2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
114 #define M_SIGEMT M(SIGEMT)
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
122 #define M(sig) (1UL << ((sig)-1))
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 static int sig_ignored(struct task_struct *t, int sig)
159 void __user * handler;
162 * Tracers always want to know about signals..
164 if (t->ptrace & PT_PTRACED)
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
172 if (sigismember(&t->blocked, sig))
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
190 switch (_NSIG_WORDS) {
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 if (t->signal->group_stop_count > 0 ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 void recalc_sigpending(void)
226 recalc_sigpending_tsk(current);
229 /* Given the mask, find the first available signal that should be serviced. */
232 next_signal(struct sigpending *pending, sigset_t *mask)
234 unsigned long i, *s, *m, x;
237 s = pending->signal.sig;
239 switch (_NSIG_WORDS) {
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
248 case 2: if ((x = s[0] &~ m[0]) != 0)
250 else if ((x = s[1] &~ m[1]) != 0)
257 case 1: if ((x = *s &~ *m) != 0)
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
268 struct sigqueue *q = NULL;
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
278 INIT_LIST_HEAD(&q->list);
281 q->user = get_uid(t->user);
286 static inline void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
290 atomic_dec(&q->user->sigpending);
292 kmem_cache_free(sigqueue_cachep, q);
295 static void flush_sigqueue(struct sigpending *queue)
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
308 * Flush all pending signals for a task.
312 flush_signals(struct task_struct *t)
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
324 * This function expects the tasklist_lock write-locked.
326 void __exit_sighand(struct task_struct *tsk)
328 struct sighand_struct * sighand = tsk->sighand;
330 /* Ok, we're done with the signal handlers */
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
336 void exit_sighand(struct task_struct *tsk)
338 write_lock_irq(&tasklist_lock);
340 write_unlock_irq(&tasklist_lock);
344 * This function expects the tasklist_lock write-locked.
346 void __exit_signal(struct task_struct *tsk)
348 struct signal_struct * sig = tsk->signal;
349 struct sighand_struct * sighand = tsk->sighand;
353 if (!atomic_read(&sig->count))
355 spin_lock(&sighand->siglock);
356 posix_cpu_timers_exit(tsk);
357 if (atomic_dec_and_test(&sig->count)) {
358 posix_cpu_timers_exit_group(tsk);
359 if (tsk == sig->curr_target)
360 sig->curr_target = next_thread(tsk);
362 spin_unlock(&sighand->siglock);
363 flush_sigqueue(&sig->shared_pending);
366 * If there is any task waiting for the group exit
369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 wake_up_process(sig->group_exit_task);
371 sig->group_exit_task = NULL;
373 if (tsk == sig->curr_target)
374 sig->curr_target = next_thread(tsk);
377 * Accumulate here the counters for all threads but the
378 * group leader as they die, so they can be added into
379 * the process-wide totals when those are taken.
380 * The group leader stays around as a zombie as long
381 * as there are other threads. When it gets reaped,
382 * the exit.c code will add its counts into these totals.
383 * We won't ever get here for the group leader, since it
384 * will have been the last reference on the signal_struct.
386 sig->utime = cputime_add(sig->utime, tsk->utime);
387 sig->stime = cputime_add(sig->stime, tsk->stime);
388 sig->min_flt += tsk->min_flt;
389 sig->maj_flt += tsk->maj_flt;
390 sig->nvcsw += tsk->nvcsw;
391 sig->nivcsw += tsk->nivcsw;
392 sig->sched_time += tsk->sched_time;
393 spin_unlock(&sighand->siglock);
394 sig = NULL; /* Marker for below. */
396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 flush_sigqueue(&tsk->pending);
400 * We are cleaning up the signal_struct here. We delayed
401 * calling exit_itimers until after flush_sigqueue, just in
402 * case our thread-local pending queue contained a queued
403 * timer signal that would have been cleared in
404 * exit_itimers. When that called sigqueue_free, it would
405 * attempt to re-take the tasklist_lock and deadlock. This
406 * can never happen if we ensure that all queues the
407 * timer's signal might be queued on have been flushed
408 * first. The shared_pending queue, and our own pending
409 * queue are the only queues the timer could be on, since
410 * there are no other threads left in the group and timer
411 * signals are constrained to threads inside the group.
414 exit_thread_group_keys(sig);
415 kmem_cache_free(signal_cachep, sig);
419 void exit_signal(struct task_struct *tsk)
421 write_lock_irq(&tasklist_lock);
423 write_unlock_irq(&tasklist_lock);
427 * Flush all handlers for a task.
431 flush_signal_handlers(struct task_struct *t, int force_default)
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
439 sigemptyset(&ka->sa.sa_mask);
445 /* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
458 spin_lock_irqsave(¤t->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
465 /* Notify the system that blocking has ended. */
468 unblock_all_signals(void)
472 spin_lock_irqsave(¤t->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
476 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
479 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
484 if (unlikely(!sigismember(&list->signal, sig)))
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
505 sigdelset(&list->signal, sig);
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
527 /* SIGKILL must have priority, otherwise it is quite easy
528 * to create an unkillable process, sending sig < SIGKILL
530 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
531 if (!sigismember(mask, SIGKILL))
536 sig = next_signal(pending, mask);
538 if (current->notifier) {
539 if (sigismember(current->notifier_mask, sig)) {
540 if (!(current->notifier)(current->notifier_data)) {
541 clear_thread_flag(TIF_SIGPENDING);
547 if (!collect_signal(sig, pending, info))
557 * Dequeue a signal and return the element to the caller, which is
558 * expected to free it.
560 * All callers have to hold the siglock.
562 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
564 int signr = __dequeue_signal(&tsk->pending, mask, info);
566 signr = __dequeue_signal(&tsk->signal->shared_pending,
568 if (signr && unlikely(sig_kernel_stop(signr))) {
570 * Set a marker that we have dequeued a stop signal. Our
571 * caller might release the siglock and then the pending
572 * stop signal it is about to process is no longer in the
573 * pending bitmasks, but must still be cleared by a SIGCONT
574 * (and overruled by a SIGKILL). So those cases clear this
575 * shared flag after we've set it. Note that this flag may
576 * remain set after the signal we return is ignored or
577 * handled. That doesn't matter because its only purpose
578 * is to alert stop-signal processing code when another
579 * processor has come along and cleared the flag.
581 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
584 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
585 info->si_sys_private){
587 * Release the siglock to ensure proper locking order
588 * of timer locks outside of siglocks. Note, we leave
589 * irqs disabled here, since the posix-timers code is
590 * about to disable them again anyway.
592 spin_unlock(&tsk->sighand->siglock);
593 do_schedule_next_timer(info);
594 spin_lock(&tsk->sighand->siglock);
600 * Tell a process that it has a new active signal..
