2144 * We must have an instruction between local_irq_enable() and
2145 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2146 * the interrupt shadow. The stat.exits increment will do nicely.
2147 * But we need to prevent reordering, hence this barrier():
2156 * Profile KVM exit RIPs:
2158 if (unlikely(prof_on == KVM_PROFILING)) {
2159 kvm_x86_ops->cache_regs(vcpu);
2160 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2163 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2166 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2168 kvm_run->exit_reason = KVM_EXIT_INTR;
2169 ++vcpu->stat.request_irq_exits;
2172 if (!need_resched()) {
2173 ++vcpu->stat.light_exits;
2184 post_kvm_run_save(vcpu, kvm_run);
2190 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2197 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2198 kvm_vcpu_block(vcpu);
2203 if (vcpu->sigset_active)
2204 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2206 /* re-sync apic's tpr */
2207 if (!irqchip_in_kernel(vcpu->kvm))
2208 set_cr8(vcpu, kvm_run->cr8);
2210 if (vcpu->pio.cur_count) {
2211 r = complete_pio(vcpu);
2216 if (vcpu->mmio_needed) {
2217 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2218 vcpu->mmio_read_completed = 1;
2219 vcpu->mmio_needed = 0;
2220 r = emulate_instruction(vcpu, kvm_run,
2221 vcpu->mmio_fault_cr2, 0, 1);
2222 if (r == EMULATE_DO_MMIO) {
2224 * Read-modify-write. Back to userspace.
2231 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2232 kvm_x86_ops->cache_regs(vcpu);
2233 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2234 kvm_x86_ops->decache_regs(vcpu);
2237 r = __vcpu_run(vcpu, kvm_run);
2240 if (vcpu->sigset_active)
2241 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2247 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2248 struct kvm_regs *regs)
2252 kvm_x86_ops->cache_regs(vcpu);
2254 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2255 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2256 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2257 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2258 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2259 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2260 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2261 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2262 #ifdef CONFIG_X86_64
2263 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2264 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2265 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2266 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2267 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2268 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2269 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2270 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2273 regs->rip = vcpu->rip;
2274 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2277 * Don't leak debug flags in case they were set for guest debugging
2279 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2280 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2287 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2288 struct kvm_regs *regs)
2292 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2293 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2294 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2295 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2296 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2297 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2298 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2299 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2300 #ifdef CONFIG_X86_64
2301 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2302 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2303 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2304 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2305 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2306 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2307 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2308 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2311 vcpu->rip = regs->rip;
2312 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2314 kvm_x86_ops->decache_regs(vcpu);
2321 static void get_segment(struct kvm_vcpu *vcpu,
2322 struct kvm_segment *var, int seg)
2324 return kvm_x86_ops->get_segment(vcpu, var, seg);
2327 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2328 struct kvm_sregs *sregs)
2330 struct descriptor_table dt;
2335 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2336 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2337 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2338 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2339 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2340 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2342 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2343 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2345 kvm_x86_ops->get_idt(vcpu, &dt);
2346 sregs->idt.limit = dt.limit;
2347 sregs->idt.base = dt.base;
2348 kvm_x86_ops->get_gdt(vcpu, &dt);
2349 sregs->gdt.limit = dt.limit;
2350 sregs->gdt.base = dt.base;
2352 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2353 sregs->cr0 = vcpu->cr0;
