1 /****************************************************************************
 
   2  * Driver for Solarflare Solarstorm network controllers and boards
 
   3  * Copyright 2005-2006 Fen Systems Ltd.
 
   4  * Copyright 2006-2008 Solarflare Communications Inc.
 
   6  * This program is free software; you can redistribute it and/or modify it
 
   7  * under the terms of the GNU General Public License version 2 as published
 
   8  * by the Free Software Foundation, incorporated herein by reference.
 
  11 #include <linux/bitops.h>
 
  12 #include <linux/delay.h>
 
  13 #include <linux/pci.h>
 
  14 #include <linux/module.h>
 
  15 #include <linux/seq_file.h>
 
  16 #include <linux/i2c.h>
 
  17 #include <linux/i2c-algo-bit.h>
 
  18 #include <linux/mii.h>
 
  19 #include "net_driver.h"
 
  25 #include "falcon_hwdefs.h"
 
  26 #include "falcon_io.h"
 
  30 #include "workarounds.h"
 
  32 /* Falcon hardware control.
 
  33  * Falcon is the internal codename for the SFC4000 controller that is
 
  34  * present in SFE400X evaluation boards
 
  38  * struct falcon_nic_data - Falcon NIC state
 
  39  * @next_buffer_table: First available buffer table id
 
  40  * @pci_dev2: The secondary PCI device if present
 
  41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
 
  43 struct falcon_nic_data {
 
  44         unsigned next_buffer_table;
 
  45         struct pci_dev *pci_dev2;
 
  46         struct i2c_algo_bit_data i2c_data;
 
  49 /**************************************************************************
 
  53  **************************************************************************
 
  56 static int disable_dma_stats;
 
  58 /* This is set to 16 for a good reason.  In summary, if larger than
 
  59  * 16, the descriptor cache holds more than a default socket
 
  60  * buffer's worth of packets (for UDP we can only have at most one
 
  61  * socket buffer's worth outstanding).  This combined with the fact
 
  62  * that we only get 1 TX event per descriptor cache means the NIC
 
  65 #define TX_DC_ENTRIES 16
 
  66 #define TX_DC_ENTRIES_ORDER 0
 
  67 #define TX_DC_BASE 0x130000
 
  69 #define RX_DC_ENTRIES 64
 
  70 #define RX_DC_ENTRIES_ORDER 2
 
  71 #define RX_DC_BASE 0x100000
 
  73 static const unsigned int
 
  74 /* "Large" EEPROM device: Atmel AT25640 or similar
 
  75  * 8 KB, 16-bit address, 32 B write block */
 
  76 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 
  77                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 
  78                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 
  79 /* Default flash device: Atmel AT25F1024
 
  80  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 
  81 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 
  82                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 
  83                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 
  84                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 
  85                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 
  87 /* RX FIFO XOFF watermark
 
  89  * When the amount of the RX FIFO increases used increases past this
 
  90  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 
  91  * This also has an effect on RX/TX arbitration
 
  93 static int rx_xoff_thresh_bytes = -1;
 
  94 module_param(rx_xoff_thresh_bytes, int, 0644);
 
  95 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
 
  97 /* RX FIFO XON watermark
 
  99  * When the amount of the RX FIFO used decreases below this
 
 100  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 
 101  * This also has an effect on RX/TX arbitration
 
 103 static int rx_xon_thresh_bytes = -1;
 
 104 module_param(rx_xon_thresh_bytes, int, 0644);
 
 105 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
 
 107 /* TX descriptor ring size - min 512 max 4k */
 
 108 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
 
 109 #define FALCON_TXD_RING_SIZE 1024
 
 110 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
 
 112 /* RX descriptor ring size - min 512 max 4k */
 
 113 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
 
 114 #define FALCON_RXD_RING_SIZE 1024
 
 115 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
 
 117 /* Event queue size - max 32k */
 
 118 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
 
 119 #define FALCON_EVQ_SIZE 4096
 
 120 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
 
 122 /* Max number of internal errors. After this resets will not be performed */
 
 123 #define FALCON_MAX_INT_ERRORS 4
 
 125 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 
 127 #define FALCON_FLUSH_INTERVAL 10
 
 128 #define FALCON_FLUSH_POLL_COUNT 100
 
 130 /**************************************************************************
 
 134  **************************************************************************
 
 137 /* DMA address mask */
 
 138 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
 
 140 /* TX DMA length mask (13-bit) */
 
 141 #define FALCON_TX_DMA_MASK (4096 - 1)
 
 143 /* Size and alignment of special buffers (4KB) */
 
 144 #define FALCON_BUF_SIZE 4096
 
 146 /* Dummy SRAM size code */
 
 147 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
 
 149 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
 
 150 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
 
 151 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
 
 152 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
 
 153 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
 
 154 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
 
 156 #define FALCON_IS_DUAL_FUNC(efx)                \
 
 157         (falcon_rev(efx) < FALCON_REV_B0)
 
 159 /**************************************************************************
 
 161  * Falcon hardware access
 
 163  **************************************************************************/
 
 165 /* Read the current event from the event queue */
 
 166 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
 
 169         return (((efx_qword_t *) (channel->eventq.addr)) + index);
 
 172 /* See if an event is present
 
 174  * We check both the high and low dword of the event for all ones.  We
 
 175  * wrote all ones when we cleared the event, and no valid event can
 
 176  * have all ones in either its high or low dwords.  This approach is
 
 177  * robust against reordering.
 
 179  * Note that using a single 64-bit comparison is incorrect; even
 
 180  * though the CPU read will be atomic, the DMA write may not be.
 
 182 static inline int falcon_event_present(efx_qword_t *event)
 
 184         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
 
 185                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
 
 188 /**************************************************************************
 
 190  * I2C bus - this is a bit-bashing interface using GPIO pins
 
 191  * Note that it uses the output enables to tristate the outputs
 
 192  * SDA is the data pin and SCL is the clock
 
 194  **************************************************************************
 
 196 static void falcon_setsda(void *data, int state)
 
 198         struct efx_nic *efx = (struct efx_nic *)data;
 
 201         falcon_read(efx, ®, GPIO_CTL_REG_KER);
 
 202         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
 
 203         falcon_write(efx, ®, GPIO_CTL_REG_KER);
 
 206 static void falcon_setscl(void *data, int state)
 
 208         struct efx_nic *efx = (struct efx_nic *)data;
 
 211         falcon_read(efx, ®, GPIO_CTL_REG_KER);
 
 212         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
 
 213         falcon_write(efx, ®, GPIO_CTL_REG_KER);
 
 216 static int falcon_getsda(void *data)
 
 218         struct efx_nic *efx = (struct efx_nic *)data;
 
 221         falcon_read(efx, ®, GPIO_CTL_REG_KER);
 
 222         return EFX_OWORD_FIELD(reg, GPIO3_IN);
 
 225 static int falcon_getscl(void *data)
 
 227         struct efx_nic *efx = (struct efx_nic *)data;
 
 230         falcon_read(efx, ®, GPIO_CTL_REG_KER);
 
 231         return EFX_OWORD_FIELD(reg, GPIO0_IN);
 
 234 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 
 235         .setsda         = falcon_setsda,
 
 236         .setscl         = falcon_setscl,
 
 237         .getsda         = falcon_getsda,
 
 238         .getscl         = falcon_getscl,
 
 240         /* Wait up to 50 ms for slave to let us pull SCL high */
 
 241         .timeout        = DIV_ROUND_UP(HZ, 20),
 
 244 /**************************************************************************
 
 246  * Falcon special buffer handling
 
 247  * Special buffers are used for event queues and the TX and RX
 
 250  *************************************************************************/
 
 253  * Initialise a Falcon special buffer
 
 255  * This will define a buffer (previously allocated via
 
 256  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
 
 257  * it to be used for event queues, descriptor rings etc.
 
 260 falcon_init_special_buffer(struct efx_nic *efx,
 
 261                            struct efx_special_buffer *buffer)
 
 263         efx_qword_t buf_desc;
 
 268         EFX_BUG_ON_PARANOID(!buffer->addr);
 
 270         /* Write buffer descriptors to NIC */
 
 271         for (i = 0; i < buffer->entries; i++) {
 
 272                 index = buffer->index + i;
 
 273                 dma_addr = buffer->dma_addr + (i * 4096);
 
 274                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
 
 275                         index, (unsigned long long)dma_addr);
 
 276                 EFX_POPULATE_QWORD_4(buf_desc,
 
 277                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
 
 279                                      BUF_ADR_FBUF, (dma_addr >> 12),
 
 280                                      BUF_OWNER_ID_FBUF, 0);
 
 281                 falcon_write_sram(efx, &buf_desc, index);
 
 285 /* Unmaps a buffer from Falcon and clears the buffer table entries */
 
 287 falcon_fini_special_buffer(struct efx_nic *efx,
 
 288                            struct efx_special_buffer *buffer)
 
 290         efx_oword_t buf_tbl_upd;
 
 291         unsigned int start = buffer->index;
 
 292         unsigned int end = (buffer->index + buffer->entries - 1);
 
 294         if (!buffer->entries)
 
 297         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
 
 298                 buffer->index, buffer->index + buffer->entries - 1);
 
 300         EFX_POPULATE_OWORD_4(buf_tbl_upd,
 
 304                              BUF_CLR_START_ID, start);
 
 305         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
 
 309  * Allocate a new Falcon special buffer
 
 311  * This allocates memory for a new buffer, clears it and allocates a
 
 312  * new buffer ID range.  It does not write into Falcon's buffer table.
 
 314  * This call will allocate 4KB buffers, since Falcon can't use 8KB
 
 315  * buffers for event queues and descriptor rings.
 
