1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/semaphore.h>
9 #include <asm/processor.h>
13 #include <asm/mmu_context.h>
16 #ifdef CONFIG_X86_LOCAL_APIC
17 #include <asm/mpspec.h>
19 #include <mach_apic.h>
25 DEFINE_PER_CPU(struct Xgt_desc_struct, cpu_gdt_descr);
26 EXPORT_PER_CPU_SYMBOL(cpu_gdt_descr);
28 struct i386_pda *_cpu_pda[NR_CPUS] __read_mostly;
29 EXPORT_SYMBOL(_cpu_pda);
31 static int cachesize_override __cpuinitdata = -1;
32 static int disable_x86_fxsr __cpuinitdata;
33 static int disable_x86_serial_nr __cpuinitdata = 1;
34 static int disable_x86_sep __cpuinitdata;
36 struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
38 extern int disable_pse;
40 static void __cpuinit default_init(struct cpuinfo_x86 * c)
42 /* Not much we can do here... */
43 /* Check if at least it has cpuid */
44 if (c->cpuid_level == -1) {
45 /* No cpuid. It must be an ancient CPU */
47 strcpy(c->x86_model_id, "486");
49 strcpy(c->x86_model_id, "386");
53 static struct cpu_dev __cpuinitdata default_cpu = {
54 .c_init = default_init,
55 .c_vendor = "Unknown",
57 static struct cpu_dev * this_cpu = &default_cpu;
59 static int __init cachesize_setup(char *str)
61 get_option (&str, &cachesize_override);
64 __setup("cachesize=", cachesize_setup);
66 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
71 if (cpuid_eax(0x80000000) < 0x80000004)
74 v = (unsigned int *) c->x86_model_id;
75 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
76 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
77 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
78 c->x86_model_id[48] = 0;
80 /* Intel chips right-justify this string for some dumb reason;
81 undo that brain damage */
82 p = q = &c->x86_model_id[0];
88 while ( q <= &c->x86_model_id[48] )
89 *q++ = '\0'; /* Zero-pad the rest */
96 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
98 unsigned int n, dummy, ecx, edx, l2size;
100 n = cpuid_eax(0x80000000);
102 if (n >= 0x80000005) {
103 cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
104 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
105 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
106 c->x86_cache_size=(ecx>>24)+(edx>>24);
109 if (n < 0x80000006) /* Some chips just has a large L1. */
112 ecx = cpuid_ecx(0x80000006);
115 /* do processor-specific cache resizing */
116 if (this_cpu->c_size_cache)
117 l2size = this_cpu->c_size_cache(c,l2size);
119 /* Allow user to override all this if necessary. */
120 if (cachesize_override != -1)
121 l2size = cachesize_override;
124 return; /* Again, no L2 cache is possible */
126 c->x86_cache_size = l2size;
128 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
132 /* Naming convention should be: <Name> [(<Codename>)] */
133 /* This table only is used unless init_<vendor>() below doesn't set it; */
134 /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
136 /* Look up CPU names by table lookup. */
137 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
139 struct cpu_model_info *info;
141 if ( c->x86_model >= 16 )
142 return NULL; /* Range check */
147 info = this_cpu->c_models;
149 while (info && info->family) {
150 if (info->family == c->x86)
151 return info->model_names[c->x86_model];
154 return NULL; /* Not found */
158 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
160 char *v = c->x86_vendor_id;
164 for (i = 0; i < X86_VENDOR_NUM; i++) {
166 if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
167 (cpu_devs[i]->c_ident[1] &&
168 !strcmp(v,cpu_devs[i]->c_ident[1]))) {
171 this_cpu = cpu_devs[i];
178 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
179 printk(KERN_ERR "CPU: Your system may be unstable.\n");
181 c->x86_vendor = X86_VENDOR_UNKNOWN;
182 this_cpu = &default_cpu;
186 static int __init x86_fxsr_setup(char * s)
188 /* Tell all the other CPU's to not use it... */
189 disable_x86_fxsr = 1;