2354 sregs->cr2 = vcpu->cr2;
2355 sregs->cr3 = vcpu->cr3;
2356 sregs->cr4 = vcpu->cr4;
2357 sregs->cr8 = get_cr8(vcpu);
2358 sregs->efer = vcpu->shadow_efer;
2359 sregs->apic_base = kvm_get_apic_base(vcpu);
2361 if (irqchip_in_kernel(vcpu->kvm)) {
2362 memset(sregs->interrupt_bitmap, 0,
2363 sizeof sregs->interrupt_bitmap);
2364 pending_vec = kvm_x86_ops->get_irq(vcpu);
2365 if (pending_vec >= 0)
2366 set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
2368 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2369 sizeof sregs->interrupt_bitmap);
2376 static void set_segment(struct kvm_vcpu *vcpu,
2377 struct kvm_segment *var, int seg)
2379 return kvm_x86_ops->set_segment(vcpu, var, seg);
2382 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2383 struct kvm_sregs *sregs)
2385 int mmu_reset_needed = 0;
2386 int i, pending_vec, max_bits;
2387 struct descriptor_table dt;
2391 dt.limit = sregs->idt.limit;
2392 dt.base = sregs->idt.base;
2393 kvm_x86_ops->set_idt(vcpu, &dt);
2394 dt.limit = sregs->gdt.limit;
2395 dt.base = sregs->gdt.base;
2396 kvm_x86_ops->set_gdt(vcpu, &dt);
2398 vcpu->cr2 = sregs->cr2;
2399 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2400 vcpu->cr3 = sregs->cr3;
2402 set_cr8(vcpu, sregs->cr8);
2404 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2405 #ifdef CONFIG_X86_64
2406 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2408 kvm_set_apic_base(vcpu, sregs->apic_base);
2410 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2412 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2413 vcpu->cr0 = sregs->cr0;
2414 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2416 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2417 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2418 if (!is_long_mode(vcpu) && is_pae(vcpu))
2419 load_pdptrs(vcpu, vcpu->cr3);
2421 if (mmu_reset_needed)
2422 kvm_mmu_reset_context(vcpu);
2424 if (!irqchip_in_kernel(vcpu->kvm)) {
2425 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2426 sizeof vcpu->irq_pending);
2427 vcpu->irq_summary = 0;
2428 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2429 if (vcpu->irq_pending[i])
2430 __set_bit(i, &vcpu->irq_summary);
2432 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2433 pending_vec = find_first_bit(
2434 (const unsigned long *)sregs->interrupt_bitmap,
2436 /* Only pending external irq is handled here */
2437 if (pending_vec < max_bits) {
2438 kvm_x86_ops->set_irq(vcpu, pending_vec);
2439 printk("Set back pending irq %d\n", pending_vec);
2443 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2444 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2445 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2446 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2447 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2448 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2450 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2451 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2458 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2460 struct kvm_segment cs;
2462 get_segment(vcpu, &cs, VCPU_SREG_CS);
2466 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2469 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2470 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2472 * This list is modified at module load time to reflect the
2473 * capabilities of the host cpu.
2475 static u32 msrs_to_save[] = {
2476 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2478 #ifdef CONFIG_X86_64
2479 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2481 MSR_IA32_TIME_STAMP_COUNTER,
2484 static unsigned num_msrs_to_save;
2486 static u32 emulated_msrs[] = {
2487 MSR_IA32_MISC_ENABLE,
2490 static __init void kvm_init_msr_list(void)
2495 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2496 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2499 msrs_to_save[j] = msrs_to_save[i];
2502 num_msrs_to_save = j;
2506 * Adapt set_msr() to msr_io()'s calling convention
2508 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2510 return kvm_set_msr(vcpu, index, *data);
2514 * Read or write a bunch of msrs. All parameters are kernel addresses.
2516 * @return number of msrs set successfully.
2518 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2519 struct kvm_msr_entry *entries,
2520 int (*do_msr)(struct kvm_vcpu *vcpu,
2521 unsigned index, u64 *data))
2527 for (i = 0; i < msrs->nmsrs; ++i)
2528 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2537 * Read or write a bunch of msrs. Parameters are user addresses.
2539 * @return number of msrs set successfully.
2541 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2542 int (*do_msr)(struct kvm_vcpu *vcpu,
2543 unsigned index, u64 *data),
2546 struct kvm_msrs msrs;
2547 struct kvm_msr_entry *entries;
2552 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2556 if (msrs.nmsrs >= MAX_IO_MSRS)
2560 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2561 entries = vmalloc(size);
2566 if (copy_from_user(entries, user_msrs->entries, size))
2569 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2574 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2586 * Translate a guest virtual address to a guest physical address.