602 * NOTE! we rely on the previous spin_lock to
603 * lock interrupts for us! We can only be called with
604 * "siglock" held, and the local interrupt must
605 * have been disabled when that got acquired!
607 * No need to set need_resched since signal event passing
608 * goes through ->blocked
610 void signal_wake_up(struct task_struct *t, int resume)
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
617 * For SIGKILL, we want to wake it up in the stopped/traced case.
618 * We don't check t->state here because there is a race with it
619 * executing another processor and just now entering stopped state.
620 * By using wake_up_state, we ensure the process will wake up and
621 * handle its death signal.
623 mask = TASK_INTERRUPTIBLE;
625 mask |= TASK_STOPPED | TASK_TRACED;
626 if (!wake_up_state(t, mask))
631 * Remove signals in mask from the pending set and queue.
632 * Returns 1 if any signals were found.
634 * All callers must be holding the siglock.
636 static int rm_from_queue(unsigned long mask, struct sigpending *s)
638 struct sigqueue *q, *n;
640 if (!sigtestsetmask(&s->signal, mask))
643 sigdelsetmask(&s->signal, mask);
644 list_for_each_entry_safe(q, n, &s->list, list) {
645 if (q->info.si_signo < SIGRTMIN &&
646 (mask & sigmask(q->info.si_signo))) {
647 list_del_init(&q->list);
655 * Bad permissions for sending the signal
657 static int check_kill_permission(int sig, struct siginfo *info,
658 struct task_struct *t)
661 if (!valid_signal(sig))
664 if ((!info || ((unsigned long)info != 1 &&
665 (unsigned long)info != 2 && SI_FROMUSER(info)))
666 && ((sig != SIGCONT) ||
667 (current->signal->session != t->signal->session))
668 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
669 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
670 && !capable(CAP_KILL))
673 error = security_task_kill(t, info, sig);
675 audit_signal_info(sig, t); /* Let audit system see the signal */
680 static void do_notify_parent_cldstop(struct task_struct *tsk,
685 * Handle magic process-wide effects of stop/continue signals.
686 * Unlike the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
691 static void handle_stop_signal(int sig, struct task_struct *p)
693 struct task_struct *t;
695 if (p->signal->flags & SIGNAL_GROUP_EXIT)
697 * The process is in the middle of dying already.
701 if (sig_kernel_stop(sig)) {
703 * This is a stop signal. Remove SIGCONT from all queues.
705 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
708 rm_from_queue(sigmask(SIGCONT), &t->pending);
711 } else if (sig == SIGCONT) {
713 * Remove all stop signals from all queues,
714 * and wake all threads.
716 if (unlikely(p->signal->group_stop_count > 0)) {
718 * There was a group stop in progress. We'll
719 * pretend it finished before we got here. We are
720 * obliged to report it to the parent: if the
721 * SIGSTOP happened "after" this SIGCONT, then it
722 * would have cleared this pending SIGCONT. If it
723 * happened "before" this SIGCONT, then the parent
724 * got the SIGCHLD about the stop finishing before
725 * the continue happened. We do the notification
726 * now, and it's as if the stop had finished and
727 * the SIGCHLD was pending on entry to this kill.
729 p->signal->group_stop_count = 0;
730 p->signal->flags = SIGNAL_STOP_CONTINUED;
731 spin_unlock(&p->sighand->siglock);
732 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
733 spin_lock(&p->sighand->siglock);
735 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
739 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
742 * If there is a handler for SIGCONT, we must make
743 * sure that no thread returns to user mode before
744 * we post the signal, in case it was the only
745 * thread eligible to run the signal handler--then
746 * it must not do anything between resuming and
747 * running the handler. With the TIF_SIGPENDING
748 * flag set, the thread will pause and acquire the
749 * siglock that we hold now and until we've queued
750 * the pending signal.
752 * Wake up the stopped thread _after_ setting
755 state = TASK_STOPPED;
756 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
757 set_tsk_thread_flag(t, TIF_SIGPENDING);
758 state |= TASK_INTERRUPTIBLE;
760 wake_up_state(t, state);
765 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
767 * We were in fact stopped, and are now continued.
768 * Notify the parent with CLD_CONTINUED.
770 p->signal->flags = SIGNAL_STOP_CONTINUED;
771 p->signal->group_exit_code = 0;
772 spin_unlock(&p->sighand->siglock);
773 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
774 spin_lock(&p->sighand->siglock);
777 * We are not stopped, but there could be a stop
778 * signal in the middle of being processed after
779 * being removed from the queue. Clear that too.
781 p->signal->flags = 0;
783 } else if (sig == SIGKILL) {
785 * Make sure that any pending stop signal already dequeued
786 * is undone by the wakeup for SIGKILL.
788 p->signal->flags = 0;
792 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
793 struct sigpending *signals)
795 struct sigqueue * q = NULL;
799 * fast-pathed signals for kernel-internal things like SIGSTOP
802 if ((unsigned long)info == 2)
805 /* Real-time signals must be queued if sent by sigqueue, or
806 some other real-time mechanism. It is implementation
807 defined whether kill() does so. We attempt to do so, on
808 the principle of least surprise, but since kill is not
809 allowed to fail with EAGAIN when low on memory we just
810 make sure at least one signal gets delivered and don't
811 pass on the info struct. */
813 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
814 ((unsigned long) info < 2 ||
815 info->si_code >= 0)));
817 list_add_tail(&q->list, &signals->list);
818 switch ((unsigned long) info) {
820 q->info.si_signo = sig;
821 q->info.si_errno = 0;
822 q->info.si_code = SI_USER;
823 q->info.si_pid = current->pid;
824 q->info.si_uid = current->uid;
827 q->info.si_signo = sig;
828 q->info.si_errno = 0;
829 q->info.si_code = SI_KERNEL;
834 copy_siginfo(&q->info, info);
838 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
839 && info->si_code != SI_USER)
841 * Queue overflow, abort. We may abort if the signal was rt
842 * and sent by user using something other than kill().
845 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
847 * Set up a return to indicate that we dropped
850 ret = info->si_sys_private;
854 sigaddset(&signals->signal, sig);
858 #define LEGACY_QUEUE(sigptr, sig) \
859 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
863 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
867 if (!irqs_disabled())
869 assert_spin_locked(&t->sighand->siglock);
871 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
873 * Set up a return to indicate that we dropped the signal.
875 ret = info->si_sys_private;
877 /* Short-circuit ignored signals. */
878 if (sig_ignored(t, sig))
881 /* Support queueing exactly one non-rt signal, so that we
882 can get more detailed information about the cause of
884 if (LEGACY_QUEUE(&t->pending, sig))
887 ret = send_signal(sig, info, t, &t->pending);
888 if (!ret && !sigismember(&t->blocked, sig))
889 signal_wake_up(t, sig == SIGKILL);
895 * Force a signal that the process can't ignore: if necessary
896 * we unblock the signal and change any SIG_IGN to SIG_DFL.