192 * ... and clear the bits early in the boot_cpu_data
193 * so that the bootup process doesn't try to do this
196 clear_bit(X86_FEATURE_FXSR, boot_cpu_data.x86_capability);
197 clear_bit(X86_FEATURE_XMM, boot_cpu_data.x86_capability);
200 __setup("nofxsr", x86_fxsr_setup);
203 static int __init x86_sep_setup(char * s)
208 __setup("nosep", x86_sep_setup);
211 /* Standard macro to see if a specific flag is changeable */
212 static inline int flag_is_changeable_p(u32 flag)
226 : "=&r" (f1), "=&r" (f2)
229 return ((f1^f2) & flag) != 0;
233 /* Probe for the CPUID instruction */
234 static int __cpuinit have_cpuid_p(void)
236 return flag_is_changeable_p(X86_EFLAGS_ID);
239 void __init cpu_detect(struct cpuinfo_x86 *c)
241 /* Get vendor name */
242 cpuid(0x00000000, &c->cpuid_level,
243 (int *)&c->x86_vendor_id[0],
244 (int *)&c->x86_vendor_id[8],
245 (int *)&c->x86_vendor_id[4]);
248 if (c->cpuid_level >= 0x00000001) {
249 u32 junk, tfms, cap0, misc;
250 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
251 c->x86 = (tfms >> 8) & 15;
252 c->x86_model = (tfms >> 4) & 15;
254 c->x86 += (tfms >> 20) & 0xff;
256 c->x86_model += ((tfms >> 16) & 0xF) << 4;
257 c->x86_mask = tfms & 15;
259 c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
263 /* Do minimum CPU detection early.
264 Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
265 The others are not touched to avoid unwanted side effects.
267 WARNING: this function is only called on the BP. Don't add code here
268 that is supposed to run on all CPUs. */
269 static void __init early_cpu_detect(void)
271 struct cpuinfo_x86 *c = &boot_cpu_data;
273 c->x86_cache_alignment = 32;
280 get_cpu_vendor(c, 1);
283 static void __cpuinit generic_identify(struct cpuinfo_x86 * c)
288 if (have_cpuid_p()) {
289 /* Get vendor name */
290 cpuid(0x00000000, &c->cpuid_level,
291 (int *)&c->x86_vendor_id[0],
292 (int *)&c->x86_vendor_id[8],
293 (int *)&c->x86_vendor_id[4]);
295 get_cpu_vendor(c, 0);
296 /* Initialize the standard set of capabilities */
297 /* Note that the vendor-specific code below might override */
299 /* Intel-defined flags: level 0x00000001 */
300 if ( c->cpuid_level >= 0x00000001 ) {
301 u32 capability, excap;
302 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
303 c->x86_capability[0] = capability;
304 c->x86_capability[4] = excap;
305 c->x86 = (tfms >> 8) & 15;
306 c->x86_model = (tfms >> 4) & 15;
308 c->x86 += (tfms >> 20) & 0xff;
310 c->x86_model += ((tfms >> 16) & 0xF) << 4;
311 c->x86_mask = tfms & 15;
313 c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
315 c->apicid = (ebx >> 24) & 0xFF;
317 if (c->x86_capability[0] & (1<<19))
318 c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
320 /* Have CPUID level 0 only - unheard of */
324 /* AMD-defined flags: level 0x80000001 */
325 xlvl = cpuid_eax(0x80000000);
326 if ( (xlvl & 0xffff0000) == 0x80000000 ) {
327 if ( xlvl >= 0x80000001 ) {
328 c->x86_capability[1] = cpuid_edx(0x80000001);
329 c->x86_capability[6] = cpuid_ecx(0x80000001);
331 if ( xlvl >= 0x80000004 )
332 get_model_name(c); /* Default name */
336 early_intel_workaround(c);
339 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
343 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
345 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
346 /* Disable processor serial number */
348 rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
350 wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
351 printk(KERN_NOTICE "CPU serial number disabled.\n");
352 clear_bit(X86_FEATURE_PN, c->x86_capability);
354 /* Disabling the serial number may affect the cpuid level */
355 c->cpuid_level = cpuid_eax(0);
359 static int __init x86_serial_nr_setup(char *s)
361 disable_x86_serial_nr = 0;
364 __setup("serialnumber", x86_serial_nr_setup);
369 * This does the hard work of actually picking apart the CPU stuff...