 317 static int falcon_alloc_special_buffer(struct efx_nic *efx,
 
 318                                        struct efx_special_buffer *buffer,
 
 321         struct falcon_nic_data *nic_data = efx->nic_data;
 
 323         len = ALIGN(len, FALCON_BUF_SIZE);
 
 325         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
 
 330         buffer->entries = len / FALCON_BUF_SIZE;
 
 331         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
 
 333         /* All zeros is a potentially valid event so memset to 0xff */
 
 334         memset(buffer->addr, 0xff, len);
 
 336         /* Select new buffer ID */
 
 337         buffer->index = nic_data->next_buffer_table;
 
 338         nic_data->next_buffer_table += buffer->entries;
 
 340         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
 
 341                 "(virt %p phys %lx)\n", buffer->index,
 
 342                 buffer->index + buffer->entries - 1,
 
 343                 (unsigned long long)buffer->dma_addr, len,
 
 344                 buffer->addr, virt_to_phys(buffer->addr));
 
 349 static void falcon_free_special_buffer(struct efx_nic *efx,
 
 350                                        struct efx_special_buffer *buffer)
 
 355         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
 
 356                 "(virt %p phys %lx)\n", buffer->index,
 
 357                 buffer->index + buffer->entries - 1,
 
 358                 (unsigned long long)buffer->dma_addr, buffer->len,
 
 359                 buffer->addr, virt_to_phys(buffer->addr));
 
 361         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
 
 367 /**************************************************************************
 
 369  * Falcon generic buffer handling
 
 370  * These buffers are used for interrupt status and MAC stats
 
 372  **************************************************************************/
 
 374 static int falcon_alloc_buffer(struct efx_nic *efx,
 
 375                                struct efx_buffer *buffer, unsigned int len)
 
 377         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
 
 382         memset(buffer->addr, 0, len);
 
 386 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 
 389                 pci_free_consistent(efx->pci_dev, buffer->len,
 
 390                                     buffer->addr, buffer->dma_addr);
 
 395 /**************************************************************************
 
 399  **************************************************************************/
 
 401 /* Returns a pointer to the specified transmit descriptor in the TX
 
 402  * descriptor queue belonging to the specified channel.
 
 404 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
 
 407         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
 
 410 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 
 411 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
 
 416         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
 
 417         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
 
 418         falcon_writel_page(tx_queue->efx, ®,
 
 419                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
 
 423 /* For each entry inserted into the software descriptor ring, create a
 
 424  * descriptor in the hardware TX descriptor ring (in host memory), and
 
 427 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
 
 430         struct efx_tx_buffer *buffer;
 
 434         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 
 437                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
 
 438                 buffer = &tx_queue->buffer[write_ptr];
 
 439                 txd = falcon_tx_desc(tx_queue, write_ptr);
 
 440                 ++tx_queue->write_count;
 
 442                 /* Create TX descriptor ring entry */
 
 443                 EFX_POPULATE_QWORD_5(*txd,
 
 445                                      TX_KER_CONT, buffer->continuation,
 
 446                                      TX_KER_BYTE_CNT, buffer->len,
 
 447                                      TX_KER_BUF_REGION, 0,
 
 448                                      TX_KER_BUF_ADR, buffer->dma_addr);
 
 449         } while (tx_queue->write_count != tx_queue->insert_count);
 
 451         wmb(); /* Ensure descriptors are written before they are fetched */
 
 452         falcon_notify_tx_desc(tx_queue);
 
 455 /* Allocate hardware resources for a TX queue */
 
 456 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
 
 458         struct efx_nic *efx = tx_queue->efx;
 
 459         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
 
 460                                            FALCON_TXD_RING_SIZE *
 
 461                                            sizeof(efx_qword_t));
 
 464 void falcon_init_tx(struct efx_tx_queue *tx_queue)
 
 466         efx_oword_t tx_desc_ptr;
 
 467         struct efx_nic *efx = tx_queue->efx;
 
 469         tx_queue->flushed = false;
 
 471         /* Pin TX descriptor ring */
 
 472         falcon_init_special_buffer(efx, &tx_queue->txd);
 
 474         /* Push TX descriptor ring to card */
 
 475         EFX_POPULATE_OWORD_10(tx_desc_ptr,
 
 479                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 
 480                               TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
 
 481                               TX_DESCQ_OWNER_ID, 0,
 
 482                               TX_DESCQ_LABEL, tx_queue->queue,
 
 483                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
 
 485                               TX_NON_IP_DROP_DIS_B0, 1);
 
 487         if (falcon_rev(efx) >= FALCON_REV_B0) {
 
 488                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
 
 489                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
 
 490                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
 
 493         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 
 496         if (falcon_rev(efx) < FALCON_REV_B0) {
 
 499                 /* Only 128 bits in this register */
 
 500                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
 
 502                 falcon_read(efx, ®, TX_CHKSM_CFG_REG_KER_A1);
 
 503                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
 
 504                         clear_bit_le(tx_queue->queue, (void *)®);
 
 506                         set_bit_le(tx_queue->queue, (void *)®);
 
 507                 falcon_write(efx, ®, TX_CHKSM_CFG_REG_KER_A1);
 
 511 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
 
 513         struct efx_nic *efx = tx_queue->efx;
 
 514         efx_oword_t tx_flush_descq;
 
 516         /* Post a flush command */
 
 517         EFX_POPULATE_OWORD_2(tx_flush_descq,
 
 518                              TX_FLUSH_DESCQ_CMD, 1,
 
 519                              TX_FLUSH_DESCQ, tx_queue->queue);
 
 520         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
 
 523 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
 
 525         struct efx_nic *efx = tx_queue->efx;
 
 526         efx_oword_t tx_desc_ptr;
 
 528         /* The queue should have been flushed */
 
 529         WARN_ON(!tx_queue->flushed);
 
 531         /* Remove TX descriptor ring from card */
 
 532         EFX_ZERO_OWORD(tx_desc_ptr);
 
 533         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 
 536         /* Unpin TX descriptor ring */
 
 537         falcon_fini_special_buffer(efx, &tx_queue->txd);
 
 540 /* Free buffers backing TX queue */
 
 541 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
 
 543         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 
 546 /**************************************************************************
 
 550  **************************************************************************/
 
 552 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
 
 553 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
 
 556         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
 
 559 /* This creates an entry in the RX descriptor queue */
 
 560 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
 
 563         struct efx_rx_buffer *rx_buf;
 
 566         rxd = falcon_rx_desc(rx_queue, index);
 
 567         rx_buf = efx_rx_buffer(rx_queue, index);
 
 568         EFX_POPULATE_QWORD_3(*rxd,
 
 571                              rx_queue->efx->type->rx_buffer_padding,
 
 572                              RX_KER_BUF_REGION, 0,
 
 573                              RX_KER_BUF_ADR, rx_buf->dma_addr);
 
 576 /* This writes to the RX_DESC_WPTR register for the specified receive
 
 579 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
 
 584         while (rx_queue->notified_count != rx_queue->added_count) {
 
 585                 falcon_build_rx_desc(rx_queue,
 
 586                                      rx_queue->notified_count &
 
 587                                      FALCON_RXD_RING_MASK);
 
 588                 ++rx_queue->notified_count;
 
 592         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
 
 593         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
 
 594         falcon_writel_page(rx_queue->efx, ®,
 
 595                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
 
 598 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
 
 600         struct efx_nic *efx = rx_queue->efx;
 
 601         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
 
 602                                            FALCON_RXD_RING_SIZE *
 
 603                                            sizeof(efx_qword_t));
 
 606 void falcon_init_rx(struct efx_rx_queue *rx_queue)
 
 608         efx_oword_t rx_desc_ptr;
 
 609         struct efx_nic *efx = rx_queue->efx;
 
 610         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
 
 611         bool iscsi_digest_en = is_b0;
 
 613         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
 
 614                 rx_queue->queue, rx_queue->rxd.index,
 
 615                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 
 617         rx_queue->flushed = false;
 
 619         /* Pin RX descriptor ring */
 
 620         falcon_init_special_buffer(efx, &rx_queue->rxd);
 
 622         /* Push RX descriptor ring to card */
 
 623         EFX_POPULATE_OWORD_10(rx_desc_ptr,
 
 624                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
 
 625                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
 
 626                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 
 627                               RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
 
 628                               RX_DESCQ_OWNER_ID, 0,
 
 629                               RX_DESCQ_LABEL, rx_queue->queue,
 
 630                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
 
 631                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 
 632                               /* For >=B0 this is scatter so disable */
 
 633                               RX_DESCQ_JUMBO, !is_b0,
 
 635         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 
 639 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
 
 641         struct efx_nic *efx = rx_queue->efx;
 
 642         efx_oword_t rx_flush_descq;
 
 644         /* Post a flush command */
 
 645         EFX_POPULATE_OWORD_2(rx_flush_descq,
 
 646                              RX_FLUSH_DESCQ_CMD, 1,
 
 647                              RX_FLUSH_DESCQ, rx_queue->queue);
 
 648         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
 
 651 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
 
 653         efx_oword_t rx_desc_ptr;
 
 654         struct efx_nic *efx = rx_queue->efx;
 
 656         /* The queue should already have been flushed */
 
 657         WARN_ON(!rx_queue->flushed);
 
 659         /* Remove RX descriptor ring from card */
 
 660         EFX_ZERO_OWORD(rx_desc_ptr);
 
 661         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 
 664         /* Unpin RX descriptor ring */
 
 665         falcon_fini_special_buffer(efx, &rx_queue->rxd);
 
 668 /* Free buffers backing RX queue */
 
 669 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
 
 671         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 
 674 /**************************************************************************
 
 676  * Falcon event queue processing
 
 677  * Event queues are processed by per-channel tasklets.
 
