1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.25"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
360 struct s2io_nic *nic = dev->priv;
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
398 * Constants to be programmed into the Xena's registers, to configure
403 static const u64 herc_act_dtx_cfg[] = {
405 0x8000051536750000ULL, 0x80000515367500E0ULL,
407 0x8000051536750004ULL, 0x80000515367500E4ULL,
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
424 static const u64 xena_dtx_cfg[] = {
426 0x8000051500000000ULL, 0x80000515000000E0ULL,
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
434 0x8002051500000000ULL, 0x80020515000000E0ULL,
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
441 * Constants for Fixing the MacAddress problem seen mostly on
444 static const u64 fix_mac[] = {
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
468 S2IO_PARM_INT(rx_ring_num, 1);
469 S2IO_PARM_INT(multiq, 0);
470 S2IO_PARM_INT(rx_ring_mode, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472 S2IO_PARM_INT(rmac_pause_time, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475 S2IO_PARM_INT(shared_splits, 0);
476 S2IO_PARM_INT(tmac_util_period, 5);
477 S2IO_PARM_INT(rmac_util_period, 5);
478 S2IO_PARM_INT(l3l4hdr_size, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable;
487 module_param_named(lro, lro_enable, uint, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts, 0);
495 S2IO_PARM_INT(napi, 1);
496 S2IO_PARM_INT(ufo, 0);
497 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
499 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503 static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
506 module_param_array(tx_fifo_len, uint, NULL, 0);
507 module_param_array(rx_ring_sz, uint, NULL, 0);
508 module_param_array(rts_frm_len, uint, NULL, 0);
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
526 MODULE_DEVICE_TABLE(pci, s2io_tbl);
528 static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
534 static struct pci_driver s2io_driver = {
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
539 .err_handler = &s2io_err_handler,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
548 if (!sp->config.multiq) {
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
554 netif_tx_stop_all_queues(sp->dev);
557 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
559 if (!sp->config.multiq)
560 sp->mac_control.fifos[fifo_no].queue_state =
563 netif_tx_stop_all_queues(sp->dev);
566 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
568 if (!sp->config.multiq) {
571 for (i = 0; i < sp->config.tx_fifo_num; i++)
572 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
574 netif_tx_start_all_queues(sp->dev);
577 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
579 if (!sp->config.multiq)
580 sp->mac_control.fifos[fifo_no].queue_state =
583 netif_tx_start_all_queues(sp->dev);
586 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
588 if (!sp->config.multiq) {
591 for (i = 0; i < sp->config.tx_fifo_num; i++)
592 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
594 netif_tx_wake_all_queues(sp->dev);
597 static inline void s2io_wake_tx_queue(
598 struct fifo_info *fifo, int cnt, u8 multiq)
602 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
603 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
604 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
605 if (netif_queue_stopped(fifo->dev)) {
606 fifo->queue_state = FIFO_QUEUE_START;
607 netif_wake_queue(fifo->dev);
613 * init_shared_mem - Allocation and Initialization of Memory
614 * @nic: Device private variable.
615 * Description: The function allocates all the memory areas shared
616 * between the NIC and the driver. This includes Tx descriptors,
617 * Rx descriptors and the statistics block.
620 static int init_shared_mem(struct s2io_nic *nic)
623 void *tmp_v_addr, *tmp_v_addr_next;
624 dma_addr_t tmp_p_addr, tmp_p_addr_next;
625 struct RxD_block *pre_rxd_blk = NULL;
627 int lst_size, lst_per_page;
628 struct net_device *dev = nic->dev;
632 struct mac_info *mac_control;
633 struct config_param *config;
634 unsigned long long mem_allocated = 0;
636 mac_control = &nic->mac_control;
637 config = &nic->config;
640 /* Allocation and initialization of TXDLs in FIOFs */
642 for (i = 0; i < config->tx_fifo_num; i++) {
643 size += config->tx_cfg[i].fifo_len;
645 if (size > MAX_AVAILABLE_TXDS) {
646 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
647 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
652 for (i = 0; i < config->tx_fifo_num; i++) {
653 size = config->tx_cfg[i].fifo_len;
655 * Legal values are from 2 to 8192
658 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
659 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
660 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
666 lst_size = (sizeof(struct TxD) * config->max_txds);
667 lst_per_page = PAGE_SIZE / lst_size;
669 for (i = 0; i < config->tx_fifo_num; i++) {
670 int fifo_len = config->tx_cfg[i].fifo_len;
671 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
672 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
674 if (!mac_control->fifos[i].list_info) {
676 "Malloc failed for list_info\n");
679 mem_allocated += list_holder_size;
681 for (i = 0; i < config->tx_fifo_num; i++) {
682 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
684 mac_control->fifos[i].tx_curr_put_info.offset = 0;
685 mac_control->fifos[i].tx_curr_put_info.fifo_len =
686 config->tx_cfg[i].fifo_len - 1;
687 mac_control->fifos[i].tx_curr_get_info.offset = 0;
688 mac_control->fifos[i].tx_curr_get_info.fifo_len =
689 config->tx_cfg[i].fifo_len - 1;
690 mac_control->fifos[i].fifo_no = i;
691 mac_control->fifos[i].nic = nic;
692 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
693 mac_control->fifos[i].dev = dev;
695 for (j = 0; j < page_num; j++) {
699 tmp_v = pci_alloc_consistent(nic->pdev,
703 "pci_alloc_consistent ");
704 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
707 /* If we got a zero DMA address(can happen on
708 * certain platforms like PPC), reallocate.
709 * Store virtual address of page we don't want,
713 mac_control->zerodma_virt_addr = tmp_v;
715 "%s: Zero DMA address for TxDL. ", dev->name);
717 "Virtual address %p\n", tmp_v);
718 tmp_v = pci_alloc_consistent(nic->pdev,
722 "pci_alloc_consistent ");
723 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
726 mem_allocated += PAGE_SIZE;
728 while (k < lst_per_page) {
729 int l = (j * lst_per_page) + k;
730 if (l == config->tx_cfg[i].fifo_len)
732 mac_control->fifos[i].list_info[l].list_virt_addr =
733 tmp_v + (k * lst_size);
734 mac_control->fifos[i].list_info[l].list_phy_addr =
735 tmp_p + (k * lst_size);
741 for (i = 0; i < config->tx_fifo_num; i++) {
742 size = config->tx_cfg[i].fifo_len;
743 mac_control->fifos[i].ufo_in_band_v
744 = kcalloc(size, sizeof(u64), GFP_KERNEL);
745 if (!mac_control->fifos[i].ufo_in_band_v)
747 mem_allocated += (size * sizeof(u64));
750 /* Allocation and initialization of RXDs in Rings */
752 for (i = 0; i < config->rx_ring_num; i++) {
753 if (config->rx_cfg[i].num_rxd %
754 (rxd_count[nic->rxd_mode] + 1)) {
755 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
756 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
758 DBG_PRINT(ERR_DBG, "RxDs per Block");
761 size += config->rx_cfg[i].num_rxd;
762 mac_control->rings[i].block_count =
763 config->rx_cfg[i].num_rxd /
764 (rxd_count[nic->rxd_mode] + 1 );
765 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
766 mac_control->rings[i].block_count;
768 if (nic->rxd_mode == RXD_MODE_1)
769 size = (size * (sizeof(struct RxD1)));
771 size = (size * (sizeof(struct RxD3)));
773 for (i = 0; i < config->rx_ring_num; i++) {
774 mac_control->rings[i].rx_curr_get_info.block_index = 0;
775 mac_control->rings[i].rx_curr_get_info.offset = 0;
776 mac_control->rings[i].rx_curr_get_info.ring_len =
777 config->rx_cfg[i].num_rxd - 1;
778 mac_control->rings[i].rx_curr_put_info.block_index = 0;
779 mac_control->rings[i].rx_curr_put_info.offset = 0;
780 mac_control->rings[i].rx_curr_put_info.ring_len =
781 config->rx_cfg[i].num_rxd - 1;
782 mac_control->rings[i].nic = nic;
783 mac_control->rings[i].ring_no = i;
784 mac_control->rings[i].lro = lro_enable;
786 blk_cnt = config->rx_cfg[i].num_rxd /
787 (rxd_count[nic->rxd_mode] + 1);
788 /* Allocating all the Rx blocks */
789 for (j = 0; j < blk_cnt; j++) {
790 struct rx_block_info *rx_blocks;
793 rx_blocks = &mac_control->rings[i].rx_blocks[j];
794 size = SIZE_OF_BLOCK; //size is always page size
795 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
797 if (tmp_v_addr == NULL) {
799 * In case of failure, free_shared_mem()
800 * is called, which should free any
801 * memory that was alloced till the
804 rx_blocks->block_virt_addr = tmp_v_addr;
807 mem_allocated += size;
808 memset(tmp_v_addr, 0, size);
809 rx_blocks->block_virt_addr = tmp_v_addr;
810 rx_blocks->block_dma_addr = tmp_p_addr;
811 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
812 rxd_count[nic->rxd_mode],
814 if (!rx_blocks->rxds)
817 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
818 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
819 rx_blocks->rxds[l].virt_addr =
820 rx_blocks->block_virt_addr +
821 (rxd_size[nic->rxd_mode] * l);
822 rx_blocks->rxds[l].dma_addr =
823 rx_blocks->block_dma_addr +
824 (rxd_size[nic->rxd_mode] * l);
827 /* Interlinking all Rx Blocks */
828 for (j = 0; j < blk_cnt; j++) {
830 mac_control->rings[i].rx_blocks[j].block_virt_addr;
832 mac_control->rings[i].rx_blocks[(j + 1) %
833 blk_cnt].block_virt_addr;
835 mac_control->rings[i].rx_blocks[j].block_dma_addr;
837 mac_control->rings[i].rx_blocks[(j + 1) %
838 blk_cnt].block_dma_addr;
840 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
841 pre_rxd_blk->reserved_2_pNext_RxD_block =
842 (unsigned long) tmp_v_addr_next;
843 pre_rxd_blk->pNext_RxD_Blk_physical =
844 (u64) tmp_p_addr_next;
847 if (nic->rxd_mode == RXD_MODE_3B) {
849 * Allocation of Storages for buffer addresses in 2BUFF mode
850 * and the buffers as well.
852 for (i = 0; i < config->rx_ring_num; i++) {
853 blk_cnt = config->rx_cfg[i].num_rxd /
854 (rxd_count[nic->rxd_mode]+ 1);
855 mac_control->rings[i].ba =
856 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
858 if (!mac_control->rings[i].ba)
860 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
861 for (j = 0; j < blk_cnt; j++) {
863 mac_control->rings[i].ba[j] =
864 kmalloc((sizeof(struct buffAdd) *
865 (rxd_count[nic->rxd_mode] + 1)),
867 if (!mac_control->rings[i].ba[j])
869 mem_allocated += (sizeof(struct buffAdd) * \
870 (rxd_count[nic->rxd_mode] + 1));
871 while (k != rxd_count[nic->rxd_mode]) {
872 ba = &mac_control->rings[i].ba[j][k];
874 ba->ba_0_org = (void *) kmalloc
875 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
879 (BUF0_LEN + ALIGN_SIZE);
880 tmp = (unsigned long)ba->ba_0_org;
882 tmp &= ~((unsigned long) ALIGN_SIZE);
883 ba->ba_0 = (void *) tmp;
885 ba->ba_1_org = (void *) kmalloc
886 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
890 += (BUF1_LEN + ALIGN_SIZE);
891 tmp = (unsigned long) ba->ba_1_org;
893 tmp &= ~((unsigned long) ALIGN_SIZE);
894 ba->ba_1 = (void *) tmp;
901 /* Allocation and initialization of Statistics block */
902 size = sizeof(struct stat_block);
903 mac_control->stats_mem = pci_alloc_consistent
904 (nic->pdev, size, &mac_control->stats_mem_phy);
906 if (!mac_control->stats_mem) {
908 * In case of failure, free_shared_mem() is called, which
909 * should free any memory that was alloced till the
914 mem_allocated += size;
915 mac_control->stats_mem_sz = size;
917 tmp_v_addr = mac_control->stats_mem;
918 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
919 memset(tmp_v_addr, 0, size);
920 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
921 (unsigned long long) tmp_p_addr);
922 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
927 * free_shared_mem - Free the allocated Memory
928 * @nic: Device private variable.
929 * Description: This function is to free all memory locations allocated by
930 * the init_shared_mem() function and return it to the kernel.
933 static void free_shared_mem(struct s2io_nic *nic)
935 int i, j, blk_cnt, size;
937 dma_addr_t tmp_p_addr;
938 struct mac_info *mac_control;
939 struct config_param *config;
940 int lst_size, lst_per_page;
941 struct net_device *dev;
949 mac_control = &nic->mac_control;
950 config = &nic->config;
952 lst_size = (sizeof(struct TxD) * config->max_txds);
953 lst_per_page = PAGE_SIZE / lst_size;
955 for (i = 0; i < config->tx_fifo_num; i++) {
956 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
958 for (j = 0; j < page_num; j++) {
959 int mem_blks = (j * lst_per_page);
960 if (!mac_control->fifos[i].list_info)
962 if (!mac_control->fifos[i].list_info[mem_blks].
965 pci_free_consistent(nic->pdev, PAGE_SIZE,
966 mac_control->fifos[i].
969 mac_control->fifos[i].
972 nic->mac_control.stats_info->sw_stat.mem_freed
975 /* If we got a zero DMA address during allocation,
978 if (mac_control->zerodma_virt_addr) {
979 pci_free_consistent(nic->pdev, PAGE_SIZE,
980 mac_control->zerodma_virt_addr,
983 "%s: Freeing TxDL with zero DMA addr. ",
985 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
986 mac_control->zerodma_virt_addr);
987 nic->mac_control.stats_info->sw_stat.mem_freed
990 kfree(mac_control->fifos[i].list_info);
991 nic->mac_control.stats_info->sw_stat.mem_freed +=
992 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
995 size = SIZE_OF_BLOCK;
996 for (i = 0; i < config->rx_ring_num; i++) {
997 blk_cnt = mac_control->rings[i].block_count;
998 for (j = 0; j < blk_cnt; j++) {
999 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1001 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1003 if (tmp_v_addr == NULL)
1005 pci_free_consistent(nic->pdev, size,
1006 tmp_v_addr, tmp_p_addr);
1007 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1008 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1009 nic->mac_control.stats_info->sw_stat.mem_freed +=
1010 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1014 if (nic->rxd_mode == RXD_MODE_3B) {
1015 /* Freeing buffer storage addresses in 2BUFF mode. */
1016 for (i = 0; i < config->rx_ring_num; i++) {
1017 blk_cnt = config->rx_cfg[i].num_rxd /
1018 (rxd_count[nic->rxd_mode] + 1);
1019 for (j = 0; j < blk_cnt; j++) {
1021 if (!mac_control->rings[i].ba[j])
1023 while (k != rxd_count[nic->rxd_mode]) {
1024 struct buffAdd *ba =
1025 &mac_control->rings[i].ba[j][k];
1026 kfree(ba->ba_0_org);
1027 nic->mac_control.stats_info->sw_stat.\
1028 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1029 kfree(ba->ba_1_org);
1030 nic->mac_control.stats_info->sw_stat.\
1031 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1034 kfree(mac_control->rings[i].ba[j]);
1035 nic->mac_control.stats_info->sw_stat.mem_freed +=
1036 (sizeof(struct buffAdd) *
1037 (rxd_count[nic->rxd_mode] + 1));
1039 kfree(mac_control->rings[i].ba);
1040 nic->mac_control.stats_info->sw_stat.mem_freed +=
1041 (sizeof(struct buffAdd *) * blk_cnt);
1045 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1046 if (mac_control->fifos[i].ufo_in_band_v) {
1047 nic->mac_control.stats_info->sw_stat.mem_freed
1048 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1049 kfree(mac_control->fifos[i].ufo_in_band_v);
1053 if (mac_control->stats_mem) {
1054 nic->mac_control.stats_info->sw_stat.mem_freed +=
1055 mac_control->stats_mem_sz;
1056 pci_free_consistent(nic->pdev,
1057 mac_control->stats_mem_sz,
1058 mac_control->stats_mem,
1059 mac_control->stats_mem_phy);
1064 * s2io_verify_pci_mode -
1067 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1069 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1070 register u64 val64 = 0;
1073 val64 = readq(&bar0->pci_mode);
1074 mode = (u8)GET_PCI_MODE(val64);
1076 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1077 return -1; /* Unknown PCI mode */
1081 #define NEC_VENID 0x1033
1082 #define NEC_DEVID 0x0125
1083 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1085 struct pci_dev *tdev = NULL;
1086 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1087 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1088 if (tdev->bus == s2io_pdev->bus->parent) {
1097 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1099 * s2io_print_pci_mode -
1101 static int s2io_print_pci_mode(struct s2io_nic *nic)
1103 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1104 register u64 val64 = 0;
1106 struct config_param *config = &nic->config;
1108 val64 = readq(&bar0->pci_mode);
1109 mode = (u8)GET_PCI_MODE(val64);
1111 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1112 return -1; /* Unknown PCI mode */
1114 config->bus_speed = bus_speed[mode];
1116 if (s2io_on_nec_bridge(nic->pdev)) {
1117 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1122 if (val64 & PCI_MODE_32_BITS) {
1123 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1125 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1129 case PCI_MODE_PCI_33:
1130 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1132 case PCI_MODE_PCI_66:
1133 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1135 case PCI_MODE_PCIX_M1_66:
1136 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1138 case PCI_MODE_PCIX_M1_100:
1139 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1141 case PCI_MODE_PCIX_M1_133:
1142 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1144 case PCI_MODE_PCIX_M2_66:
1145 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1147 case PCI_MODE_PCIX_M2_100:
1148 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1150 case PCI_MODE_PCIX_M2_133:
1151 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1154 return -1; /* Unsupported bus speed */
1161 * init_tti - Initialization transmit traffic interrupt scheme
1162 * @nic: device private variable
1163 * @link: link status (UP/DOWN) used to enable/disable continuous
1164 * transmit interrupts
1165 * Description: The function configures transmit traffic interrupts
1166 * Return Value: SUCCESS on success and
1170 static int init_tti(struct s2io_nic *nic, int link)
1172 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1173 register u64 val64 = 0;
1175 struct config_param *config;
1177 config = &nic->config;
1179 for (i = 0; i < config->tx_fifo_num; i++) {
1181 * TTI Initialization. Default Tx timer gets us about
1182 * 250 interrupts per sec. Continuous interrupts are enabled
1185 if (nic->device_type == XFRAME_II_DEVICE) {
1186 int count = (nic->config.bus_speed * 125)/2;
1187 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1189 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1191 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1192 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1193 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1194 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1196 if (use_continuous_tx_intrs && (link == LINK_UP))
1197 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1198 writeq(val64, &bar0->tti_data1_mem);
1200 if (nic->config.intr_type == MSI_X) {
1201 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1202 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1203 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1204 TTI_DATA2_MEM_TX_UFC_D(0x300);
1206 if ((nic->config.tx_steering_type ==
1207 TX_DEFAULT_STEERING) &&
1208 (config->tx_fifo_num > 1) &&
1209 (i >= nic->udp_fifo_idx) &&
1210 (i < (nic->udp_fifo_idx +
1211 nic->total_udp_fifos)))
1212 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1213 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1214 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1215 TTI_DATA2_MEM_TX_UFC_D(0x120);
1217 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1218 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1219 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1220 TTI_DATA2_MEM_TX_UFC_D(0x80);
1223 writeq(val64, &bar0->tti_data2_mem);
1225 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1226 TTI_CMD_MEM_OFFSET(i);
1227 writeq(val64, &bar0->tti_command_mem);
1229 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1230 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1238 * init_nic - Initialization of hardware
1239 * @nic: device private variable
1240 * Description: The function sequentially configures every block
1241 * of the H/W from their reset values.
1242 * Return Value: SUCCESS on success and
1243 * '-1' on failure (endian settings incorrect).
1246 static int init_nic(struct s2io_nic *nic)
1248 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1249 struct net_device *dev = nic->dev;
1250 register u64 val64 = 0;
1254 struct mac_info *mac_control;
1255 struct config_param *config;
1257 unsigned long long mem_share;
1260 mac_control = &nic->mac_control;
1261 config = &nic->config;
1263 /* to set the swapper controle on the card */
1264 if(s2io_set_swapper(nic)) {
1265 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1270 * Herc requires EOI to be removed from reset before XGXS, so..
1272 if (nic->device_type & XFRAME_II_DEVICE) {
1273 val64 = 0xA500000000ULL;
1274 writeq(val64, &bar0->sw_reset);
1276 val64 = readq(&bar0->sw_reset);
1279 /* Remove XGXS from reset state */
1281 writeq(val64, &bar0->sw_reset);
1283 val64 = readq(&bar0->sw_reset);
1285 /* Ensure that it's safe to access registers by checking
1286 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1288 if (nic->device_type == XFRAME_II_DEVICE) {
1289 for (i = 0; i < 50; i++) {
1290 val64 = readq(&bar0->adapter_status);
1291 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299 /* Enable Receiving broadcasts */
1300 add = &bar0->mac_cfg;
1301 val64 = readq(&bar0->mac_cfg);
1302 val64 |= MAC_RMAC_BCAST_ENABLE;
1303 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1304 writel((u32) val64, add);
1305 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1306 writel((u32) (val64 >> 32), (add + 4));
1308 /* Read registers in all blocks */
1309 val64 = readq(&bar0->mac_int_mask);
1310 val64 = readq(&bar0->mc_int_mask);
1311 val64 = readq(&bar0->xgxs_int_mask);
1315 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1317 if (nic->device_type & XFRAME_II_DEVICE) {
1318 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1319 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1320 &bar0->dtx_control, UF);
1322 msleep(1); /* Necessary!! */
1326 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1327 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1328 &bar0->dtx_control, UF);
1329 val64 = readq(&bar0->dtx_control);
1334 /* Tx DMA Initialization */
1336 writeq(val64, &bar0->tx_fifo_partition_0);
1337 writeq(val64, &bar0->tx_fifo_partition_1);
1338 writeq(val64, &bar0->tx_fifo_partition_2);
1339 writeq(val64, &bar0->tx_fifo_partition_3);
1342 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1344 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1345 13) | vBIT(config->tx_cfg[i].fifo_priority,
1348 if (i == (config->tx_fifo_num - 1)) {
1355 writeq(val64, &bar0->tx_fifo_partition_0);
1360 writeq(val64, &bar0->tx_fifo_partition_1);
1365 writeq(val64, &bar0->tx_fifo_partition_2);
1370 writeq(val64, &bar0->tx_fifo_partition_3);
1381 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1382 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1384 if ((nic->device_type == XFRAME_I_DEVICE) &&
1385 (nic->pdev->revision < 4))
1386 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1388 val64 = readq(&bar0->tx_fifo_partition_0);
1389 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1390 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1393 * Initialization of Tx_PA_CONFIG register to ignore packet
1394 * integrity checking.