900 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
902 unsigned long int flags;
905 spin_lock_irqsave(&t->sighand->siglock, flags);
906 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
907 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
908 sigdelset(&t->blocked, sig);
909 recalc_sigpending_tsk(t);
911 ret = specific_send_sig_info(sig, info, t);
912 spin_unlock_irqrestore(&t->sighand->siglock, flags);
918 force_sig_specific(int sig, struct task_struct *t)
920 unsigned long int flags;
922 spin_lock_irqsave(&t->sighand->siglock, flags);
923 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
924 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
925 sigdelset(&t->blocked, sig);
926 recalc_sigpending_tsk(t);
927 specific_send_sig_info(sig, (void *)2, t);
928 spin_unlock_irqrestore(&t->sighand->siglock, flags);
932 * Test if P wants to take SIG. After we've checked all threads with this,
933 * it's equivalent to finding no threads not blocking SIG. Any threads not
934 * blocking SIG were ruled out because they are not running and already
935 * have pending signals. Such threads will dequeue from the shared queue
936 * as soon as they're available, so putting the signal on the shared queue
937 * will be equivalent to sending it to one such thread.
939 static inline int wants_signal(int sig, struct task_struct *p)
941 if (sigismember(&p->blocked, sig))
943 if (p->flags & PF_EXITING)
947 if (p->state & (TASK_STOPPED | TASK_TRACED))
949 return task_curr(p) || !signal_pending(p);
953 __group_complete_signal(int sig, struct task_struct *p)
955 struct task_struct *t;
958 * Now find a thread we can wake up to take the signal off the queue.
960 * If the main thread wants the signal, it gets first crack.
961 * Probably the least surprising to the average bear.
963 if (wants_signal(sig, p))
965 else if (thread_group_empty(p))
967 * There is just one thread and it does not need to be woken.
968 * It will dequeue unblocked signals before it runs again.
973 * Otherwise try to find a suitable thread.
975 t = p->signal->curr_target;
977 /* restart balancing at this thread */
978 t = p->signal->curr_target = p;
979 BUG_ON(t->tgid != p->tgid);
981 while (!wants_signal(sig, t)) {
983 if (t == p->signal->curr_target)
985 * No thread needs to be woken.
986 * Any eligible threads will see
987 * the signal in the queue soon.
991 p->signal->curr_target = t;
995 * Found a killable thread. If the signal will be fatal,
996 * then start taking the whole group down immediately.
998 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
999 !sigismember(&t->real_blocked, sig) &&
1000 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1002 * This signal will be fatal to the whole group.
1004 if (!sig_kernel_coredump(sig)) {
1006 * Start a group exit and wake everybody up.
1007 * This way we don't have other threads
1008 * running and doing things after a slower
1009 * thread has the fatal signal pending.
1011 p->signal->flags = SIGNAL_GROUP_EXIT;
1012 p->signal->group_exit_code = sig;
1013 p->signal->group_stop_count = 0;
1016 sigaddset(&t->pending.signal, SIGKILL);
1017 signal_wake_up(t, 1);
1024 * There will be a core dump. We make all threads other
1025 * than the chosen one go into a group stop so that nothing
1026 * happens until it gets scheduled, takes the signal off
1027 * the shared queue, and does the core dump. This is a
1028 * little more complicated than strictly necessary, but it
1029 * keeps the signal state that winds up in the core dump
1030 * unchanged from the death state, e.g. which thread had
1031 * the core-dump signal unblocked.
1033 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1034 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1035 p->signal->group_stop_count = 0;
1036 p->signal->group_exit_task = t;
1039 p->signal->group_stop_count++;
1040 signal_wake_up(t, 0);
1043 wake_up_process(p->signal->group_exit_task);
1048 * The signal is already in the shared-pending queue.
1049 * Tell the chosen thread to wake up and dequeue it.
1051 signal_wake_up(t, sig == SIGKILL);
1056 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1060 assert_spin_locked(&p->sighand->siglock);
1061 handle_stop_signal(sig, p);
1063 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1065 * Set up a return to indicate that we dropped the signal.
1067 ret = info->si_sys_private;
1069 /* Short-circuit ignored signals. */
1070 if (sig_ignored(p, sig))
1073 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1074 /* This is a non-RT signal and we already have one queued. */
1078 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1079 * We always use the shared queue for process-wide signals,
1080 * to avoid several races.
1082 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1086 __group_complete_signal(sig, p);
1091 * Nuke all other threads in the group.
1093 void zap_other_threads(struct task_struct *p)
1095 struct task_struct *t;
1097 p->signal->flags = SIGNAL_GROUP_EXIT;
1098 p->signal->group_stop_count = 0;
1100 if (thread_group_empty(p))
1103 for (t = next_thread(p); t != p; t = next_thread(t)) {
1105 * Don't bother with already dead threads
1111 * We don't want to notify the parent, since we are
1112 * killed as part of a thread group due to another
1113 * thread doing an execve() or similar. So set the
1114 * exit signal to -1 to allow immediate reaping of
1115 * the process. But don't detach the thread group
1118 if (t != p->group_leader)
1119 t->exit_signal = -1;
1121 sigaddset(&t->pending.signal, SIGKILL);
1122 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1123 signal_wake_up(t, 1);
1128 * Must be called with the tasklist_lock held for reading!
1130 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1132 unsigned long flags;
1135 ret = check_kill_permission(sig, info, p);
1136 if (!ret && sig && p->sighand) {
1137 spin_lock_irqsave(&p->sighand->siglock, flags);
1138 ret = __group_send_sig_info(sig, info, p);
1139 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1146 * kill_pg_info() sends a signal to a process group: this is what the tty
1147 * control characters do (^C, ^Z etc)
1150 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1152 struct task_struct *p = NULL;
1153 int retval, success;
1160 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1161 int err = group_send_sig_info(sig, info, p);
1164 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1165 return success ? 0 : retval;
1169 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1173 read_lock(&tasklist_lock);
1174 retval = __kill_pg_info(sig, info, pgrp);
1175 read_unlock(&tasklist_lock);
1181 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1184 struct task_struct *p;
1186 read_lock(&tasklist_lock);
1187 p = find_task_by_pid(pid);
1190 error = group_send_sig_info(sig, info, p);
1191 read_unlock(&tasklist_lock);
1197 * kill_something_info() interprets pid in interesting ways just like kill(2).
1199 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1200 * is probably wrong. Should make it like BSD or SYSV.