371 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
375 c->loops_per_jiffy = loops_per_jiffy;
376 c->x86_cache_size = -1;
377 c->x86_vendor = X86_VENDOR_UNKNOWN;
378 c->cpuid_level = -1; /* CPUID not detected */
379 c->x86_model = c->x86_mask = 0; /* So far unknown... */
380 c->x86_vendor_id[0] = '\0'; /* Unset */
381 c->x86_model_id[0] = '\0'; /* Unset */
382 c->x86_max_cores = 1;
383 c->x86_clflush_size = 32;
384 memset(&c->x86_capability, 0, sizeof c->x86_capability);
386 if (!have_cpuid_p()) {
387 /* First of all, decide if this is a 486 or higher */
388 /* It's a 486 if we can modify the AC flag */
389 if ( flag_is_changeable_p(X86_EFLAGS_AC) )
397 printk(KERN_DEBUG "CPU: After generic identify, caps:");
398 for (i = 0; i < NCAPINTS; i++)
399 printk(" %08lx", c->x86_capability[i]);
402 if (this_cpu->c_identify) {
403 this_cpu->c_identify(c);
405 printk(KERN_DEBUG "CPU: After vendor identify, caps:");
406 for (i = 0; i < NCAPINTS; i++)
407 printk(" %08lx", c->x86_capability[i]);
412 * Vendor-specific initialization. In this section we
413 * canonicalize the feature flags, meaning if there are
414 * features a certain CPU supports which CPUID doesn't
415 * tell us, CPUID claiming incorrect flags, or other bugs,
416 * we handle them here.
418 * At the end of this section, c->x86_capability better
419 * indicate the features this CPU genuinely supports!
421 if (this_cpu->c_init)
424 /* Disable the PN if appropriate */
425 squash_the_stupid_serial_number(c);
428 * The vendor-specific functions might have changed features. Now
429 * we do "generic changes."
434 clear_bit(X86_FEATURE_TSC, c->x86_capability);
437 if (disable_x86_fxsr) {
438 clear_bit(X86_FEATURE_FXSR, c->x86_capability);
439 clear_bit(X86_FEATURE_XMM, c->x86_capability);
444 clear_bit(X86_FEATURE_SEP, c->x86_capability);
447 clear_bit(X86_FEATURE_PSE, c->x86_capability);
449 /* If the model name is still unset, do table lookup. */
450 if ( !c->x86_model_id[0] ) {
452 p = table_lookup_model(c);
454 strcpy(c->x86_model_id, p);
457 sprintf(c->x86_model_id, "%02x/%02x",
458 c->x86, c->x86_model);
461 /* Now the feature flags better reflect actual CPU features! */
463 printk(KERN_DEBUG "CPU: After all inits, caps:");
464 for (i = 0; i < NCAPINTS; i++)
465 printk(" %08lx", c->x86_capability[i]);
469 * On SMP, boot_cpu_data holds the common feature set between
470 * all CPUs; so make sure that we indicate which features are
471 * common between the CPUs. The first time this routine gets
472 * executed, c == &boot_cpu_data.