1396 val64 = readq(&bar0->tx_pa_cfg);
1397 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1398 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1399 writeq(val64, &bar0->tx_pa_cfg);
1401 /* Rx DMA intialization. */
1403 for (i = 0; i < config->rx_ring_num; i++) {
1405 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1408 writeq(val64, &bar0->rx_queue_priority);
1411 * Allocating equal share of memory to all the
1415 if (nic->device_type & XFRAME_II_DEVICE)
1420 for (i = 0; i < config->rx_ring_num; i++) {
1423 mem_share = (mem_size / config->rx_ring_num +
1424 mem_size % config->rx_ring_num);
1425 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1428 mem_share = (mem_size / config->rx_ring_num);
1429 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1432 mem_share = (mem_size / config->rx_ring_num);
1433 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1436 mem_share = (mem_size / config->rx_ring_num);
1437 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1440 mem_share = (mem_size / config->rx_ring_num);
1441 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1444 mem_share = (mem_size / config->rx_ring_num);
1445 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1448 mem_share = (mem_size / config->rx_ring_num);
1449 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1452 mem_share = (mem_size / config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1457 writeq(val64, &bar0->rx_queue_cfg);
1460 * Filling Tx round robin registers
1461 * as per the number of FIFOs for equal scheduling priority
1463 switch (config->tx_fifo_num) {
1466 writeq(val64, &bar0->tx_w_round_robin_0);
1467 writeq(val64, &bar0->tx_w_round_robin_1);
1468 writeq(val64, &bar0->tx_w_round_robin_2);
1469 writeq(val64, &bar0->tx_w_round_robin_3);
1470 writeq(val64, &bar0->tx_w_round_robin_4);
1473 val64 = 0x0001000100010001ULL;
1474 writeq(val64, &bar0->tx_w_round_robin_0);
1475 writeq(val64, &bar0->tx_w_round_robin_1);
1476 writeq(val64, &bar0->tx_w_round_robin_2);
1477 writeq(val64, &bar0->tx_w_round_robin_3);
1478 val64 = 0x0001000100000000ULL;
1479 writeq(val64, &bar0->tx_w_round_robin_4);
1482 val64 = 0x0001020001020001ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_0);
1484 val64 = 0x0200010200010200ULL;
1485 writeq(val64, &bar0->tx_w_round_robin_1);
1486 val64 = 0x0102000102000102ULL;
1487 writeq(val64, &bar0->tx_w_round_robin_2);
1488 val64 = 0x0001020001020001ULL;
1489 writeq(val64, &bar0->tx_w_round_robin_3);
1490 val64 = 0x0200010200000000ULL;
1491 writeq(val64, &bar0->tx_w_round_robin_4);
1494 val64 = 0x0001020300010203ULL;
1495 writeq(val64, &bar0->tx_w_round_robin_0);
1496 writeq(val64, &bar0->tx_w_round_robin_1);
1497 writeq(val64, &bar0->tx_w_round_robin_2);
1498 writeq(val64, &bar0->tx_w_round_robin_3);
1499 val64 = 0x0001020300000000ULL;
1500 writeq(val64, &bar0->tx_w_round_robin_4);
1503 val64 = 0x0001020304000102ULL;
1504 writeq(val64, &bar0->tx_w_round_robin_0);
1505 val64 = 0x0304000102030400ULL;
1506 writeq(val64, &bar0->tx_w_round_robin_1);
1507 val64 = 0x0102030400010203ULL;
1508 writeq(val64, &bar0->tx_w_round_robin_2);
1509 val64 = 0x0400010203040001ULL;
1510 writeq(val64, &bar0->tx_w_round_robin_3);
1511 val64 = 0x0203040000000000ULL;
1512 writeq(val64, &bar0->tx_w_round_robin_4);
1515 val64 = 0x0001020304050001ULL;
1516 writeq(val64, &bar0->tx_w_round_robin_0);
1517 val64 = 0x0203040500010203ULL;
1518 writeq(val64, &bar0->tx_w_round_robin_1);
1519 val64 = 0x0405000102030405ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_2);
1521 val64 = 0x0001020304050001ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_3);
1523 val64 = 0x0203040500000000ULL;
1524 writeq(val64, &bar0->tx_w_round_robin_4);
1527 val64 = 0x0001020304050600ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_0);
1529 val64 = 0x0102030405060001ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_1);
1531 val64 = 0x0203040506000102ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_2);
1533 val64 = 0x0304050600010203ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_3);
1535 val64 = 0x0405060000000000ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_4);
1539 val64 = 0x0001020304050607ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_0);
1541 writeq(val64, &bar0->tx_w_round_robin_1);
1542 writeq(val64, &bar0->tx_w_round_robin_2);
1543 writeq(val64, &bar0->tx_w_round_robin_3);
1544 val64 = 0x0001020300000000ULL;
1545 writeq(val64, &bar0->tx_w_round_robin_4);
1549 /* Enable all configured Tx FIFO partitions */
1550 val64 = readq(&bar0->tx_fifo_partition_0);
1551 val64 |= (TX_FIFO_PARTITION_EN);
1552 writeq(val64, &bar0->tx_fifo_partition_0);
1554 /* Filling the Rx round robin registers as per the
1555 * number of Rings and steering based on QoS with
1558 switch (config->rx_ring_num) {
1561 writeq(val64, &bar0->rx_w_round_robin_0);
1562 writeq(val64, &bar0->rx_w_round_robin_1);
1563 writeq(val64, &bar0->rx_w_round_robin_2);
1564 writeq(val64, &bar0->rx_w_round_robin_3);
1565 writeq(val64, &bar0->rx_w_round_robin_4);
1567 val64 = 0x8080808080808080ULL;
1568 writeq(val64, &bar0->rts_qos_steering);
1571 val64 = 0x0001000100010001ULL;
1572 writeq(val64, &bar0->rx_w_round_robin_0);
1573 writeq(val64, &bar0->rx_w_round_robin_1);
1574 writeq(val64, &bar0->rx_w_round_robin_2);
1575 writeq(val64, &bar0->rx_w_round_robin_3);
1576 val64 = 0x0001000100000000ULL;
1577 writeq(val64, &bar0->rx_w_round_robin_4);
1579 val64 = 0x8080808040404040ULL;
1580 writeq(val64, &bar0->rts_qos_steering);
1583 val64 = 0x0001020001020001ULL;
1584 writeq(val64, &bar0->rx_w_round_robin_0);
1585 val64 = 0x0200010200010200ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_1);
1587 val64 = 0x0102000102000102ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_2);
1589 val64 = 0x0001020001020001ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_3);
1591 val64 = 0x0200010200000000ULL;
1592 writeq(val64, &bar0->rx_w_round_robin_4);
1594 val64 = 0x8080804040402020ULL;
1595 writeq(val64, &bar0->rts_qos_steering);
1598 val64 = 0x0001020300010203ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_0);
1600 writeq(val64, &bar0->rx_w_round_robin_1);
1601 writeq(val64, &bar0->rx_w_round_robin_2);
1602 writeq(val64, &bar0->rx_w_round_robin_3);
1603 val64 = 0x0001020300000000ULL;
1604 writeq(val64, &bar0->rx_w_round_robin_4);
1606 val64 = 0x8080404020201010ULL;
1607 writeq(val64, &bar0->rts_qos_steering);
1610 val64 = 0x0001020304000102ULL;
1611 writeq(val64, &bar0->rx_w_round_robin_0);
1612 val64 = 0x0304000102030400ULL;
1613 writeq(val64, &bar0->rx_w_round_robin_1);
1614 val64 = 0x0102030400010203ULL;
1615 writeq(val64, &bar0->rx_w_round_robin_2);
1616 val64 = 0x0400010203040001ULL;
1617 writeq(val64, &bar0->rx_w_round_robin_3);
1618 val64 = 0x0203040000000000ULL;
1619 writeq(val64, &bar0->rx_w_round_robin_4);
1621 val64 = 0x8080404020201008ULL;
1622 writeq(val64, &bar0->rts_qos_steering);
1625 val64 = 0x0001020304050001ULL;
1626 writeq(val64, &bar0->rx_w_round_robin_0);
1627 val64 = 0x0203040500010203ULL;
1628 writeq(val64, &bar0->rx_w_round_robin_1);
1629 val64 = 0x0405000102030405ULL;
1630 writeq(val64, &bar0->rx_w_round_robin_2);
1631 val64 = 0x0001020304050001ULL;
1632 writeq(val64, &bar0->rx_w_round_robin_3);
1633 val64 = 0x0203040500000000ULL;
1634 writeq(val64, &bar0->rx_w_round_robin_4);
1636 val64 = 0x8080404020100804ULL;
1637 writeq(val64, &bar0->rts_qos_steering);
1640 val64 = 0x0001020304050600ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_0);
1642 val64 = 0x0102030405060001ULL;
1643 writeq(val64, &bar0->rx_w_round_robin_1);
1644 val64 = 0x0203040506000102ULL;
1645 writeq(val64, &bar0->rx_w_round_robin_2);
1646 val64 = 0x0304050600010203ULL;
1647 writeq(val64, &bar0->rx_w_round_robin_3);
1648 val64 = 0x0405060000000000ULL;
1649 writeq(val64, &bar0->rx_w_round_robin_4);
1651 val64 = 0x8080402010080402ULL;
1652 writeq(val64, &bar0->rts_qos_steering);
1655 val64 = 0x0001020304050607ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_0);
1657 writeq(val64, &bar0->rx_w_round_robin_1);
1658 writeq(val64, &bar0->rx_w_round_robin_2);
1659 writeq(val64, &bar0->rx_w_round_robin_3);
1660 val64 = 0x0001020300000000ULL;
1661 writeq(val64, &bar0->rx_w_round_robin_4);
1663 val64 = 0x8040201008040201ULL;
1664 writeq(val64, &bar0->rts_qos_steering);
1670 for (i = 0; i < 8; i++)
1671 writeq(val64, &bar0->rts_frm_len_n[i]);
1673 /* Set the default rts frame length for the rings configured */
1674 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1675 for (i = 0 ; i < config->rx_ring_num ; i++)
1676 writeq(val64, &bar0->rts_frm_len_n[i]);
1678 /* Set the frame length for the configured rings
1679 * desired by the user
1681 for (i = 0; i < config->rx_ring_num; i++) {
1682 /* If rts_frm_len[i] == 0 then it is assumed that user not
1683 * specified frame length steering.
1684 * If the user provides the frame length then program
1685 * the rts_frm_len register for those values or else
1686 * leave it as it is.
1688 if (rts_frm_len[i] != 0) {
1689 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1690 &bar0->rts_frm_len_n[i]);
1694 /* Disable differentiated services steering logic */
1695 for (i = 0; i < 64; i++) {
1696 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1697 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1699 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1704 /* Program statistics memory */
1705 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1707 if (nic->device_type == XFRAME_II_DEVICE) {
1708 val64 = STAT_BC(0x320);
1709 writeq(val64, &bar0->stat_byte_cnt);
1713 * Initializing the sampling rate for the device to calculate the
1714 * bandwidth utilization.
1716 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1717 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1718 writeq(val64, &bar0->mac_link_util);
1721 * Initializing the Transmit and Receive Traffic Interrupt
1725 /* Initialize TTI */
1726 if (SUCCESS != init_tti(nic, nic->last_link_state))
1729 /* RTI Initialization */
1730 if (nic->device_type == XFRAME_II_DEVICE) {
1732 * Programmed to generate Apprx 500 Intrs per
1735 int count = (nic->config.bus_speed * 125)/4;
1736 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1738 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1739 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1740 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1741 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1743 writeq(val64, &bar0->rti_data1_mem);
1745 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1746 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1747 if (nic->config.intr_type == MSI_X)
1748 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1749 RTI_DATA2_MEM_RX_UFC_D(0x40));
1751 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1752 RTI_DATA2_MEM_RX_UFC_D(0x80));
1753 writeq(val64, &bar0->rti_data2_mem);
1755 for (i = 0; i < config->rx_ring_num; i++) {
1756 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1757 | RTI_CMD_MEM_OFFSET(i);
1758 writeq(val64, &bar0->rti_command_mem);
1761 * Once the operation completes, the Strobe bit of the
1762 * command register will be reset. We poll for this
1763 * particular condition. We wait for a maximum of 500ms
1764 * for the operation to complete, if it's not complete
1765 * by then we return error.
1769 val64 = readq(&bar0->rti_command_mem);
1770 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1774 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1784 * Initializing proper values as Pause threshold into all
1785 * the 8 Queues on Rx side.
1787 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1788 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1790 /* Disable RMAC PAD STRIPPING */
1791 add = &bar0->mac_cfg;
1792 val64 = readq(&bar0->mac_cfg);
1793 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1794 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1795 writel((u32) (val64), add);
1796 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1797 writel((u32) (val64 >> 32), (add + 4));
1798 val64 = readq(&bar0->mac_cfg);
1800 /* Enable FCS stripping by adapter */
1801 add = &bar0->mac_cfg;
1802 val64 = readq(&bar0->mac_cfg);
1803 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1804 if (nic->device_type == XFRAME_II_DEVICE)
1805 writeq(val64, &bar0->mac_cfg);
1807 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1808 writel((u32) (val64), add);
1809 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1810 writel((u32) (val64 >> 32), (add + 4));
1814 * Set the time value to be inserted in the pause frame
1815 * generated by xena.
1817 val64 = readq(&bar0->rmac_pause_cfg);
1818 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1819 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1820 writeq(val64, &bar0->rmac_pause_cfg);
1823 * Set the Threshold Limit for Generating the pause frame
1824 * If the amount of data in any Queue exceeds ratio of
1825 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1826 * pause frame is generated
1829 for (i = 0; i < 4; i++) {
1831 (((u64) 0xFF00 | nic->mac_control.
1832 mc_pause_threshold_q0q3)
1835 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1838 for (i = 0; i < 4; i++) {
1840 (((u64) 0xFF00 | nic->mac_control.
1841 mc_pause_threshold_q4q7)
1844 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1847 * TxDMA will stop Read request if the number of read split has
1848 * exceeded the limit pointed by shared_splits
1850 val64 = readq(&bar0->pic_control);
1851 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1852 writeq(val64, &bar0->pic_control);
1854 if (nic->config.bus_speed == 266) {
1855 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1856 writeq(0x0, &bar0->read_retry_delay);
1857 writeq(0x0, &bar0->write_retry_delay);
1861 * Programming the Herc to split every write transaction
1862 * that does not start on an ADB to reduce disconnects.
1864 if (nic->device_type == XFRAME_II_DEVICE) {
1865 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1866 MISC_LINK_STABILITY_PRD(3);
1867 writeq(val64, &bar0->misc_control);
1868 val64 = readq(&bar0->pic_control2);
1869 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1870 writeq(val64, &bar0->pic_control2);
1872 if (strstr(nic->product_name, "CX4")) {
1873 val64 = TMAC_AVG_IPG(0x17);
1874 writeq(val64, &bar0->tmac_avg_ipg);
1879 #define LINK_UP_DOWN_INTERRUPT 1
1880 #define MAC_RMAC_ERR_TIMER 2
1882 static int s2io_link_fault_indication(struct s2io_nic *nic)
1884 if (nic->device_type == XFRAME_II_DEVICE)
1885 return LINK_UP_DOWN_INTERRUPT;
1887 return MAC_RMAC_ERR_TIMER;
1891 * do_s2io_write_bits - update alarm bits in alarm register
1892 * @value: alarm bits
1893 * @flag: interrupt status
1894 * @addr: address value
1895 * Description: update alarm bits in alarm register
1899 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1903 temp64 = readq(addr);
1905 if(flag == ENABLE_INTRS)
1906 temp64 &= ~((u64) value);
1908 temp64 |= ((u64) value);
1909 writeq(temp64, addr);
1912 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1914 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1915 register u64 gen_int_mask = 0;
1918 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1919 if (mask & TX_DMA_INTR) {
1921 gen_int_mask |= TXDMA_INT_M;
1923 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1924 TXDMA_PCC_INT | TXDMA_TTI_INT |
1925 TXDMA_LSO_INT | TXDMA_TPA_INT |
1926 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1928 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1929 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1930 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1931 &bar0->pfc_err_mask);
1933 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1934 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1935 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1937 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1938 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1939 PCC_N_SERR | PCC_6_COF_OV_ERR |
1940 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1941 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1942 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1944 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1945 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1947 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1948 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1949 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1950 flag, &bar0->lso_err_mask);
1952 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1953 flag, &bar0->tpa_err_mask);
1955 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1959 if (mask & TX_MAC_INTR) {
1960 gen_int_mask |= TXMAC_INT_M;
1961 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1962 &bar0->mac_int_mask);
1963 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1964 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1965 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1966 flag, &bar0->mac_tmac_err_mask);
1969 if (mask & TX_XGXS_INTR) {
1970 gen_int_mask |= TXXGXS_INT_M;
1971 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1972 &bar0->xgxs_int_mask);
1973 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1974 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1975 flag, &bar0->xgxs_txgxs_err_mask);
1978 if (mask & RX_DMA_INTR) {
1979 gen_int_mask |= RXDMA_INT_M;
1980 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1981 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1982 flag, &bar0->rxdma_int_mask);
1983 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1984 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1985 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1986 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1987 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1988 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1989 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1990 &bar0->prc_pcix_err_mask);
1991 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1992 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1993 &bar0->rpa_err_mask);
1994 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1995 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1996 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1997 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1998 flag, &bar0->rda_err_mask);
1999 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2000 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2001 flag, &bar0->rti_err_mask);
2004 if (mask & RX_MAC_INTR) {
2005 gen_int_mask |= RXMAC_INT_M;
2006 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2007 &bar0->mac_int_mask);
2008 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2009 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2010 RMAC_DOUBLE_ECC_ERR;
2011 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2012 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2013 do_s2io_write_bits(interruptible,
2014 flag, &bar0->mac_rmac_err_mask);
2017 if (mask & RX_XGXS_INTR)
2019 gen_int_mask |= RXXGXS_INT_M;
2020 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2021 &bar0->xgxs_int_mask);
2022 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2023 &bar0->xgxs_rxgxs_err_mask);
2026 if (mask & MC_INTR) {
2027 gen_int_mask |= MC_INT_M;
2028 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2029 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2030 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2031 &bar0->mc_err_mask);
2033 nic->general_int_mask = gen_int_mask;
2035 /* Remove this line when alarm interrupts are enabled */
2036 nic->general_int_mask = 0;
2039 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2040 * @nic: device private variable,
2041 * @mask: A mask indicating which Intr block must be modified and,
2042 * @flag: A flag indicating whether to enable or disable the Intrs.
2043 * Description: This function will either disable or enable the interrupts
2044 * depending on the flag argument. The mask argument can be used to
2045 * enable/disable any Intr block.
2046 * Return Value: NONE.
2049 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2051 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2052 register u64 temp64 = 0, intr_mask = 0;
2054 intr_mask = nic->general_int_mask;
2056 /* Top level interrupt classification */
2057 /* PIC Interrupts */
2058 if (mask & TX_PIC_INTR) {
2059 /* Enable PIC Intrs in the general intr mask register */
2060 intr_mask |= TXPIC_INT_M;
2061 if (flag == ENABLE_INTRS) {
2063 * If Hercules adapter enable GPIO otherwise
2064 * disable all PCIX, Flash, MDIO, IIC and GPIO
2065 * interrupts for now.
2068 if (s2io_link_fault_indication(nic) ==
2069 LINK_UP_DOWN_INTERRUPT ) {
2070 do_s2io_write_bits(PIC_INT_GPIO, flag,
2071 &bar0->pic_int_mask);
2072 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2073 &bar0->gpio_int_mask);
2075 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2076 } else if (flag == DISABLE_INTRS) {
2078 * Disable PIC Intrs in the general
2079 * intr mask register
2081 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2085 /* Tx traffic interrupts */
2086 if (mask & TX_TRAFFIC_INTR) {
2087 intr_mask |= TXTRAFFIC_INT_M;
2088 if (flag == ENABLE_INTRS) {
2090 * Enable all the Tx side interrupts
2091 * writing 0 Enables all 64 TX interrupt levels
2093 writeq(0x0, &bar0->tx_traffic_mask);
2094 } else if (flag == DISABLE_INTRS) {
2096 * Disable Tx Traffic Intrs in the general intr mask
2099 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2103 /* Rx traffic interrupts */
2104 if (mask & RX_TRAFFIC_INTR) {
2105 intr_mask |= RXTRAFFIC_INT_M;
2106 if (flag == ENABLE_INTRS) {
2107 /* writing 0 Enables all 8 RX interrupt levels */
2108 writeq(0x0, &bar0->rx_traffic_mask);
2109 } else if (flag == DISABLE_INTRS) {
2111 * Disable Rx Traffic Intrs in the general intr mask
2114 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2118 temp64 = readq(&bar0->general_int_mask);
2119 if (flag == ENABLE_INTRS)
2120 temp64 &= ~((u64) intr_mask);
2122 temp64 = DISABLE_ALL_INTRS;
2123 writeq(temp64, &bar0->general_int_mask);
2125 nic->general_int_mask = readq(&bar0->general_int_mask);
2129 * verify_pcc_quiescent- Checks for PCC quiescent state
2130 * Return: 1 If PCC is quiescence
2131 * 0 If PCC is not quiescence
2133 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2136 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2137 u64 val64 = readq(&bar0->adapter_status);
2139 herc = (sp->device_type == XFRAME_II_DEVICE);
2141 if (flag == FALSE) {
2142 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2143 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2146 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2151 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2152 ADAPTER_STATUS_RMAC_PCC_IDLE))
2155 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2156 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2164 * verify_xena_quiescence - Checks whether the H/W is ready
2165 * Description: Returns whether the H/W is ready to go or not. Depending
2166 * on whether adapter enable bit was written or not the comparison
2167 * differs and the calling function passes the input argument flag to
2169 * Return: 1 If xena is quiescence
2170 * 0 If Xena is not quiescence
2173 static int verify_xena_quiescence(struct s2io_nic *sp)
2176 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2177 u64 val64 = readq(&bar0->adapter_status);
2178 mode = s2io_verify_pci_mode(sp);
2180 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2181 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2184 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2185 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2188 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2189 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2192 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2193 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2196 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2197 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2200 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2201 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2204 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2205 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2208 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2209 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2214 * In PCI 33 mode, the P_PLL is not used, and therefore,
2215 * the the P_PLL_LOCK bit in the adapter_status register will
2218 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2219 sp->device_type == XFRAME_II_DEVICE && mode !=
2221 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2224 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2225 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2226 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2233 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2234 * @sp: Pointer to device specifc structure
2236 * New procedure to clear mac address reading problems on Alpha platforms
2240 static void fix_mac_address(struct s2io_nic * sp)
2242 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2246 while (fix_mac[i] != END_SIGN) {
2247 writeq(fix_mac[i++], &bar0->gpio_control);
2249 val64 = readq(&bar0->gpio_control);
2254 * start_nic - Turns the device on
2255 * @nic : device private variable.
2257 * This function actually turns the device on. Before this function is
2258 * called,all Registers are configured from their reset states
2259 * and shared memory is allocated but the NIC is still quiescent. On
2260 * calling this function, the device interrupts are cleared and the NIC is
2261 * literally switched on by writing into the adapter control register.
2263 * SUCCESS on success and -1 on failure.
2266 static int start_nic(struct s2io_nic *nic)
2268 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2269 struct net_device *dev = nic->dev;
2270 register u64 val64 = 0;
2272 struct mac_info *mac_control;
2273 struct config_param *config;
2275 mac_control = &nic->mac_control;
2276 config = &nic->config;
2278 /* PRC Initialization and configuration */
2279 for (i = 0; i < config->rx_ring_num; i++) {
2280 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2281 &bar0->prc_rxd0_n[i]);
2283 val64 = readq(&bar0->prc_ctrl_n[i]);
2284 if (nic->rxd_mode == RXD_MODE_1)
2285 val64 |= PRC_CTRL_RC_ENABLED;
2287 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2288 if (nic->device_type == XFRAME_II_DEVICE)
2289 val64 |= PRC_CTRL_GROUP_READS;
2290 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2291 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2292 writeq(val64, &bar0->prc_ctrl_n[i]);
2295 if (nic->rxd_mode == RXD_MODE_3B) {
2296 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2297 val64 = readq(&bar0->rx_pa_cfg);
2298 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2299 writeq(val64, &bar0->rx_pa_cfg);
2302 if (vlan_tag_strip == 0) {
2303 val64 = readq(&bar0->rx_pa_cfg);
2304 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2305 writeq(val64, &bar0->rx_pa_cfg);
2306 vlan_strip_flag = 0;
2310 * Enabling MC-RLDRAM. After enabling the device, we timeout
2311 * for around 100ms, which is approximately the time required
2312 * for the device to be ready for operation.
2314 val64 = readq(&bar0->mc_rldram_mrs);
2315 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2316 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2317 val64 = readq(&bar0->mc_rldram_mrs);
2319 msleep(100); /* Delay by around 100 ms. */
2321 /* Enabling ECC Protection. */
2322 val64 = readq(&bar0->adapter_control);
2323 val64 &= ~ADAPTER_ECC_EN;
2324 writeq(val64, &bar0->adapter_control);
2327 * Verify if the device is ready to be enabled, if so enable
2330 val64 = readq(&bar0->adapter_status);
2331 if (!verify_xena_quiescence(nic)) {
2332 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2333 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2334 (unsigned long long) val64);
2339 * With some switches, link might be already up at this point.