2588 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2589 struct kvm_translation *tr)
2591 unsigned long vaddr = tr->linear_address;
2595 mutex_lock(&vcpu->kvm->lock);
2596 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2597 tr->physical_address = gpa;
2598 tr->valid = gpa != UNMAPPED_GVA;
2601 mutex_unlock(&vcpu->kvm->lock);
2607 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2608 struct kvm_interrupt *irq)
2610 if (irq->irq < 0 || irq->irq >= 256)
2612 if (irqchip_in_kernel(vcpu->kvm))
2616 set_bit(irq->irq, vcpu->irq_pending);
2617 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2624 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2625 struct kvm_debug_guest *dbg)
2631 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2638 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2639 unsigned long address,
2642 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2643 unsigned long pgoff;
2646 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2648 page = virt_to_page(vcpu->run);
2649 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2650 page = virt_to_page(vcpu->pio_data);
2652 return NOPAGE_SIGBUS;
2655 *type = VM_FAULT_MINOR;
2660 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2661 .nopage = kvm_vcpu_nopage,
2664 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2666 vma->vm_ops = &kvm_vcpu_vm_ops;
2670 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2672 struct kvm_vcpu *vcpu = filp->private_data;
2674 fput(vcpu->kvm->filp);
2678 static struct file_operations kvm_vcpu_fops = {
2679 .release = kvm_vcpu_release,
2680 .unlocked_ioctl = kvm_vcpu_ioctl,
2681 .compat_ioctl = kvm_vcpu_ioctl,
2682 .mmap = kvm_vcpu_mmap,
2686 * Allocates an inode for the vcpu.
2688 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2691 struct inode *inode;
2694 r = anon_inode_getfd(&fd, &inode, &file,
2695 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2698 atomic_inc(&vcpu->kvm->filp->f_count);
2703 * Creates some virtual cpus. Good luck creating more than one.
2705 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2708 struct kvm_vcpu *vcpu;
2713 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2715 return PTR_ERR(vcpu);
2717 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2719 /* We do fxsave: this must be aligned. */
2720 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2723 r = kvm_mmu_setup(vcpu);
2728 mutex_lock(&kvm->lock);
2729 if (kvm->vcpus[n]) {
2731 mutex_unlock(&kvm->lock);
2734 kvm->vcpus[n] = vcpu;
2735 mutex_unlock(&kvm->lock);
2737 /* Now it's all set up, let userspace reach it */
2738 r = create_vcpu_fd(vcpu);
2744 mutex_lock(&kvm->lock);
2745 kvm->vcpus[n] = NULL;
2746 mutex_unlock(&kvm->lock);
2750 kvm_mmu_unload(vcpu);
2754 kvm_x86_ops->vcpu_free(vcpu);
2758 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2762 struct kvm_cpuid_entry *e, *entry;
2764 rdmsrl(MSR_EFER, efer);
2766 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2767 e = &vcpu->cpuid_entries[i];
2768 if (e->function == 0x80000001) {
2773 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2774 entry->edx &= ~(1 << 20);
2775 printk(KERN_INFO "kvm: guest NX capability removed\n");
2779 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2780 struct kvm_cpuid *cpuid,
2781 struct kvm_cpuid_entry __user *entries)
2786 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2789 if (copy_from_user(&vcpu->cpuid_entries, entries,
2790 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2792 vcpu->cpuid_nent = cpuid->nent;
2793 cpuid_fix_nx_cap(vcpu);
2800 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2803 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2804 vcpu->sigset_active = 1;
2805 vcpu->sigset = *sigset;
2807 vcpu->sigset_active = 0;