1203 static int kill_something_info(int sig, struct siginfo *info, int pid)
1206 return kill_pg_info(sig, info, process_group(current));
1207 } else if (pid == -1) {
1208 int retval = 0, count = 0;
1209 struct task_struct * p;
1211 read_lock(&tasklist_lock);
1212 for_each_process(p) {
1213 if (p->pid > 1 && p->tgid != current->tgid) {
1214 int err = group_send_sig_info(sig, info, p);
1220 read_unlock(&tasklist_lock);
1221 return count ? retval : -ESRCH;
1222 } else if (pid < 0) {
1223 return kill_pg_info(sig, info, -pid);
1225 return kill_proc_info(sig, info, pid);
1230 * These are for backward compatibility with the rest of the kernel source.
1234 * These two are the most common entry points. They send a signal
1235 * just to the specific thread.
1238 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1241 unsigned long flags;
1244 * Make sure legacy kernel users don't send in bad values
1245 * (normal paths check this in check_kill_permission).
1247 if (!valid_signal(sig))
1251 * We need the tasklist lock even for the specific
1252 * thread case (when we don't need to follow the group
1253 * lists) in order to avoid races with "p->sighand"
1254 * going away or changing from under us.
1256 read_lock(&tasklist_lock);
1257 spin_lock_irqsave(&p->sighand->siglock, flags);
1258 ret = specific_send_sig_info(sig, info, p);
1259 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1260 read_unlock(&tasklist_lock);
1265 send_sig(int sig, struct task_struct *p, int priv)
1267 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1271 * This is the entry point for "process-wide" signals.
1272 * They will go to an appropriate thread in the thread group.
1275 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1278 read_lock(&tasklist_lock);
1279 ret = group_send_sig_info(sig, info, p);
1280 read_unlock(&tasklist_lock);
1285 force_sig(int sig, struct task_struct *p)
1287 force_sig_info(sig, (void*)1L, p);
1291 * When things go south during signal handling, we
1292 * will force a SIGSEGV. And if the signal that caused
1293 * the problem was already a SIGSEGV, we'll want to
1294 * make sure we don't even try to deliver the signal..
1297 force_sigsegv(int sig, struct task_struct *p)
1299 if (sig == SIGSEGV) {
1300 unsigned long flags;
1301 spin_lock_irqsave(&p->sighand->siglock, flags);
1302 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1303 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1305 force_sig(SIGSEGV, p);
1310 kill_pg(pid_t pgrp, int sig, int priv)
1312 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1316 kill_proc(pid_t pid, int sig, int priv)
1318 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1322 * These functions support sending signals using preallocated sigqueue
1323 * structures. This is needed "because realtime applications cannot
1324 * afford to lose notifications of asynchronous events, like timer
1325 * expirations or I/O completions". In the case of Posix Timers
1326 * we allocate the sigqueue structure from the timer_create. If this
1327 * allocation fails we are able to report the failure to the application
1328 * with an EAGAIN error.
1331 struct sigqueue *sigqueue_alloc(void)
1335 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1336 q->flags |= SIGQUEUE_PREALLOC;
1340 void sigqueue_free(struct sigqueue *q)
1342 unsigned long flags;
1343 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1345 * If the signal is still pending remove it from the
1348 if (unlikely(!list_empty(&q->list))) {
1349 read_lock(&tasklist_lock);
1350 spin_lock_irqsave(q->lock, flags);
1351 if (!list_empty(&q->list))
1352 list_del_init(&q->list);
1353 spin_unlock_irqrestore(q->lock, flags);
1354 read_unlock(&tasklist_lock);
1356 q->flags &= ~SIGQUEUE_PREALLOC;
1361 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1363 unsigned long flags;
1366 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1367 read_lock(&tasklist_lock);
1369 if (unlikely(p->flags & PF_EXITING)) {
1374 spin_lock_irqsave(&p->sighand->siglock, flags);
1376 if (unlikely(!list_empty(&q->list))) {
1378 * If an SI_TIMER entry is already queue just increment
1379 * the overrun count.
1381 if (q->info.si_code != SI_TIMER)
1383 q->info.si_overrun++;
1386 /* Short-circuit ignored signals. */
1387 if (sig_ignored(p, sig)) {
1392 q->lock = &p->sighand->siglock;
1393 list_add_tail(&q->list, &p->pending.list);
1394 sigaddset(&p->pending.signal, sig);
1395 if (!sigismember(&p->blocked, sig))
1396 signal_wake_up(p, sig == SIGKILL);
1399 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1401 read_unlock(&tasklist_lock);
1407 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1409 unsigned long flags;
1412 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1413 read_lock(&tasklist_lock);
1414 spin_lock_irqsave(&p->sighand->siglock, flags);
1415 handle_stop_signal(sig, p);
1417 /* Short-circuit ignored signals. */
1418 if (sig_ignored(p, sig)) {
1423 if (unlikely(!list_empty(&q->list))) {
1425 * If an SI_TIMER entry is already queue just increment
1426 * the overrun count. Other uses should not try to
1427 * send the signal multiple times.
1429 if (q->info.si_code != SI_TIMER)
1431 q->info.si_overrun++;
1436 * Put this signal on the shared-pending queue.
1437 * We always use the shared queue for process-wide signals,
1438 * to avoid several races.
1440 q->lock = &p->sighand->siglock;
1441 list_add_tail(&q->list, &p->signal->shared_pending.list);
1442 sigaddset(&p->signal->shared_pending.signal, sig);
1444 __group_complete_signal(sig, p);
1446 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1447 read_unlock(&tasklist_lock);
1452 * Wake up any threads in the parent blocked in wait* syscalls.
1454 static inline void __wake_up_parent(struct task_struct *p,
1455 struct task_struct *parent)
1457 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1461 * Let a parent know about the death of a child.
1462 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1465 void do_notify_parent(struct task_struct *tsk, int sig)
1467 struct siginfo info;
1468 unsigned long flags;
1469 struct sighand_struct *psig;
1473 /* do_notify_parent_cldstop should have been called instead. */
1474 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1476 BUG_ON(!tsk->ptrace &&
1477 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1479 info.si_signo = sig;
1481 info.si_pid = tsk->pid;
1482 info.si_uid = tsk->uid;
1484 /* FIXME: find out whether or not this is supposed to be c*time. */
1485 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1486 tsk->signal->utime));
1487 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1488 tsk->signal->stime));
1490 info.si_status = tsk->exit_code & 0x7f;
1491 if (tsk->exit_code & 0x80)
1492 info.si_code = CLD_DUMPED;
1493 else if (tsk->exit_code & 0x7f)
1494 info.si_code = CLD_KILLED;
1496 info.si_code = CLD_EXITED;
1497 info.si_status = tsk->exit_code >> 8;
1500 psig = tsk->parent->sighand;
1501 spin_lock_irqsave(&psig->siglock, flags);
1502 if (sig == SIGCHLD &&
1503 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1504 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1506 * We are exiting and our parent doesn't care. POSIX.1
1507 * defines special semantics for setting SIGCHLD to SIG_IGN
1508 * or setting the SA_NOCLDWAIT flag: we should be reaped
1509 * automatically and not left for our parent's wait4 call.