2340 * Because of this weird behavior, when we enable laser,
2341 * we may not get link. We need to handle this. We cannot
2342 * figure out which switch is misbehaving. So we are forced to
2343 * make a global change.
2346 /* Enabling Laser. */
2347 val64 = readq(&bar0->adapter_control);
2348 val64 |= ADAPTER_EOI_TX_ON;
2349 writeq(val64, &bar0->adapter_control);
2351 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2353 * Dont see link state interrupts initally on some switches,
2354 * so directly scheduling the link state task here.
2356 schedule_work(&nic->set_link_task);
2358 /* SXE-002: Initialize link and activity LED */
2359 subid = nic->pdev->subsystem_device;
2360 if (((subid & 0xFF) >= 0x07) &&
2361 (nic->device_type == XFRAME_I_DEVICE)) {
2362 val64 = readq(&bar0->gpio_control);
2363 val64 |= 0x0000800000000000ULL;
2364 writeq(val64, &bar0->gpio_control);
2365 val64 = 0x0411040400000000ULL;
2366 writeq(val64, (void __iomem *)bar0 + 0x2700);
2372 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2374 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2375 TxD *txdlp, int get_off)
2377 struct s2io_nic *nic = fifo_data->nic;
2378 struct sk_buff *skb;
2383 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2384 pci_unmap_single(nic->pdev, (dma_addr_t)
2385 txds->Buffer_Pointer, sizeof(u64),
2390 skb = (struct sk_buff *) ((unsigned long)
2391 txds->Host_Control);
2393 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2396 pci_unmap_single(nic->pdev, (dma_addr_t)
2397 txds->Buffer_Pointer,
2398 skb->len - skb->data_len,
2400 frg_cnt = skb_shinfo(skb)->nr_frags;
2403 for (j = 0; j < frg_cnt; j++, txds++) {
2404 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2405 if (!txds->Buffer_Pointer)
2407 pci_unmap_page(nic->pdev, (dma_addr_t)
2408 txds->Buffer_Pointer,
2409 frag->size, PCI_DMA_TODEVICE);
2412 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2417 * free_tx_buffers - Free all queued Tx buffers
2418 * @nic : device private variable.
2420 * Free all queued Tx buffers.
2421 * Return Value: void
2424 static void free_tx_buffers(struct s2io_nic *nic)
2426 struct net_device *dev = nic->dev;
2427 struct sk_buff *skb;
2430 struct mac_info *mac_control;
2431 struct config_param *config;
2434 mac_control = &nic->mac_control;
2435 config = &nic->config;
2437 for (i = 0; i < config->tx_fifo_num; i++) {
2438 unsigned long flags;
2439 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2440 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2441 txdp = (struct TxD *) \
2442 mac_control->fifos[i].list_info[j].list_virt_addr;
2443 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2445 nic->mac_control.stats_info->sw_stat.mem_freed
2452 "%s:forcibly freeing %d skbs on FIFO%d\n",
2454 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2455 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2456 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2461 * stop_nic - To stop the nic
2462 * @nic ; device private variable.
2464 * This function does exactly the opposite of what the start_nic()
2465 * function does. This function is called to stop the device.
2470 static void stop_nic(struct s2io_nic *nic)
2472 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2473 register u64 val64 = 0;
2475 struct mac_info *mac_control;
2476 struct config_param *config;
2478 mac_control = &nic->mac_control;
2479 config = &nic->config;
2481 /* Disable all interrupts */
2482 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2483 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2484 interruptible |= TX_PIC_INTR;
2485 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2487 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2488 val64 = readq(&bar0->adapter_control);
2489 val64 &= ~(ADAPTER_CNTL_EN);
2490 writeq(val64, &bar0->adapter_control);
2494 * fill_rx_buffers - Allocates the Rx side skbs
2495 * @ring_info: per ring structure
2496 * @from_card_up: If this is true, we will map the buffer to get
2497 * the dma address for buf0 and buf1 to give it to the card.
2498 * Else we will sync the already mapped buffer to give it to the card.
2500 * The function allocates Rx side skbs and puts the physical
2501 * address of these buffers into the RxD buffer pointers, so that the NIC
2502 * can DMA the received frame into these locations.
2503 * The NIC supports 3 receive modes, viz
2505 * 2. three buffer and
2506 * 3. Five buffer modes.
2507 * Each mode defines how many fragments the received frame will be split
2508 * up into by the NIC. The frame is split into L3 header, L4 Header,
2509 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2510 * is split into 3 fragments. As of now only single buffer mode is
2513 * SUCCESS on success or an appropriate -ve value on failure.
2515 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2518 struct sk_buff *skb;
2520 int off, size, block_no, block_no1;
2525 struct RxD_t *first_rxdp = NULL;
2526 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2530 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2532 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2534 block_no1 = ring->rx_curr_get_info.block_index;
2535 while (alloc_tab < alloc_cnt) {
2536 block_no = ring->rx_curr_put_info.block_index;
2538 off = ring->rx_curr_put_info.offset;
2540 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2542 rxd_index = off + 1;
2544 rxd_index += (block_no * ring->rxd_count);
2546 if ((block_no == block_no1) &&
2547 (off == ring->rx_curr_get_info.offset) &&
2548 (rxdp->Host_Control)) {
2549 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2551 DBG_PRINT(INTR_DBG, " info equated\n");
2554 if (off && (off == ring->rxd_count)) {
2555 ring->rx_curr_put_info.block_index++;
2556 if (ring->rx_curr_put_info.block_index ==
2558 ring->rx_curr_put_info.block_index = 0;
2559 block_no = ring->rx_curr_put_info.block_index;
2561 ring->rx_curr_put_info.offset = off;
2562 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2563 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2564 ring->dev->name, rxdp);
2568 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2569 ((ring->rxd_mode == RXD_MODE_3B) &&
2570 (rxdp->Control_2 & s2BIT(0)))) {
2571 ring->rx_curr_put_info.offset = off;
2574 /* calculate size of skb based on ring mode */
2575 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2576 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2577 if (ring->rxd_mode == RXD_MODE_1)
2578 size += NET_IP_ALIGN;
2580 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2583 skb = dev_alloc_skb(size);
2585 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2586 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2589 first_rxdp->Control_1 |= RXD_OWN_XENA;
2591 stats->mem_alloc_fail_cnt++;
2595 stats->mem_allocated += skb->truesize;
2597 if (ring->rxd_mode == RXD_MODE_1) {
2598 /* 1 buffer mode - normal operation mode */
2599 rxdp1 = (struct RxD1*)rxdp;
2600 memset(rxdp, 0, sizeof(struct RxD1));
2601 skb_reserve(skb, NET_IP_ALIGN);
2602 rxdp1->Buffer0_ptr = pci_map_single
2603 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2604 PCI_DMA_FROMDEVICE);
2605 if (pci_dma_mapping_error(nic->pdev,
2606 rxdp1->Buffer0_ptr))
2607 goto pci_map_failed;
2610 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2611 rxdp->Host_Control = (unsigned long) (skb);
2612 } else if (ring->rxd_mode == RXD_MODE_3B) {
2615 * 2 buffer mode provides 128
2616 * byte aligned receive buffers.
2619 rxdp3 = (struct RxD3*)rxdp;
2620 /* save buffer pointers to avoid frequent dma mapping */
2621 Buffer0_ptr = rxdp3->Buffer0_ptr;
2622 Buffer1_ptr = rxdp3->Buffer1_ptr;
2623 memset(rxdp, 0, sizeof(struct RxD3));
2624 /* restore the buffer pointers for dma sync*/
2625 rxdp3->Buffer0_ptr = Buffer0_ptr;
2626 rxdp3->Buffer1_ptr = Buffer1_ptr;
2628 ba = &ring->ba[block_no][off];
2629 skb_reserve(skb, BUF0_LEN);
2630 tmp = (u64)(unsigned long) skb->data;
2633 skb->data = (void *) (unsigned long)tmp;
2634 skb_reset_tail_pointer(skb);
2637 rxdp3->Buffer0_ptr =
2638 pci_map_single(ring->pdev, ba->ba_0,
2639 BUF0_LEN, PCI_DMA_FROMDEVICE);
2640 if (pci_dma_mapping_error(nic->pdev,
2641 rxdp3->Buffer0_ptr))
2642 goto pci_map_failed;
2644 pci_dma_sync_single_for_device(ring->pdev,
2645 (dma_addr_t) rxdp3->Buffer0_ptr,
2646 BUF0_LEN, PCI_DMA_FROMDEVICE);
2648 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2649 if (ring->rxd_mode == RXD_MODE_3B) {
2650 /* Two buffer mode */
2653 * Buffer2 will have L3/L4 header plus
2656 rxdp3->Buffer2_ptr = pci_map_single
2657 (ring->pdev, skb->data, ring->mtu + 4,
2658 PCI_DMA_FROMDEVICE);
2660 if (pci_dma_mapping_error(nic->pdev,
2661 rxdp3->Buffer2_ptr))
2662 goto pci_map_failed;
2665 rxdp3->Buffer1_ptr =
2666 pci_map_single(ring->pdev,
2668 PCI_DMA_FROMDEVICE);
2670 if (pci_dma_mapping_error(nic->pdev,
2671 rxdp3->Buffer1_ptr)) {
2674 (dma_addr_t)(unsigned long)
2677 PCI_DMA_FROMDEVICE);
2678 goto pci_map_failed;
2681 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2682 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2685 rxdp->Control_2 |= s2BIT(0);
2686 rxdp->Host_Control = (unsigned long) (skb);
2688 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2689 rxdp->Control_1 |= RXD_OWN_XENA;
2691 if (off == (ring->rxd_count + 1))
2693 ring->rx_curr_put_info.offset = off;
2695 rxdp->Control_2 |= SET_RXD_MARKER;
2696 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699 first_rxdp->Control_1 |= RXD_OWN_XENA;
2703 ring->rx_bufs_left += 1;
2708 /* Transfer ownership of first descriptor to adapter just before
2709 * exiting. Before that, use memory barrier so that ownership
2710 * and other fields are seen by adapter correctly.
2714 first_rxdp->Control_1 |= RXD_OWN_XENA;
2719 stats->pci_map_fail_cnt++;
2720 stats->mem_freed += skb->truesize;
2721 dev_kfree_skb_irq(skb);
2725 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2727 struct net_device *dev = sp->dev;
2729 struct sk_buff *skb;
2731 struct mac_info *mac_control;
2736 mac_control = &sp->mac_control;
2737 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2738 rxdp = mac_control->rings[ring_no].
2739 rx_blocks[blk].rxds[j].virt_addr;
2740 skb = (struct sk_buff *)
2741 ((unsigned long) rxdp->Host_Control);
2745 if (sp->rxd_mode == RXD_MODE_1) {
2746 rxdp1 = (struct RxD1*)rxdp;
2747 pci_unmap_single(sp->pdev, (dma_addr_t)
2750 HEADER_ETHERNET_II_802_3_SIZE
2751 + HEADER_802_2_SIZE +
2753 PCI_DMA_FROMDEVICE);
2754 memset(rxdp, 0, sizeof(struct RxD1));
2755 } else if(sp->rxd_mode == RXD_MODE_3B) {
2756 rxdp3 = (struct RxD3*)rxdp;
2757 ba = &mac_control->rings[ring_no].
2759 pci_unmap_single(sp->pdev, (dma_addr_t)
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev, (dma_addr_t)
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev, (dma_addr_t)
2770 PCI_DMA_FROMDEVICE);
2771 memset(rxdp, 0, sizeof(struct RxD3));
2773 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2775 mac_control->rings[ring_no].rx_bufs_left -= 1;
2780 * free_rx_buffers - Frees all Rx buffers
2781 * @sp: device private variable.
2783 * This function will free all Rx buffers allocated by host.
2788 static void free_rx_buffers(struct s2io_nic *sp)
2790 struct net_device *dev = sp->dev;
2791 int i, blk = 0, buf_cnt = 0;
2792 struct mac_info *mac_control;
2793 struct config_param *config;
2795 mac_control = &sp->mac_control;
2796 config = &sp->config;
2798 for (i = 0; i < config->rx_ring_num; i++) {
2799 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2800 free_rxd_blk(sp,i,blk);
2802 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2803 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2804 mac_control->rings[i].rx_curr_put_info.offset = 0;
2805 mac_control->rings[i].rx_curr_get_info.offset = 0;
2806 mac_control->rings[i].rx_bufs_left = 0;
2807 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2808 dev->name, buf_cnt, i);
2812 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2814 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2815 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2816 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2822 * s2io_poll - Rx interrupt handler for NAPI support
2823 * @napi : pointer to the napi structure.
2824 * @budget : The number of packets that were budgeted to be processed
2825 * during one pass through the 'Poll" function.
2827 * Comes into picture only if NAPI support has been incorporated. It does
2828 * the same thing that rx_intr_handler does, but not in a interrupt context
2829 * also It will process only a given number of packets.
2831 * 0 on success and 1 if there are No Rx packets to be processed.
2834 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2836 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2837 struct net_device *dev = ring->dev;
2838 struct config_param *config;
2839 struct mac_info *mac_control;
2840 int pkts_processed = 0;
2841 u8 __iomem *addr = NULL;
2843 struct s2io_nic *nic = dev->priv;
2844 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2845 int budget_org = budget;
2847 config = &nic->config;
2848 mac_control = &nic->mac_control;
2850 if (unlikely(!is_s2io_card_up(nic)))
2853 pkts_processed = rx_intr_handler(ring, budget);
2854 s2io_chk_rx_buffers(nic, ring);
2856 if (pkts_processed < budget_org) {
2857 netif_rx_complete(dev, napi);
2858 /*Re Enable MSI-Rx Vector*/
2859 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2860 addr += 7 - ring->ring_no;
2861 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2865 return pkts_processed;
2867 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2869 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2870 struct ring_info *ring;
2871 struct net_device *dev = nic->dev;
2872 struct config_param *config;
2873 struct mac_info *mac_control;
2874 int pkts_processed = 0;
2875 int ring_pkts_processed, i;
2876 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2877 int budget_org = budget;
2879 config = &nic->config;
2880 mac_control = &nic->mac_control;
2882 if (unlikely(!is_s2io_card_up(nic)))
2885 for (i = 0; i < config->rx_ring_num; i++) {
2886 ring = &mac_control->rings[i];
2887 ring_pkts_processed = rx_intr_handler(ring, budget);
2888 s2io_chk_rx_buffers(nic, ring);
2889 pkts_processed += ring_pkts_processed;
2890 budget -= ring_pkts_processed;
2894 if (pkts_processed < budget_org) {
2895 netif_rx_complete(dev, napi);
2896 /* Re enable the Rx interrupts for the ring */
2897 writeq(0, &bar0->rx_traffic_mask);
2898 readl(&bar0->rx_traffic_mask);
2900 return pkts_processed;
2903 #ifdef CONFIG_NET_POLL_CONTROLLER
2905 * s2io_netpoll - netpoll event handler entry point
2906 * @dev : pointer to the device structure.
2908 * This function will be called by upper layer to check for events on the
2909 * interface in situations where interrupts are disabled. It is used for
2910 * specific in-kernel networking tasks, such as remote consoles and kernel
2911 * debugging over the network (example netdump in RedHat).
2913 static void s2io_netpoll(struct net_device *dev)
2915 struct s2io_nic *nic = dev->priv;
2916 struct mac_info *mac_control;
2917 struct config_param *config;
2918 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2919 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2922 if (pci_channel_offline(nic->pdev))
2925 disable_irq(dev->irq);
2927 mac_control = &nic->mac_control;
2928 config = &nic->config;
2930 writeq(val64, &bar0->rx_traffic_int);
2931 writeq(val64, &bar0->tx_traffic_int);
2933 /* we need to free up the transmitted skbufs or else netpoll will
2934 * run out of skbs and will fail and eventually netpoll application such
2935 * as netdump will fail.
2937 for (i = 0; i < config->tx_fifo_num; i++)
2938 tx_intr_handler(&mac_control->fifos[i]);
2940 /* check for received packet and indicate up to network */
2941 for (i = 0; i < config->rx_ring_num; i++)
2942 rx_intr_handler(&mac_control->rings[i], 0);
2944 for (i = 0; i < config->rx_ring_num; i++) {
2945 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2947 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2948 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2952 enable_irq(dev->irq);
2958 * rx_intr_handler - Rx interrupt handler
2959 * @ring_info: per ring structure.
2960 * @budget: budget for napi processing.
2962 * If the interrupt is because of a received frame or if the
2963 * receive ring contains fresh as yet un-processed frames,this function is
2964 * called. It picks out the RxD at which place the last Rx processing had
2965 * stopped and sends the skb to the OSM's Rx handler and then increments
2968 * No. of napi packets processed.
2970 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2972 int get_block, put_block;
2973 struct rx_curr_get_info get_info, put_info;
2975 struct sk_buff *skb;
2976 int pkt_cnt = 0, napi_pkts = 0;
2981 get_info = ring_data->rx_curr_get_info;
2982 get_block = get_info.block_index;
2983 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2984 put_block = put_info.block_index;
2985 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2987 while (RXD_IS_UP2DT(rxdp)) {
2989 * If your are next to put index then it's
2990 * FIFO full condition
2992 if ((get_block == put_block) &&
2993 (get_info.offset + 1) == put_info.offset) {
2994 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2995 ring_data->dev->name);
2998 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
3000 DBG_PRINT(ERR_DBG, "%s: The skb is ",
3001 ring_data->dev->name);
3002 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3005 if (ring_data->rxd_mode == RXD_MODE_1) {
3006 rxdp1 = (struct RxD1*)rxdp;
3007 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3010 HEADER_ETHERNET_II_802_3_SIZE +
3013 PCI_DMA_FROMDEVICE);
3014 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3015 rxdp3 = (struct RxD3*)rxdp;
3016 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3018 BUF0_LEN, PCI_DMA_FROMDEVICE);
3019 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3022 PCI_DMA_FROMDEVICE);
3024 prefetch(skb->data);
3025 rx_osm_handler(ring_data, rxdp);
3027 ring_data->rx_curr_get_info.offset = get_info.offset;
3028 rxdp = ring_data->rx_blocks[get_block].
3029 rxds[get_info.offset].virt_addr;
3030 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3031 get_info.offset = 0;
3032 ring_data->rx_curr_get_info.offset = get_info.offset;
3034 if (get_block == ring_data->block_count)
3036 ring_data->rx_curr_get_info.block_index = get_block;
3037 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3040 if (ring_data->nic->config.napi) {
3047 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3050 if (ring_data->lro) {
3051 /* Clear all LRO sessions before exiting */
3052 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3053 struct lro *lro = &ring_data->lro0_n[i];
3055 update_L3L4_header(ring_data->nic, lro);
3056 queue_rx_frame(lro->parent, lro->vlan_tag);
3057 clear_lro_session(lro);
3065 * tx_intr_handler - Transmit interrupt handler
3066 * @nic : device private variable
3068 * If an interrupt was raised to indicate DMA complete of the
3069 * Tx packet, this function is called. It identifies the last TxD
3070 * whose buffer was freed and frees all skbs whose data have already
3071 * DMA'ed into the NICs internal memory.
3076 static void tx_intr_handler(struct fifo_info *fifo_data)
3078 struct s2io_nic *nic = fifo_data->nic;
3079 struct tx_curr_get_info get_info, put_info;
3080 struct sk_buff *skb = NULL;
3083 unsigned long flags = 0;
3086 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3089 get_info = fifo_data->tx_curr_get_info;
3090 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3091 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3093 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3094 (get_info.offset != put_info.offset) &&
3095 (txdlp->Host_Control)) {
3096 /* Check for TxD errors */
3097 if (txdlp->Control_1 & TXD_T_CODE) {
3098 unsigned long long err;
3099 err = txdlp->Control_1 & TXD_T_CODE;
3101 nic->mac_control.stats_info->sw_stat.
3105 /* update t_code statistics */
3106 err_mask = err >> 48;
3109 nic->mac_control.stats_info->sw_stat.
3114 nic->mac_control.stats_info->sw_stat.
3115 tx_desc_abort_cnt++;
3119 nic->mac_control.stats_info->sw_stat.
3120 tx_parity_err_cnt++;
3124 nic->mac_control.stats_info->sw_stat.
3129 nic->mac_control.stats_info->sw_stat.
3130 tx_list_proc_err_cnt++;
3135 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3137 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3138 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3140 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3145 /* Updating the statistics block */
3146 nic->stats.tx_bytes += skb->len;
3147 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3148 dev_kfree_skb_irq(skb);
3151 if (get_info.offset == get_info.fifo_len + 1)
3152 get_info.offset = 0;
3153 txdlp = (struct TxD *) fifo_data->list_info
3154 [get_info.offset].list_virt_addr;
3155 fifo_data->tx_curr_get_info.offset =
3159 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3161 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3165 * s2io_mdio_write - Function to write in to MDIO registers
3166 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3167 * @addr : address value
3168 * @value : data value
3169 * @dev : pointer to net_device structure
3171 * This function is used to write values to the MDIO registers
3174 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3177 struct s2io_nic *sp = dev->priv;
3178 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3180 //address transaction
3181 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3182 | MDIO_MMD_DEV_ADDR(mmd_type)
3183 | MDIO_MMS_PRT_ADDR(0x0);
3184 writeq(val64, &bar0->mdio_control);
3185 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3186 writeq(val64, &bar0->mdio_control);
3191 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3192 | MDIO_MMD_DEV_ADDR(mmd_type)
3193 | MDIO_MMS_PRT_ADDR(0x0)
3194 | MDIO_MDIO_DATA(value)
3195 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3196 writeq(val64, &bar0->mdio_control);
3197 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3198 writeq(val64, &bar0->mdio_control);
3202 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3203 | MDIO_MMD_DEV_ADDR(mmd_type)
3204 | MDIO_MMS_PRT_ADDR(0x0)
3205 | MDIO_OP(MDIO_OP_READ_TRANS);
3206 writeq(val64, &bar0->mdio_control);
3207 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3208 writeq(val64, &bar0->mdio_control);
3214 * s2io_mdio_read - Function to write in to MDIO registers
3215 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3216 * @addr : address value
3217 * @dev : pointer to net_device structure
3219 * This function is used to read values to the MDIO registers
3222 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3226 struct s2io_nic *sp = dev->priv;
3227 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3229 /* address transaction */
3230 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3231 | MDIO_MMD_DEV_ADDR(mmd_type)
3232 | MDIO_MMS_PRT_ADDR(0x0);
3233 writeq(val64, &bar0->mdio_control);
3234 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3235 writeq(val64, &bar0->mdio_control);
3238 /* Data transaction */
3240 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3241 | MDIO_MMD_DEV_ADDR(mmd_type)
3242 | MDIO_MMS_PRT_ADDR(0x0)
3243 | MDIO_OP(MDIO_OP_READ_TRANS);
3244 writeq(val64, &bar0->mdio_control);
3245 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3246 writeq(val64, &bar0->mdio_control);
3249 /* Read the value from regs */
3250 rval64 = readq(&bar0->mdio_control);
3251 rval64 = rval64 & 0xFFFF0000;
3252 rval64 = rval64 >> 16;
3256 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3257 * @counter : couter value to be updated
3258 * @flag : flag to indicate the status
3259 * @type : counter type
3261 * This function is to check the status of the xpak counters value
3265 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3270 for(i = 0; i <index; i++)
3275 *counter = *counter + 1;
3276 val64 = *regs_stat & mask;
3277 val64 = val64 >> (index * 0x2);
3284 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3285 "service. Excessive temperatures may "
3286 "result in premature transceiver "
3290 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3291 "service Excessive bias currents may "
3292 "indicate imminent laser diode "
3296 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3297 "service Excessive laser output "
3298 "power may saturate far-end "
3302 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3307 val64 = val64 << (index * 0x2);
3308 *regs_stat = (*regs_stat & (~mask)) | (val64);
3311 *regs_stat = *regs_stat & (~mask);
3316 * s2io_updt_xpak_counter - Function to update the xpak counters
3317 * @dev : pointer to net_device struct
3319 * This function is to upate the status of the xpak counters value
3322 static void s2io_updt_xpak_counter(struct net_device *dev)
3330 struct s2io_nic *sp = dev->priv;
3331 struct stat_block *stat_info = sp->mac_control.stats_info;
3333 /* Check the communication with the MDIO slave */
3336 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3337 if((val64 == 0xFFFF) || (val64 == 0x0000))
3339 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3340 "Returned %llx\n", (unsigned long long)val64);
3344 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3347 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3348 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3349 (unsigned long long)val64);
3353 /* Loading the DOM register to MDIO register */
3355 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3356 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3358 /* Reading the Alarm flags */
3361 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3363 flag = CHECKBIT(val64, 0x7);
3365 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3366 &stat_info->xpak_stat.xpak_regs_stat,
3369 if(CHECKBIT(val64, 0x6))
3370 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3372 flag = CHECKBIT(val64, 0x3);
3374 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3375 &stat_info->xpak_stat.xpak_regs_stat,
3378 if(CHECKBIT(val64, 0x2))
3379 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3381 flag = CHECKBIT(val64, 0x1);
3383 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3384 &stat_info->xpak_stat.xpak_regs_stat,
3387 if(CHECKBIT(val64, 0x0))
3388 stat_info->xpak_stat.alarm_laser_output_power_low++;
3390 /* Reading the Warning flags */
3393 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3395 if(CHECKBIT(val64, 0x7))
3396 stat_info->xpak_stat.warn_transceiver_temp_high++;
3398 if(CHECKBIT(val64, 0x6))
3399 stat_info->xpak_stat.warn_transceiver_temp_low++;
3401 if(CHECKBIT(val64, 0x3))
3402 stat_info->xpak_stat.warn_laser_bias_current_high++;
3404 if(CHECKBIT(val64, 0x2))
3405 stat_info->xpak_stat.warn_laser_bias_current_low++;
3407 if(CHECKBIT(val64, 0x1))
3408 stat_info->xpak_stat.warn_laser_output_power_high++;
3410 if(CHECKBIT(val64, 0x0))
3411 stat_info->xpak_stat.warn_laser_output_power_low++;
3415 * wait_for_cmd_complete - waits for a command to complete.