2812 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2813 * we have asm/x86/processor.h
2824 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2825 #ifdef CONFIG_X86_64
2826 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2828 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2832 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2834 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2838 memcpy(fpu->fpr, fxsave->st_space, 128);
2839 fpu->fcw = fxsave->cwd;
2840 fpu->fsw = fxsave->swd;
2841 fpu->ftwx = fxsave->twd;
2842 fpu->last_opcode = fxsave->fop;
2843 fpu->last_ip = fxsave->rip;
2844 fpu->last_dp = fxsave->rdp;
2845 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2852 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2854 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2858 memcpy(fxsave->st_space, fpu->fpr, 128);
2859 fxsave->cwd = fpu->fcw;
2860 fxsave->swd = fpu->fsw;
2861 fxsave->twd = fpu->ftwx;
2862 fxsave->fop = fpu->last_opcode;
2863 fxsave->rip = fpu->last_ip;
2864 fxsave->rdp = fpu->last_dp;
2865 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2872 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2873 struct kvm_lapic_state *s)
2876 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2882 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2883 struct kvm_lapic_state *s)
2886 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2887 kvm_apic_post_state_restore(vcpu);
2893 static long kvm_vcpu_ioctl(struct file *filp,
2894 unsigned int ioctl, unsigned long arg)
2896 struct kvm_vcpu *vcpu = filp->private_data;
2897 void __user *argp = (void __user *)arg;
2905 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2907 case KVM_GET_REGS: {
2908 struct kvm_regs kvm_regs;
2910 memset(&kvm_regs, 0, sizeof kvm_regs);
2911 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2915 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2920 case KVM_SET_REGS: {
2921 struct kvm_regs kvm_regs;
2924 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2926 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2932 case KVM_GET_SREGS: {
2933 struct kvm_sregs kvm_sregs;
2935 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2936 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2940 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2945 case KVM_SET_SREGS: {
2946 struct kvm_sregs kvm_sregs;
2949 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2951 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2957 case KVM_TRANSLATE: {
2958 struct kvm_translation tr;
2961 if (copy_from_user(&tr, argp, sizeof tr))
2963 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2967 if (copy_to_user(argp, &tr, sizeof tr))
2972 case KVM_INTERRUPT: {
2973 struct kvm_interrupt irq;
2976 if (copy_from_user(&irq, argp, sizeof irq))
2978 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2984 case KVM_DEBUG_GUEST: {
2985 struct kvm_debug_guest dbg;
2988 if (copy_from_user(&dbg, argp, sizeof dbg))
2990 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2997 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3000 r = msr_io(vcpu, argp, do_set_msr, 0);
3002 case KVM_SET_CPUID: {
3003 struct kvm_cpuid __user *cpuid_arg = argp;
3004 struct kvm_cpuid cpuid;
3007 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3009 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3014 case KVM_SET_SIGNAL_MASK: {
3015 struct kvm_signal_mask __user *sigmask_arg = argp;
3016 struct kvm_signal_mask kvm_sigmask;
3017 sigset_t sigset, *p;
3022 if (copy_from_user(&kvm_sigmask, argp,
3023 sizeof kvm_sigmask))
3026 if (kvm_sigmask.len != sizeof sigset)
3029 if (copy_from_user(&sigset, sigmask_arg->sigset,
3034 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3040 memset(&fpu, 0, sizeof fpu);
3041 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