1510 * Rather than having the parent do it as a magic kind of
1511 * signal handler, we just set this to tell do_exit that we
1512 * can be cleaned up without becoming a zombie. Note that
1513 * we still call __wake_up_parent in this case, because a
1514 * blocked sys_wait4 might now return -ECHILD.
1516 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1517 * is implementation-defined: we do (if you don't want
1518 * it, just use SIG_IGN instead).
1520 tsk->exit_signal = -1;
1521 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1524 if (valid_signal(sig) && sig > 0)
1525 __group_send_sig_info(sig, &info, tsk->parent);
1526 __wake_up_parent(tsk, tsk->parent);
1527 spin_unlock_irqrestore(&psig->siglock, flags);
1530 static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1532 struct siginfo info;
1533 unsigned long flags;
1534 struct task_struct *parent;
1535 struct sighand_struct *sighand;
1538 parent = tsk->parent;
1540 tsk = tsk->group_leader;
1541 parent = tsk->real_parent;
1544 info.si_signo = SIGCHLD;
1546 info.si_pid = tsk->pid;
1547 info.si_uid = tsk->uid;
1549 /* FIXME: find out whether or not this is supposed to be c*time. */
1550 info.si_utime = cputime_to_jiffies(tsk->utime);
1551 info.si_stime = cputime_to_jiffies(tsk->stime);
1556 info.si_status = SIGCONT;
1559 info.si_status = tsk->signal->group_exit_code & 0x7f;
1562 info.si_status = tsk->exit_code & 0x7f;
1568 sighand = parent->sighand;
1569 spin_lock_irqsave(&sighand->siglock, flags);
1570 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1571 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1572 __group_send_sig_info(SIGCHLD, &info, parent);
1574 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1576 __wake_up_parent(tsk, parent);
1577 spin_unlock_irqrestore(&sighand->siglock, flags);
1581 * This must be called with current->sighand->siglock held.
1583 * This should be the path for all ptrace stops.
1584 * We always set current->last_siginfo while stopped here.
1585 * That makes it a way to test a stopped process for
1586 * being ptrace-stopped vs being job-control-stopped.
1588 * If we actually decide not to stop at all because the tracer is gone,
1589 * we leave nostop_code in current->exit_code.
1591 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1594 * If there is a group stop in progress,
1595 * we must participate in the bookkeeping.
1597 if (current->signal->group_stop_count > 0)
1598 --current->signal->group_stop_count;
1600 current->last_siginfo = info;
1601 current->exit_code = exit_code;
1603 /* Let the debugger run. */
1604 set_current_state(TASK_TRACED);
1605 spin_unlock_irq(¤t->sighand->siglock);
1606 read_lock(&tasklist_lock);
1607 if (likely(current->ptrace & PT_PTRACED) &&
1608 likely(current->parent != current->real_parent ||
1609 !(current->ptrace & PT_ATTACHED)) &&
1610 (likely(current->parent->signal != current->signal) ||
1611 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1612 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1613 read_unlock(&tasklist_lock);
1617 * By the time we got the lock, our tracer went away.
1620 read_unlock(&tasklist_lock);
1621 set_current_state(TASK_RUNNING);
1622 current->exit_code = nostop_code;
1626 * We are back. Now reacquire the siglock before touching
1627 * last_siginfo, so that we are sure to have synchronized with
1628 * any signal-sending on another CPU that wants to examine it.
1630 spin_lock_irq(¤t->sighand->siglock);
1631 current->last_siginfo = NULL;
1634 * Queued signals ignored us while we were stopped for tracing.
1635 * So check for any that we should take before resuming user mode.
1637 recalc_sigpending();
1640 void ptrace_notify(int exit_code)
1644 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1646 memset(&info, 0, sizeof info);
1647 info.si_signo = SIGTRAP;
1648 info.si_code = exit_code;
1649 info.si_pid = current->pid;
1650 info.si_uid = current->uid;
1652 /* Let the debugger run. */
1653 spin_lock_irq(¤t->sighand->siglock);
1654 ptrace_stop(exit_code, 0, &info);
1655 spin_unlock_irq(¤t->sighand->siglock);
1659 finish_stop(int stop_count)
1664 * If there are no other threads in the group, or if there is
1665 * a group stop in progress and we are the last to stop,
1666 * report to the parent. When ptraced, every thread reports itself.
1668 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1670 else if (stop_count == 0)
1675 read_lock(&tasklist_lock);
1676 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1677 read_unlock(&tasklist_lock);
1682 * Now we don't run again until continued.
1684 current->exit_code = 0;
1688 * This performs the stopping for SIGSTOP and other stop signals.
1689 * We have to stop all threads in the thread group.
1690 * Returns nonzero if we've actually stopped and released the siglock.
1691 * Returns zero if we didn't stop and still hold the siglock.
1694 do_signal_stop(int signr)
1696 struct signal_struct *sig = current->signal;
1697 struct sighand_struct *sighand = current->sighand;
1698 int stop_count = -1;
1700 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1703 if (sig->group_stop_count > 0) {
1705 * There is a group stop in progress. We don't need to
1706 * start another one.
1708 signr = sig->group_exit_code;
1709 stop_count = --sig->group_stop_count;
1710 current->exit_code = signr;
1711 set_current_state(TASK_STOPPED);
1712 if (stop_count == 0)
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 spin_unlock_irq(&sighand->siglock);
1716 else if (thread_group_empty(current)) {
1718 * Lock must be held through transition to stopped state.
1720 current->exit_code = current->signal->group_exit_code = signr;
1721 set_current_state(TASK_STOPPED);
1722 sig->flags = SIGNAL_STOP_STOPPED;
1723 spin_unlock_irq(&sighand->siglock);
1727 * There is no group stop already in progress.
1728 * We must initiate one now, but that requires
1729 * dropping siglock to get both the tasklist lock
1730 * and siglock again in the proper order. Note that
1731 * this allows an intervening SIGCONT to be posted.
1732 * We need to check for that and bail out if necessary.
1734 struct task_struct *t;
1736 spin_unlock_irq(&sighand->siglock);
1738 /* signals can be posted during this window */
1740 read_lock(&tasklist_lock);
1741 spin_lock_irq(&sighand->siglock);
1743 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1745 * Another stop or continue happened while we
1746 * didn't have the lock. We can just swallow this
1747 * signal now. If we raced with a SIGCONT, that
1748 * should have just cleared it now. If we raced
1749 * with another processor delivering a stop signal,
1750 * then the SIGCONT that wakes us up should clear it.