474 if ( c != &boot_cpu_data ) {
475 /* AND the already accumulated flags with these */
476 for ( i = 0 ; i < NCAPINTS ; i++ )
477 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
480 /* Init Machine Check Exception if available. */
483 if (c == &boot_cpu_data)
487 if (c == &boot_cpu_data)
494 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
496 u32 eax, ebx, ecx, edx;
497 int index_msb, core_bits;
499 cpuid(1, &eax, &ebx, &ecx, &edx);
501 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
504 smp_num_siblings = (ebx & 0xff0000) >> 16;
506 if (smp_num_siblings == 1) {
507 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
508 } else if (smp_num_siblings > 1 ) {
510 if (smp_num_siblings > NR_CPUS) {
511 printk(KERN_WARNING "CPU: Unsupported number of the "
512 "siblings %d", smp_num_siblings);
513 smp_num_siblings = 1;
517 index_msb = get_count_order(smp_num_siblings);
518 c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
520 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
523 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
525 index_msb = get_count_order(smp_num_siblings) ;
527 core_bits = get_count_order(c->x86_max_cores);
529 c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
530 ((1 << core_bits) - 1);
532 if (c->x86_max_cores > 1)
533 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
539 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
543 if (c->x86_vendor < X86_VENDOR_NUM)
544 vendor = this_cpu->c_vendor;
545 else if (c->cpuid_level >= 0)
546 vendor = c->x86_vendor_id;
548 if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
549 printk("%s ", vendor);
551 if (!c->x86_model_id[0])
552 printk("%d86", c->x86);
554 printk("%s", c->x86_model_id);
556 if (c->x86_mask || c->cpuid_level >= 0)
557 printk(" stepping %02x\n", c->x86_mask);
562 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
565 * We're emulating future behavior.
566 * In the future, the cpu-specific init functions will be called implicitly
567 * via the magic of initcalls.
568 * They will insert themselves into the cpu_devs structure.
569 * Then, when cpu_init() is called, we can just iterate over that array.
572 extern int intel_cpu_init(void);
573 extern int cyrix_init_cpu(void);
574 extern int nsc_init_cpu(void);
575 extern int amd_init_cpu(void);
576 extern int centaur_init_cpu(void);
577 extern int transmeta_init_cpu(void);
578 extern int rise_init_cpu(void);
579 extern int nexgen_init_cpu(void);
580 extern int umc_init_cpu(void);
582 void __init early_cpu_init(void)
589 transmeta_init_cpu();
595 #ifdef CONFIG_DEBUG_PAGEALLOC
596 /* pse is not compatible with on-the-fly unmapping,
597 * disable it even if the cpus claim to support it.
599 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
604 /* Make sure %gs is initialized properly in idle threads */
605 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
607 memset(regs, 0, sizeof(struct pt_regs));
608 regs->xgs = __KERNEL_PDA;
612 static __cpuinit int alloc_gdt(int cpu)
614 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
615 struct desc_struct *gdt;
616 struct i386_pda *pda;
618 gdt = (struct desc_struct *)cpu_gdt_descr->address;
622 * This is a horrible hack to allocate the GDT. The problem
623 * is that cpu_init() is called really early for the boot CPU
624 * (and hence needs bootmem) but much later for the secondary
625 * CPUs, when bootmem will have gone away
627 if (NODE_DATA(0)->bdata->node_bootmem_map) {
628 BUG_ON(gdt != NULL || pda != NULL);
630 gdt = alloc_bootmem_pages(PAGE_SIZE);
631 pda = alloc_bootmem(sizeof(*pda));
632 /* alloc_bootmem(_pages) panics on failure, so no check */
634 memset(gdt, 0, PAGE_SIZE);
635 memset(pda, 0, sizeof(*pda));
637 /* GDT and PDA might already have been allocated if
638 this is a CPU hotplug re-insertion. */
640 gdt = (struct desc_struct *)get_zeroed_page(GFP_KERNEL);
643 pda = kmalloc_node(sizeof(*pda), GFP_KERNEL, cpu_to_node(cpu));
645 if (unlikely(!gdt || !pda)) {
646 free_pages((unsigned long)gdt, 0);