 679  **************************************************************************/
 
 681 /* Update a channel's event queue's read pointer (RPTR) register
 
 683  * This writes the EVQ_RPTR_REG register for the specified channel's
 
 686  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
 
 687  * whereas channel->eventq_read_ptr contains the index of the "next to
 
 690 void falcon_eventq_read_ack(struct efx_channel *channel)
 
 693         struct efx_nic *efx = channel->efx;
 
 695         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
 
 696         falcon_writel_table(efx, ®, efx->type->evq_rptr_tbl_base,
 
 700 /* Use HW to insert a SW defined event */
 
 701 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
 
 703         efx_oword_t drv_ev_reg;
 
 705         EFX_POPULATE_OWORD_2(drv_ev_reg,
 
 706                              DRV_EV_QID, channel->channel,
 
 708                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
 
 709         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
 
 712 /* Handle a transmit completion event
 
 714  * Falcon batches TX completion events; the message we receive is of
 
 715  * the form "complete all TX events up to this index".
 
 717 static void falcon_handle_tx_event(struct efx_channel *channel,
 
 720         unsigned int tx_ev_desc_ptr;
 
 721         unsigned int tx_ev_q_label;
 
 722         struct efx_tx_queue *tx_queue;
 
 723         struct efx_nic *efx = channel->efx;
 
 725         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
 
 726                 /* Transmit completion */
 
 727                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
 
 728                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
 
 729                 tx_queue = &efx->tx_queue[tx_ev_q_label];
 
 730                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 
 731         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
 
 732                 /* Rewrite the FIFO write pointer */
 
 733                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
 
 734                 tx_queue = &efx->tx_queue[tx_ev_q_label];
 
 736                 if (efx_dev_registered(efx))
 
 737                         netif_tx_lock(efx->net_dev);
 
 738                 falcon_notify_tx_desc(tx_queue);
 
 739                 if (efx_dev_registered(efx))
 
 740                         netif_tx_unlock(efx->net_dev);
 
 741         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
 
 742                    EFX_WORKAROUND_10727(efx)) {
 
 743                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
 
 745                 EFX_ERR(efx, "channel %d unexpected TX event "
 
 746                         EFX_QWORD_FMT"\n", channel->channel,
 
 747                         EFX_QWORD_VAL(*event));
 
 751 /* Detect errors included in the rx_evt_pkt_ok bit. */
 
 752 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 
 753                                     const efx_qword_t *event,
 
 757         struct efx_nic *efx = rx_queue->efx;
 
 758         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 
 759         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 
 760         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 
 761         bool rx_ev_other_err, rx_ev_pause_frm;
 
 762         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
 
 763         unsigned rx_ev_pkt_type;
 
 765         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
 
 766         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
 
 767         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
 
 768         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
 
 769         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 
 770                                                  RX_EV_BUF_OWNER_ID_ERR);
 
 771         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
 
 772         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 
 773                                                   RX_EV_IP_HDR_CHKSUM_ERR);
 
 774         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 
 775                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
 
 776         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
 
 777         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
 
 778         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
 
 779                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
 
 780         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
 
 782         /* Every error apart from tobe_disc and pause_frm */
 
 783         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 
 784                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 
 785                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 
 787         /* Count errors that are not in MAC stats.  Ignore expected
 
 788          * checksum errors during self-test. */
 
 790                 ++rx_queue->channel->n_rx_frm_trunc;
 
 791         else if (rx_ev_tobe_disc)
 
 792                 ++rx_queue->channel->n_rx_tobe_disc;
 
 793         else if (!efx->loopback_selftest) {
 
 794                 if (rx_ev_ip_hdr_chksum_err)
 
 795                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
 
 796                 else if (rx_ev_tcp_udp_chksum_err)
 
 797                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
 
 799         if (rx_ev_ip_frag_err)
 
 800                 ++rx_queue->channel->n_rx_ip_frag_err;
 
 802         /* The frame must be discarded if any of these are true. */
 
 803         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 
 804                     rx_ev_tobe_disc | rx_ev_pause_frm);
 
 806         /* TOBE_DISC is expected on unicast mismatches; don't print out an
 
 807          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 
 808          * to a FIFO overflow.
 
 810 #ifdef EFX_ENABLE_DEBUG
 
 811         if (rx_ev_other_err) {
 
 812                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
 
 813                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 
 814                             rx_queue->queue, EFX_QWORD_VAL(*event),
 
 815                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 
 816                             rx_ev_ip_hdr_chksum_err ?
 
 817                             " [IP_HDR_CHKSUM_ERR]" : "",
 
 818                             rx_ev_tcp_udp_chksum_err ?
 
 819                             " [TCP_UDP_CHKSUM_ERR]" : "",
 
 820                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 
 821                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 
 822                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 
 823                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 
 824                             rx_ev_pause_frm ? " [PAUSE]" : "");
 
 828         if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
 
 829                      efx->phy_type == PHY_TYPE_SFX7101))
 
 830                 tenxpress_crc_err(efx);
 
 833 /* Handle receive events that are not in-order. */
 
 834 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
 
 837         struct efx_nic *efx = rx_queue->efx;
 
 838         unsigned expected, dropped;
 
 840         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
 
 841         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
 
 842                    FALCON_RXD_RING_MASK);
 
 843         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
 
 844                 dropped, index, expected);
 
 846         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 
 847                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 
 850 /* Handle a packet received event
 
 852  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
 
 853  * wrong destination address
 
 854  * Also "is multicast" and "matches multicast filter" flags can be used to
 
 855  * discard non-matching multicast packets.
 
 857 static void falcon_handle_rx_event(struct efx_channel *channel,
 
 858                                    const efx_qword_t *event)
 
 860         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 
 861         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 
 862         unsigned expected_ptr;
 
 863         bool rx_ev_pkt_ok, discard = false, checksummed;
 
 864         struct efx_rx_queue *rx_queue;
 
 865         struct efx_nic *efx = channel->efx;
 
 867         /* Basic packet information */
 
 868         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
 
 869         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
 
 870         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
 
 871         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
 
 872         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
 
 873         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
 
 875         rx_queue = &efx->rx_queue[channel->channel];
 
 877         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
 
 878         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
 
 879         if (unlikely(rx_ev_desc_ptr != expected_ptr))
 
 880                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
 
 882         if (likely(rx_ev_pkt_ok)) {
 
 883                 /* If packet is marked as OK and packet type is TCP/IPv4 or
 
 884                  * UDP/IPv4, then we can rely on the hardware checksum.
 
 886                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
 
 888                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
 
 893         /* Detect multicast packets that didn't match the filter */
 
 894         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
 
 895         if (rx_ev_mcast_pkt) {
 
 896                 unsigned int rx_ev_mcast_hash_match =
 
 897                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
 
 899                 if (unlikely(!rx_ev_mcast_hash_match))
 
 903         /* Handle received packet */
 
 904         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
 
 905                       checksummed, discard);
 
 908 /* Global events are basically PHY events */
 
 909 static void falcon_handle_global_event(struct efx_channel *channel,
 
 912         struct efx_nic *efx = channel->efx;
 
 913         bool handled = false;
 
 915         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
 
 916             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
 
 917             EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
 
 918             EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
 
 919                 efx->phy_op->clear_interrupt(efx);
 
 920                 queue_work(efx->workqueue, &efx->phy_work);
 
 924         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
 
 925             EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
 
 926                 queue_work(efx->workqueue, &efx->mac_work);
 
 930         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
 
 931                 EFX_ERR(efx, "channel %d seen global RX_RESET "
 
 932                         "event. Resetting.\n", channel->channel);
 
 934                 atomic_inc(&efx->rx_reset);
 
 935                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
 
 936                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 
 941                 EFX_ERR(efx, "channel %d unknown global event "
 
 942                         EFX_QWORD_FMT "\n", channel->channel,
 
 943                         EFX_QWORD_VAL(*event));
 
 946 static void falcon_handle_driver_event(struct efx_channel *channel,
 
 949         struct efx_nic *efx = channel->efx;
 
 950         unsigned int ev_sub_code;
 
 951         unsigned int ev_sub_data;
 
 953         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
 
 954         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
 
 956         switch (ev_sub_code) {
 
 957         case TX_DESCQ_FLS_DONE_EV_DECODE:
 
 958                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
 
 959                           channel->channel, ev_sub_data);
 
 961         case RX_DESCQ_FLS_DONE_EV_DECODE:
 
 962                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
 
 963                           channel->channel, ev_sub_data);
 
 965         case EVQ_INIT_DONE_EV_DECODE:
 
 966                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
 
 967                         channel->channel, ev_sub_data);
 
 969         case SRM_UPD_DONE_EV_DECODE:
 
 970                 EFX_TRACE(efx, "channel %d SRAM update done\n",
 
 973         case WAKE_UP_EV_DECODE:
 
 974                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
 
 975                           channel->channel, ev_sub_data);
 
 977         case TIMER_EV_DECODE:
 
 978                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
 
 979                           channel->channel, ev_sub_data);
 
 981         case RX_RECOVERY_EV_DECODE:
 
 982                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
 
 983                         "Resetting.\n", channel->channel);
 
 984                 atomic_inc(&efx->rx_reset);
 
 985                 efx_schedule_reset(efx,
 
 986                                    EFX_WORKAROUND_6555(efx) ?
 
 987                                    RESET_TYPE_RX_RECOVERY :
 
 990         case RX_DSC_ERROR_EV_DECODE:
 
 991                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
 
 992                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
 
 993                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
 
 995         case TX_DSC_ERROR_EV_DECODE:
 
 996                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
 
 997                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
 
 998                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
 
1001                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
 
1002                           "data %04x\n", channel->channel, ev_sub_code,
 
1008 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
 
1010         unsigned int read_ptr;
 
1011         efx_qword_t event, *p_event;
 
1015         read_ptr = channel->eventq_read_ptr;
 
1018                 p_event = falcon_event(channel, read_ptr);
 