1752 read_unlock(&tasklist_lock);
1756 if (sig->group_stop_count == 0) {
1757 sig->group_exit_code = signr;
1759 for (t = next_thread(current); t != current;
1762 * Setting state to TASK_STOPPED for a group
1763 * stop is always done with the siglock held,
1764 * so this check has no races.
1766 if (t->state < TASK_STOPPED) {
1768 signal_wake_up(t, 0);
1770 sig->group_stop_count = stop_count;
1773 /* A race with another thread while unlocked. */
1774 signr = sig->group_exit_code;
1775 stop_count = --sig->group_stop_count;
1778 current->exit_code = signr;
1779 set_current_state(TASK_STOPPED);
1780 if (stop_count == 0)
1781 sig->flags = SIGNAL_STOP_STOPPED;
1783 spin_unlock_irq(&sighand->siglock);
1784 read_unlock(&tasklist_lock);
1787 finish_stop(stop_count);
1792 * Do appropriate magic when group_stop_count > 0.
1793 * We return nonzero if we stopped, after releasing the siglock.
1794 * We return zero if we still hold the siglock and should look
1795 * for another signal without checking group_stop_count again.
1797 static inline int handle_group_stop(void)
1801 if (current->signal->group_exit_task == current) {
1803 * Group stop is so we can do a core dump,
1804 * We are the initiating thread, so get on with it.
1806 current->signal->group_exit_task = NULL;
1810 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1812 * Group stop is so another thread can do a core dump,
1813 * or else we are racing against a death signal.
1814 * Just punt the stop so we can get the next signal.
1819 * There is a group stop in progress. We stop
1820 * without any associated signal being in our queue.
1822 stop_count = --current->signal->group_stop_count;
1823 if (stop_count == 0)
1824 current->signal->flags = SIGNAL_STOP_STOPPED;
1825 current->exit_code = current->signal->group_exit_code;
1826 set_current_state(TASK_STOPPED);
1827 spin_unlock_irq(¤t->sighand->siglock);
1828 finish_stop(stop_count);
1832 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1833 struct pt_regs *regs, void *cookie)
1835 sigset_t *mask = ¤t->blocked;
1839 spin_lock_irq(¤t->sighand->siglock);
1841 struct k_sigaction *ka;
1843 if (unlikely(current->signal->group_stop_count > 0) &&
1844 handle_group_stop())
1847 signr = dequeue_signal(current, mask, info);
1850 break; /* will return 0 */
1852 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1853 ptrace_signal_deliver(regs, cookie);
1855 /* Let the debugger run. */
1856 ptrace_stop(signr, signr, info);
1858 /* We're back. Did the debugger cancel the sig? */
1859 signr = current->exit_code;
1863 current->exit_code = 0;
1865 /* Update the siginfo structure if the signal has
1866 changed. If the debugger wanted something
1867 specific in the siginfo structure then it should
1868 have updated *info via PTRACE_SETSIGINFO. */
1869 if (signr != info->si_signo) {
1870 info->si_signo = signr;
1872 info->si_code = SI_USER;
1873 info->si_pid = current->parent->pid;
1874 info->si_uid = current->parent->uid;
1877 /* If the (new) signal is now blocked, requeue it. */
1878 if (sigismember(¤t->blocked, signr)) {
1879 specific_send_sig_info(signr, info, current);
1884 ka = ¤t->sighand->action[signr-1];
1885 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1887 if (ka->sa.sa_handler != SIG_DFL) {
1888 /* Run the handler. */
1891 if (ka->sa.sa_flags & SA_ONESHOT)
1892 ka->sa.sa_handler = SIG_DFL;
1894 break; /* will return non-zero "signr" value */
1898 * Now we are doing the default action for this signal.
1900 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1903 /* Init gets no signals it doesn't want. */
1904 if (current->pid == 1)
1907 if (sig_kernel_stop(signr)) {
1909 * The default action is to stop all threads in
1910 * the thread group. The job control signals
1911 * do nothing in an orphaned pgrp, but SIGSTOP
1912 * always works. Note that siglock needs to be
1913 * dropped during the call to is_orphaned_pgrp()
1914 * because of lock ordering with tasklist_lock.
1915 * This allows an intervening SIGCONT to be posted.
1916 * We need to check for that and bail out if necessary.
1918 if (signr != SIGSTOP) {
1919 spin_unlock_irq(¤t->sighand->siglock);
1921 /* signals can be posted during this window */
1923 if (is_orphaned_pgrp(process_group(current)))
1926 spin_lock_irq(¤t->sighand->siglock);
1929 if (likely(do_signal_stop(signr))) {
1930 /* It released the siglock. */
1935 * We didn't actually stop, due to a race
1936 * with SIGCONT or something like that.
1941 spin_unlock_irq(¤t->sighand->siglock);
1944 * Anything else is fatal, maybe with a core dump.
1946 current->flags |= PF_SIGNALED;
1947 if (sig_kernel_coredump(signr)) {
1949 * If it was able to dump core, this kills all
1950 * other threads in the group and synchronizes with
1951 * their demise. If we lost the race with another
1952 * thread getting here, it set group_exit_code
1953 * first and our do_group_exit call below will use
1954 * that value and ignore the one we pass it.
1956 do_coredump((long)signr, signr, regs);
1960 * Death signals, no core dump.
1962 do_group_exit(signr);
1965 spin_unlock_irq(¤t->sighand->siglock);
1969 EXPORT_SYMBOL(recalc_sigpending);
1970 EXPORT_SYMBOL_GPL(dequeue_signal);
1971 EXPORT_SYMBOL(flush_signals);
1972 EXPORT_SYMBOL(force_sig);
1973 EXPORT_SYMBOL(kill_pg);
1974 EXPORT_SYMBOL(kill_proc);
1975 EXPORT_SYMBOL(ptrace_notify);
1976 EXPORT_SYMBOL(send_sig);
1977 EXPORT_SYMBOL(send_sig_info);
1978 EXPORT_SYMBOL(sigprocmask);
1979 EXPORT_SYMBOL(block_all_signals);
1980 EXPORT_SYMBOL(unblock_all_signals);
1984 * System call entry points.
1987 asmlinkage long sys_restart_syscall(void)
1989 struct restart_block *restart = ¤t_thread_info()->restart_block;
1990 return restart->fn(restart);
1993 long do_no_restart_syscall(struct restart_block *param)
1999 * We don't need to get the kernel lock - this is all local to this
2000 * particular thread.. (and that's good, because this is _heavily_
2001 * used by various programs)
2005 * This is also useful for kernel threads that want to temporarily
2006 * (or permanently) block certain signals.