3416 * @sp : private member of the device structure, which is a pointer to the
3417 * s2io_nic structure.
3418 * Description: Function that waits for a command to Write into RMAC
3419 * ADDR DATA registers to be completed and returns either success or
3420 * error depending on whether the command was complete or not.
3422 * SUCCESS on success and FAILURE on failure.
3425 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3428 int ret = FAILURE, cnt = 0, delay = 1;
3431 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3435 val64 = readq(addr);
3436 if (bit_state == S2IO_BIT_RESET) {
3437 if (!(val64 & busy_bit)) {
3442 if (!(val64 & busy_bit)) {
3459 * check_pci_device_id - Checks if the device id is supported
3461 * Description: Function to check if the pci device id is supported by driver.
3462 * Return value: Actual device id if supported else PCI_ANY_ID
3464 static u16 check_pci_device_id(u16 id)
3467 case PCI_DEVICE_ID_HERC_WIN:
3468 case PCI_DEVICE_ID_HERC_UNI:
3469 return XFRAME_II_DEVICE;
3470 case PCI_DEVICE_ID_S2IO_UNI:
3471 case PCI_DEVICE_ID_S2IO_WIN:
3472 return XFRAME_I_DEVICE;
3479 * s2io_reset - Resets the card.
3480 * @sp : private member of the device structure.
3481 * Description: Function to Reset the card. This function then also
3482 * restores the previously saved PCI configuration space registers as
3483 * the card reset also resets the configuration space.
3488 static void s2io_reset(struct s2io_nic * sp)
3490 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3495 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3496 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3498 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3499 __FUNCTION__, sp->dev->name);
3501 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3502 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3504 val64 = SW_RESET_ALL;
3505 writeq(val64, &bar0->sw_reset);
3506 if (strstr(sp->product_name, "CX4")) {
3510 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3512 /* Restore the PCI state saved during initialization. */
3513 pci_restore_state(sp->pdev);
3514 pci_read_config_word(sp->pdev, 0x2, &val16);
3515 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3520 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3521 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3524 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3528 /* Set swapper to enable I/O register access */
3529 s2io_set_swapper(sp);
3531 /* restore mac_addr entries */
3532 do_s2io_restore_unicast_mc(sp);
3534 /* Restore the MSIX table entries from local variables */
3535 restore_xmsi_data(sp);
3537 /* Clear certain PCI/PCI-X fields after reset */
3538 if (sp->device_type == XFRAME_II_DEVICE) {
3539 /* Clear "detected parity error" bit */
3540 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3542 /* Clearing PCIX Ecc status register */
3543 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3545 /* Clearing PCI_STATUS error reflected here */
3546 writeq(s2BIT(62), &bar0->txpic_int_reg);
3549 /* Reset device statistics maintained by OS */
3550 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3552 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3553 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3554 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3555 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3556 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3557 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3558 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3559 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3560 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3561 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3562 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3563 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3564 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3565 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3566 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3567 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3568 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3569 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3570 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3572 /* SXE-002: Configure link and activity LED to turn it off */
3573 subid = sp->pdev->subsystem_device;
3574 if (((subid & 0xFF) >= 0x07) &&
3575 (sp->device_type == XFRAME_I_DEVICE)) {
3576 val64 = readq(&bar0->gpio_control);
3577 val64 |= 0x0000800000000000ULL;
3578 writeq(val64, &bar0->gpio_control);
3579 val64 = 0x0411040400000000ULL;
3580 writeq(val64, (void __iomem *)bar0 + 0x2700);
3584 * Clear spurious ECC interrupts that would have occured on
3585 * XFRAME II cards after reset.
3587 if (sp->device_type == XFRAME_II_DEVICE) {
3588 val64 = readq(&bar0->pcc_err_reg);
3589 writeq(val64, &bar0->pcc_err_reg);
3592 sp->device_enabled_once = FALSE;
3596 * s2io_set_swapper - to set the swapper controle on the card
3597 * @sp : private member of the device structure,
3598 * pointer to the s2io_nic structure.
3599 * Description: Function to set the swapper control on the card
3600 * correctly depending on the 'endianness' of the system.
3602 * SUCCESS on success and FAILURE on failure.
3605 static int s2io_set_swapper(struct s2io_nic * sp)
3607 struct net_device *dev = sp->dev;
3608 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3609 u64 val64, valt, valr;
3612 * Set proper endian settings and verify the same by reading
3613 * the PIF Feed-back register.
3616 val64 = readq(&bar0->pif_rd_swapper_fb);
3617 if (val64 != 0x0123456789ABCDEFULL) {
3619 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3620 0x8100008181000081ULL, /* FE=1, SE=0 */
3621 0x4200004242000042ULL, /* FE=0, SE=1 */
3622 0}; /* FE=0, SE=0 */
3625 writeq(value[i], &bar0->swapper_ctrl);
3626 val64 = readq(&bar0->pif_rd_swapper_fb);
3627 if (val64 == 0x0123456789ABCDEFULL)
3632 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3634 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3635 (unsigned long long) val64);
3640 valr = readq(&bar0->swapper_ctrl);
3643 valt = 0x0123456789ABCDEFULL;
3644 writeq(valt, &bar0->xmsi_address);
3645 val64 = readq(&bar0->xmsi_address);
3649 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3650 0x0081810000818100ULL, /* FE=1, SE=0 */
3651 0x0042420000424200ULL, /* FE=0, SE=1 */
3652 0}; /* FE=0, SE=0 */
3655 writeq((value[i] | valr), &bar0->swapper_ctrl);
3656 writeq(valt, &bar0->xmsi_address);
3657 val64 = readq(&bar0->xmsi_address);
3663 unsigned long long x = val64;
3664 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3665 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3669 val64 = readq(&bar0->swapper_ctrl);
3670 val64 &= 0xFFFF000000000000ULL;
3674 * The device by default set to a big endian format, so a
3675 * big endian driver need not set anything.
3677 val64 |= (SWAPPER_CTRL_TXP_FE |
3678 SWAPPER_CTRL_TXP_SE |
3679 SWAPPER_CTRL_TXD_R_FE |
3680 SWAPPER_CTRL_TXD_W_FE |
3681 SWAPPER_CTRL_TXF_R_FE |
3682 SWAPPER_CTRL_RXD_R_FE |
3683 SWAPPER_CTRL_RXD_W_FE |
3684 SWAPPER_CTRL_RXF_W_FE |
3685 SWAPPER_CTRL_XMSI_FE |
3686 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3687 if (sp->config.intr_type == INTA)
3688 val64 |= SWAPPER_CTRL_XMSI_SE;
3689 writeq(val64, &bar0->swapper_ctrl);
3692 * Initially we enable all bits to make it accessible by the
3693 * driver, then we selectively enable only those bits that
3696 val64 |= (SWAPPER_CTRL_TXP_FE |
3697 SWAPPER_CTRL_TXP_SE |
3698 SWAPPER_CTRL_TXD_R_FE |
3699 SWAPPER_CTRL_TXD_R_SE |
3700 SWAPPER_CTRL_TXD_W_FE |
3701 SWAPPER_CTRL_TXD_W_SE |
3702 SWAPPER_CTRL_TXF_R_FE |
3703 SWAPPER_CTRL_RXD_R_FE |
3704 SWAPPER_CTRL_RXD_R_SE |
3705 SWAPPER_CTRL_RXD_W_FE |
3706 SWAPPER_CTRL_RXD_W_SE |
3707 SWAPPER_CTRL_RXF_W_FE |
3708 SWAPPER_CTRL_XMSI_FE |
3709 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3710 if (sp->config.intr_type == INTA)
3711 val64 |= SWAPPER_CTRL_XMSI_SE;
3712 writeq(val64, &bar0->swapper_ctrl);
3714 val64 = readq(&bar0->swapper_ctrl);
3717 * Verifying if endian settings are accurate by reading a
3718 * feedback register.
3720 val64 = readq(&bar0->pif_rd_swapper_fb);
3721 if (val64 != 0x0123456789ABCDEFULL) {
3722 /* Endian settings are incorrect, calls for another dekko. */
3723 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3725 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3726 (unsigned long long) val64);
3733 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3735 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3737 int ret = 0, cnt = 0;
3740 val64 = readq(&bar0->xmsi_access);
3741 if (!(val64 & s2BIT(15)))
3747 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3754 static void restore_xmsi_data(struct s2io_nic *nic)
3756 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3761 if (nic->device_type == XFRAME_I_DEVICE)
3764 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3765 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3766 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3767 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3768 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3769 writeq(val64, &bar0->xmsi_access);
3770 if (wait_for_msix_trans(nic, msix_index)) {
3771 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3777 static void store_xmsi_data(struct s2io_nic *nic)
3779 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3780 u64 val64, addr, data;
3783 if (nic->device_type == XFRAME_I_DEVICE)
3786 /* Store and display */
3787 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3788 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3789 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3790 writeq(val64, &bar0->xmsi_access);
3791 if (wait_for_msix_trans(nic, msix_index)) {
3792 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3795 addr = readq(&bar0->xmsi_address);
3796 data = readq(&bar0->xmsi_data);
3798 nic->msix_info[i].addr = addr;
3799 nic->msix_info[i].data = data;
3804 static int s2io_enable_msi_x(struct s2io_nic *nic)
3806 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3808 u16 msi_control; /* Temp variable */
3809 int ret, i, j, msix_indx = 1;
3811 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3813 if (!nic->entries) {
3814 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3816 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3819 nic->mac_control.stats_info->sw_stat.mem_allocated
3820 += (nic->num_entries * sizeof(struct msix_entry));
3822 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3825 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3827 if (!nic->s2io_entries) {
3828 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3830 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3831 kfree(nic->entries);
3832 nic->mac_control.stats_info->sw_stat.mem_freed
3833 += (nic->num_entries * sizeof(struct msix_entry));
3836 nic->mac_control.stats_info->sw_stat.mem_allocated
3837 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3838 memset(nic->s2io_entries, 0,
3839 nic->num_entries * sizeof(struct s2io_msix_entry));
3841 nic->entries[0].entry = 0;
3842 nic->s2io_entries[0].entry = 0;
3843 nic->s2io_entries[0].in_use = MSIX_FLG;
3844 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3845 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3847 for (i = 1; i < nic->num_entries; i++) {
3848 nic->entries[i].entry = ((i - 1) * 8) + 1;
3849 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3850 nic->s2io_entries[i].arg = NULL;
3851 nic->s2io_entries[i].in_use = 0;
3854 rx_mat = readq(&bar0->rx_mat);
3855 for (j = 0; j < nic->config.rx_ring_num; j++) {
3856 rx_mat |= RX_MAT_SET(j, msix_indx);
3857 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3858 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3859 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3862 writeq(rx_mat, &bar0->rx_mat);
3863 readq(&bar0->rx_mat);
3865 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3866 /* We fail init if error or we get less vectors than min required */
3868 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3869 kfree(nic->entries);
3870 nic->mac_control.stats_info->sw_stat.mem_freed
3871 += (nic->num_entries * sizeof(struct msix_entry));
3872 kfree(nic->s2io_entries);
3873 nic->mac_control.stats_info->sw_stat.mem_freed
3874 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3875 nic->entries = NULL;
3876 nic->s2io_entries = NULL;
3881 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3882 * in the herc NIC. (Temp change, needs to be removed later)
3884 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3885 msi_control |= 0x1; /* Enable MSI */
3886 pci_write_config_word(nic->pdev, 0x42, msi_control);
3891 /* Handle software interrupt used during MSI(X) test */
3892 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3894 struct s2io_nic *sp = dev_id;
3896 sp->msi_detected = 1;
3897 wake_up(&sp->msi_wait);
3902 /* Test interrupt path by forcing a a software IRQ */
3903 static int s2io_test_msi(struct s2io_nic *sp)
3905 struct pci_dev *pdev = sp->pdev;
3906 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3910 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3913 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3914 sp->dev->name, pci_name(pdev), pdev->irq);
3918 init_waitqueue_head (&sp->msi_wait);
3919 sp->msi_detected = 0;
3921 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3922 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3923 val64 |= SCHED_INT_CTRL_TIMER_EN;
3924 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3925 writeq(val64, &bar0->scheduled_int_ctrl);
3927 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3929 if (!sp->msi_detected) {
3930 /* MSI(X) test failed, go back to INTx mode */
3931 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3932 "using MSI(X) during test\n", sp->dev->name,
3938 free_irq(sp->entries[1].vector, sp);
3940 writeq(saved64, &bar0->scheduled_int_ctrl);
3945 static void remove_msix_isr(struct s2io_nic *sp)
3950 for (i = 0; i < sp->num_entries; i++) {
3951 if (sp->s2io_entries[i].in_use ==
3952 MSIX_REGISTERED_SUCCESS) {
3953 int vector = sp->entries[i].vector;
3954 void *arg = sp->s2io_entries[i].arg;
3955 free_irq(vector, arg);
3960 kfree(sp->s2io_entries);
3962 sp->s2io_entries = NULL;
3964 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3965 msi_control &= 0xFFFE; /* Disable MSI */
3966 pci_write_config_word(sp->pdev, 0x42, msi_control);
3968 pci_disable_msix(sp->pdev);
3971 static void remove_inta_isr(struct s2io_nic *sp)
3973 struct net_device *dev = sp->dev;
3975 free_irq(sp->pdev->irq, dev);
3978 /* ********************************************************* *
3979 * Functions defined below concern the OS part of the driver *
3980 * ********************************************************* */
3983 * s2io_open - open entry point of the driver
3984 * @dev : pointer to the device structure.
3986 * This function is the open entry point of the driver. It mainly calls a
3987 * function to allocate Rx buffers and inserts them into the buffer
3988 * descriptors and then enables the Rx part of the NIC.
3990 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3994 static int s2io_open(struct net_device *dev)
3996 struct s2io_nic *sp = dev->priv;
4000 * Make sure you have link off by default every time
4001 * Nic is initialized
4003 netif_carrier_off(dev);
4004 sp->last_link_state = 0;
4006 /* Initialize H/W and enable interrupts */
4007 err = s2io_card_up(sp);
4009 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4011 goto hw_init_failed;
4014 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4015 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4018 goto hw_init_failed;
4020 s2io_start_all_tx_queue(sp);
4024 if (sp->config.intr_type == MSI_X) {
4027 sp->mac_control.stats_info->sw_stat.mem_freed
4028 += (sp->num_entries * sizeof(struct msix_entry));
4030 if (sp->s2io_entries) {
4031 kfree(sp->s2io_entries);
4032 sp->mac_control.stats_info->sw_stat.mem_freed
4033 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4040 * s2io_close -close entry point of the driver
4041 * @dev : device pointer.
4043 * This is the stop entry point of the driver. It needs to undo exactly
4044 * whatever was done by the open entry point,thus it's usually referred to
4045 * as the close function.Among other things this function mainly stops the
4046 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4048 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4052 static int s2io_close(struct net_device *dev)
4054 struct s2io_nic *sp = dev->priv;
4055 struct config_param *config = &sp->config;
4059 /* Return if the device is already closed *
4060 * Can happen when s2io_card_up failed in change_mtu *
4062 if (!is_s2io_card_up(sp))
4065 s2io_stop_all_tx_queue(sp);
4066 /* delete all populated mac entries */
4067 for (offset = 1; offset < config->max_mc_addr; offset++) {
4068 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4069 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4070 do_s2io_delete_unicast_mc(sp, tmp64);
4079 * s2io_xmit - Tx entry point of te driver
4080 * @skb : the socket buffer containing the Tx data.
4081 * @dev : device pointer.
4083 * This function is the Tx entry point of the driver. S2IO NIC supports
4084 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4085 * NOTE: when device cant queue the pkt,just the trans_start variable will
4088 * 0 on success & 1 on failure.
4091 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4093 struct s2io_nic *sp = dev->priv;
4094 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4097 struct TxFIFO_element __iomem *tx_fifo;
4098 unsigned long flags = 0;
4100 struct fifo_info *fifo = NULL;
4101 struct mac_info *mac_control;
4102 struct config_param *config;
4103 int do_spin_lock = 1;
4105 int enable_per_list_interrupt = 0;
4106 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4108 mac_control = &sp->mac_control;
4109 config = &sp->config;
4111 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4113 if (unlikely(skb->len <= 0)) {
4114 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4115 dev_kfree_skb_any(skb);
4119 if (!is_s2io_card_up(sp)) {
4120 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4127 if (sp->vlgrp && vlan_tx_tag_present(skb))
4128 vlan_tag = vlan_tx_tag_get(skb);
4129 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4130 if (skb->protocol == htons(ETH_P_IP)) {
4135 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4136 th = (struct tcphdr *)(((unsigned char *)ip) +
4139 if (ip->protocol == IPPROTO_TCP) {
4140 queue_len = sp->total_tcp_fifos;
4141 queue = (ntohs(th->source) +
4143 sp->fifo_selector[queue_len - 1];
4144 if (queue >= queue_len)
4145 queue = queue_len - 1;
4146 } else if (ip->protocol == IPPROTO_UDP) {
4147 queue_len = sp->total_udp_fifos;
4148 queue = (ntohs(th->source) +
4150 sp->fifo_selector[queue_len - 1];
4151 if (queue >= queue_len)
4152 queue = queue_len - 1;
4153 queue += sp->udp_fifo_idx;
4154 if (skb->len > 1024)
4155 enable_per_list_interrupt = 1;
4160 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4161 /* get fifo number based on skb->priority value */
4162 queue = config->fifo_mapping
4163 [skb->priority & (MAX_TX_FIFOS - 1)];
4164 fifo = &mac_control->fifos[queue];
4167 spin_lock_irqsave(&fifo->tx_lock, flags);
4169 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4170 return NETDEV_TX_LOCKED;
4173 if (sp->config.multiq) {
4174 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4175 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4176 return NETDEV_TX_BUSY;
4178 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4179 if (netif_queue_stopped(dev)) {
4180 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4181 return NETDEV_TX_BUSY;
4185 put_off = (u16) fifo->tx_curr_put_info.offset;
4186 get_off = (u16) fifo->tx_curr_get_info.offset;
4187 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4189 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4190 /* Avoid "put" pointer going beyond "get" pointer */
4191 if (txdp->Host_Control ||
4192 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4193 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4194 s2io_stop_tx_queue(sp, fifo->fifo_no);
4196 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4200 offload_type = s2io_offload_type(skb);
4201 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4202 txdp->Control_1 |= TXD_TCP_LSO_EN;
4203 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4205 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4207 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4210 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4211 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4212 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4213 if (enable_per_list_interrupt)
4214 if (put_off & (queue_len >> 5))
4215 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4217 txdp->Control_2 |= TXD_VLAN_ENABLE;
4218 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4221 frg_len = skb->len - skb->data_len;
4222 if (offload_type == SKB_GSO_UDP) {
4225 ufo_size = s2io_udp_mss(skb);
4227 txdp->Control_1 |= TXD_UFO_EN;
4228 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4229 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4231 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4232 fifo->ufo_in_band_v[put_off] =
4233 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4235 fifo->ufo_in_band_v[put_off] =
4236 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4238 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4239 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4240 fifo->ufo_in_band_v,
4241 sizeof(u64), PCI_DMA_TODEVICE);
4242 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4243 goto pci_map_failed;
4247 txdp->Buffer_Pointer = pci_map_single
4248 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4249 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4250 goto pci_map_failed;
4252 txdp->Host_Control = (unsigned long) skb;
4253 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4254 if (offload_type == SKB_GSO_UDP)
4255 txdp->Control_1 |= TXD_UFO_EN;
4257 frg_cnt = skb_shinfo(skb)->nr_frags;
4258 /* For fragmented SKB. */
4259 for (i = 0; i < frg_cnt; i++) {
4260 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4261 /* A '0' length fragment will be ignored */
4265 txdp->Buffer_Pointer = (u64) pci_map_page
4266 (sp->pdev, frag->page, frag->page_offset,
4267 frag->size, PCI_DMA_TODEVICE);
4268 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4269 if (offload_type == SKB_GSO_UDP)
4270 txdp->Control_1 |= TXD_UFO_EN;
4272 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4274 if (offload_type == SKB_GSO_UDP)
4275 frg_cnt++; /* as Txd0 was used for inband header */
4277 tx_fifo = mac_control->tx_FIFO_start[queue];
4278 val64 = fifo->list_info[put_off].list_phy_addr;
4279 writeq(val64, &tx_fifo->TxDL_Pointer);
4281 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4284 val64 |= TX_FIFO_SPECIAL_FUNC;
4286 writeq(val64, &tx_fifo->List_Control);
4291 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4293 fifo->tx_curr_put_info.offset = put_off;
4295 /* Avoid "put" pointer going beyond "get" pointer */
4296 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4297 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4299 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4301 s2io_stop_tx_queue(sp, fifo->fifo_no);
4303 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4304 dev->trans_start = jiffies;
4305 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4307 if (sp->config.intr_type == MSI_X)
4308 tx_intr_handler(fifo);
4312 stats->pci_map_fail_cnt++;
4313 s2io_stop_tx_queue(sp, fifo->fifo_no);
4314 stats->mem_freed += skb->truesize;
4316 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4321 s2io_alarm_handle(unsigned long data)
4323 struct s2io_nic *sp = (struct s2io_nic *)data;
4324 struct net_device *dev = sp->dev;
4326 s2io_handle_errors(dev);
4327 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4330 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4332 struct ring_info *ring = (struct ring_info *)dev_id;
4333 struct s2io_nic *sp = ring->nic;
4334 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4335 struct net_device *dev = sp->dev;
4337 if (unlikely(!is_s2io_card_up(sp)))
4340 if (sp->config.napi) {
4341 u8 __iomem *addr = NULL;
4344 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4345 addr += (7 - ring->ring_no);
4346 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4349 netif_rx_schedule(dev, &ring->napi);
4351 rx_intr_handler(ring, 0);
4352 s2io_chk_rx_buffers(sp, ring);
4358 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4361 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4362 struct s2io_nic *sp = fifos->nic;
4363 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4364 struct config_param *config = &sp->config;
4367 if (unlikely(!is_s2io_card_up(sp)))
4370 reason = readq(&bar0->general_int_status);
4371 if (unlikely(reason == S2IO_MINUS_ONE))
4372 /* Nothing much can be done. Get out */
4375 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4376 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4378 if (reason & GEN_INTR_TXPIC)
4379 s2io_txpic_intr_handle(sp);
4381 if (reason & GEN_INTR_TXTRAFFIC)
4382 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4384 for (i = 0; i < config->tx_fifo_num; i++)
4385 tx_intr_handler(&fifos[i]);
4387 writeq(sp->general_int_mask, &bar0->general_int_mask);
4388 readl(&bar0->general_int_status);
4391 /* The interrupt was not raised by us */
4395 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4397 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4400 val64 = readq(&bar0->pic_int_status);
4401 if (val64 & PIC_INT_GPIO) {
4402 val64 = readq(&bar0->gpio_int_reg);
4403 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4404 (val64 & GPIO_INT_REG_LINK_UP)) {
4406 * This is unstable state so clear both up/down
4407 * interrupt and adapter to re-evaluate the link state.