1021                 if (!falcon_event_present(&event))
 
1025                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
 
1026                           channel->channel, EFX_QWORD_VAL(event));
 
1028                 /* Clear this event by marking it all ones */
 
1029                 EFX_SET_QWORD(*p_event);
 
1031                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
 
1034                 case RX_IP_EV_DECODE:
 
1035                         falcon_handle_rx_event(channel, &event);
 
1038                 case TX_IP_EV_DECODE:
 
1039                         falcon_handle_tx_event(channel, &event);
 
1041                 case DRV_GEN_EV_DECODE:
 
1042                         channel->eventq_magic
 
1043                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
 
1044                         EFX_LOG(channel->efx, "channel %d received generated "
 
1045                                 "event "EFX_QWORD_FMT"\n", channel->channel,
 
1046                                 EFX_QWORD_VAL(event));
 
1048                 case GLOBAL_EV_DECODE:
 
1049                         falcon_handle_global_event(channel, &event);
 
1051                 case DRIVER_EV_DECODE:
 
1052                         falcon_handle_driver_event(channel, &event);
 
1055                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
 
1056                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
 
1057                                 ev_code, EFX_QWORD_VAL(event));
 
1060                 /* Increment read pointer */
 
1061                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
 
1063         } while (rx_packets < rx_quota);
 
1065         channel->eventq_read_ptr = read_ptr;
 
1069 void falcon_set_int_moderation(struct efx_channel *channel)
 
1071         efx_dword_t timer_cmd;
 
1072         struct efx_nic *efx = channel->efx;
 
1074         /* Set timer register */
 
1075         if (channel->irq_moderation) {
 
1076                 /* Round to resolution supported by hardware.  The value we
 
1077                  * program is based at 0.  So actual interrupt moderation
 
1078                  * achieved is ((x + 1) * res).
 
1080                 unsigned int res = 5;
 
1081                 channel->irq_moderation -= (channel->irq_moderation % res);
 
1082                 if (channel->irq_moderation < res)
 
1083                         channel->irq_moderation = res;
 
1084                 EFX_POPULATE_DWORD_2(timer_cmd,
 
1085                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
 
1087                                      (channel->irq_moderation / res) - 1);
 
1089                 EFX_POPULATE_DWORD_2(timer_cmd,
 
1090                                      TIMER_MODE, TIMER_MODE_DIS,
 
1093         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
 
1098 /* Allocate buffer table entries for event queue */
 
1099 int falcon_probe_eventq(struct efx_channel *channel)
 
1101         struct efx_nic *efx = channel->efx;
 
1102         unsigned int evq_size;
 
1104         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
 
1105         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
 
1108 void falcon_init_eventq(struct efx_channel *channel)
 
1110         efx_oword_t evq_ptr;
 
1111         struct efx_nic *efx = channel->efx;
 
1113         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
 
1114                 channel->channel, channel->eventq.index,
 
1115                 channel->eventq.index + channel->eventq.entries - 1);
 
1117         /* Pin event queue buffer */
 
1118         falcon_init_special_buffer(efx, &channel->eventq);
 
1120         /* Fill event queue with all ones (i.e. empty events) */
 
1121         memset(channel->eventq.addr, 0xff, channel->eventq.len);
 
1123         /* Push event queue to card */
 
1124         EFX_POPULATE_OWORD_3(evq_ptr,
 
1126                              EVQ_SIZE, FALCON_EVQ_ORDER,
 
1127                              EVQ_BUF_BASE_ID, channel->eventq.index);
 
1128         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
 
1131         falcon_set_int_moderation(channel);
 
1134 void falcon_fini_eventq(struct efx_channel *channel)
 
1136         efx_oword_t eventq_ptr;
 
1137         struct efx_nic *efx = channel->efx;
 
1139         /* Remove event queue from card */
 
1140         EFX_ZERO_OWORD(eventq_ptr);
 
1141         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
 
1144         /* Unpin event queue */
 
1145         falcon_fini_special_buffer(efx, &channel->eventq);
 
1148 /* Free buffers backing event queue */
 
1149 void falcon_remove_eventq(struct efx_channel *channel)
 
1151         falcon_free_special_buffer(channel->efx, &channel->eventq);
 
1155 /* Generates a test event on the event queue.  A subsequent call to
 
1156  * process_eventq() should pick up the event and place the value of
 
1157  * "magic" into channel->eventq_magic;
 
1159 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
 
1161         efx_qword_t test_event;
 
1163         EFX_POPULATE_QWORD_2(test_event,
 
1164                              EV_CODE, DRV_GEN_EV_DECODE,
 
1166         falcon_generate_event(channel, &test_event);
 
1169 void falcon_sim_phy_event(struct efx_nic *efx)
 
1171         efx_qword_t phy_event;
 
1173         EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
 
1175                 EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1);
 
1177                 EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1);
 
1179         falcon_generate_event(&efx->channel[0], &phy_event);
 
1182 /**************************************************************************
 
1186  **************************************************************************/
 
1189 static void falcon_poll_flush_events(struct efx_nic *efx)
 
1191         struct efx_channel *channel = &efx->channel[0];
 
1192         struct efx_tx_queue *tx_queue;
 
1193         struct efx_rx_queue *rx_queue;
 
1194         unsigned int read_ptr, i;
 
1196         read_ptr = channel->eventq_read_ptr;
 
1197         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
 
1198                 efx_qword_t *event = falcon_event(channel, read_ptr);
 
1199                 int ev_code, ev_sub_code, ev_queue;
 
1201                 if (!falcon_event_present(event))
 
1204                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
 
1205                 if (ev_code != DRIVER_EV_DECODE)
 
1208                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
 
1209                 switch (ev_sub_code) {
 
1210                 case TX_DESCQ_FLS_DONE_EV_DECODE:
 
1211                         ev_queue = EFX_QWORD_FIELD(*event,
 
1212                                                    DRIVER_EV_TX_DESCQ_ID);
 
1213                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
 
1214                                 tx_queue = efx->tx_queue + ev_queue;
 
1215                                 tx_queue->flushed = true;
 
1218                 case RX_DESCQ_FLS_DONE_EV_DECODE:
 
1219                         ev_queue = EFX_QWORD_FIELD(*event,
 
1220                                                    DRIVER_EV_RX_DESCQ_ID);
 
1221                         ev_failed = EFX_QWORD_FIELD(*event,
 
1222                                                     DRIVER_EV_RX_FLUSH_FAIL);
 
1223                         if (ev_queue < efx->n_rx_queues) {
 
1224                                 rx_queue = efx->rx_queue + ev_queue;
 
1226                                 /* retry the rx flush */
 
1228                                         falcon_flush_rx_queue(rx_queue);
 
1230                                         rx_queue->flushed = true;
 
1235                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
 
1239 /* Handle tx and rx flushes at the same time, since they run in
 
1240  * parallel in the hardware and there's no reason for us to
 
1242 int falcon_flush_queues(struct efx_nic *efx)
 
1244         struct efx_rx_queue *rx_queue;
 
1245         struct efx_tx_queue *tx_queue;
 
1249         /* Issue flush requests */
 
1250         efx_for_each_tx_queue(tx_queue, efx) {
 
1251                 tx_queue->flushed = false;
 
1252                 falcon_flush_tx_queue(tx_queue);
 
1254         efx_for_each_rx_queue(rx_queue, efx) {
 
1255                 rx_queue->flushed = false;
 
1256                 falcon_flush_rx_queue(rx_queue);
 
1259         /* Poll the evq looking for flush completions. Since we're not pushing
 
1260          * any more rx or tx descriptors at this point, we're in no danger of
 
1261          * overflowing the evq whilst we wait */
 
1262         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
 
1263                 msleep(FALCON_FLUSH_INTERVAL);
 
1264                 falcon_poll_flush_events(efx);
 
1266                 /* Check if every queue has been succesfully flushed */
 
1267                 outstanding = false;
 
1268                 efx_for_each_tx_queue(tx_queue, efx)
 
1269                         outstanding |= !tx_queue->flushed;
 
1270                 efx_for_each_rx_queue(rx_queue, efx)
 
1271                         outstanding |= !rx_queue->flushed;
 
1276         /* Mark the queues as all flushed. We're going to return failure
 
1277          * leading to a reset, or fake up success anyway. "flushed" now
 
1278          * indicates that we tried to flush. */
 
1279         efx_for_each_tx_queue(tx_queue, efx) {
 
1280                 if (!tx_queue->flushed)
 
1281                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
 
1283                 tx_queue->flushed = true;
 
1285         efx_for_each_rx_queue(rx_queue, efx) {
 
1286                 if (!rx_queue->flushed)
 
1287                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
 
1289                 rx_queue->flushed = true;
 
1292         if (EFX_WORKAROUND_7803(efx))
 
1298 /**************************************************************************
 
1300  * Falcon hardware interrupts
 
1301  * The hardware interrupt handler does very little work; all the event
 
1302  * queue processing is carried out by per-channel tasklets.
 