2008 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2009 * interface happily blocks "unblockable" signals like SIGKILL
2012 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2017 spin_lock_irq(¤t->sighand->siglock);
2018 old_block = current->blocked;
2022 sigorsets(¤t->blocked, ¤t->blocked, set);
2025 signandsets(¤t->blocked, ¤t->blocked, set);
2028 current->blocked = *set;
2033 recalc_sigpending();
2034 spin_unlock_irq(¤t->sighand->siglock);
2036 *oldset = old_block;
2041 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2043 int error = -EINVAL;
2044 sigset_t old_set, new_set;
2046 /* XXX: Don't preclude handling different sized sigset_t's. */
2047 if (sigsetsize != sizeof(sigset_t))
2052 if (copy_from_user(&new_set, set, sizeof(*set)))
2054 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2056 error = sigprocmask(how, &new_set, &old_set);
2062 spin_lock_irq(¤t->sighand->siglock);
2063 old_set = current->blocked;
2064 spin_unlock_irq(¤t->sighand->siglock);
2068 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2076 long do_sigpending(void __user *set, unsigned long sigsetsize)
2078 long error = -EINVAL;
2081 if (sigsetsize > sizeof(sigset_t))
2084 spin_lock_irq(¤t->sighand->siglock);
2085 sigorsets(&pending, ¤t->pending.signal,
2086 ¤t->signal->shared_pending.signal);
2087 spin_unlock_irq(¤t->sighand->siglock);
2089 /* Outside the lock because only this thread touches it. */
2090 sigandsets(&pending, ¤t->blocked, &pending);
2093 if (!copy_to_user(set, &pending, sigsetsize))
2101 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2103 return do_sigpending(set, sigsetsize);
2106 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2108 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2112 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2114 if (from->si_code < 0)
2115 return __copy_to_user(to, from, sizeof(siginfo_t))
2118 * If you change siginfo_t structure, please be sure
2119 * this code is fixed accordingly.
2120 * It should never copy any pad contained in the structure
2121 * to avoid security leaks, but must copy the generic
2122 * 3 ints plus the relevant union member.
2124 err = __put_user(from->si_signo, &to->si_signo);
2125 err |= __put_user(from->si_errno, &to->si_errno);
2126 err |= __put_user((short)from->si_code, &to->si_code);
2127 switch (from->si_code & __SI_MASK) {
2129 err |= __put_user(from->si_pid, &to->si_pid);
2130 err |= __put_user(from->si_uid, &to->si_uid);
2133 err |= __put_user(from->si_tid, &to->si_tid);
2134 err |= __put_user(from->si_overrun, &to->si_overrun);
2135 err |= __put_user(from->si_ptr, &to->si_ptr);
2138 err |= __put_user(from->si_band, &to->si_band);
2139 err |= __put_user(from->si_fd, &to->si_fd);
2142 err |= __put_user(from->si_addr, &to->si_addr);
2143 #ifdef __ARCH_SI_TRAPNO
2144 err |= __put_user(from->si_trapno, &to->si_trapno);
2148 err |= __put_user(from->si_pid, &to->si_pid);
2149 err |= __put_user(from->si_uid, &to->si_uid);
2150 err |= __put_user(from->si_status, &to->si_status);
2151 err |= __put_user(from->si_utime, &to->si_utime);
2152 err |= __put_user(from->si_stime, &to->si_stime);
2154 case __SI_RT: /* This is not generated by the kernel as of now. */
2155 case __SI_MESGQ: /* But this is */
2156 err |= __put_user(from->si_pid, &to->si_pid);
2157 err |= __put_user(from->si_uid, &to->si_uid);
2158 err |= __put_user(from->si_ptr, &to->si_ptr);
2160 default: /* this is just in case for now ... */
2161 err |= __put_user(from->si_pid, &to->si_pid);
2162 err |= __put_user(from->si_uid, &to->si_uid);
2171 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2172 siginfo_t __user *uinfo,
2173 const struct timespec __user *uts,
2182 /* XXX: Don't preclude handling different sized sigset_t's. */
2183 if (sigsetsize != sizeof(sigset_t))
2186 if (copy_from_user(&these, uthese, sizeof(these)))
2190 * Invert the set of allowed signals to get those we
2193 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2197 if (copy_from_user(&ts, uts, sizeof(ts)))
2199 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2204 spin_lock_irq(¤t->sighand->siglock);
2205 sig = dequeue_signal(current, &these, &info);
2207 timeout = MAX_SCHEDULE_TIMEOUT;
2209 timeout = (timespec_to_jiffies(&ts)
2210 + (ts.tv_sec || ts.tv_nsec));
2213 /* None ready -- temporarily unblock those we're
2214 * interested while we are sleeping in so that we'll
2215 * be awakened when they arrive. */
2216 current->real_blocked = current->blocked;
2217 sigandsets(¤t->blocked, ¤t->blocked, &these);
2218 recalc_sigpending();
2219 spin_unlock_irq(¤t->sighand->siglock);
2221 timeout = schedule_timeout_interruptible(timeout);
2224 spin_lock_irq(¤t->sighand->siglock);
2225 sig = dequeue_signal(current, &these, &info);
2226 current->blocked = current->real_blocked;
2227 siginitset(¤t->real_blocked, 0);
2228 recalc_sigpending();
2231 spin_unlock_irq(¤t->sighand->siglock);
2236 if (copy_siginfo_to_user(uinfo, &info))
2249 sys_kill(int pid, int sig)
2251 struct siginfo info;
2253 info.si_signo = sig;
2255 info.si_code = SI_USER;
2256 info.si_pid = current->tgid;
2257 info.si_uid = current->uid;
2259 return kill_something_info(sig, &info, pid);
2263 * sys_tgkill - send signal to one specific thread
2264 * @tgid: the thread group ID of the thread
2265 * @pid: the PID of the thread
2266 * @sig: signal to be sent
2268 * This syscall also checks the tgid and returns -ESRCH even if the PID
2269 * exists but it's not belonging to the target process anymore. This
2270 * method solves the problem of threads exiting and PIDs getting reused.
2272 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2274 struct siginfo info;
2276 struct task_struct *p;
2278 /* This is only valid for single tasks */
2279 if (pid <= 0 || tgid <= 0)
2282 info.si_signo = sig;
2284 info.si_code = SI_TKILL;
2285 info.si_pid = current->tgid;
2286 info.si_uid = current->uid;
2288 read_lock(&tasklist_lock);
2289 p = find_task_by_pid(pid);
2291 if (p && (p->tgid == tgid)) {
2292 error = check_kill_permission(sig, &info, p);
2294 * The null signal is a permissions and process existence
2295 * probe. No signal is actually delivered.