652 cpu_gdt_descr->address = (unsigned long)gdt;
658 /* Initial PDA used by boot CPU */
659 struct i386_pda boot_pda = {
662 .pcurrent = &init_task,
665 static inline void set_kernel_gs(void)
667 /* Set %gs for this CPU's PDA. Memory clobber is to create a
668 barrier with respect to any PDA operations, so the compiler
669 doesn't move any before here. */
670 asm volatile ("mov %0, %%gs" : : "r" (__KERNEL_PDA) : "memory");
673 /* Initialize the CPU's GDT and PDA. The boot CPU does this for
674 itself, but secondaries find this done for them. */
675 __cpuinit int init_gdt(int cpu, struct task_struct *idle)
677 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
678 struct desc_struct *gdt;
679 struct i386_pda *pda;
681 /* For non-boot CPUs, the GDT and PDA should already have been
683 if (!alloc_gdt(cpu)) {
684 printk(KERN_CRIT "CPU%d failed to allocate GDT or PDA\n", cpu);
688 gdt = (struct desc_struct *)cpu_gdt_descr->address;
691 BUG_ON(gdt == NULL || pda == NULL);
694 * Initialize the per-CPU GDT with the boot GDT,
695 * and set up the GDT descriptor:
697 memcpy(gdt, cpu_gdt_table, GDT_SIZE);
698 cpu_gdt_descr->size = GDT_SIZE - 1;
700 pack_descriptor((u32 *)&gdt[GDT_ENTRY_PDA].a,
701 (u32 *)&gdt[GDT_ENTRY_PDA].b,
702 (unsigned long)pda, sizeof(*pda) - 1,
703 0x80 | DESCTYPE_S | 0x2, 0); /* present read-write data segment */
705 memset(pda, 0, sizeof(*pda));
707 pda->cpu_number = cpu;
708 pda->pcurrent = idle;
713 /* Common CPU init for both boot and secondary CPUs */
714 static void __cpuinit _cpu_init(int cpu, struct task_struct *curr)
716 struct tss_struct * t = &per_cpu(init_tss, cpu);
717 struct thread_struct *thread = &curr->thread;
718 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
720 /* Reinit these anyway, even if they've already been done (on
721 the boot CPU, this will transition from the boot gdt+pda to
723 load_gdt(cpu_gdt_descr);
726 if (cpu_test_and_set(cpu, cpu_initialized)) {
727 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
728 for (;;) local_irq_enable();
731 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
733 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
734 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
735 if (tsc_disable && cpu_has_tsc) {
736 printk(KERN_NOTICE "Disabling TSC...\n");
737 /**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
738 clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
739 set_in_cr4(X86_CR4_TSD);
742 load_idt(&idt_descr);
745 * Set up and load the per-CPU TSS and LDT
747 atomic_inc(&init_mm.mm_count);
748 curr->active_mm = &init_mm;
751 enter_lazy_tlb(&init_mm, curr);
753 load_esp0(t, thread);
756 load_LDT(&init_mm.context);
758 #ifdef CONFIG_DOUBLEFAULT
759 /* Set up doublefault TSS pointer in the GDT */
760 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
764 asm volatile ("mov %0, %%fs" : : "r" (0));
766 /* Clear all 6 debug registers: */
775 * Force FPU initialization:
777 current_thread_info()->status = 0;
779 mxcsr_feature_mask_init();
782 /* Entrypoint to initialize secondary CPU */
783 void __cpuinit secondary_cpu_init(void)
785 int cpu = smp_processor_id();
786 struct task_struct *curr = current;
788 _cpu_init(cpu, curr);
792 * cpu_init() initializes state that is per-CPU. Some data is already
793 * initialized (naturally) in the bootstrap process, such as the GDT
794 * and IDT. We reload them nevertheless, this function acts as a
795 * 'CPU state barrier', nothing should get across.
797 void __cpuinit cpu_init(void)
799 int cpu = smp_processor_id();
800 struct task_struct *curr = current;
802 /* Set up the real GDT and PDA, so we can transition from the
804 if (!init_gdt(cpu, curr)) {
805 /* failed to allocate something; not much we can do... */
810 _cpu_init(cpu, curr);
813 #ifdef CONFIG_HOTPLUG_CPU
814 void __cpuinit cpu_uninit(void)
816 int cpu = raw_smp_processor_id();
817 cpu_clear(cpu, cpu_initialized);
820 per_cpu(cpu_tlbstate, cpu).state = 0;
821 per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;