3045 if (copy_to_user(argp, &fpu, sizeof fpu))
3054 if (copy_from_user(&fpu, argp, sizeof fpu))
3056 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
3062 case KVM_GET_LAPIC: {
3063 struct kvm_lapic_state lapic;
3065 memset(&lapic, 0, sizeof lapic);
3066 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
3070 if (copy_to_user(argp, &lapic, sizeof lapic))
3075 case KVM_SET_LAPIC: {
3076 struct kvm_lapic_state lapic;
3079 if (copy_from_user(&lapic, argp, sizeof lapic))
3081 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
3094 static long kvm_vm_ioctl(struct file *filp,
3095 unsigned int ioctl, unsigned long arg)
3097 struct kvm *kvm = filp->private_data;
3098 void __user *argp = (void __user *)arg;
3102 case KVM_CREATE_VCPU:
3103 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3107 case KVM_SET_MEMORY_REGION: {
3108 struct kvm_memory_region kvm_mem;
3111 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
3113 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
3118 case KVM_SET_NR_MMU_PAGES:
3119 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3123 case KVM_GET_NR_MMU_PAGES:
3124 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3126 case KVM_GET_DIRTY_LOG: {
3127 struct kvm_dirty_log log;
3130 if (copy_from_user(&log, argp, sizeof log))
3132 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3137 case KVM_SET_MEMORY_ALIAS: {
3138 struct kvm_memory_alias alias;
3141 if (copy_from_user(&alias, argp, sizeof alias))
3143 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
3148 case KVM_CREATE_IRQCHIP:
3150 kvm->vpic = kvm_create_pic(kvm);
3152 r = kvm_ioapic_init(kvm);
3162 case KVM_IRQ_LINE: {
3163 struct kvm_irq_level irq_event;
3166 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3168 if (irqchip_in_kernel(kvm)) {
3169 mutex_lock(&kvm->lock);
3170 if (irq_event.irq < 16)
3171 kvm_pic_set_irq(pic_irqchip(kvm),
3174 kvm_ioapic_set_irq(kvm->vioapic,
3177 mutex_unlock(&kvm->lock);
3182 case KVM_GET_IRQCHIP: {
3183 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3184 struct kvm_irqchip chip;
3187 if (copy_from_user(&chip, argp, sizeof chip))
3190 if (!irqchip_in_kernel(kvm))
3192 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
3196 if (copy_to_user(argp, &chip, sizeof chip))
3201 case KVM_SET_IRQCHIP: {
3202 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3203 struct kvm_irqchip chip;
3206 if (copy_from_user(&chip, argp, sizeof chip))
3209 if (!irqchip_in_kernel(kvm))
3211 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3224 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3225 unsigned long address,
3228 struct kvm *kvm = vma->vm_file->private_data;
3229 unsigned long pgoff;
3232 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3233 page = gfn_to_page(kvm, pgoff);
3235 return NOPAGE_SIGBUS;
3238 *type = VM_FAULT_MINOR;
3243 static struct vm_operations_struct kvm_vm_vm_ops = {
3244 .nopage = kvm_vm_nopage,
3247 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3249 vma->vm_ops = &kvm_vm_vm_ops;
3253 static struct file_operations kvm_vm_fops = {
3254 .release = kvm_vm_release,
3255 .unlocked_ioctl = kvm_vm_ioctl,
3256 .compat_ioctl = kvm_vm_ioctl,
3257 .mmap = kvm_vm_mmap,
3260 static int kvm_dev_ioctl_create_vm(void)
3263 struct inode *inode;
3267 kvm = kvm_create_vm();
3269 return PTR_ERR(kvm);
3270 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3272 kvm_destroy_vm(kvm);
3281 static long kvm_dev_ioctl(struct file *filp,
3282 unsigned int ioctl, unsigned long arg)
3284 void __user *argp = (void __user *)arg;
3288 case KVM_GET_API_VERSION:
3292 r = KVM_API_VERSION;
3298 r = kvm_dev_ioctl_create_vm();
3300 case KVM_GET_MSR_INDEX_LIST: {
3301 struct kvm_msr_list __user *user_msr_list = argp;
3302 struct kvm_msr_list msr_list;