1304  **************************************************************************/
 
1306 /* Enable/disable/generate Falcon interrupts */
 
1307 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
 
1310         efx_oword_t int_en_reg_ker;
 
1312         EFX_POPULATE_OWORD_2(int_en_reg_ker,
 
1314                              DRV_INT_EN_KER, enabled);
 
1315         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
 
1318 void falcon_enable_interrupts(struct efx_nic *efx)
 
1320         efx_oword_t int_adr_reg_ker;
 
1321         struct efx_channel *channel;
 
1323         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
 
1324         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
 
1326         /* Program address */
 
1327         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
 
1328                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
 
1329                              INT_ADR_KER, efx->irq_status.dma_addr);
 
1330         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
 
1332         /* Enable interrupts */
 
1333         falcon_interrupts(efx, 1, 0);
 
1335         /* Force processing of all the channels to get the EVQ RPTRs up to
 
1337         efx_for_each_channel(channel, efx)
 
1338                 efx_schedule_channel(channel);
 
1341 void falcon_disable_interrupts(struct efx_nic *efx)
 
1343         /* Disable interrupts */
 
1344         falcon_interrupts(efx, 0, 0);
 
1347 /* Generate a Falcon test interrupt
 
1348  * Interrupt must already have been enabled, otherwise nasty things
 
1351 void falcon_generate_interrupt(struct efx_nic *efx)
 
1353         falcon_interrupts(efx, 1, 1);
 
1356 /* Acknowledge a legacy interrupt from Falcon
 
1358  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 
1360  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 
1361  * BIU. Interrupt acknowledge is read sensitive so must write instead
 
1362  * (then read to ensure the BIU collector is flushed)
 
1364  * NB most hardware supports MSI interrupts
 
1366 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
 
1370         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
 
1371         falcon_writel(efx, ®, INT_ACK_REG_KER_A1);
 
1372         falcon_readl(efx, ®, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
 
1375 /* Process a fatal interrupt
 
1376  * Disable bus mastering ASAP and schedule a reset
 
1378 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
 
1380         struct falcon_nic_data *nic_data = efx->nic_data;
 
1381         efx_oword_t *int_ker = efx->irq_status.addr;
 
1382         efx_oword_t fatal_intr;
 
1383         int error, mem_perr;
 
1384         static int n_int_errors;
 
1386         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
 
1387         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
 
1389         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
 
1390                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
 
1391                 EFX_OWORD_VAL(fatal_intr),
 
1392                 error ? "disabling bus mastering" : "no recognised error");
 
1396         /* If this is a memory parity error dump which blocks are offending */
 
1397         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
 
1400                 falcon_read(efx, ®, MEM_STAT_REG_KER);
 
1401                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
 
1402                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
 
1405         /* Disable both devices */
 
1406         pci_clear_master(efx->pci_dev);
 
1407         if (FALCON_IS_DUAL_FUNC(efx))
 
1408                 pci_clear_master(nic_data->pci_dev2);
 
1409         falcon_disable_interrupts(efx);
 
1411         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
 
1412                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
 
1413                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
 
1415                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
 
1416                         "NIC will be disabled\n");
 
1417                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 
1423 /* Handle a legacy interrupt from Falcon
 
1424  * Acknowledges the interrupt and schedule event queue processing.
 
1426 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
 
1428         struct efx_nic *efx = dev_id;
 
1429         efx_oword_t *int_ker = efx->irq_status.addr;
 
1430         struct efx_channel *channel;
 
1435         /* Read the ISR which also ACKs the interrupts */
 
1436         falcon_readl(efx, ®, INT_ISR0_B0);
 
1437         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
 
1439         /* Check to see if we have a serious error condition */
 
1440         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
 
1441         if (unlikely(syserr))
 
1442                 return falcon_fatal_interrupt(efx);
 
1447         efx->last_irq_cpu = raw_smp_processor_id();
 
1448         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
 
1449                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
 
1451         /* Schedule processing of any interrupting queues */
 
1452         channel = &efx->channel[0];
 
1455                         efx_schedule_channel(channel);
 
1464 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 
1466         struct efx_nic *efx = dev_id;
 
1467         efx_oword_t *int_ker = efx->irq_status.addr;
 
1468         struct efx_channel *channel;
 
1472         /* Check to see if this is our interrupt.  If it isn't, we
 
1473          * exit without having touched the hardware.
 
1475         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
 
1476                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
 
1477                           raw_smp_processor_id());
 
1480         efx->last_irq_cpu = raw_smp_processor_id();
 
1481         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 
1482                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 
1484         /* Check to see if we have a serious error condition */
 
1485         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
 
1486         if (unlikely(syserr))
 
1487                 return falcon_fatal_interrupt(efx);
 
1489         /* Determine interrupting queues, clear interrupt status
 
1490          * register and acknowledge the device interrupt.
 
1492         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
 
1493         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
 
1494         EFX_ZERO_OWORD(*int_ker);
 
1495         wmb(); /* Ensure the vector is cleared before interrupt ack */
 
1496         falcon_irq_ack_a1(efx);
 
1498         /* Schedule processing of any interrupting queues */
 
1499         channel = &efx->channel[0];
 
1502                         efx_schedule_channel(channel);
 
1510 /* Handle an MSI interrupt from Falcon
 
1512  * Handle an MSI hardware interrupt.  This routine schedules event
 
1513  * queue processing.  No interrupt acknowledgement cycle is necessary.
 
1514  * Also, we never need to check that the interrupt is for us, since
 
1515  * MSI interrupts cannot be shared.
 
1517 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
 
1519         struct efx_channel *channel = dev_id;
 
1520         struct efx_nic *efx = channel->efx;
 
1521         efx_oword_t *int_ker = efx->irq_status.addr;
 
1524         efx->last_irq_cpu = raw_smp_processor_id();
 
1525         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 
1526                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 
1528         /* Check to see if we have a serious error condition */
 
1529         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
 
1530         if (unlikely(syserr))
 
1531                 return falcon_fatal_interrupt(efx);
 
1533         /* Schedule processing of the channel */
 
1534         efx_schedule_channel(channel);
 
1540 /* Setup RSS indirection table.
 
1541  * This maps from the hash value of the packet to RXQ
 
1543 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
 
1546         unsigned long offset;
 
1549         if (falcon_rev(efx) < FALCON_REV_B0)
 
1552         for (offset = RX_RSS_INDIR_TBL_B0;
 
1553              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
 
1555                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
 
1556                                      i % efx->n_rx_queues);
 
1557                 falcon_writel(efx, &dword, offset);
 
1562 /* Hook interrupt handler(s)
 
1563  * Try MSI and then legacy interrupts.
 
1565 int falcon_init_interrupt(struct efx_nic *efx)
 
1567         struct efx_channel *channel;
 
1570         if (!EFX_INT_MODE_USE_MSI(efx)) {
 
1571                 irq_handler_t handler;
 
1572                 if (falcon_rev(efx) >= FALCON_REV_B0)
 
1573                         handler = falcon_legacy_interrupt_b0;
 
1575                         handler = falcon_legacy_interrupt_a1;
 
1577                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
 
1580                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
 
1587         /* Hook MSI or MSI-X interrupt */
 
1588         efx_for_each_channel(channel, efx) {
 
1589                 rc = request_irq(channel->irq, falcon_msi_interrupt,
 
1590                                  IRQF_PROBE_SHARED, /* Not shared */
 
1591                                  channel->name, channel);
 
1593                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
 
1601         efx_for_each_channel(channel, efx)
 
1602                 free_irq(channel->irq, channel);
 
1607 void falcon_fini_interrupt(struct efx_nic *efx)
 
1609         struct efx_channel *channel;
 
1612         /* Disable MSI/MSI-X interrupts */
 
1613         efx_for_each_channel(channel, efx) {
 
1615                         free_irq(channel->irq, channel);
 
1618         /* ACK legacy interrupt */
 
1619         if (falcon_rev(efx) >= FALCON_REV_B0)
 
1620                 falcon_read(efx, ®, INT_ISR0_B0);
 
1622                 falcon_irq_ack_a1(efx);
 
1624         /* Disable legacy interrupt */
 
1625         if (efx->legacy_irq)
 
1626                 free_irq(efx->legacy_irq, efx);
 
1629 /**************************************************************************
 
1633  **************************************************************************
 
1636 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
 
1638 static int falcon_spi_poll(struct efx_nic *efx)
 
1641         falcon_read(efx, ®, EE_SPI_HCMD_REG_KER);
 
1642         return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 
1645 /* Wait for SPI command completion */
 
1646 static int falcon_spi_wait(struct efx_nic *efx)
 
1648         /* Most commands will finish quickly, so we start polling at
 
1649          * very short intervals.  Sometimes the command may have to
 
1650          * wait for VPD or expansion ROM access outside of our
 
1651          * control, so we allow up to 100 ms. */
 
1652         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 
1655         for (i = 0; i < 10; i++) {
 
1656                 if (!falcon_spi_poll(efx))
 
1662                 if (!falcon_spi_poll(efx))
 
1664                 if (time_after_eq(jiffies, timeout)) {
 
1665                         EFX_ERR(efx, "timed out waiting for SPI\n");
 
1668                 schedule_timeout_uninterruptible(1);
 
1672 int falcon_spi_cmd(const struct efx_spi_device *spi,
 
1673                    unsigned int command, int address,
 
1674                    const void *in, void *out, size_t len)
 
1676         struct efx_nic *efx = spi->efx;
 
1677         bool addressed = (address >= 0);
 
1678         bool reading = (out != NULL);
 
1682         /* Input validation */
 
1683         if (len > FALCON_SPI_MAX_LEN)
 
1685         BUG_ON(!mutex_is_locked(&efx->spi_lock));
 
1687         /* Check that previous command is not still running */
 
1688         rc = falcon_spi_poll(efx);
 
1692         /* Program address register, if we have an address */
 
1694                 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
 
1695                 falcon_write(efx, ®, EE_SPI_HADR_REG_KER);
 
1698         /* Program data register, if we have data */
 
1700                 memcpy(®, in, len);
 
1701                 falcon_write(efx, ®, EE_SPI_HDATA_REG_KER);
 
1704         /* Issue read/write command */
 
1705         EFX_POPULATE_OWORD_7(reg,
 
1706                              EE_SPI_HCMD_CMD_EN, 1,
 
1707                              EE_SPI_HCMD_SF_SEL, spi->device_id,
 
1708                              EE_SPI_HCMD_DABCNT, len,
 
1709                              EE_SPI_HCMD_READ, reading,
 
1710                              EE_SPI_HCMD_DUBCNT, 0,
 
1712                              (addressed ? spi->addr_len : 0),
 
1713                              EE_SPI_HCMD_ENC, command);
 
1714         falcon_write(efx, ®, EE_SPI_HCMD_REG_KER);
 