4409 val64 |= GPIO_INT_REG_LINK_DOWN;
4410 val64 |= GPIO_INT_REG_LINK_UP;
4411 writeq(val64, &bar0->gpio_int_reg);
4412 val64 = readq(&bar0->gpio_int_mask);
4413 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4414 GPIO_INT_MASK_LINK_DOWN);
4415 writeq(val64, &bar0->gpio_int_mask);
4417 else if (val64 & GPIO_INT_REG_LINK_UP) {
4418 val64 = readq(&bar0->adapter_status);
4419 /* Enable Adapter */
4420 val64 = readq(&bar0->adapter_control);
4421 val64 |= ADAPTER_CNTL_EN;
4422 writeq(val64, &bar0->adapter_control);
4423 val64 |= ADAPTER_LED_ON;
4424 writeq(val64, &bar0->adapter_control);
4425 if (!sp->device_enabled_once)
4426 sp->device_enabled_once = 1;
4428 s2io_link(sp, LINK_UP);
4430 * unmask link down interrupt and mask link-up
4433 val64 = readq(&bar0->gpio_int_mask);
4434 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4435 val64 |= GPIO_INT_MASK_LINK_UP;
4436 writeq(val64, &bar0->gpio_int_mask);
4438 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4439 val64 = readq(&bar0->adapter_status);
4440 s2io_link(sp, LINK_DOWN);
4441 /* Link is down so unmaks link up interrupt */
4442 val64 = readq(&bar0->gpio_int_mask);
4443 val64 &= ~GPIO_INT_MASK_LINK_UP;
4444 val64 |= GPIO_INT_MASK_LINK_DOWN;
4445 writeq(val64, &bar0->gpio_int_mask);
4448 val64 = readq(&bar0->adapter_control);
4449 val64 = val64 &(~ADAPTER_LED_ON);
4450 writeq(val64, &bar0->adapter_control);
4453 val64 = readq(&bar0->gpio_int_mask);
4457 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4458 * @value: alarm bits
4459 * @addr: address value
4460 * @cnt: counter variable
4461 * Description: Check for alarm and increment the counter
4463 * 1 - if alarm bit set
4464 * 0 - if alarm bit is not set
4466 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4467 unsigned long long *cnt)
4470 val64 = readq(addr);
4471 if ( val64 & value ) {
4472 writeq(val64, addr);
4481 * s2io_handle_errors - Xframe error indication handler
4482 * @nic: device private variable
4483 * Description: Handle alarms such as loss of link, single or
4484 * double ECC errors, critical and serious errors.
4488 static void s2io_handle_errors(void * dev_id)
4490 struct net_device *dev = (struct net_device *) dev_id;
4491 struct s2io_nic *sp = dev->priv;
4492 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4493 u64 temp64 = 0,val64=0;
4496 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4497 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4499 if (!is_s2io_card_up(sp))
4502 if (pci_channel_offline(sp->pdev))
4505 memset(&sw_stat->ring_full_cnt, 0,
4506 sizeof(sw_stat->ring_full_cnt));
4508 /* Handling the XPAK counters update */
4509 if(stats->xpak_timer_count < 72000) {
4510 /* waiting for an hour */
4511 stats->xpak_timer_count++;
4513 s2io_updt_xpak_counter(dev);
4514 /* reset the count to zero */
4515 stats->xpak_timer_count = 0;
4518 /* Handling link status change error Intr */
4519 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4520 val64 = readq(&bar0->mac_rmac_err_reg);
4521 writeq(val64, &bar0->mac_rmac_err_reg);
4522 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4523 schedule_work(&sp->set_link_task);
4526 /* In case of a serious error, the device will be Reset. */
4527 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4528 &sw_stat->serious_err_cnt))
4531 /* Check for data parity error */
4532 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4533 &sw_stat->parity_err_cnt))
4536 /* Check for ring full counter */
4537 if (sp->device_type == XFRAME_II_DEVICE) {
4538 val64 = readq(&bar0->ring_bump_counter1);
4539 for (i=0; i<4; i++) {
4540 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4541 temp64 >>= 64 - ((i+1)*16);
4542 sw_stat->ring_full_cnt[i] += temp64;
4545 val64 = readq(&bar0->ring_bump_counter2);
4546 for (i=0; i<4; i++) {
4547 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4548 temp64 >>= 64 - ((i+1)*16);
4549 sw_stat->ring_full_cnt[i+4] += temp64;
4553 val64 = readq(&bar0->txdma_int_status);
4554 /*check for pfc_err*/
4555 if (val64 & TXDMA_PFC_INT) {
4556 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4557 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4558 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4559 &sw_stat->pfc_err_cnt))
4561 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4562 &sw_stat->pfc_err_cnt);
4565 /*check for tda_err*/
4566 if (val64 & TXDMA_TDA_INT) {
4567 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4568 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4569 &sw_stat->tda_err_cnt))
4571 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4572 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4574 /*check for pcc_err*/
4575 if (val64 & TXDMA_PCC_INT) {
4576 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4577 | PCC_N_SERR | PCC_6_COF_OV_ERR
4578 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4579 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4580 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4581 &sw_stat->pcc_err_cnt))
4583 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4584 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4587 /*check for tti_err*/
4588 if (val64 & TXDMA_TTI_INT) {
4589 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4590 &sw_stat->tti_err_cnt))
4592 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4593 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4596 /*check for lso_err*/
4597 if (val64 & TXDMA_LSO_INT) {
4598 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4599 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4600 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4602 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4603 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4606 /*check for tpa_err*/
4607 if (val64 & TXDMA_TPA_INT) {
4608 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4609 &sw_stat->tpa_err_cnt))
4611 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4612 &sw_stat->tpa_err_cnt);
4615 /*check for sm_err*/
4616 if (val64 & TXDMA_SM_INT) {
4617 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4618 &sw_stat->sm_err_cnt))
4622 val64 = readq(&bar0->mac_int_status);
4623 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4624 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4625 &bar0->mac_tmac_err_reg,
4626 &sw_stat->mac_tmac_err_cnt))
4628 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4629 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4630 &bar0->mac_tmac_err_reg,
4631 &sw_stat->mac_tmac_err_cnt);
4634 val64 = readq(&bar0->xgxs_int_status);
4635 if (val64 & XGXS_INT_STATUS_TXGXS) {
4636 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4637 &bar0->xgxs_txgxs_err_reg,
4638 &sw_stat->xgxs_txgxs_err_cnt))
4640 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4641 &bar0->xgxs_txgxs_err_reg,
4642 &sw_stat->xgxs_txgxs_err_cnt);
4645 val64 = readq(&bar0->rxdma_int_status);
4646 if (val64 & RXDMA_INT_RC_INT_M) {
4647 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4648 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4649 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4651 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4652 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653 &sw_stat->rc_err_cnt);
4654 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4655 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4656 &sw_stat->prc_pcix_err_cnt))
4658 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4659 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4660 &sw_stat->prc_pcix_err_cnt);
4663 if (val64 & RXDMA_INT_RPA_INT_M) {
4664 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4665 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4667 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4668 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4671 if (val64 & RXDMA_INT_RDA_INT_M) {
4672 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4673 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4674 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4675 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4677 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4678 | RDA_MISC_ERR | RDA_PCIX_ERR,
4679 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4682 if (val64 & RXDMA_INT_RTI_INT_M) {
4683 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4684 &sw_stat->rti_err_cnt))
4686 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4687 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4690 val64 = readq(&bar0->mac_int_status);
4691 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4692 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4693 &bar0->mac_rmac_err_reg,
4694 &sw_stat->mac_rmac_err_cnt))
4696 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4697 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4698 &sw_stat->mac_rmac_err_cnt);
4701 val64 = readq(&bar0->xgxs_int_status);
4702 if (val64 & XGXS_INT_STATUS_RXGXS) {
4703 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4704 &bar0->xgxs_rxgxs_err_reg,
4705 &sw_stat->xgxs_rxgxs_err_cnt))
4709 val64 = readq(&bar0->mc_int_status);
4710 if(val64 & MC_INT_STATUS_MC_INT) {
4711 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4712 &sw_stat->mc_err_cnt))
4715 /* Handling Ecc errors */
4716 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4717 writeq(val64, &bar0->mc_err_reg);
4718 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4719 sw_stat->double_ecc_errs++;
4720 if (sp->device_type != XFRAME_II_DEVICE) {
4722 * Reset XframeI only if critical error
4725 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4726 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4730 sw_stat->single_ecc_errs++;
4736 s2io_stop_all_tx_queue(sp);
4737 schedule_work(&sp->rst_timer_task);
4738 sw_stat->soft_reset_cnt++;
4743 * s2io_isr - ISR handler of the device .
4744 * @irq: the irq of the device.
4745 * @dev_id: a void pointer to the dev structure of the NIC.
4746 * Description: This function is the ISR handler of the device. It
4747 * identifies the reason for the interrupt and calls the relevant
4748 * service routines. As a contongency measure, this ISR allocates the
4749 * recv buffers, if their numbers are below the panic value which is
4750 * presently set to 25% of the original number of rcv buffers allocated.
4752 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4753 * IRQ_NONE: will be returned if interrupt is not from our device
4755 static irqreturn_t s2io_isr(int irq, void *dev_id)
4757 struct net_device *dev = (struct net_device *) dev_id;
4758 struct s2io_nic *sp = dev->priv;
4759 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4762 struct mac_info *mac_control;
4763 struct config_param *config;
4765 /* Pretend we handled any irq's from a disconnected card */
4766 if (pci_channel_offline(sp->pdev))
4769 if (!is_s2io_card_up(sp))
4772 mac_control = &sp->mac_control;
4773 config = &sp->config;
4776 * Identify the cause for interrupt and call the appropriate
4777 * interrupt handler. Causes for the interrupt could be;
4782 reason = readq(&bar0->general_int_status);
4784 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4785 /* Nothing much can be done. Get out */
4789 if (reason & (GEN_INTR_RXTRAFFIC |
4790 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4792 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4795 if (reason & GEN_INTR_RXTRAFFIC) {
4796 netif_rx_schedule(dev, &sp->napi);
4797 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4798 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4799 readl(&bar0->rx_traffic_int);
4803 * rx_traffic_int reg is an R1 register, writing all 1's
4804 * will ensure that the actual interrupt causing bit
4805 * get's cleared and hence a read can be avoided.
4807 if (reason & GEN_INTR_RXTRAFFIC)
4808 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4810 for (i = 0; i < config->rx_ring_num; i++)
4811 rx_intr_handler(&mac_control->rings[i], 0);
4815 * tx_traffic_int reg is an R1 register, writing all 1's
4816 * will ensure that the actual interrupt causing bit get's
4817 * cleared and hence a read can be avoided.
4819 if (reason & GEN_INTR_TXTRAFFIC)
4820 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4822 for (i = 0; i < config->tx_fifo_num; i++)
4823 tx_intr_handler(&mac_control->fifos[i]);
4825 if (reason & GEN_INTR_TXPIC)
4826 s2io_txpic_intr_handle(sp);
4829 * Reallocate the buffers from the interrupt handler itself.
4831 if (!config->napi) {
4832 for (i = 0; i < config->rx_ring_num; i++)
4833 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4835 writeq(sp->general_int_mask, &bar0->general_int_mask);
4836 readl(&bar0->general_int_status);
4842 /* The interrupt was not raised by us */
4852 static void s2io_updt_stats(struct s2io_nic *sp)
4854 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4858 if (is_s2io_card_up(sp)) {
4859 /* Apprx 30us on a 133 MHz bus */
4860 val64 = SET_UPDT_CLICKS(10) |
4861 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4862 writeq(val64, &bar0->stat_cfg);
4865 val64 = readq(&bar0->stat_cfg);
4866 if (!(val64 & s2BIT(0)))
4870 break; /* Updt failed */
4876 * s2io_get_stats - Updates the device statistics structure.
4877 * @dev : pointer to the device structure.
4879 * This function updates the device statistics structure in the s2io_nic
4880 * structure and returns a pointer to the same.
4882 * pointer to the updated net_device_stats structure.
4885 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4887 struct s2io_nic *sp = dev->priv;
4888 struct mac_info *mac_control;
4889 struct config_param *config;
4893 mac_control = &sp->mac_control;
4894 config = &sp->config;
4896 /* Configure Stats for immediate updt */
4897 s2io_updt_stats(sp);
4899 sp->stats.tx_packets =
4900 le32_to_cpu(mac_control->stats_info->tmac_frms);
4901 sp->stats.tx_errors =
4902 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4903 sp->stats.rx_errors =
4904 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4905 sp->stats.multicast =
4906 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4907 sp->stats.rx_length_errors =
4908 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4910 /* collect per-ring rx_packets and rx_bytes */
4911 sp->stats.rx_packets = sp->stats.rx_bytes = 0;
4912 for (i = 0; i < config->rx_ring_num; i++) {
4913 sp->stats.rx_packets += mac_control->rings[i].rx_packets;
4914 sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4917 return (&sp->stats);
4921 * s2io_set_multicast - entry point for multicast address enable/disable.
4922 * @dev : pointer to the device structure
4924 * This function is a driver entry point which gets called by the kernel
4925 * whenever multicast addresses must be enabled/disabled. This also gets
4926 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4927 * determine, if multicast address must be enabled or if promiscuous mode
4928 * is to be disabled etc.
4933 static void s2io_set_multicast(struct net_device *dev)
4936 struct dev_mc_list *mclist;
4937 struct s2io_nic *sp = dev->priv;
4938 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4939 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4941 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4943 struct config_param *config = &sp->config;
4945 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4946 /* Enable all Multicast addresses */
4947 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4948 &bar0->rmac_addr_data0_mem);
4949 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4950 &bar0->rmac_addr_data1_mem);
4951 val64 = RMAC_ADDR_CMD_MEM_WE |
4952 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4953 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4954 writeq(val64, &bar0->rmac_addr_cmd_mem);
4955 /* Wait till command completes */
4956 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4957 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4961 sp->all_multi_pos = config->max_mc_addr - 1;
4962 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4963 /* Disable all Multicast addresses */
4964 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4965 &bar0->rmac_addr_data0_mem);
4966 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4967 &bar0->rmac_addr_data1_mem);
4968 val64 = RMAC_ADDR_CMD_MEM_WE |
4969 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4970 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4971 writeq(val64, &bar0->rmac_addr_cmd_mem);
4972 /* Wait till command completes */
4973 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4974 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4978 sp->all_multi_pos = 0;
4981 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4982 /* Put the NIC into promiscuous mode */
4983 add = &bar0->mac_cfg;
4984 val64 = readq(&bar0->mac_cfg);
4985 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4987 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4988 writel((u32) val64, add);
4989 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4990 writel((u32) (val64 >> 32), (add + 4));
4992 if (vlan_tag_strip != 1) {
4993 val64 = readq(&bar0->rx_pa_cfg);
4994 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4995 writeq(val64, &bar0->rx_pa_cfg);
4996 vlan_strip_flag = 0;
4999 val64 = readq(&bar0->mac_cfg);
5000 sp->promisc_flg = 1;
5001 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5003 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5004 /* Remove the NIC from promiscuous mode */
5005 add = &bar0->mac_cfg;
5006 val64 = readq(&bar0->mac_cfg);
5007 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5009 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5010 writel((u32) val64, add);
5011 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5012 writel((u32) (val64 >> 32), (add + 4));
5014 if (vlan_tag_strip != 0) {
5015 val64 = readq(&bar0->rx_pa_cfg);
5016 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5017 writeq(val64, &bar0->rx_pa_cfg);
5018 vlan_strip_flag = 1;
5021 val64 = readq(&bar0->mac_cfg);
5022 sp->promisc_flg = 0;
5023 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5027 /* Update individual M_CAST address list */
5028 if ((!sp->m_cast_flg) && dev->mc_count) {
5030 (config->max_mc_addr - config->max_mac_addr)) {
5031 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5033 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5034 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5038 prev_cnt = sp->mc_addr_count;
5039 sp->mc_addr_count = dev->mc_count;
5041 /* Clear out the previous list of Mc in the H/W. */
5042 for (i = 0; i < prev_cnt; i++) {
5043 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5044 &bar0->rmac_addr_data0_mem);
5045 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5046 &bar0->rmac_addr_data1_mem);
5047 val64 = RMAC_ADDR_CMD_MEM_WE |
5048 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5049 RMAC_ADDR_CMD_MEM_OFFSET
5050 (config->mc_start_offset + i);
5051 writeq(val64, &bar0->rmac_addr_cmd_mem);
5053 /* Wait for command completes */
5054 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5055 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5057 DBG_PRINT(ERR_DBG, "%s: Adding ",
5059 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5064 /* Create the new Rx filter list and update the same in H/W. */
5065 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5066 i++, mclist = mclist->next) {
5067 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5070 for (j = 0; j < ETH_ALEN; j++) {
5071 mac_addr |= mclist->dmi_addr[j];
5075 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5076 &bar0->rmac_addr_data0_mem);
5077 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5078 &bar0->rmac_addr_data1_mem);
5079 val64 = RMAC_ADDR_CMD_MEM_WE |
5080 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5081 RMAC_ADDR_CMD_MEM_OFFSET
5082 (i + config->mc_start_offset);
5083 writeq(val64, &bar0->rmac_addr_cmd_mem);
5085 /* Wait for command completes */
5086 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5087 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5089 DBG_PRINT(ERR_DBG, "%s: Adding ",
5091 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5098 /* read from CAM unicast & multicast addresses and store it in
5099 * def_mac_addr structure
5101 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5105 struct config_param *config = &sp->config;
5107 /* store unicast & multicast mac addresses */
5108 for (offset = 0; offset < config->max_mc_addr; offset++) {
5109 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5110 /* if read fails disable the entry */
5111 if (mac_addr == FAILURE)
5112 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5113 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5117 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5118 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5121 struct config_param *config = &sp->config;
5122 /* restore unicast mac address */
5123 for (offset = 0; offset < config->max_mac_addr; offset++)
5124 do_s2io_prog_unicast(sp->dev,
5125 sp->def_mac_addr[offset].mac_addr);
5127 /* restore multicast mac address */
5128 for (offset = config->mc_start_offset;
5129 offset < config->max_mc_addr; offset++)
5130 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5133 /* add a multicast MAC address to CAM */
5134 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5138 struct config_param *config = &sp->config;
5140 for (i = 0; i < ETH_ALEN; i++) {
5142 mac_addr |= addr[i];
5144 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5147 /* check if the multicast mac already preset in CAM */
5148 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5150 tmp64 = do_s2io_read_unicast_mc(sp, i);
5151 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5154 if (tmp64 == mac_addr)
5157 if (i == config->max_mc_addr) {
5159 "CAM full no space left for multicast MAC\n");
5162 /* Update the internal structure with this new mac address */
5163 do_s2io_copy_mac_addr(sp, i, mac_addr);
5165 return (do_s2io_add_mac(sp, mac_addr, i));
5168 /* add MAC address to CAM */
5169 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5172 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5174 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5175 &bar0->rmac_addr_data0_mem);
5178 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5179 RMAC_ADDR_CMD_MEM_OFFSET(off);
5180 writeq(val64, &bar0->rmac_addr_cmd_mem);
5182 /* Wait till command completes */
5183 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5184 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5186 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5191 /* deletes a specified unicast/multicast mac entry from CAM */
5192 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5195 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5196 struct config_param *config = &sp->config;
5199 offset < config->max_mc_addr; offset++) {
5200 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5201 if (tmp64 == addr) {
5202 /* disable the entry by writing 0xffffffffffffULL */
5203 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5205 /* store the new mac list from CAM */
5206 do_s2io_store_unicast_mc(sp);
5210 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5211 (unsigned long long)addr);
5215 /* read mac entries from CAM */
5216 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5218 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5219 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5223 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5224 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5225 writeq(val64, &bar0->rmac_addr_cmd_mem);
5227 /* Wait till command completes */
5228 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5229 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5231 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5234 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5235 return (tmp64 >> 16);
5239 * s2io_set_mac_addr driver entry point
5242 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5244 struct sockaddr *addr = p;
5246 if (!is_valid_ether_addr(addr->sa_data))
5249 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5251 /* store the MAC address in CAM */
5252 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5255 * do_s2io_prog_unicast - Programs the Xframe mac address
5256 * @dev : pointer to the device structure.
5257 * @addr: a uchar pointer to the new mac address which is to be set.
5258 * Description : This procedure will program the Xframe to receive
5259 * frames with new Mac Address
5260 * Return value: SUCCESS on success and an appropriate (-)ve integer
5261 * as defined in errno.h file on failure.
5264 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5266 struct s2io_nic *sp = dev->priv;
5267 register u64 mac_addr = 0, perm_addr = 0;
5270 struct config_param *config = &sp->config;
5273 * Set the new MAC address as the new unicast filter and reflect this
5274 * change on the device address registered with the OS. It will be
5277 for (i = 0; i < ETH_ALEN; i++) {
5279 mac_addr |= addr[i];
5281 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5284 /* check if the dev_addr is different than perm_addr */
5285 if (mac_addr == perm_addr)
5288 /* check if the mac already preset in CAM */
5289 for (i = 1; i < config->max_mac_addr; i++) {
5290 tmp64 = do_s2io_read_unicast_mc(sp, i);
5291 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5294 if (tmp64 == mac_addr) {
5296 "MAC addr:0x%llx already present in CAM\n",
5297 (unsigned long long)mac_addr);
5301 if (i == config->max_mac_addr) {
5302 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5305 /* Update the internal structure with this new mac address */
5306 do_s2io_copy_mac_addr(sp, i, mac_addr);
5307 return (do_s2io_add_mac(sp, mac_addr, i));
5311 * s2io_ethtool_sset - Sets different link parameters.
5312 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5313 * @info: pointer to the structure with parameters given by ethtool to set
5316 * The function sets different link parameters provided by the user onto
5322 static int s2io_ethtool_sset(struct net_device *dev,
5323 struct ethtool_cmd *info)
5325 struct s2io_nic *sp = dev->priv;
5326 if ((info->autoneg == AUTONEG_ENABLE) ||
5327 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5330 s2io_close(sp->dev);
5338 * s2io_ethtol_gset - Return link specific information.
5339 * @sp : private member of the device structure, pointer to the
5340 * s2io_nic structure.
5341 * @info : pointer to the structure with parameters given by ethtool
5342 * to return link information.
5344 * Returns link specific information like speed, duplex etc.. to ethtool.
5346 * return 0 on success.
5349 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5351 struct s2io_nic *sp = dev->priv;
5352 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5353 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5354 info->port = PORT_FIBRE;
5356 /* info->transceiver */
5357 info->transceiver = XCVR_EXTERNAL;
5359 if (netif_carrier_ok(sp->dev)) {
5360 info->speed = 10000;
5361 info->duplex = DUPLEX_FULL;
5367 info->autoneg = AUTONEG_DISABLE;
5372 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5373 * @sp : private member of the device structure, which is a pointer to the
5374 * s2io_nic structure.