3306 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3309 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3310 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3313 if (n < num_msrs_to_save)
3316 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3317 num_msrs_to_save * sizeof(u32)))
3319 if (copy_to_user(user_msr_list->indices
3320 + num_msrs_to_save * sizeof(u32),
3322 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3327 case KVM_CHECK_EXTENSION: {
3328 int ext = (long)argp;
3331 case KVM_CAP_IRQCHIP:
3333 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3342 case KVM_GET_VCPU_MMAP_SIZE:
3355 static struct file_operations kvm_chardev_ops = {
3356 .unlocked_ioctl = kvm_dev_ioctl,
3357 .compat_ioctl = kvm_dev_ioctl,
3360 static struct miscdevice kvm_dev = {
3367 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3370 static void decache_vcpus_on_cpu(int cpu)
3373 struct kvm_vcpu *vcpu;
3376 spin_lock(&kvm_lock);
3377 list_for_each_entry(vm, &vm_list, vm_list)
3378 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3379 vcpu = vm->vcpus[i];
3383 * If the vcpu is locked, then it is running on some
3384 * other cpu and therefore it is not cached on the
3387 * If it's not locked, check the last cpu it executed
3390 if (mutex_trylock(&vcpu->mutex)) {
3391 if (vcpu->cpu == cpu) {
3392 kvm_x86_ops->vcpu_decache(vcpu);
3395 mutex_unlock(&vcpu->mutex);
3398 spin_unlock(&kvm_lock);
3401 static void hardware_enable(void *junk)
3403 int cpu = raw_smp_processor_id();
3405 if (cpu_isset(cpu, cpus_hardware_enabled))
3407 cpu_set(cpu, cpus_hardware_enabled);
3408 kvm_x86_ops->hardware_enable(NULL);
3411 static void hardware_disable(void *junk)
3413 int cpu = raw_smp_processor_id();
3415 if (!cpu_isset(cpu, cpus_hardware_enabled))
3417 cpu_clear(cpu, cpus_hardware_enabled);
3418 decache_vcpus_on_cpu(cpu);
3419 kvm_x86_ops->hardware_disable(NULL);
3422 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3429 case CPU_DYING_FROZEN:
3430 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3432 hardware_disable(NULL);
3434 case CPU_UP_CANCELED:
3435 case CPU_UP_CANCELED_FROZEN:
3436 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3438 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3441 case CPU_ONLINE_FROZEN:
3442 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3444 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3450 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3453 if (val == SYS_RESTART) {
3455 * Some (well, at least mine) BIOSes hang on reboot if
3458 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3459 on_each_cpu(hardware_disable, NULL, 0, 1);
3464 static struct notifier_block kvm_reboot_notifier = {
3465 .notifier_call = kvm_reboot,
3469 void kvm_io_bus_init(struct kvm_io_bus *bus)
3471 memset(bus, 0, sizeof(*bus));
3474 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3478 for (i = 0; i < bus->dev_count; i++) {
3479 struct kvm_io_device *pos = bus->devs[i];
3481 kvm_iodevice_destructor(pos);
3485 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3489 for (i = 0; i < bus->dev_count; i++) {
3490 struct kvm_io_device *pos = bus->devs[i];
3492 if (pos->in_range(pos, addr))
3499 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3501 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3503 bus->devs[bus->dev_count++] = dev;
3506 static struct notifier_block kvm_cpu_notifier = {
3507 .notifier_call = kvm_cpu_hotplug,
3508 .priority = 20, /* must be > scheduler priority */
3511 static u64 stat_get(void *_offset)
3513 unsigned offset = (long)_offset;
3516 struct kvm_vcpu *vcpu;
3519 spin_lock(&kvm_lock);
3520 list_for_each_entry(kvm, &vm_list, vm_list)
3521 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3522 vcpu = kvm->vcpus[i];
3524 total += *(u32 *)((void *)vcpu + offset);
3526 spin_unlock(&kvm_lock);