1716         /* Wait for read/write to complete */
 
1717         rc = falcon_spi_wait(efx);
 
1723                 falcon_read(efx, ®, EE_SPI_HDATA_REG_KER);
 
1724                 memcpy(out, ®, len);
 
1731 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
 
1733         return min(FALCON_SPI_MAX_LEN,
 
1734                    (spi->block_size - (start & (spi->block_size - 1))));
 
1738 efx_spi_munge_command(const struct efx_spi_device *spi,
 
1739                       const u8 command, const unsigned int address)
 
1741         return command | (((address >> 8) & spi->munge_address) << 3);
 
1744 /* Wait up to 10 ms for buffered write completion */
 
1745 int falcon_spi_wait_write(const struct efx_spi_device *spi)
 
1747         struct efx_nic *efx = spi->efx;
 
1748         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 
1753                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
 
1754                                     &status, sizeof(status));
 
1757                 if (!(status & SPI_STATUS_NRDY))
 
1759                 if (time_after_eq(jiffies, timeout)) {
 
1760                         EFX_ERR(efx, "SPI write timeout on device %d"
 
1761                                 " last status=0x%02x\n",
 
1762                                 spi->device_id, status);
 
1765                 schedule_timeout_uninterruptible(1);
 
1769 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
 
1770                     size_t len, size_t *retlen, u8 *buffer)
 
1772         size_t block_len, pos = 0;
 
1773         unsigned int command;
 
1777                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 
1779                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
 
1780                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
 
1781                                     buffer + pos, block_len);
 
1786                 /* Avoid locking up the system */
 
1788                 if (signal_pending(current)) {
 
1799 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
 
1800                      size_t len, size_t *retlen, const u8 *buffer)
 
1802         u8 verify_buffer[FALCON_SPI_MAX_LEN];
 
1803         size_t block_len, pos = 0;
 
1804         unsigned int command;
 
1808                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
 
1812                 block_len = min(len - pos,
 
1813                                 falcon_spi_write_limit(spi, start + pos));
 
1814                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
 
1815                 rc = falcon_spi_cmd(spi, command, start + pos,
 
1816                                     buffer + pos, NULL, block_len);
 
1820                 rc = falcon_spi_wait_write(spi);
 
1824                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
 
1825                 rc = falcon_spi_cmd(spi, command, start + pos,
 
1826                                     NULL, verify_buffer, block_len);
 
1827                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
 
1834                 /* Avoid locking up the system */
 
1836                 if (signal_pending(current)) {
 
1847 /**************************************************************************
 
1851  **************************************************************************
 
1854 static int falcon_reset_macs(struct efx_nic *efx)
 
1859         if (falcon_rev(efx) < FALCON_REV_B0) {
 
1860                 /* It's not safe to use GLB_CTL_REG to reset the
 
1861                  * macs, so instead use the internal MAC resets
 
1863                 if (!EFX_IS10G(efx)) {
 
1864                         EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
 
1865                         falcon_write(efx, ®, GM_CFG1_REG);
 
1868                         EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
 
1869                         falcon_write(efx, ®, GM_CFG1_REG);
 
1873                         EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
 
1874                         falcon_write(efx, ®, XM_GLB_CFG_REG);
 
1876                         for (count = 0; count < 10000; count++) {
 
1877                                 falcon_read(efx, ®, XM_GLB_CFG_REG);
 
1878                                 if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
 
1883                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
 
1888         /* MAC stats will fail whilst the TX fifo is draining. Serialise
 
1889          * the drain sequence with the statistics fetch */
 
1890         spin_lock(&efx->stats_lock);
 
1892         falcon_read(efx, ®, MAC0_CTRL_REG_KER);
 
1893         EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
 
1894         falcon_write(efx, ®, MAC0_CTRL_REG_KER);
 
1896         falcon_read(efx, ®, GLB_CTL_REG_KER);
 
1897         EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
 
1898         EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
 
1899         EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
 
1900         falcon_write(efx, ®, GLB_CTL_REG_KER);
 
1904                 falcon_read(efx, ®, GLB_CTL_REG_KER);
 
1905                 if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
 
1906                     !EFX_OWORD_FIELD(reg, RST_XGRX) &&
 
1907                     !EFX_OWORD_FIELD(reg, RST_EM)) {
 
1908                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
 
1913                         EFX_ERR(efx, "MAC reset failed\n");
 
1920         spin_unlock(&efx->stats_lock);
 
1922         /* If we've reset the EM block and the link is up, then
 
1923          * we'll have to kick the XAUI link so the PHY can recover */
 
1924         if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
 
1925                 falcon_reset_xaui(efx);
 
1930 void falcon_drain_tx_fifo(struct efx_nic *efx)
 
1934         if ((falcon_rev(efx) < FALCON_REV_B0) ||
 
1935             (efx->loopback_mode != LOOPBACK_NONE))
 
1938         falcon_read(efx, ®, MAC0_CTRL_REG_KER);
 
1939         /* There is no point in draining more than once */
 
1940         if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
 
1943         falcon_reset_macs(efx);
 
1946 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
 
1950         if (falcon_rev(efx) < FALCON_REV_B0)
 
1953         /* Isolate the MAC -> RX */
 
1954         falcon_read(efx, ®, RX_CFG_REG_KER);
 
1955         EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
 
1956         falcon_write(efx, ®, RX_CFG_REG_KER);
 
1959                 falcon_drain_tx_fifo(efx);
 
1962 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
 
1968         switch (efx->link_speed) {
 
1969         case 10000: link_speed = 3; break;
 
1970         case 1000:  link_speed = 2; break;
 
1971         case 100:   link_speed = 1; break;
 
1972         default:    link_speed = 0; break;
 
1974         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
 
1975          * as advertised.  Disable to ensure packets are not
 
1976          * indefinitely held and TX queue can be flushed at any point
 
1977          * while the link is down. */
 
1978         EFX_POPULATE_OWORD_5(reg,
 
1979                              MAC_XOFF_VAL, 0xffff /* max pause time */,
 
1981                              MAC_UC_PROM, efx->promiscuous,
 
1982                              MAC_LINK_STATUS, 1, /* always set */
 
1983                              MAC_SPEED, link_speed);
 
1984         /* On B0, MAC backpressure can be disabled and packets get
 
1986         if (falcon_rev(efx) >= FALCON_REV_B0) {
 
1987                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
 
1991         falcon_write(efx, ®, MAC0_CTRL_REG_KER);
 
1993         /* Restore the multicast hash registers. */
 
1994         falcon_set_multicast_hash(efx);
 
1996         /* Transmission of pause frames when RX crosses the threshold is
 
1997          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
 
1998          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
 
1999         tx_fc = !!(efx->link_fc & EFX_FC_TX);
 
2000         falcon_read(efx, ®, RX_CFG_REG_KER);
 
2001         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
 
2003         /* Unisolate the MAC -> RX */
 
2004         if (falcon_rev(efx) >= FALCON_REV_B0)
 
2005                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
 
2006         falcon_write(efx, ®, RX_CFG_REG_KER);
 
2009 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
 
2015         if (disable_dma_stats)
 
2018         /* Statistics fetch will fail if the MAC is in TX drain */
 
2019         if (falcon_rev(efx) >= FALCON_REV_B0) {
 
2021                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
 
2022                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
 
2026         dma_done = (efx->stats_buffer.addr + done_offset);
 
2027         *dma_done = FALCON_STATS_NOT_DONE;
 
2028         wmb(); /* ensure done flag is clear */
 
2030         /* Initiate DMA transfer of stats */
 
2031         EFX_POPULATE_OWORD_2(reg,
 
2032                              MAC_STAT_DMA_CMD, 1,
 
2034                              efx->stats_buffer.dma_addr);
 
2035         falcon_write(efx, ®, MAC0_STAT_DMA_REG_KER);
 
2037         /* Wait for transfer to complete */
 
2038         for (i = 0; i < 400; i++) {
 
2039                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
 
2040                         rmb(); /* Ensure the stats are valid. */
 
2046         EFX_ERR(efx, "timed out waiting for statistics\n");
 
2050 /**************************************************************************
 
2052  * PHY access via GMII
 
2054  **************************************************************************
 
2057 /* Use the top bit of the MII PHY id to indicate the PHY type
 
2058  * (1G/10G), with the remaining bits as the actual PHY id.
 
2060  * This allows us to avoid leaking information from the mii_if_info
 
2061  * structure into other data structures.
 
2063 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
 
2064 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
 
2065 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
 
2066 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
 
2067 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
 
2070 /* Packing the clause 45 port and device fields into a single value */
 
2071 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
 
2072 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
 
2073 #define MD_DEV_ADR_COMP_LBN    0
 
2074 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
 
2077 /* Wait for GMII access to complete */
 
2078 static int falcon_gmii_wait(struct efx_nic *efx)
 
2080         efx_dword_t md_stat;
 
2083         /* wait upto 50ms - taken max from datasheet */
 
2084         for (count = 0; count < 5000; count++) {
 
2085                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
 
2086                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
 
2087                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
 
2088                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
 
2089                                 EFX_ERR(efx, "error from GMII access "
 
2091                                         EFX_DWORD_VAL(md_stat));
 
2098         EFX_ERR(efx, "timed out waiting for GMII\n");
 
2102 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
 
2103 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
 
2104                               int addr, int value)
 
2106         struct efx_nic *efx = netdev_priv(net_dev);
 
2107         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
 
2110         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
 
2111          * chosen so that the only current user, Falcon, can take the
 
2112          * packed value and use them directly.
 