5375 * @info : pointer to the structure with parameters given by ethtool to
5376 * return driver information.
5378 * Returns driver specefic information like name, version etc.. to ethtool.
5383 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5384 struct ethtool_drvinfo *info)
5386 struct s2io_nic *sp = dev->priv;
5388 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5389 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5390 strncpy(info->fw_version, "", sizeof(info->fw_version));
5391 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5392 info->regdump_len = XENA_REG_SPACE;
5393 info->eedump_len = XENA_EEPROM_SPACE;
5397 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5398 * @sp: private member of the device structure, which is a pointer to the
5399 * s2io_nic structure.
5400 * @regs : pointer to the structure with parameters given by ethtool for
5401 * dumping the registers.
5402 * @reg_space: The input argumnet into which all the registers are dumped.
5404 * Dumps the entire register space of xFrame NIC into the user given
5410 static void s2io_ethtool_gregs(struct net_device *dev,
5411 struct ethtool_regs *regs, void *space)
5415 u8 *reg_space = (u8 *) space;
5416 struct s2io_nic *sp = dev->priv;
5418 regs->len = XENA_REG_SPACE;
5419 regs->version = sp->pdev->subsystem_device;
5421 for (i = 0; i < regs->len; i += 8) {
5422 reg = readq(sp->bar0 + i);
5423 memcpy((reg_space + i), ®, 8);
5428 * s2io_phy_id - timer function that alternates adapter LED.
5429 * @data : address of the private member of the device structure, which
5430 * is a pointer to the s2io_nic structure, provided as an u32.
5431 * Description: This is actually the timer function that alternates the
5432 * adapter LED bit of the adapter control bit to set/reset every time on
5433 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5434 * once every second.
5436 static void s2io_phy_id(unsigned long data)
5438 struct s2io_nic *sp = (struct s2io_nic *) data;
5439 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5443 subid = sp->pdev->subsystem_device;
5444 if ((sp->device_type == XFRAME_II_DEVICE) ||
5445 ((subid & 0xFF) >= 0x07)) {
5446 val64 = readq(&bar0->gpio_control);
5447 val64 ^= GPIO_CTRL_GPIO_0;
5448 writeq(val64, &bar0->gpio_control);
5450 val64 = readq(&bar0->adapter_control);
5451 val64 ^= ADAPTER_LED_ON;
5452 writeq(val64, &bar0->adapter_control);
5455 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5459 * s2io_ethtool_idnic - To physically identify the nic on the system.
5460 * @sp : private member of the device structure, which is a pointer to the
5461 * s2io_nic structure.
5462 * @id : pointer to the structure with identification parameters given by
5464 * Description: Used to physically identify the NIC on the system.
5465 * The Link LED will blink for a time specified by the user for
5467 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5468 * identification is possible only if it's link is up.
5470 * int , returns 0 on success
5473 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5475 u64 val64 = 0, last_gpio_ctrl_val;
5476 struct s2io_nic *sp = dev->priv;
5477 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5480 subid = sp->pdev->subsystem_device;
5481 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5482 if ((sp->device_type == XFRAME_I_DEVICE) &&
5483 ((subid & 0xFF) < 0x07)) {
5484 val64 = readq(&bar0->adapter_control);
5485 if (!(val64 & ADAPTER_CNTL_EN)) {
5487 "Adapter Link down, cannot blink LED\n");
5491 if (sp->id_timer.function == NULL) {
5492 init_timer(&sp->id_timer);
5493 sp->id_timer.function = s2io_phy_id;
5494 sp->id_timer.data = (unsigned long) sp;
5496 mod_timer(&sp->id_timer, jiffies);
5498 msleep_interruptible(data * HZ);
5500 msleep_interruptible(MAX_FLICKER_TIME);
5501 del_timer_sync(&sp->id_timer);
5503 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5504 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5505 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5511 static void s2io_ethtool_gringparam(struct net_device *dev,
5512 struct ethtool_ringparam *ering)
5514 struct s2io_nic *sp = dev->priv;
5515 int i,tx_desc_count=0,rx_desc_count=0;
5517 if (sp->rxd_mode == RXD_MODE_1)
5518 ering->rx_max_pending = MAX_RX_DESC_1;
5519 else if (sp->rxd_mode == RXD_MODE_3B)
5520 ering->rx_max_pending = MAX_RX_DESC_2;
5522 ering->tx_max_pending = MAX_TX_DESC;
5523 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5524 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5526 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5527 ering->tx_pending = tx_desc_count;
5529 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5530 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5532 ering->rx_pending = rx_desc_count;
5534 ering->rx_mini_max_pending = 0;
5535 ering->rx_mini_pending = 0;
5536 if(sp->rxd_mode == RXD_MODE_1)
5537 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5538 else if (sp->rxd_mode == RXD_MODE_3B)
5539 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5540 ering->rx_jumbo_pending = rx_desc_count;
5544 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5545 * @sp : private member of the device structure, which is a pointer to the
5546 * s2io_nic structure.
5547 * @ep : pointer to the structure with pause parameters given by ethtool.
5549 * Returns the Pause frame generation and reception capability of the NIC.
5553 static void s2io_ethtool_getpause_data(struct net_device *dev,
5554 struct ethtool_pauseparam *ep)
5557 struct s2io_nic *sp = dev->priv;
5558 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5560 val64 = readq(&bar0->rmac_pause_cfg);
5561 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5562 ep->tx_pause = TRUE;
5563 if (val64 & RMAC_PAUSE_RX_ENABLE)
5564 ep->rx_pause = TRUE;
5565 ep->autoneg = FALSE;
5569 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5570 * @sp : private member of the device structure, which is a pointer to the
5571 * s2io_nic structure.
5572 * @ep : pointer to the structure with pause parameters given by ethtool.
5574 * It can be used to set or reset Pause frame generation or reception
5575 * support of the NIC.
5577 * int, returns 0 on Success
5580 static int s2io_ethtool_setpause_data(struct net_device *dev,
5581 struct ethtool_pauseparam *ep)
5584 struct s2io_nic *sp = dev->priv;
5585 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5587 val64 = readq(&bar0->rmac_pause_cfg);
5589 val64 |= RMAC_PAUSE_GEN_ENABLE;
5591 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5593 val64 |= RMAC_PAUSE_RX_ENABLE;
5595 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5596 writeq(val64, &bar0->rmac_pause_cfg);
5601 * read_eeprom - reads 4 bytes of data from user given offset.
5602 * @sp : private member of the device structure, which is a pointer to the
5603 * s2io_nic structure.
5604 * @off : offset at which the data must be written
5605 * @data : Its an output parameter where the data read at the given
5608 * Will read 4 bytes of data from the user given offset and return the
5610 * NOTE: Will allow to read only part of the EEPROM visible through the
5613 * -1 on failure and 0 on success.
5616 #define S2IO_DEV_ID 5
5617 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5622 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5624 if (sp->device_type == XFRAME_I_DEVICE) {
5625 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5626 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5627 I2C_CONTROL_CNTL_START;
5628 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5630 while (exit_cnt < 5) {
5631 val64 = readq(&bar0->i2c_control);
5632 if (I2C_CONTROL_CNTL_END(val64)) {
5633 *data = I2C_CONTROL_GET_DATA(val64);
5642 if (sp->device_type == XFRAME_II_DEVICE) {
5643 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5644 SPI_CONTROL_BYTECNT(0x3) |
5645 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5646 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5647 val64 |= SPI_CONTROL_REQ;
5648 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5649 while (exit_cnt < 5) {
5650 val64 = readq(&bar0->spi_control);
5651 if (val64 & SPI_CONTROL_NACK) {
5654 } else if (val64 & SPI_CONTROL_DONE) {
5655 *data = readq(&bar0->spi_data);
5668 * write_eeprom - actually writes the relevant part of the data value.
5669 * @sp : private member of the device structure, which is a pointer to the
5670 * s2io_nic structure.
5671 * @off : offset at which the data must be written
5672 * @data : The data that is to be written
5673 * @cnt : Number of bytes of the data that are actually to be written into
5674 * the Eeprom. (max of 3)
5676 * Actually writes the relevant part of the data value into the Eeprom
5677 * through the I2C bus.
5679 * 0 on success, -1 on failure.
5682 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5684 int exit_cnt = 0, ret = -1;
5686 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5688 if (sp->device_type == XFRAME_I_DEVICE) {
5689 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5690 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5691 I2C_CONTROL_CNTL_START;
5692 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5694 while (exit_cnt < 5) {
5695 val64 = readq(&bar0->i2c_control);
5696 if (I2C_CONTROL_CNTL_END(val64)) {
5697 if (!(val64 & I2C_CONTROL_NACK))
5706 if (sp->device_type == XFRAME_II_DEVICE) {
5707 int write_cnt = (cnt == 8) ? 0 : cnt;
5708 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5710 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5711 SPI_CONTROL_BYTECNT(write_cnt) |
5712 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5713 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5714 val64 |= SPI_CONTROL_REQ;
5715 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5716 while (exit_cnt < 5) {
5717 val64 = readq(&bar0->spi_control);
5718 if (val64 & SPI_CONTROL_NACK) {
5721 } else if (val64 & SPI_CONTROL_DONE) {
5731 static void s2io_vpd_read(struct s2io_nic *nic)
5735 int i=0, cnt, fail = 0;
5736 int vpd_addr = 0x80;
5738 if (nic->device_type == XFRAME_II_DEVICE) {
5739 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5743 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5746 strcpy(nic->serial_num, "NOT AVAILABLE");
5748 vpd_data = kmalloc(256, GFP_KERNEL);
5750 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5753 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5755 for (i = 0; i < 256; i +=4 ) {
5756 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5757 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5758 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5759 for (cnt = 0; cnt <5; cnt++) {
5761 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5766 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5770 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5771 (u32 *)&vpd_data[i]);
5775 /* read serial number of adapter */
5776 for (cnt = 0; cnt < 256; cnt++) {
5777 if ((vpd_data[cnt] == 'S') &&
5778 (vpd_data[cnt+1] == 'N') &&
5779 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5780 memset(nic->serial_num, 0, VPD_STRING_LEN);
5781 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5788 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5789 memset(nic->product_name, 0, vpd_data[1]);
5790 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5793 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5797 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5798 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5799 * @eeprom : pointer to the user level structure provided by ethtool,
5800 * containing all relevant information.
5801 * @data_buf : user defined value to be written into Eeprom.
5802 * Description: Reads the values stored in the Eeprom at given offset
5803 * for a given length. Stores these values int the input argument data
5804 * buffer 'data_buf' and returns these to the caller (ethtool.)
5809 static int s2io_ethtool_geeprom(struct net_device *dev,
5810 struct ethtool_eeprom *eeprom, u8 * data_buf)
5814 struct s2io_nic *sp = dev->priv;
5816 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5818 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5819 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5821 for (i = 0; i < eeprom->len; i += 4) {
5822 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5823 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5827 memcpy((data_buf + i), &valid, 4);
5833 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5834 * @sp : private member of the device structure, which is a pointer to the
5835 * s2io_nic structure.
5836 * @eeprom : pointer to the user level structure provided by ethtool,
5837 * containing all relevant information.
5838 * @data_buf ; user defined value to be written into Eeprom.
5840 * Tries to write the user provided value in the Eeprom, at the offset
5841 * given by the user.
5843 * 0 on success, -EFAULT on failure.
5846 static int s2io_ethtool_seeprom(struct net_device *dev,
5847 struct ethtool_eeprom *eeprom,
5850 int len = eeprom->len, cnt = 0;
5851 u64 valid = 0, data;
5852 struct s2io_nic *sp = dev->priv;
5854 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5856 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5857 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5863 data = (u32) data_buf[cnt] & 0x000000FF;
5865 valid = (u32) (data << 24);
5869 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5871 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5873 "write into the specified offset\n");
5884 * s2io_register_test - reads and writes into all clock domains.
5885 * @sp : private member of the device structure, which is a pointer to the
5886 * s2io_nic structure.
5887 * @data : variable that returns the result of each of the test conducted b
5890 * Read and write into all clock domains. The NIC has 3 clock domains,
5891 * see that registers in all the three regions are accessible.
5896 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5898 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5899 u64 val64 = 0, exp_val;
5902 val64 = readq(&bar0->pif_rd_swapper_fb);
5903 if (val64 != 0x123456789abcdefULL) {
5905 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5908 val64 = readq(&bar0->rmac_pause_cfg);
5909 if (val64 != 0xc000ffff00000000ULL) {
5911 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5914 val64 = readq(&bar0->rx_queue_cfg);
5915 if (sp->device_type == XFRAME_II_DEVICE)
5916 exp_val = 0x0404040404040404ULL;
5918 exp_val = 0x0808080808080808ULL;
5919 if (val64 != exp_val) {
5921 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5924 val64 = readq(&bar0->xgxs_efifo_cfg);
5925 if (val64 != 0x000000001923141EULL) {
5927 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5930 val64 = 0x5A5A5A5A5A5A5A5AULL;
5931 writeq(val64, &bar0->xmsi_data);
5932 val64 = readq(&bar0->xmsi_data);
5933 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5935 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5938 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5939 writeq(val64, &bar0->xmsi_data);
5940 val64 = readq(&bar0->xmsi_data);
5941 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5943 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5951 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5952 * @sp : private member of the device structure, which is a pointer to the
5953 * s2io_nic structure.
5954 * @data:variable that returns the result of each of the test conducted by
5957 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5963 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5966 u64 ret_data, org_4F0, org_7F0;
5967 u8 saved_4F0 = 0, saved_7F0 = 0;
5968 struct net_device *dev = sp->dev;
5970 /* Test Write Error at offset 0 */
5971 /* Note that SPI interface allows write access to all areas
5972 * of EEPROM. Hence doing all negative testing only for Xframe I.
5974 if (sp->device_type == XFRAME_I_DEVICE)
5975 if (!write_eeprom(sp, 0, 0, 3))
5978 /* Save current values at offsets 0x4F0 and 0x7F0 */
5979 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5981 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5984 /* Test Write at offset 4f0 */
5985 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5987 if (read_eeprom(sp, 0x4F0, &ret_data))
5990 if (ret_data != 0x012345) {
5991 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5992 "Data written %llx Data read %llx\n",
5993 dev->name, (unsigned long long)0x12345,
5994 (unsigned long long)ret_data);
5998 /* Reset the EEPROM data go FFFF */
5999 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6001 /* Test Write Request Error at offset 0x7c */
6002 if (sp->device_type == XFRAME_I_DEVICE)
6003 if (!write_eeprom(sp, 0x07C, 0, 3))
6006 /* Test Write Request at offset 0x7f0 */
6007 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6009 if (read_eeprom(sp, 0x7F0, &ret_data))
6012 if (ret_data != 0x012345) {
6013 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6014 "Data written %llx Data read %llx\n",
6015 dev->name, (unsigned long long)0x12345,
6016 (unsigned long long)ret_data);
6020 /* Reset the EEPROM data go FFFF */
6021 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6023 if (sp->device_type == XFRAME_I_DEVICE) {
6024 /* Test Write Error at offset 0x80 */
6025 if (!write_eeprom(sp, 0x080, 0, 3))
6028 /* Test Write Error at offset 0xfc */
6029 if (!write_eeprom(sp, 0x0FC, 0, 3))
6032 /* Test Write Error at offset 0x100 */
6033 if (!write_eeprom(sp, 0x100, 0, 3))
6036 /* Test Write Error at offset 4ec */
6037 if (!write_eeprom(sp, 0x4EC, 0, 3))
6041 /* Restore values at offsets 0x4F0 and 0x7F0 */
6043 write_eeprom(sp, 0x4F0, org_4F0, 3);
6045 write_eeprom(sp, 0x7F0, org_7F0, 3);
6052 * s2io_bist_test - invokes the MemBist test of the card .
6053 * @sp : private member of the device structure, which is a pointer to the
6054 * s2io_nic structure.
6055 * @data:variable that returns the result of each of the test conducted by
6058 * This invokes the MemBist test of the card. We give around
6059 * 2 secs time for the Test to complete. If it's still not complete
6060 * within this peiod, we consider that the test failed.
6062 * 0 on success and -1 on failure.
6065 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6068 int cnt = 0, ret = -1;
6070 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6071 bist |= PCI_BIST_START;
6072 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6075 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6076 if (!(bist & PCI_BIST_START)) {
6077 *data = (bist & PCI_BIST_CODE_MASK);
6089 * s2io-link_test - verifies the link state of the nic
6090 * @sp ; private member of the device structure, which is a pointer to the
6091 * s2io_nic structure.
6092 * @data: variable that returns the result of each of the test conducted by
6095 * The function verifies the link state of the NIC and updates the input
6096 * argument 'data' appropriately.
6101 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6103 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6106 val64 = readq(&bar0->adapter_status);
6107 if(!(LINK_IS_UP(val64)))
6116 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6117 * @sp - private member of the device structure, which is a pointer to the
6118 * s2io_nic structure.
6119 * @data - variable that returns the result of each of the test
6120 * conducted by the driver.
6122 * This is one of the offline test that tests the read and write
6123 * access to the RldRam chip on the NIC.
6128 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6130 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6132 int cnt, iteration = 0, test_fail = 0;
6134 val64 = readq(&bar0->adapter_control);
6135 val64 &= ~ADAPTER_ECC_EN;
6136 writeq(val64, &bar0->adapter_control);
6138 val64 = readq(&bar0->mc_rldram_test_ctrl);
6139 val64 |= MC_RLDRAM_TEST_MODE;
6140 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6142 val64 = readq(&bar0->mc_rldram_mrs);
6143 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6144 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6146 val64 |= MC_RLDRAM_MRS_ENABLE;
6147 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6149 while (iteration < 2) {
6150 val64 = 0x55555555aaaa0000ULL;
6151 if (iteration == 1) {
6152 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6154 writeq(val64, &bar0->mc_rldram_test_d0);
6156 val64 = 0xaaaa5a5555550000ULL;
6157 if (iteration == 1) {
6158 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6160 writeq(val64, &bar0->mc_rldram_test_d1);
6162 val64 = 0x55aaaaaaaa5a0000ULL;
6163 if (iteration == 1) {
6164 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6166 writeq(val64, &bar0->mc_rldram_test_d2);
6168 val64 = (u64) (0x0000003ffffe0100ULL);
6169 writeq(val64, &bar0->mc_rldram_test_add);
6171 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6173 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6175 for (cnt = 0; cnt < 5; cnt++) {
6176 val64 = readq(&bar0->mc_rldram_test_ctrl);
6177 if (val64 & MC_RLDRAM_TEST_DONE)
6185 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6186 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6188 for (cnt = 0; cnt < 5; cnt++) {
6189 val64 = readq(&bar0->mc_rldram_test_ctrl);
6190 if (val64 & MC_RLDRAM_TEST_DONE)
6198 val64 = readq(&bar0->mc_rldram_test_ctrl);
6199 if (!(val64 & MC_RLDRAM_TEST_PASS))
6207 /* Bring the adapter out of test mode */
6208 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6214 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6215 * @sp : private member of the device structure, which is a pointer to the
6216 * s2io_nic structure.
6217 * @ethtest : pointer to a ethtool command specific structure that will be
6218 * returned to the user.
6219 * @data : variable that returns the result of each of the test
6220 * conducted by the driver.
6222 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6223 * the health of the card.
6228 static void s2io_ethtool_test(struct net_device *dev,
6229 struct ethtool_test *ethtest,
6232 struct s2io_nic *sp = dev->priv;
6233 int orig_state = netif_running(sp->dev);
6235 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6236 /* Offline Tests. */
6238 s2io_close(sp->dev);
6240 if (s2io_register_test(sp, &data[0]))
6241 ethtest->flags |= ETH_TEST_FL_FAILED;
6245 if (s2io_rldram_test(sp, &data[3]))
6246 ethtest->flags |= ETH_TEST_FL_FAILED;
6250 if (s2io_eeprom_test(sp, &data[1]))
6251 ethtest->flags |= ETH_TEST_FL_FAILED;
6253 if (s2io_bist_test(sp, &data[4]))
6254 ethtest->flags |= ETH_TEST_FL_FAILED;
6264 "%s: is not up, cannot run test\n",
6273 if (s2io_link_test(sp, &data[2]))
6274 ethtest->flags |= ETH_TEST_FL_FAILED;
6283 static void s2io_get_ethtool_stats(struct net_device *dev,
6284 struct ethtool_stats *estats,
6288 struct s2io_nic *sp = dev->priv;
6289 struct stat_block *stat_info = sp->mac_control.stats_info;
6291 s2io_updt_stats(sp);
6293 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6294 le32_to_cpu(stat_info->tmac_frms);
6296 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6297 le32_to_cpu(stat_info->tmac_data_octets);
6298 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6300 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6301 le32_to_cpu(stat_info->tmac_mcst_frms);
6303 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6304 le32_to_cpu(stat_info->tmac_bcst_frms);
6305 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6307 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6308 le32_to_cpu(stat_info->tmac_ttl_octets);
6310 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6311 le32_to_cpu(stat_info->tmac_ucst_frms);
6313 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6314 le32_to_cpu(stat_info->tmac_nucst_frms);
6316 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6317 le32_to_cpu(stat_info->tmac_any_err_frms);
6318 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6319 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6321 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6322 le32_to_cpu(stat_info->tmac_vld_ip);
6324 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6325 le32_to_cpu(stat_info->tmac_drop_ip);
6327 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6328 le32_to_cpu(stat_info->tmac_icmp);
6330 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6331 le32_to_cpu(stat_info->tmac_rst_tcp);
6332 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6333 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6334 le32_to_cpu(stat_info->tmac_udp);
6336 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6337 le32_to_cpu(stat_info->rmac_vld_frms);
6339 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6340 le32_to_cpu(stat_info->rmac_data_octets);
6341 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6342 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6344 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6345 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6347 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6348 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6349 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6350 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6351 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6352 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6353 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6355 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6356 le32_to_cpu(stat_info->rmac_ttl_octets);
6358 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6359 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6361 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6362 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6364 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6365 le32_to_cpu(stat_info->rmac_discarded_frms);
6367 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6368 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6369 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6370 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6372 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6373 le32_to_cpu(stat_info->rmac_usized_frms);
6375 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6376 le32_to_cpu(stat_info->rmac_osized_frms);
6378 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6379 le32_to_cpu(stat_info->rmac_frag_frms);
6381 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6382 le32_to_cpu(stat_info->rmac_jabber_frms);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6385 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6386 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6387 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6388 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6390 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6391 le32_to_cpu(stat_info->rmac_ip);
6392 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6393 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6395 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6396 le32_to_cpu(stat_info->rmac_drop_ip);
6398 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6399 le32_to_cpu(stat_info->rmac_icmp);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6402 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6403 le32_to_cpu(stat_info->rmac_udp);
6405 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6406 le32_to_cpu(stat_info->rmac_err_drp_udp);
6407 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6408 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6409 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6410 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6411 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6412 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6413 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6414 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6415 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6416 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6417 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6418 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6419 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6420 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6421 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6422 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6423 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6425 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6426 le32_to_cpu(stat_info->rmac_pause_cnt);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6430 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6431 le32_to_cpu(stat_info->rmac_accepted_ip);
6432 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6433 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6434 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6435 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6436 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6437 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6452 /* Enhanced statistics exist only for Hercules */
6453 if(sp->device_type == XFRAME_II_DEVICE) {
6455 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6457 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6459 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6460 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6461 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6462 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6463 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6464 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6468 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6469 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6470 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6471 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6472 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6476 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6477 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6478 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6479 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6480 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6481 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6482 for (k = 0; k < MAX_RX_RINGS; k++)
6483 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6484 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6485 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6486 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6487 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6488 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6489 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6490 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6491 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6492 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6493 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6494 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6495 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6496 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6497 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6498 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6499 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6500 if (stat_info->sw_stat.num_aggregations) {
6501 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6504 * Since 64-bit divide does not work on all platforms,
6505 * do repeated subtraction.