3530 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3532 static __init void kvm_init_debug(void)
3534 struct kvm_stats_debugfs_item *p;
3536 debugfs_dir = debugfs_create_dir("kvm", NULL);
3537 for (p = debugfs_entries; p->name; ++p)
3538 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3539 (void *)(long)p->offset,
3543 static void kvm_exit_debug(void)
3545 struct kvm_stats_debugfs_item *p;
3547 for (p = debugfs_entries; p->name; ++p)
3548 debugfs_remove(p->dentry);
3549 debugfs_remove(debugfs_dir);
3552 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3554 hardware_disable(NULL);
3558 static int kvm_resume(struct sys_device *dev)
3560 hardware_enable(NULL);
3564 static struct sysdev_class kvm_sysdev_class = {
3566 .suspend = kvm_suspend,
3567 .resume = kvm_resume,
3570 static struct sys_device kvm_sysdev = {
3572 .cls = &kvm_sysdev_class,
3575 hpa_t bad_page_address;
3578 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3580 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3583 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3585 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3587 kvm_x86_ops->vcpu_load(vcpu, cpu);
3590 static void kvm_sched_out(struct preempt_notifier *pn,
3591 struct task_struct *next)
3593 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3595 kvm_x86_ops->vcpu_put(vcpu);
3598 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3599 struct module *module)
3605 printk(KERN_ERR "kvm: already loaded the other module\n");
3609 if (!ops->cpu_has_kvm_support()) {
3610 printk(KERN_ERR "kvm: no hardware support\n");
3613 if (ops->disabled_by_bios()) {
3614 printk(KERN_ERR "kvm: disabled by bios\n");
3620 r = kvm_x86_ops->hardware_setup();
3624 for_each_online_cpu(cpu) {
3625 smp_call_function_single(cpu,
3626 kvm_x86_ops->check_processor_compatibility,
3632 on_each_cpu(hardware_enable, NULL, 0, 1);
3633 r = register_cpu_notifier(&kvm_cpu_notifier);
3636 register_reboot_notifier(&kvm_reboot_notifier);
3638 r = sysdev_class_register(&kvm_sysdev_class);
3642 r = sysdev_register(&kvm_sysdev);
3646 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3647 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3648 __alignof__(struct kvm_vcpu), 0, 0);
3649 if (!kvm_vcpu_cache) {
3654 kvm_chardev_ops.owner = module;
3656 r = misc_register(&kvm_dev);
3658 printk (KERN_ERR "kvm: misc device register failed\n");
3662 kvm_preempt_ops.sched_in = kvm_sched_in;
3663 kvm_preempt_ops.sched_out = kvm_sched_out;
3665 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3670 kmem_cache_destroy(kvm_vcpu_cache);
3672 sysdev_unregister(&kvm_sysdev);
3674 sysdev_class_unregister(&kvm_sysdev_class);
3676 unregister_reboot_notifier(&kvm_reboot_notifier);
3677 unregister_cpu_notifier(&kvm_cpu_notifier);
3679 on_each_cpu(hardware_disable, NULL, 0, 1);
3681 kvm_x86_ops->hardware_unsetup();
3687 void kvm_exit_x86(void)
3689 misc_deregister(&kvm_dev);
3690 kmem_cache_destroy(kvm_vcpu_cache);
3691 sysdev_unregister(&kvm_sysdev);
3692 sysdev_class_unregister(&kvm_sysdev_class);
3693 unregister_reboot_notifier(&kvm_reboot_notifier);
3694 unregister_cpu_notifier(&kvm_cpu_notifier);
3695 on_each_cpu(hardware_disable, NULL, 0, 1);
3696 kvm_x86_ops->hardware_unsetup();
3700 static __init int kvm_init(void)
3702 static struct page *bad_page;
3705 r = kvm_mmu_module_init();
3711 kvm_init_msr_list();
3713 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3718 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3719 memset(__va(bad_page_address), 0, PAGE_SIZE);
3725 kvm_mmu_module_exit();
3730 static __exit void kvm_exit(void)
3733 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3734 kvm_mmu_module_exit();
3737 module_init(kvm_init)
3738 module_exit(kvm_exit)
3740 EXPORT_SYMBOL_GPL(kvm_init_x86);
3741 EXPORT_SYMBOL_GPL(kvm_exit_x86);