2113          * Fail to build if this assumption is broken.
 
2115         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
 
2116         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
 
2117         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
 
2118         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
 
2120         if (phy_id2 == PHY_ADDR_INVALID)
 
2123         /* See falcon_mdio_read for an explanation. */
 
2124         if (!(phy_id & FALCON_PHY_ID_10G)) {
 
2125                 int mmd = ffs(efx->phy_op->mmds) - 1;
 
2126                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
 
2127                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
 
2128                         & FALCON_PHY_ID_ID_MASK;
 
2131         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
 
2134         spin_lock_bh(&efx->phy_lock);
 
2136         /* Check MII not currently being accessed */
 
2137         if (falcon_gmii_wait(efx) != 0)
 
2140         /* Write the address/ID register */
 
2141         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
 
2142         falcon_write(efx, ®, MD_PHY_ADR_REG_KER);
 
2144         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
 
2145         falcon_write(efx, ®, MD_ID_REG_KER);
 
2148         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
 
2149         falcon_write(efx, ®, MD_TXD_REG_KER);
 
2151         EFX_POPULATE_OWORD_2(reg,
 
2154         falcon_write(efx, ®, MD_CS_REG_KER);
 
2156         /* Wait for data to be written */
 
2157         if (falcon_gmii_wait(efx) != 0) {
 
2158                 /* Abort the write operation */
 
2159                 EFX_POPULATE_OWORD_2(reg,
 
2162                 falcon_write(efx, ®, MD_CS_REG_KER);
 
2167         spin_unlock_bh(&efx->phy_lock);
 
2170 /* Reads a GMII register from a PHY connected to Falcon.  If no value
 
2171  * could be read, -1 will be returned. */
 
2172 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
 
2174         struct efx_nic *efx = netdev_priv(net_dev);
 
2175         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
 
2179         if (phy_addr == PHY_ADDR_INVALID)
 
2182         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
 
2183          * but the generic Linux code does not make any distinction or have
 
2184          * any state for this.
 
2185          * We spot the case where someone tried to talk 22 to a 45 PHY and
 
2186          * redirect the request to the lowest numbered MMD as a clause45
 
2187          * request. This is enough to allow simple queries like id and link
 
2188          * state to succeed. TODO: We may need to do more in future.
 
2190         if (!(phy_id & FALCON_PHY_ID_10G)) {
 
2191                 int mmd = ffs(efx->phy_op->mmds) - 1;
 
2192                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
 
2193                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
 
2194                         & FALCON_PHY_ID_ID_MASK;
 
2197         spin_lock_bh(&efx->phy_lock);
 
2199         /* Check MII not currently being accessed */
 
2200         if (falcon_gmii_wait(efx) != 0)
 
2203         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
 
2204         falcon_write(efx, ®, MD_PHY_ADR_REG_KER);
 
2206         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
 
2207         falcon_write(efx, ®, MD_ID_REG_KER);
 
2209         /* Request data to be read */
 
2210         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
 
2211         falcon_write(efx, ®, MD_CS_REG_KER);
 
2213         /* Wait for data to become available */
 
2214         value = falcon_gmii_wait(efx);
 
2216                 falcon_read(efx, ®, MD_RXD_REG_KER);
 
2217                 value = EFX_OWORD_FIELD(reg, MD_RXD);
 
2218                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
 
2219                             phy_id, addr, value);
 
2221                 /* Abort the read operation */
 
2222                 EFX_POPULATE_OWORD_2(reg,
 
2225                 falcon_write(efx, ®, MD_CS_REG_KER);
 
2227                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
 
2228                         "error %d\n", phy_id, addr, value);
 
2232         spin_unlock_bh(&efx->phy_lock);
 
2237 static void falcon_init_mdio(struct mii_if_info *gmii)
 
2239         gmii->mdio_read = falcon_mdio_read;
 
2240         gmii->mdio_write = falcon_mdio_write;
 
2241         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
 
2242         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
 
2245 static int falcon_probe_phy(struct efx_nic *efx)
 
2247         switch (efx->phy_type) {
 
2248         case PHY_TYPE_SFX7101:
 
2249                 efx->phy_op = &falcon_sfx7101_phy_ops;
 
2251         case PHY_TYPE_SFT9001A:
 
2252         case PHY_TYPE_SFT9001B:
 
2253                 efx->phy_op = &falcon_sft9001_phy_ops;
 
2255         case PHY_TYPE_QT2022C2:
 
2256                 efx->phy_op = &falcon_xfp_phy_ops;
 
2259                 EFX_ERR(efx, "Unknown PHY type %d\n",
 
2264         if (efx->phy_op->macs & EFX_XMAC)
 
2265                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
 
2266                                         (1 << LOOPBACK_XGXS) |
 
2267                                         (1 << LOOPBACK_XAUI));
 
2268         if (efx->phy_op->macs & EFX_GMAC)
 
2269                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
 
2270         efx->loopback_modes |= efx->phy_op->loopbacks;
 
2275 int falcon_switch_mac(struct efx_nic *efx)
 
2277         struct efx_mac_operations *old_mac_op = efx->mac_op;
 
2278         efx_oword_t nic_stat;
 
2281         /* Internal loopbacks override the phy speed setting */
 
2282         if (efx->loopback_mode == LOOPBACK_GMAC) {
 
2283                 efx->link_speed = 1000;
 
2284                 efx->link_fd = true;
 
2285         } else if (LOOPBACK_INTERNAL(efx)) {
 
2286                 efx->link_speed = 10000;
 
2287                 efx->link_fd = true;
 
2290         efx->mac_op = (EFX_IS10G(efx) ?
 
2291                        &falcon_xmac_operations : &falcon_gmac_operations);
 
2292         if (old_mac_op == efx->mac_op)
 
2295         WARN_ON(!mutex_is_locked(&efx->mac_lock));
 
2297         /* Not all macs support a mac-level link state */
 
2300         falcon_read(efx, &nic_stat, NIC_STAT_REG);
 
2301         strap_val = EFX_IS10G(efx) ? 5 : 3;
 
2302         if (falcon_rev(efx) >= FALCON_REV_B0) {
 
2303                 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
 
2304                 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
 
2305                 falcon_write(efx, &nic_stat, NIC_STAT_REG);
 
2307                 /* Falcon A1 does not support 1G/10G speed switching
 
2308                  * and must not be used with a PHY that does. */
 
2309                 BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
 
2313         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
 
2314         return falcon_reset_macs(efx);
 
2317 /* This call is responsible for hooking in the MAC and PHY operations */
 
2318 int falcon_probe_port(struct efx_nic *efx)
 
2322         /* Hook in PHY operations table */
 
2323         rc = falcon_probe_phy(efx);
 
2327         /* Set up GMII structure for PHY */
 
2328         efx->mii.supports_gmii = true;
 
2329         falcon_init_mdio(&efx->mii);
 
2331         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
 
2332         if (falcon_rev(efx) >= FALCON_REV_B0)
 
2333                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
 
2335                 efx->wanted_fc = EFX_FC_RX;
 
2337         /* Allocate buffer for stats */
 
2338         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
 
2339                                  FALCON_MAC_STATS_SIZE);
 
2342         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
 
2343                 (unsigned long long)efx->stats_buffer.dma_addr,
 
2344                 efx->stats_buffer.addr,
 
2345                 virt_to_phys(efx->stats_buffer.addr));
 
2350 void falcon_remove_port(struct efx_nic *efx)
 
2352         falcon_free_buffer(efx, &efx->stats_buffer);
 
2355 /**************************************************************************
 
2357  * Multicast filtering
 
2359  **************************************************************************
 
2362 void falcon_set_multicast_hash(struct efx_nic *efx)
 
2364         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
 
2366         /* Broadcast packets go through the multicast hash filter.
 
2367          * ether_crc_le() of the broadcast address is 0xbe2612ff
 
2368          * so we always add bit 0xff to the mask.
 
2370         set_bit_le(0xff, mc_hash->byte);
 
2372         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
 
2373         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
 
2377 /**************************************************************************
 
2381  **************************************************************************/
 
2383 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
 
2385         struct falcon_nvconfig *nvconfig;
 
2386         struct efx_spi_device *spi;
 
2388         int rc, magic_num, struct_ver;
 
2389         __le16 *word, *limit;
 
2392         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
 
2396         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
 
2399         nvconfig = region + NVCONFIG_OFFSET;
 
2401         mutex_lock(&efx->spi_lock);
 
2402         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
 
2403         mutex_unlock(&efx->spi_lock);
 
2405                 EFX_ERR(efx, "Failed to read %s\n",
 
2406                         efx->spi_flash ? "flash" : "EEPROM");
 
2411         magic_num = le16_to_cpu(nvconfig->board_magic_num);
 
2412         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
 
2415         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
 
2416                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
 
2419         if (struct_ver < 2) {
 
2420                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
 
2422         } else if (struct_ver < 4) {
 
2423                 word = &nvconfig->board_magic_num;
 
2424                 limit = (__le16 *) (nvconfig + 1);
 
2427                 limit = region + FALCON_NVCONFIG_END;
 
2429         for (csum = 0; word < limit; ++word)
 
2430                 csum += le16_to_cpu(*word);
 
2432         if (~csum & 0xffff) {
 
2433                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
 
2439                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
 
2446 /* Registers tested in the falcon register test */
 
2450 } efx_test_registers[] = {
 
2451         { ADR_REGION_REG_KER,
 
2452           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
 
2454           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
 
2456           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
 
2458           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
 
2459         { MAC0_CTRL_REG_KER,
 
2460           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
 
2461         { SRM_TX_DC_CFG_REG_KER,
 
2462           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
 
2463         { RX_DC_CFG_REG_KER,
 
2464           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
 
2465         { RX_DC_PF_WM_REG_KER,
 
2466           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
 
2468           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
 
2470           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
 
2472           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
 
2474           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
 
2476           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
 
2478           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
 
2480           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
 
2482           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
 
2484           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
 
2486           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
 
2489 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
 
2490                                      const efx_oword_t *mask)
 