6507 while (tmp >= stat_info->sw_stat.num_aggregations) {
6508 tmp -= stat_info->sw_stat.num_aggregations;
6511 tmp_stats[i++] = count;
6515 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6516 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6517 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6518 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6519 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6520 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6521 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6522 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6523 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6525 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6526 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6527 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6528 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6529 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6531 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6532 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6533 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6534 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6536 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6537 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6538 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6539 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6559 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6561 return (XENA_REG_SPACE);
6565 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6567 struct s2io_nic *sp = dev->priv;
6569 return (sp->rx_csum);
6572 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6574 struct s2io_nic *sp = dev->priv;
6584 static int s2io_get_eeprom_len(struct net_device *dev)
6586 return (XENA_EEPROM_SPACE);
6589 static int s2io_get_sset_count(struct net_device *dev, int sset)
6591 struct s2io_nic *sp = dev->priv;
6595 return S2IO_TEST_LEN;
6597 switch(sp->device_type) {
6598 case XFRAME_I_DEVICE:
6599 return XFRAME_I_STAT_LEN;
6600 case XFRAME_II_DEVICE:
6601 return XFRAME_II_STAT_LEN;
6610 static void s2io_ethtool_get_strings(struct net_device *dev,
6611 u32 stringset, u8 * data)
6614 struct s2io_nic *sp = dev->priv;
6616 switch (stringset) {
6618 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6621 stat_size = sizeof(ethtool_xena_stats_keys);
6622 memcpy(data, ðtool_xena_stats_keys,stat_size);
6623 if(sp->device_type == XFRAME_II_DEVICE) {
6624 memcpy(data + stat_size,
6625 ðtool_enhanced_stats_keys,
6626 sizeof(ethtool_enhanced_stats_keys));
6627 stat_size += sizeof(ethtool_enhanced_stats_keys);
6630 memcpy(data + stat_size, ðtool_driver_stats_keys,
6631 sizeof(ethtool_driver_stats_keys));
6635 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6638 dev->features |= NETIF_F_IP_CSUM;
6640 dev->features &= ~NETIF_F_IP_CSUM;
6645 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6647 return (dev->features & NETIF_F_TSO) != 0;
6649 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6652 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6654 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6659 static const struct ethtool_ops netdev_ethtool_ops = {
6660 .get_settings = s2io_ethtool_gset,
6661 .set_settings = s2io_ethtool_sset,
6662 .get_drvinfo = s2io_ethtool_gdrvinfo,
6663 .get_regs_len = s2io_ethtool_get_regs_len,
6664 .get_regs = s2io_ethtool_gregs,
6665 .get_link = ethtool_op_get_link,
6666 .get_eeprom_len = s2io_get_eeprom_len,
6667 .get_eeprom = s2io_ethtool_geeprom,
6668 .set_eeprom = s2io_ethtool_seeprom,
6669 .get_ringparam = s2io_ethtool_gringparam,
6670 .get_pauseparam = s2io_ethtool_getpause_data,
6671 .set_pauseparam = s2io_ethtool_setpause_data,
6672 .get_rx_csum = s2io_ethtool_get_rx_csum,
6673 .set_rx_csum = s2io_ethtool_set_rx_csum,
6674 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6675 .set_sg = ethtool_op_set_sg,
6676 .get_tso = s2io_ethtool_op_get_tso,
6677 .set_tso = s2io_ethtool_op_set_tso,
6678 .set_ufo = ethtool_op_set_ufo,
6679 .self_test = s2io_ethtool_test,
6680 .get_strings = s2io_ethtool_get_strings,
6681 .phys_id = s2io_ethtool_idnic,
6682 .get_ethtool_stats = s2io_get_ethtool_stats,
6683 .get_sset_count = s2io_get_sset_count,
6687 * s2io_ioctl - Entry point for the Ioctl
6688 * @dev : Device pointer.
6689 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6690 * a proprietary structure used to pass information to the driver.
6691 * @cmd : This is used to distinguish between the different commands that
6692 * can be passed to the IOCTL functions.
6694 * Currently there are no special functionality supported in IOCTL, hence
6695 * function always return EOPNOTSUPPORTED
6698 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6704 * s2io_change_mtu - entry point to change MTU size for the device.
6705 * @dev : device pointer.
6706 * @new_mtu : the new MTU size for the device.
6707 * Description: A driver entry point to change MTU size for the device.
6708 * Before changing the MTU the device must be stopped.
6710 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6714 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6716 struct s2io_nic *sp = dev->priv;
6719 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6720 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6726 if (netif_running(dev)) {
6727 s2io_stop_all_tx_queue(sp);
6729 ret = s2io_card_up(sp);
6731 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6735 s2io_wake_all_tx_queue(sp);
6736 } else { /* Device is down */
6737 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6738 u64 val64 = new_mtu;
6740 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6747 * s2io_set_link - Set the LInk status
6748 * @data: long pointer to device private structue
6749 * Description: Sets the link status for the adapter
6752 static void s2io_set_link(struct work_struct *work)
6754 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6755 struct net_device *dev = nic->dev;
6756 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6762 if (!netif_running(dev))
6765 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6766 /* The card is being reset, no point doing anything */
6770 subid = nic->pdev->subsystem_device;
6771 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6773 * Allow a small delay for the NICs self initiated
6774 * cleanup to complete.
6779 val64 = readq(&bar0->adapter_status);
6780 if (LINK_IS_UP(val64)) {
6781 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6782 if (verify_xena_quiescence(nic)) {
6783 val64 = readq(&bar0->adapter_control);
6784 val64 |= ADAPTER_CNTL_EN;
6785 writeq(val64, &bar0->adapter_control);
6786 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6787 nic->device_type, subid)) {
6788 val64 = readq(&bar0->gpio_control);
6789 val64 |= GPIO_CTRL_GPIO_0;
6790 writeq(val64, &bar0->gpio_control);
6791 val64 = readq(&bar0->gpio_control);
6793 val64 |= ADAPTER_LED_ON;
6794 writeq(val64, &bar0->adapter_control);
6796 nic->device_enabled_once = TRUE;
6798 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6799 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6800 s2io_stop_all_tx_queue(nic);
6803 val64 = readq(&bar0->adapter_control);
6804 val64 |= ADAPTER_LED_ON;
6805 writeq(val64, &bar0->adapter_control);
6806 s2io_link(nic, LINK_UP);
6808 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6810 val64 = readq(&bar0->gpio_control);
6811 val64 &= ~GPIO_CTRL_GPIO_0;
6812 writeq(val64, &bar0->gpio_control);
6813 val64 = readq(&bar0->gpio_control);
6816 val64 = readq(&bar0->adapter_control);
6817 val64 = val64 &(~ADAPTER_LED_ON);
6818 writeq(val64, &bar0->adapter_control);
6819 s2io_link(nic, LINK_DOWN);
6821 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6827 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6829 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6830 u64 *temp2, int size)
6832 struct net_device *dev = sp->dev;
6833 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6835 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6836 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6839 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6841 * As Rx frame are not going to be processed,
6842 * using same mapped address for the Rxd
6845 rxdp1->Buffer0_ptr = *temp0;
6847 *skb = dev_alloc_skb(size);
6849 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6850 DBG_PRINT(INFO_DBG, "memory to allocate ");
6851 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6852 sp->mac_control.stats_info->sw_stat. \
6853 mem_alloc_fail_cnt++;
6856 sp->mac_control.stats_info->sw_stat.mem_allocated
6857 += (*skb)->truesize;
6858 /* storing the mapped addr in a temp variable
6859 * such it will be used for next rxd whose
6860 * Host Control is NULL
6862 rxdp1->Buffer0_ptr = *temp0 =
6863 pci_map_single( sp->pdev, (*skb)->data,
6864 size - NET_IP_ALIGN,
6865 PCI_DMA_FROMDEVICE);
6866 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6867 goto memalloc_failed;
6868 rxdp->Host_Control = (unsigned long) (*skb);
6870 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6871 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6872 /* Two buffer Mode */
6874 rxdp3->Buffer2_ptr = *temp2;
6875 rxdp3->Buffer0_ptr = *temp0;
6876 rxdp3->Buffer1_ptr = *temp1;
6878 *skb = dev_alloc_skb(size);
6880 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6881 DBG_PRINT(INFO_DBG, "memory to allocate ");
6882 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6883 sp->mac_control.stats_info->sw_stat. \
6884 mem_alloc_fail_cnt++;
6887 sp->mac_control.stats_info->sw_stat.mem_allocated
6888 += (*skb)->truesize;
6889 rxdp3->Buffer2_ptr = *temp2 =
6890 pci_map_single(sp->pdev, (*skb)->data,
6892 PCI_DMA_FROMDEVICE);
6893 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6894 goto memalloc_failed;
6895 rxdp3->Buffer0_ptr = *temp0 =
6896 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6897 PCI_DMA_FROMDEVICE);
6898 if (pci_dma_mapping_error(sp->pdev,
6899 rxdp3->Buffer0_ptr)) {
6900 pci_unmap_single (sp->pdev,
6901 (dma_addr_t)rxdp3->Buffer2_ptr,
6902 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6903 goto memalloc_failed;
6905 rxdp->Host_Control = (unsigned long) (*skb);
6907 /* Buffer-1 will be dummy buffer not used */
6908 rxdp3->Buffer1_ptr = *temp1 =
6909 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6910 PCI_DMA_FROMDEVICE);
6911 if (pci_dma_mapping_error(sp->pdev,
6912 rxdp3->Buffer1_ptr)) {
6913 pci_unmap_single (sp->pdev,
6914 (dma_addr_t)rxdp3->Buffer0_ptr,
6915 BUF0_LEN, PCI_DMA_FROMDEVICE);
6916 pci_unmap_single (sp->pdev,
6917 (dma_addr_t)rxdp3->Buffer2_ptr,
6918 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6919 goto memalloc_failed;
6925 stats->pci_map_fail_cnt++;
6926 stats->mem_freed += (*skb)->truesize;
6927 dev_kfree_skb(*skb);
6931 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6934 struct net_device *dev = sp->dev;
6935 if (sp->rxd_mode == RXD_MODE_1) {
6936 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6937 } else if (sp->rxd_mode == RXD_MODE_3B) {
6938 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6939 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6940 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6944 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6946 int i, j, k, blk_cnt = 0, size;
6947 struct mac_info * mac_control = &sp->mac_control;
6948 struct config_param *config = &sp->config;
6949 struct net_device *dev = sp->dev;
6950 struct RxD_t *rxdp = NULL;
6951 struct sk_buff *skb = NULL;
6952 struct buffAdd *ba = NULL;
6953 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6955 /* Calculate the size based on ring mode */
6956 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6957 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6958 if (sp->rxd_mode == RXD_MODE_1)
6959 size += NET_IP_ALIGN;
6960 else if (sp->rxd_mode == RXD_MODE_3B)
6961 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6963 for (i = 0; i < config->rx_ring_num; i++) {
6964 blk_cnt = config->rx_cfg[i].num_rxd /
6965 (rxd_count[sp->rxd_mode] +1);
6967 for (j = 0; j < blk_cnt; j++) {
6968 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6969 rxdp = mac_control->rings[i].
6970 rx_blocks[j].rxds[k].virt_addr;
6971 if(sp->rxd_mode == RXD_MODE_3B)
6972 ba = &mac_control->rings[i].ba[j][k];
6973 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6974 &skb,(u64 *)&temp0_64,
6981 set_rxd_buffer_size(sp, rxdp, size);
6983 /* flip the Ownership bit to Hardware */
6984 rxdp->Control_1 |= RXD_OWN_XENA;
6992 static int s2io_add_isr(struct s2io_nic * sp)
6995 struct net_device *dev = sp->dev;
6998 if (sp->config.intr_type == MSI_X)
6999 ret = s2io_enable_msi_x(sp);
7001 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7002 sp->config.intr_type = INTA;
7005 /* Store the values of the MSIX table in the struct s2io_nic structure */
7006 store_xmsi_data(sp);
7008 /* After proper initialization of H/W, register ISR */
7009 if (sp->config.intr_type == MSI_X) {
7010 int i, msix_rx_cnt = 0;
7012 for (i = 0; i < sp->num_entries; i++) {
7013 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7014 if (sp->s2io_entries[i].type ==
7016 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7018 err = request_irq(sp->entries[i].vector,
7019 s2io_msix_ring_handle, 0,
7021 sp->s2io_entries[i].arg);
7022 } else if (sp->s2io_entries[i].type ==
7024 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7026 err = request_irq(sp->entries[i].vector,
7027 s2io_msix_fifo_handle, 0,
7029 sp->s2io_entries[i].arg);
7032 /* if either data or addr is zero print it. */
7033 if (!(sp->msix_info[i].addr &&
7034 sp->msix_info[i].data)) {
7036 "%s @Addr:0x%llx Data:0x%llx\n",
7038 (unsigned long long)
7039 sp->msix_info[i].addr,
7040 (unsigned long long)
7041 ntohl(sp->msix_info[i].data));
7045 remove_msix_isr(sp);
7048 "%s:MSI-X-%d registration "
7049 "failed\n", dev->name, i);
7052 "%s: Defaulting to INTA\n",
7054 sp->config.intr_type = INTA;
7057 sp->s2io_entries[i].in_use =
7058 MSIX_REGISTERED_SUCCESS;
7062 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7064 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7065 " through alarm vector\n");
7068 if (sp->config.intr_type == INTA) {
7069 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7072 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7079 static void s2io_rem_isr(struct s2io_nic * sp)
7081 if (sp->config.intr_type == MSI_X)
7082 remove_msix_isr(sp);
7084 remove_inta_isr(sp);
7087 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7090 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7091 register u64 val64 = 0;
7092 struct config_param *config;
7093 config = &sp->config;
7095 if (!is_s2io_card_up(sp))
7098 del_timer_sync(&sp->alarm_timer);
7099 /* If s2io_set_link task is executing, wait till it completes. */
7100 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7103 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7106 if (sp->config.napi) {
7108 if (config->intr_type == MSI_X) {
7109 for (; off < sp->config.rx_ring_num; off++)
7110 napi_disable(&sp->mac_control.rings[off].napi);
7113 napi_disable(&sp->napi);
7116 /* disable Tx and Rx traffic on the NIC */
7122 /* stop the tx queue, indicate link down */
7123 s2io_link(sp, LINK_DOWN);
7125 /* Check if the device is Quiescent and then Reset the NIC */
7127 /* As per the HW requirement we need to replenish the
7128 * receive buffer to avoid the ring bump. Since there is
7129 * no intention of processing the Rx frame at this pointwe are
7130 * just settting the ownership bit of rxd in Each Rx
7131 * ring to HW and set the appropriate buffer size
7132 * based on the ring mode
7134 rxd_owner_bit_reset(sp);
7136 val64 = readq(&bar0->adapter_status);
7137 if (verify_xena_quiescence(sp)) {
7138 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7146 "s2io_close:Device not Quiescent ");
7147 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7148 (unsigned long long) val64);
7155 /* Free all Tx buffers */
7156 free_tx_buffers(sp);
7158 /* Free all Rx buffers */
7159 free_rx_buffers(sp);
7161 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7164 static void s2io_card_down(struct s2io_nic * sp)
7166 do_s2io_card_down(sp, 1);
7169 static int s2io_card_up(struct s2io_nic * sp)
7172 struct mac_info *mac_control;
7173 struct config_param *config;
7174 struct net_device *dev = (struct net_device *) sp->dev;
7177 /* Initialize the H/W I/O registers */
7180 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7188 * Initializing the Rx buffers. For now we are considering only 1
7189 * Rx ring and initializing buffers into 30 Rx blocks
7191 mac_control = &sp->mac_control;
7192 config = &sp->config;
7194 for (i = 0; i < config->rx_ring_num; i++) {
7195 mac_control->rings[i].mtu = dev->mtu;
7196 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7198 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7201 free_rx_buffers(sp);
7204 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7205 mac_control->rings[i].rx_bufs_left);
7208 /* Initialise napi */
7211 if (config->intr_type == MSI_X) {
7212 for (i = 0; i < sp->config.rx_ring_num; i++)
7213 napi_enable(&sp->mac_control.rings[i].napi);
7215 napi_enable(&sp->napi);
7219 /* Maintain the state prior to the open */
7220 if (sp->promisc_flg)
7221 sp->promisc_flg = 0;
7222 if (sp->m_cast_flg) {
7224 sp->all_multi_pos= 0;
7227 /* Setting its receive mode */
7228 s2io_set_multicast(dev);
7231 /* Initialize max aggregatable pkts per session based on MTU */
7232 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7233 /* Check if we can use(if specified) user provided value */
7234 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7235 sp->lro_max_aggr_per_sess = lro_max_pkts;
7238 /* Enable Rx Traffic and interrupts on the NIC */
7239 if (start_nic(sp)) {
7240 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7242 free_rx_buffers(sp);
7246 /* Add interrupt service routine */
7247 if (s2io_add_isr(sp) != 0) {
7248 if (sp->config.intr_type == MSI_X)
7251 free_rx_buffers(sp);
7255 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7257 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7259 /* Enable select interrupts */
7260 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7261 if (sp->config.intr_type != INTA) {
7262 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7263 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7265 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7266 interruptible |= TX_PIC_INTR;
7267 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7274 * s2io_restart_nic - Resets the NIC.
7275 * @data : long pointer to the device private structure
7277 * This function is scheduled to be run by the s2io_tx_watchdog
7278 * function after 0.5 secs to reset the NIC. The idea is to reduce
7279 * the run time of the watch dog routine which is run holding a
7283 static void s2io_restart_nic(struct work_struct *work)
7285 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7286 struct net_device *dev = sp->dev;
7290 if (!netif_running(dev))
7294 if (s2io_card_up(sp)) {
7295 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7298 s2io_wake_all_tx_queue(sp);
7299 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7306 * s2io_tx_watchdog - Watchdog for transmit side.
7307 * @dev : Pointer to net device structure
7309 * This function is triggered if the Tx Queue is stopped
7310 * for a pre-defined amount of time when the Interface is still up.
7311 * If the Interface is jammed in such a situation, the hardware is
7312 * reset (by s2io_close) and restarted again (by s2io_open) to
7313 * overcome any problem that might have been caused in the hardware.
7318 static void s2io_tx_watchdog(struct net_device *dev)
7320 struct s2io_nic *sp = dev->priv;
7322 if (netif_carrier_ok(dev)) {
7323 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7324 schedule_work(&sp->rst_timer_task);
7325 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7330 * rx_osm_handler - To perform some OS related operations on SKB.
7331 * @sp: private member of the device structure,pointer to s2io_nic structure.
7332 * @skb : the socket buffer pointer.
7333 * @len : length of the packet
7334 * @cksum : FCS checksum of the frame.
7335 * @ring_no : the ring from which this RxD was extracted.
7337 * This function is called by the Rx interrupt serivce routine to perform
7338 * some OS related operations on the SKB before passing it to the upper
7339 * layers. It mainly checks if the checksum is OK, if so adds it to the
7340 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7341 * to the upper layer. If the checksum is wrong, it increments the Rx
7342 * packet error count, frees the SKB and returns error.
7344 * SUCCESS on success and -1 on failure.
7346 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7348 struct s2io_nic *sp = ring_data->nic;
7349 struct net_device *dev = (struct net_device *) ring_data->dev;
7350 struct sk_buff *skb = (struct sk_buff *)
7351 ((unsigned long) rxdp->Host_Control);
7352 int ring_no = ring_data->ring_no;
7353 u16 l3_csum, l4_csum;
7354 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7361 /* Check for parity error */
7363 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7365 err_mask = err >> 48;
7368 sp->mac_control.stats_info->sw_stat.
7369 rx_parity_err_cnt++;
7373 sp->mac_control.stats_info->sw_stat.
7378 sp->mac_control.stats_info->sw_stat.
7379 rx_parity_abort_cnt++;
7383 sp->mac_control.stats_info->sw_stat.
7388 sp->mac_control.stats_info->sw_stat.
7393 sp->mac_control.stats_info->sw_stat.
7398 sp->mac_control.stats_info->sw_stat.
7399 rx_buf_size_err_cnt++;
7403 sp->mac_control.stats_info->sw_stat.
7404 rx_rxd_corrupt_cnt++;
7408 sp->mac_control.stats_info->sw_stat.
7413 * Drop the packet if bad transfer code. Exception being
7414 * 0x5, which could be due to unsupported IPv6 extension header.
7415 * In this case, we let stack handle the packet.
7416 * Note that in this case, since checksum will be incorrect,
7417 * stack will validate the same.
7419 if (err_mask != 0x5) {
7420 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7421 dev->name, err_mask);
7422 sp->stats.rx_crc_errors++;
7423 sp->mac_control.stats_info->sw_stat.mem_freed
7426 ring_data->rx_bufs_left -= 1;
7427 rxdp->Host_Control = 0;
7432 /* Updating statistics */
7433 ring_data->rx_packets++;
7434 rxdp->Host_Control = 0;
7435 if (sp->rxd_mode == RXD_MODE_1) {
7436 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7438 ring_data->rx_bytes += len;
7441 } else if (sp->rxd_mode == RXD_MODE_3B) {
7442 int get_block = ring_data->rx_curr_get_info.block_index;
7443 int get_off = ring_data->rx_curr_get_info.offset;
7444 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7445 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7446 unsigned char *buff = skb_push(skb, buf0_len);
7448 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7449 ring_data->rx_bytes += buf0_len + buf2_len;
7450 memcpy(buff, ba->ba_0, buf0_len);
7451 skb_put(skb, buf2_len);
7454 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7455 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7457 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7458 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7459 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7461 * NIC verifies if the Checksum of the received
7462 * frame is Ok or not and accordingly returns
7463 * a flag in the RxD.
7465 skb->ip_summed = CHECKSUM_UNNECESSARY;
7466 if (ring_data->lro) {
7471 ret = s2io_club_tcp_session(ring_data,
7472 skb->data, &tcp, &tcp_len, &lro,
7475 case 3: /* Begin anew */
7478 case 1: /* Aggregate */
7480 lro_append_pkt(sp, lro,
7484 case 4: /* Flush session */
7486 lro_append_pkt(sp, lro,
7488 queue_rx_frame(lro->parent,
7490 clear_lro_session(lro);
7491 sp->mac_control.stats_info->
7492 sw_stat.flush_max_pkts++;
7495 case 2: /* Flush both */
7496 lro->parent->data_len =
7498 sp->mac_control.stats_info->
7499 sw_stat.sending_both++;
7500 queue_rx_frame(lro->parent,
7502 clear_lro_session(lro);
7504 case 0: /* sessions exceeded */
7505 case -1: /* non-TCP or not
7509 * First pkt in session not
7510 * L3/L4 aggregatable
7515 "%s: Samadhana!!\n",
7522 * Packet with erroneous checksum, let the
7523 * upper layers deal with it.
7525 skb->ip_summed = CHECKSUM_NONE;
7528 skb->ip_summed = CHECKSUM_NONE;
7530 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7532 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7533 dev->last_rx = jiffies;
7535 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7540 * s2io_link - stops/starts the Tx queue.
7541 * @sp : private member of the device structure, which is a pointer to the
7542 * s2io_nic structure.
7543 * @link : inidicates whether link is UP/DOWN.
7545 * This function stops/starts the Tx queue depending on whether the link
7546 * status of the NIC is is down or up. This is called by the Alarm
7547 * interrupt handler whenever a link change interrupt comes up.
7552 static void s2io_link(struct s2io_nic * sp, int link)
7554 struct net_device *dev = (struct net_device *) sp->dev;
7556 if (link != sp->last_link_state) {
7558 if (link == LINK_DOWN) {
7559 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7560 s2io_stop_all_tx_queue(sp);
7561 netif_carrier_off(dev);
7562 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7563 sp->mac_control.stats_info->sw_stat.link_up_time =
7564 jiffies - sp->start_time;
7565 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7567 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7568 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7569 sp->mac_control.stats_info->sw_stat.link_down_time =
7570 jiffies - sp->start_time;
7571 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7572 netif_carrier_on(dev);
7573 s2io_wake_all_tx_queue(sp);
7576 sp->last_link_state = link;
7577 sp->start_time = jiffies;
7581 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7582 * @sp : private member of the device structure, which is a pointer to the
7583 * s2io_nic structure.