2297 if (!error && sig && p->sighand) {
2298 spin_lock_irq(&p->sighand->siglock);
2299 handle_stop_signal(sig, p);
2300 error = specific_send_sig_info(sig, &info, p);
2301 spin_unlock_irq(&p->sighand->siglock);
2304 read_unlock(&tasklist_lock);
2309 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2312 sys_tkill(int pid, int sig)
2314 struct siginfo info;
2316 struct task_struct *p;
2318 /* This is only valid for single tasks */
2322 info.si_signo = sig;
2324 info.si_code = SI_TKILL;
2325 info.si_pid = current->tgid;
2326 info.si_uid = current->uid;
2328 read_lock(&tasklist_lock);
2329 p = find_task_by_pid(pid);
2332 error = check_kill_permission(sig, &info, p);
2334 * The null signal is a permissions and process existence
2335 * probe. No signal is actually delivered.
2337 if (!error && sig && p->sighand) {
2338 spin_lock_irq(&p->sighand->siglock);
2339 handle_stop_signal(sig, p);
2340 error = specific_send_sig_info(sig, &info, p);
2341 spin_unlock_irq(&p->sighand->siglock);
2344 read_unlock(&tasklist_lock);
2349 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2353 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2356 /* Not even root can pretend to send signals from the kernel.
2357 Nor can they impersonate a kill(), which adds source info. */
2358 if (info.si_code >= 0)
2360 info.si_signo = sig;
2362 /* POSIX.1b doesn't mention process groups. */
2363 return kill_proc_info(sig, &info, pid);
2367 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2369 struct k_sigaction *k;
2371 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2374 k = ¤t->sighand->action[sig-1];
2376 spin_lock_irq(¤t->sighand->siglock);
2377 if (signal_pending(current)) {
2379 * If there might be a fatal signal pending on multiple
2380 * threads, make sure we take it before changing the action.
2382 spin_unlock_irq(¤t->sighand->siglock);
2383 return -ERESTARTNOINTR;
2392 * "Setting a signal action to SIG_IGN for a signal that is
2393 * pending shall cause the pending signal to be discarded,
2394 * whether or not it is blocked."
2396 * "Setting a signal action to SIG_DFL for a signal that is
2397 * pending and whose default action is to ignore the signal
2398 * (for example, SIGCHLD), shall cause the pending signal to
2399 * be discarded, whether or not it is blocked"
2401 if (act->sa.sa_handler == SIG_IGN ||
2402 (act->sa.sa_handler == SIG_DFL &&
2403 sig_kernel_ignore(sig))) {
2405 * This is a fairly rare case, so we only take the
2406 * tasklist_lock once we're sure we'll need it.
2407 * Now we must do this little unlock and relock
2408 * dance to maintain the lock hierarchy.
2410 struct task_struct *t = current;
2411 spin_unlock_irq(&t->sighand->siglock);
2412 read_lock(&tasklist_lock);
2413 spin_lock_irq(&t->sighand->siglock);
2415 sigdelsetmask(&k->sa.sa_mask,
2416 sigmask(SIGKILL) | sigmask(SIGSTOP));
2417 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2419 rm_from_queue(sigmask(sig), &t->pending);
2420 recalc_sigpending_tsk(t);
2422 } while (t != current);
2423 spin_unlock_irq(¤t->sighand->siglock);
2424 read_unlock(&tasklist_lock);
2429 sigdelsetmask(&k->sa.sa_mask,
2430 sigmask(SIGKILL) | sigmask(SIGSTOP));
2433 spin_unlock_irq(¤t->sighand->siglock);
2438 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2444 oss.ss_sp = (void __user *) current->sas_ss_sp;
2445 oss.ss_size = current->sas_ss_size;
2446 oss.ss_flags = sas_ss_flags(sp);
2455 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2456 || __get_user(ss_sp, &uss->ss_sp)
2457 || __get_user(ss_flags, &uss->ss_flags)
2458 || __get_user(ss_size, &uss->ss_size))
2462 if (on_sig_stack(sp))
2468 * Note - this code used to test ss_flags incorrectly
2469 * old code may have been written using ss_flags==0
2470 * to mean ss_flags==SS_ONSTACK (as this was the only
2471 * way that worked) - this fix preserves that older
2474 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2477 if (ss_flags == SS_DISABLE) {
2482 if (ss_size < MINSIGSTKSZ)
2486 current->sas_ss_sp = (unsigned long) ss_sp;
2487 current->sas_ss_size = ss_size;
2492 if (copy_to_user(uoss, &oss, sizeof(oss)))
2501 #ifdef __ARCH_WANT_SYS_SIGPENDING
2504 sys_sigpending(old_sigset_t __user *set)
2506 return do_sigpending(set, sizeof(*set));
2511 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2512 /* Some platforms have their own version with special arguments others
2513 support only sys_rt_sigprocmask. */
2516 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2519 old_sigset_t old_set, new_set;
2523 if (copy_from_user(&new_set, set, sizeof(*set)))
2525 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2527 spin_lock_irq(¤t->sighand->siglock);
2528 old_set = current->blocked.sig[0];
2536 sigaddsetmask(¤t->blocked, new_set);
2539 sigdelsetmask(¤t->blocked, new_set);
2542 current->blocked.sig[0] = new_set;
2546 recalc_sigpending();
2547 spin_unlock_irq(¤t->sighand->siglock);
2553 old_set = current->blocked.sig[0];
2556 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2563 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2565 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2567 sys_rt_sigaction(int sig,
2568 const struct sigaction __user *act,
2569 struct sigaction __user *oact,
2572 struct k_sigaction new_sa, old_sa;
2575 /* XXX: Don't preclude handling different sized sigset_t's. */
2576 if (sigsetsize != sizeof(sigset_t))
2580 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2584 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2587 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2593 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2595 #ifdef __ARCH_WANT_SYS_SGETMASK
2598 * For backwards compatibility. Functionality superseded by sigprocmask.
2604 return current->blocked.sig[0];
2608 sys_ssetmask(int newmask)
2612 spin_lock_irq(¤t->sighand->siglock);
2613 old = current->blocked.sig[0];
2615 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2617 recalc_sigpending();
2618 spin_unlock_irq(¤t->sighand->siglock);
2622 #endif /* __ARCH_WANT_SGETMASK */
2624 #ifdef __ARCH_WANT_SYS_SIGNAL
2626 * For backwards compatibility. Functionality superseded by sigaction.
2628 asmlinkage unsigned long
2629 sys_signal(int sig, __sighandler_t handler)
2631 struct k_sigaction new_sa, old_sa;
2634 new_sa.sa.sa_handler = handler;
2635 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2637 ret = do_sigaction(sig, &new_sa, &old_sa);
2639 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2641 #endif /* __ARCH_WANT_SYS_SIGNAL */
2643 #ifdef __ARCH_WANT_SYS_PAUSE
2648 current->state = TASK_INTERRUPTIBLE;
2650 return -ERESTARTNOHAND;
2655 void __init signals_init(void)
2658 kmem_cache_create("sigqueue",
2659 sizeof(struct sigqueue),
2660 __alignof__(struct sigqueue),
2661 SLAB_PANIC, NULL, NULL);