7585 * This function initializes a few of the PCI and PCI-X configuration registers
7586 * with recommended values.
7591 static void s2io_init_pci(struct s2io_nic * sp)
7593 u16 pci_cmd = 0, pcix_cmd = 0;
7595 /* Enable Data Parity Error Recovery in PCI-X command register. */
7596 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7598 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7600 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7603 /* Set the PErr Response bit in PCI command register. */
7604 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7605 pci_write_config_word(sp->pdev, PCI_COMMAND,
7606 (pci_cmd | PCI_COMMAND_PARITY));
7607 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7610 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7613 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7614 (tx_fifo_num < 1)) {
7615 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7616 "(%d) not supported\n", tx_fifo_num);
7618 if (tx_fifo_num < 1)
7621 tx_fifo_num = MAX_TX_FIFOS;
7623 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7624 DBG_PRINT(ERR_DBG, "tx fifos\n");
7628 *dev_multiq = multiq;
7630 if (tx_steering_type && (1 == tx_fifo_num)) {
7631 if (tx_steering_type != TX_DEFAULT_STEERING)
7633 "s2io: Tx steering is not supported with "
7634 "one fifo. Disabling Tx steering.\n");
7635 tx_steering_type = NO_STEERING;
7638 if ((tx_steering_type < NO_STEERING) ||
7639 (tx_steering_type > TX_DEFAULT_STEERING)) {
7640 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7642 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7643 tx_steering_type = NO_STEERING;
7646 if (rx_ring_num > MAX_RX_RINGS) {
7647 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7649 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7651 rx_ring_num = MAX_RX_RINGS;
7654 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7655 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7656 "Defaulting to INTA\n");
7657 *dev_intr_type = INTA;
7660 if ((*dev_intr_type == MSI_X) &&
7661 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7662 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7663 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7664 "Defaulting to INTA\n");
7665 *dev_intr_type = INTA;
7668 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7669 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7670 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7677 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7678 * or Traffic class respectively.
7679 * @nic: device private variable
7680 * Description: The function configures the receive steering to
7681 * desired receive ring.
7682 * Return Value: SUCCESS on success and
7683 * '-1' on failure (endian settings incorrect).
7685 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7687 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7688 register u64 val64 = 0;
7690 if (ds_codepoint > 63)
7693 val64 = RTS_DS_MEM_DATA(ring);
7694 writeq(val64, &bar0->rts_ds_mem_data);
7696 val64 = RTS_DS_MEM_CTRL_WE |
7697 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7698 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7700 writeq(val64, &bar0->rts_ds_mem_ctrl);
7702 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7703 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7708 * s2io_init_nic - Initialization of the adapter .
7709 * @pdev : structure containing the PCI related information of the device.
7710 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7712 * The function initializes an adapter identified by the pci_dec structure.
7713 * All OS related initialization including memory and device structure and
7714 * initlaization of the device private variable is done. Also the swapper
7715 * control register is initialized to enable read and write into the I/O
7716 * registers of the device.
7718 * returns 0 on success and negative on failure.
7721 static int __devinit
7722 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7724 struct s2io_nic *sp;
7725 struct net_device *dev;
7727 int dma_flag = FALSE;
7728 u32 mac_up, mac_down;
7729 u64 val64 = 0, tmp64 = 0;
7730 struct XENA_dev_config __iomem *bar0 = NULL;
7732 struct mac_info *mac_control;
7733 struct config_param *config;
7735 u8 dev_intr_type = intr_type;
7737 DECLARE_MAC_BUF(mac);
7739 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7743 if ((ret = pci_enable_device(pdev))) {
7745 "s2io_init_nic: pci_enable_device failed\n");
7749 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7750 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7752 if (pci_set_consistent_dma_mask
7753 (pdev, DMA_64BIT_MASK)) {
7755 "Unable to obtain 64bit DMA for \
7756 consistent allocations\n");
7757 pci_disable_device(pdev);
7760 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7761 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7763 pci_disable_device(pdev);
7766 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7767 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7768 pci_disable_device(pdev);
7772 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7774 dev = alloc_etherdev(sizeof(struct s2io_nic));
7776 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7777 pci_disable_device(pdev);
7778 pci_release_regions(pdev);
7782 pci_set_master(pdev);
7783 pci_set_drvdata(pdev, dev);
7784 SET_NETDEV_DEV(dev, &pdev->dev);
7786 /* Private member variable initialized to s2io NIC structure */
7788 memset(sp, 0, sizeof(struct s2io_nic));
7791 sp->high_dma_flag = dma_flag;
7792 sp->device_enabled_once = FALSE;
7793 if (rx_ring_mode == 1)
7794 sp->rxd_mode = RXD_MODE_1;
7795 if (rx_ring_mode == 2)
7796 sp->rxd_mode = RXD_MODE_3B;
7798 sp->config.intr_type = dev_intr_type;
7800 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7801 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7802 sp->device_type = XFRAME_II_DEVICE;
7804 sp->device_type = XFRAME_I_DEVICE;
7806 sp->lro = lro_enable;
7808 /* Initialize some PCI/PCI-X fields of the NIC. */
7812 * Setting the device configuration parameters.
7813 * Most of these parameters can be specified by the user during
7814 * module insertion as they are module loadable parameters. If
7815 * these parameters are not not specified during load time, they
7816 * are initialized with default values.
7818 mac_control = &sp->mac_control;
7819 config = &sp->config;
7821 config->napi = napi;
7822 config->tx_steering_type = tx_steering_type;
7824 /* Tx side parameters. */
7825 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7826 config->tx_fifo_num = MAX_TX_FIFOS;
7828 config->tx_fifo_num = tx_fifo_num;
7830 /* Initialize the fifos used for tx steering */
7831 if (config->tx_fifo_num < 5) {
7832 if (config->tx_fifo_num == 1)
7833 sp->total_tcp_fifos = 1;
7835 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7836 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7837 sp->total_udp_fifos = 1;
7838 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7840 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7841 FIFO_OTHER_MAX_NUM);
7842 sp->udp_fifo_idx = sp->total_tcp_fifos;
7843 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7844 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7847 config->multiq = dev_multiq;
7848 for (i = 0; i < config->tx_fifo_num; i++) {
7849 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7850 config->tx_cfg[i].fifo_priority = i;
7853 /* mapping the QoS priority to the configured fifos */
7854 for (i = 0; i < MAX_TX_FIFOS; i++)
7855 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7857 /* map the hashing selector table to the configured fifos */
7858 for (i = 0; i < config->tx_fifo_num; i++)
7859 sp->fifo_selector[i] = fifo_selector[i];
7862 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7863 for (i = 0; i < config->tx_fifo_num; i++) {
7864 config->tx_cfg[i].f_no_snoop =
7865 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7866 if (config->tx_cfg[i].fifo_len < 65) {
7867 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7871 /* + 2 because one Txd for skb->data and one Txd for UFO */
7872 config->max_txds = MAX_SKB_FRAGS + 2;
7874 /* Rx side parameters. */
7875 config->rx_ring_num = rx_ring_num;
7876 for (i = 0; i < config->rx_ring_num; i++) {
7877 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7878 (rxd_count[sp->rxd_mode] + 1);
7879 config->rx_cfg[i].ring_priority = i;
7880 mac_control->rings[i].rx_bufs_left = 0;
7881 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7882 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7883 mac_control->rings[i].pdev = sp->pdev;
7884 mac_control->rings[i].dev = sp->dev;
7887 for (i = 0; i < rx_ring_num; i++) {
7888 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7889 config->rx_cfg[i].f_no_snoop =
7890 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7893 /* Setting Mac Control parameters */
7894 mac_control->rmac_pause_time = rmac_pause_time;
7895 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7896 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7899 /* initialize the shared memory used by the NIC and the host */
7900 if (init_shared_mem(sp)) {
7901 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7904 goto mem_alloc_failed;
7907 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7908 pci_resource_len(pdev, 0));
7910 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7913 goto bar0_remap_failed;
7916 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7917 pci_resource_len(pdev, 2));
7919 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7922 goto bar1_remap_failed;
7925 dev->irq = pdev->irq;
7926 dev->base_addr = (unsigned long) sp->bar0;
7928 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7929 for (j = 0; j < MAX_TX_FIFOS; j++) {
7930 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7931 (sp->bar1 + (j * 0x00020000));
7934 /* Driver entry points */
7935 dev->open = &s2io_open;
7936 dev->stop = &s2io_close;
7937 dev->hard_start_xmit = &s2io_xmit;
7938 dev->get_stats = &s2io_get_stats;
7939 dev->set_multicast_list = &s2io_set_multicast;
7940 dev->do_ioctl = &s2io_ioctl;
7941 dev->set_mac_address = &s2io_set_mac_addr;
7942 dev->change_mtu = &s2io_change_mtu;
7943 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7944 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7945 dev->vlan_rx_register = s2io_vlan_rx_register;
7946 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7949 * will use eth_mac_addr() for dev->set_mac_address
7950 * mac address will be set every time dev->open() is called
7952 #ifdef CONFIG_NET_POLL_CONTROLLER
7953 dev->poll_controller = s2io_netpoll;
7956 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7957 if (sp->high_dma_flag == TRUE)
7958 dev->features |= NETIF_F_HIGHDMA;
7959 dev->features |= NETIF_F_TSO;
7960 dev->features |= NETIF_F_TSO6;
7961 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7962 dev->features |= NETIF_F_UFO;
7963 dev->features |= NETIF_F_HW_CSUM;
7965 dev->tx_timeout = &s2io_tx_watchdog;
7966 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7967 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7968 INIT_WORK(&sp->set_link_task, s2io_set_link);
7970 pci_save_state(sp->pdev);
7972 /* Setting swapper control on the NIC, for proper reset operation */
7973 if (s2io_set_swapper(sp)) {
7974 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7977 goto set_swap_failed;
7980 /* Verify if the Herc works on the slot its placed into */
7981 if (sp->device_type & XFRAME_II_DEVICE) {
7982 mode = s2io_verify_pci_mode(sp);
7984 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7985 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7987 goto set_swap_failed;
7991 if (sp->config.intr_type == MSI_X) {
7992 sp->num_entries = config->rx_ring_num + 1;
7993 ret = s2io_enable_msi_x(sp);
7996 ret = s2io_test_msi(sp);
7997 /* rollback MSI-X, will re-enable during add_isr() */
7998 remove_msix_isr(sp);
8003 "%s: MSI-X requested but failed to enable\n",
8005 sp->config.intr_type = INTA;
8009 if (config->intr_type == MSI_X) {
8010 for (i = 0; i < config->rx_ring_num ; i++)
8011 netif_napi_add(dev, &mac_control->rings[i].napi,
8012 s2io_poll_msix, 64);
8014 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8017 /* Not needed for Herc */
8018 if (sp->device_type & XFRAME_I_DEVICE) {
8020 * Fix for all "FFs" MAC address problems observed on
8023 fix_mac_address(sp);
8028 * MAC address initialization.
8029 * For now only one mac address will be read and used.
8032 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8033 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8034 writeq(val64, &bar0->rmac_addr_cmd_mem);
8035 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8036 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8037 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8038 mac_down = (u32) tmp64;
8039 mac_up = (u32) (tmp64 >> 32);
8041 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8042 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8043 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8044 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8045 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8046 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8048 /* Set the factory defined MAC address initially */
8049 dev->addr_len = ETH_ALEN;
8050 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8051 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8053 /* initialize number of multicast & unicast MAC entries variables */
8054 if (sp->device_type == XFRAME_I_DEVICE) {
8055 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8056 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8057 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8058 } else if (sp->device_type == XFRAME_II_DEVICE) {
8059 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8060 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8061 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8064 /* store mac addresses from CAM to s2io_nic structure */
8065 do_s2io_store_unicast_mc(sp);
8067 /* Configure MSIX vector for number of rings configured plus one */
8068 if ((sp->device_type == XFRAME_II_DEVICE) &&
8069 (config->intr_type == MSI_X))
8070 sp->num_entries = config->rx_ring_num + 1;
8072 /* Store the values of the MSIX table in the s2io_nic structure */
8073 store_xmsi_data(sp);
8074 /* reset Nic and bring it to known state */
8078 * Initialize link state flags
8079 * and the card state parameter
8083 /* Initialize spinlocks */
8084 for (i = 0; i < sp->config.tx_fifo_num; i++)
8085 spin_lock_init(&mac_control->fifos[i].tx_lock);
8088 * SXE-002: Configure link and activity LED to init state
8091 subid = sp->pdev->subsystem_device;
8092 if ((subid & 0xFF) >= 0x07) {
8093 val64 = readq(&bar0->gpio_control);
8094 val64 |= 0x0000800000000000ULL;
8095 writeq(val64, &bar0->gpio_control);
8096 val64 = 0x0411040400000000ULL;
8097 writeq(val64, (void __iomem *) bar0 + 0x2700);
8098 val64 = readq(&bar0->gpio_control);
8101 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8103 if (register_netdev(dev)) {
8104 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8106 goto register_failed;
8109 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8110 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8111 sp->product_name, pdev->revision);
8112 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8113 s2io_driver_version);
8114 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8115 dev->name, print_mac(mac, dev->dev_addr));
8116 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8117 if (sp->device_type & XFRAME_II_DEVICE) {
8118 mode = s2io_print_pci_mode(sp);
8120 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8122 unregister_netdev(dev);
8123 goto set_swap_failed;
8126 switch(sp->rxd_mode) {
8128 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8132 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8137 switch (sp->config.napi) {
8139 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8142 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8146 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8147 sp->config.tx_fifo_num);
8149 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8150 sp->config.rx_ring_num);
8152 switch(sp->config.intr_type) {
8154 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8157 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8160 if (sp->config.multiq) {
8161 for (i = 0; i < sp->config.tx_fifo_num; i++)
8162 mac_control->fifos[i].multiq = config->multiq;
8163 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8166 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8169 switch (sp->config.tx_steering_type) {
8171 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8172 " transmit\n", dev->name);
8174 case TX_PRIORITY_STEERING:
8175 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8176 " transmit\n", dev->name);
8178 case TX_DEFAULT_STEERING:
8179 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8180 " transmit\n", dev->name);
8184 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8187 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8188 " enabled\n", dev->name);
8189 /* Initialize device name */
8190 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8193 * Make Link state as off at this point, when the Link change
8194 * interrupt comes the state will be automatically changed to
8197 netif_carrier_off(dev);
8208 free_shared_mem(sp);
8209 pci_disable_device(pdev);
8210 pci_release_regions(pdev);
8211 pci_set_drvdata(pdev, NULL);
8218 * s2io_rem_nic - Free the PCI device
8219 * @pdev: structure containing the PCI related information of the device.
8220 * Description: This function is called by the Pci subsystem to release a
8221 * PCI device and free up all resource held up by the device. This could
8222 * be in response to a Hot plug event or when the driver is to be removed
8226 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8228 struct net_device *dev =
8229 (struct net_device *) pci_get_drvdata(pdev);
8230 struct s2io_nic *sp;
8233 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8237 flush_scheduled_work();
8240 unregister_netdev(dev);
8242 free_shared_mem(sp);
8245 pci_release_regions(pdev);
8246 pci_set_drvdata(pdev, NULL);
8248 pci_disable_device(pdev);
8252 * s2io_starter - Entry point for the driver
8253 * Description: This function is the entry point for the driver. It verifies
8254 * the module loadable parameters and initializes PCI configuration space.
8257 static int __init s2io_starter(void)
8259 return pci_register_driver(&s2io_driver);
8263 * s2io_closer - Cleanup routine for the driver
8264 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8267 static __exit void s2io_closer(void)
8269 pci_unregister_driver(&s2io_driver);
8270 DBG_PRINT(INIT_DBG, "cleanup done\n");
8273 module_init(s2io_starter);
8274 module_exit(s2io_closer);
8276 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8277 struct tcphdr **tcp, struct RxD_t *rxdp,
8278 struct s2io_nic *sp)
8281 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8283 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8284 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8289 /* Checking for DIX type or DIX type with VLAN */
8291 || (l2_type == 4)) {
8292 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8294 * If vlan stripping is disabled and the frame is VLAN tagged,
8295 * shift the offset by the VLAN header size bytes.
8297 if ((!vlan_strip_flag) &&
8298 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8299 ip_off += HEADER_VLAN_SIZE;
8301 /* LLC, SNAP etc are considered non-mergeable */
8305 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8306 ip_len = (u8)((*ip)->ihl);
8308 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8313 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8316 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8317 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8318 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8323 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8325 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8328 static void initiate_new_session(struct lro *lro, u8 *l2h,
8329 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8331 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8335 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8336 lro->tcp_ack = tcp->ack_seq;
8338 lro->total_len = ntohs(ip->tot_len);
8340 lro->vlan_tag = vlan_tag;
8342 * check if we saw TCP timestamp. Other consistency checks have
8343 * already been done.
8345 if (tcp->doff == 8) {
8347 ptr = (__be32 *)(tcp+1);
8349 lro->cur_tsval = ntohl(*(ptr+1));
8350 lro->cur_tsecr = *(ptr+2);
8355 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8357 struct iphdr *ip = lro->iph;
8358 struct tcphdr *tcp = lro->tcph;
8360 struct stat_block *statinfo = sp->mac_control.stats_info;
8361 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8363 /* Update L3 header */
8364 ip->tot_len = htons(lro->total_len);
8366 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8369 /* Update L4 header */
8370 tcp->ack_seq = lro->tcp_ack;
8371 tcp->window = lro->window;
8373 /* Update tsecr field if this session has timestamps enabled */
8375 __be32 *ptr = (__be32 *)(tcp + 1);
8376 *(ptr+2) = lro->cur_tsecr;
8379 /* Update counters required for calculation of
8380 * average no. of packets aggregated.
8382 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8383 statinfo->sw_stat.num_aggregations++;
8386 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8387 struct tcphdr *tcp, u32 l4_pyld)
8389 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8390 lro->total_len += l4_pyld;
8391 lro->frags_len += l4_pyld;
8392 lro->tcp_next_seq += l4_pyld;
8395 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8396 lro->tcp_ack = tcp->ack_seq;
8397 lro->window = tcp->window;
8401 /* Update tsecr and tsval from this packet */
8402 ptr = (__be32 *)(tcp+1);
8403 lro->cur_tsval = ntohl(*(ptr+1));
8404 lro->cur_tsecr = *(ptr + 2);
8408 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8409 struct tcphdr *tcp, u32 tcp_pyld_len)
8413 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8415 if (!tcp_pyld_len) {
8416 /* Runt frame or a pure ack */
8420 if (ip->ihl != 5) /* IP has options */
8423 /* If we see CE codepoint in IP header, packet is not mergeable */
8424 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8427 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8428 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8429 tcp->ece || tcp->cwr || !tcp->ack) {
8431 * Currently recognize only the ack control word and
8432 * any other control field being set would result in
8433 * flushing the LRO session
8439 * Allow only one TCP timestamp option. Don't aggregate if
8440 * any other options are detected.
8442 if (tcp->doff != 5 && tcp->doff != 8)
8445 if (tcp->doff == 8) {
8446 ptr = (u8 *)(tcp + 1);
8447 while (*ptr == TCPOPT_NOP)
8449 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8452 /* Ensure timestamp value increases monotonically */
8454 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8457 /* timestamp echo reply should be non-zero */
8458 if (*((__be32 *)(ptr+6)) == 0)
8466 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8467 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8468 struct s2io_nic *sp)
8471 struct tcphdr *tcph;
8475 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8477 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8478 ip->saddr, ip->daddr);
8482 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8483 tcph = (struct tcphdr *)*tcp;
8484 *tcp_len = get_l4_pyld_length(ip, tcph);
8485 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8486 struct lro *l_lro = &ring_data->lro0_n[i];
8487 if (l_lro->in_use) {
8488 if (check_for_socket_match(l_lro, ip, tcph))
8490 /* Sock pair matched */
8493 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8494 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8495 "0x%x, actual 0x%x\n", __FUNCTION__,
8496 (*lro)->tcp_next_seq,
8499 sp->mac_control.stats_info->
8500 sw_stat.outof_sequence_pkts++;
8505 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8506 ret = 1; /* Aggregate */
8508 ret = 2; /* Flush both */
8514 /* Before searching for available LRO objects,
8515 * check if the pkt is L3/L4 aggregatable. If not
8516 * don't create new LRO session. Just send this
8519 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8523 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8524 struct lro *l_lro = &ring_data->lro0_n[i];
8525 if (!(l_lro->in_use)) {
8527 ret = 3; /* Begin anew */
8533 if (ret == 0) { /* sessions exceeded */
8534 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8542 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8546 update_L3L4_header(sp, *lro);
8549 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8550 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8551 update_L3L4_header(sp, *lro);
8552 ret = 4; /* Flush the LRO */
8556 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8564 static void clear_lro_session(struct lro *lro)
8566 static u16 lro_struct_size = sizeof(struct lro);
8568 memset(lro, 0, lro_struct_size);
8571 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8573 struct net_device *dev = skb->dev;
8574 struct s2io_nic *sp = dev->priv;
8576 skb->protocol = eth_type_trans(skb, dev);
8577 if (sp->vlgrp && vlan_tag
8578 && (vlan_strip_flag)) {
8579 /* Queueing the vlan frame to the upper layer */
8580 if (sp->config.napi)
8581 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8583 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8585 if (sp->config.napi)
8586 netif_receive_skb(skb);
8592 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8593 struct sk_buff *skb,
8596 struct sk_buff *first = lro->parent;
8598 first->len += tcp_len;
8599 first->data_len = lro->frags_len;
8600 skb_pull(skb, (skb->len - tcp_len));
8601 if (skb_shinfo(first)->frag_list)
8602 lro->last_frag->next = skb;
8604 skb_shinfo(first)->frag_list = skb;
8605 first->truesize += skb->truesize;
8606 lro->last_frag = skb;
8607 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8612 * s2io_io_error_detected - called when PCI error is detected
8613 * @pdev: Pointer to PCI device
8614 * @state: The current pci connection state
8616 * This function is called after a PCI bus error affecting
8617 * this device has been detected.
8619 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8620 pci_channel_state_t state)
8622 struct net_device *netdev = pci_get_drvdata(pdev);
8623 struct s2io_nic *sp = netdev->priv;
8625 netif_device_detach(netdev);
8627 if (netif_running(netdev)) {
8628 /* Bring down the card, while avoiding PCI I/O */
8629 do_s2io_card_down(sp, 0);
8631 pci_disable_device(pdev);
8633 return PCI_ERS_RESULT_NEED_RESET;
8637 * s2io_io_slot_reset - called after the pci bus has been reset.
8638 * @pdev: Pointer to PCI device
8640 * Restart the card from scratch, as if from a cold-boot.
8641 * At this point, the card has exprienced a hard reset,
8642 * followed by fixups by BIOS, and has its config space
8643 * set up identically to what it was at cold boot.
8645 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8647 struct net_device *netdev = pci_get_drvdata(pdev);
8648 struct s2io_nic *sp = netdev->priv;
8650 if (pci_enable_device(pdev)) {
8651 printk(KERN_ERR "s2io: "
8652 "Cannot re-enable PCI device after reset.\n");
8653 return PCI_ERS_RESULT_DISCONNECT;
8656 pci_set_master(pdev);
8659 return PCI_ERS_RESULT_RECOVERED;
8663 * s2io_io_resume - called when traffic can start flowing again.
8664 * @pdev: Pointer to PCI device
8666 * This callback is called when the error recovery driver tells
8667 * us that its OK to resume normal operation.
8669 static void s2io_io_resume(struct pci_dev *pdev)
8671 struct net_device *netdev = pci_get_drvdata(pdev);
8672 struct s2io_nic *sp = netdev->priv;
8674 if (netif_running(netdev)) {
8675 if (s2io_card_up(sp)) {
8676 printk(KERN_ERR "s2io: "
8677 "Can't bring device back up after reset.\n");
8681 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8683 printk(KERN_ERR "s2io: "
8684 "Can't resetore mac addr after reset.\n");
8689 netif_device_attach(netdev);
8690 netif_tx_wake_all_queues(netdev);