2492         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 
2493                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 
2496 int falcon_test_registers(struct efx_nic *efx)
 
2498         unsigned address = 0, i, j;
 
2499         efx_oword_t mask, imask, original, reg, buf;
 
2501         /* Falcon should be in loopback to isolate the XMAC from the PHY */
 
2502         WARN_ON(!LOOPBACK_INTERNAL(efx));
 
2504         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
 
2505                 address = efx_test_registers[i].address;
 
2506                 mask = imask = efx_test_registers[i].mask;
 
2507                 EFX_INVERT_OWORD(imask);
 
2509                 falcon_read(efx, &original, address);
 
2511                 /* bit sweep on and off */
 
2512                 for (j = 0; j < 128; j++) {
 
2513                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
 
2516                         /* Test this testable bit can be set in isolation */
 
2517                         EFX_AND_OWORD(reg, original, mask);
 
2518                         EFX_SET_OWORD32(reg, j, j, 1);
 
2520                         falcon_write(efx, ®, address);
 
2521                         falcon_read(efx, &buf, address);
 
2523                         if (efx_masked_compare_oword(®, &buf, &mask))
 
2526                         /* Test this testable bit can be cleared in isolation */
 
2527                         EFX_OR_OWORD(reg, original, mask);
 
2528                         EFX_SET_OWORD32(reg, j, j, 0);
 
2530                         falcon_write(efx, ®, address);
 
2531                         falcon_read(efx, &buf, address);
 
2533                         if (efx_masked_compare_oword(®, &buf, &mask))
 
2537                 falcon_write(efx, &original, address);
 
2543         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 
2544                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 
2545                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 
2549 /**************************************************************************
 
2553  **************************************************************************
 
2556 /* Resets NIC to known state.  This routine must be called in process
 
2557  * context and is allowed to sleep. */
 
2558 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
 
2560         struct falcon_nic_data *nic_data = efx->nic_data;
 
2561         efx_oword_t glb_ctl_reg_ker;
 
2564         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
 
2566         /* Initiate device reset */
 
2567         if (method == RESET_TYPE_WORLD) {
 
2568                 rc = pci_save_state(efx->pci_dev);
 
2570                         EFX_ERR(efx, "failed to backup PCI state of primary "
 
2571                                 "function prior to hardware reset\n");
 
2574                 if (FALCON_IS_DUAL_FUNC(efx)) {
 
2575                         rc = pci_save_state(nic_data->pci_dev2);
 
2577                                 EFX_ERR(efx, "failed to backup PCI state of "
 
2578                                         "secondary function prior to "
 
2579                                         "hardware reset\n");
 
2584                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
 
2585                                      EXT_PHY_RST_DUR, 0x7,
 
2588                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
 
2589                                  EXCLUDE_FROM_RESET : 0);
 
2591                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
 
2592                                      EXT_PHY_RST_CTL, reset_phy,
 
2593                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
 
2594                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
 
2595                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
 
2596                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
 
2597                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
 
2600         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
 
2602         EFX_LOG(efx, "waiting for hardware reset\n");
 
2603         schedule_timeout_uninterruptible(HZ / 20);
 
2605         /* Restore PCI configuration if needed */
 
2606         if (method == RESET_TYPE_WORLD) {
 
2607                 if (FALCON_IS_DUAL_FUNC(efx)) {
 
2608                         rc = pci_restore_state(nic_data->pci_dev2);
 
2610                                 EFX_ERR(efx, "failed to restore PCI config for "
 
2611                                         "the secondary function\n");
 
2615                 rc = pci_restore_state(efx->pci_dev);
 
2617                         EFX_ERR(efx, "failed to restore PCI config for the "
 
2618                                 "primary function\n");
 
2621                 EFX_LOG(efx, "successfully restored PCI config\n");
 
2624         /* Assert that reset complete */
 
2625         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
 
2626         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
 
2628                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
 
2631         EFX_LOG(efx, "hardware reset complete\n");
 
2635         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
 
2638         pci_restore_state(efx->pci_dev);
 
2645 /* Zeroes out the SRAM contents.  This routine must be called in
 
2646  * process context and is allowed to sleep.
 
2648 static int falcon_reset_sram(struct efx_nic *efx)
 
2650         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
 
2653         /* Set the SRAM wake/sleep GPIO appropriately. */
 
2654         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
 
2655         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
 
2656         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
 
2657         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
 
2659         /* Initiate SRAM reset */
 
2660         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
 
2661                              SRAM_OOB_BT_INIT_EN, 1,
 
2662                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
 
2663         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
 
2665         /* Wait for SRAM reset to complete */
 
2668                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
 
2670                 /* SRAM reset is slow; expect around 16ms */
 
2671                 schedule_timeout_uninterruptible(HZ / 50);
 
2673                 /* Check for reset complete */
 
2674                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
 
2675                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
 
2676                         EFX_LOG(efx, "SRAM reset complete\n");
 
2680         } while (++count < 20); /* wait upto 0.4 sec */
 
2682         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
 
2686 static int falcon_spi_device_init(struct efx_nic *efx,
 
2687                                   struct efx_spi_device **spi_device_ret,
 
2688                                   unsigned int device_id, u32 device_type)
 
2690         struct efx_spi_device *spi_device;
 
2692         if (device_type != 0) {
 
2693                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
 
2696                 spi_device->device_id = device_id;
 
2698                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
 
2699                 spi_device->addr_len =
 
2700                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
 
2701                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
 
2702                                              spi_device->addr_len == 1);
 
2703                 spi_device->erase_command =
 
2704                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
 
2705                 spi_device->erase_size =
 
2706                         1 << SPI_DEV_TYPE_FIELD(device_type,
 
2707                                                 SPI_DEV_TYPE_ERASE_SIZE);
 
2708                 spi_device->block_size =
 
2709                         1 << SPI_DEV_TYPE_FIELD(device_type,
 
2710                                                 SPI_DEV_TYPE_BLOCK_SIZE);
 
2712                 spi_device->efx = efx;
 
2717         kfree(*spi_device_ret);
 
2718         *spi_device_ret = spi_device;
 
2723 static void falcon_remove_spi_devices(struct efx_nic *efx)
 
2725         kfree(efx->spi_eeprom);
 
2726         efx->spi_eeprom = NULL;
 
2727         kfree(efx->spi_flash);
 
2728         efx->spi_flash = NULL;
 
2731 /* Extract non-volatile configuration */
 
2732 static int falcon_probe_nvconfig(struct efx_nic *efx)
 
2734         struct falcon_nvconfig *nvconfig;
 
2738         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
 
2742         rc = falcon_read_nvram(efx, nvconfig);
 
2743         if (rc == -EINVAL) {
 
2744                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
 
2745                 efx->phy_type = PHY_TYPE_NONE;
 
2746                 efx->mii.phy_id = PHY_ADDR_INVALID;
 
2752                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
 
2753                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
 
2755                 efx->phy_type = v2->port0_phy_type;
 
2756                 efx->mii.phy_id = v2->port0_phy_addr;
 
2757                 board_rev = le16_to_cpu(v2->board_revision);
 
2759                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
 
2760                         __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
 
2761                         __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
 
2762                         rc = falcon_spi_device_init(efx, &efx->spi_flash,
 
2767                         rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
 
2775         /* Read the MAC addresses */
 
2776         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
 
2778         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
 
2780         efx_set_board_info(efx, board_rev);
 
2786         falcon_remove_spi_devices(efx);
 
2792 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
 
2793  * count, port speed).  Set workaround and feature flags accordingly.
 
2795 static int falcon_probe_nic_variant(struct efx_nic *efx)
 
2797         efx_oword_t altera_build;
 
2798         efx_oword_t nic_stat;
 
2800         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
 
2801         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
 
2802                 EFX_ERR(efx, "Falcon FPGA not supported\n");
 
2806         falcon_read(efx, &nic_stat, NIC_STAT_REG);
 
2808         switch (falcon_rev(efx)) {
 
2811                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
 
2815                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
 
2816                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
 
2825                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
 
2829         /* Initial assumed speed */
 
2830         efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
 
2835 /* Probe all SPI devices on the NIC */
 
2836 static void falcon_probe_spi_devices(struct efx_nic *efx)
 
2838         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
 
2841         falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
 
2842         falcon_read(efx, &nic_stat, NIC_STAT_REG);
 
2843         falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
 
2845         if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
 
2846                 boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
 
2847                             EE_SPI_FLASH : EE_SPI_EEPROM);
 
2848                 EFX_LOG(efx, "Booted from %s\n",
 
2849                         boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
 
2851                 /* Disable VPD and set clock dividers to safe
 
2852                  * values for initial programming. */
 
2854                 EFX_LOG(efx, "Booted from internal ASIC settings;"
 
2855                         " setting SPI config\n");
 
2856                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
 
2857                                      /* 125 MHz / 7 ~= 20 MHz */
 
2859                                      /* 125 MHz / 63 ~= 2 MHz */
 
2860                                      EE_EE_CLOCK_DIV, 63);
 
2861                 falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
 
2864         if (boot_dev == EE_SPI_FLASH)
 
2865                 falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
 
2866                                        default_flash_type);
 
2867         if (boot_dev == EE_SPI_EEPROM)
 
2868                 falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
 
2872 int falcon_probe_nic(struct efx_nic *efx)
 
2874         struct falcon_nic_data *nic_data;
 
2877         /* Allocate storage for hardware specific data */
 
2878         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 
2881         efx->nic_data = nic_data;
 
2883         /* Determine number of ports etc. */
 
2884         rc = falcon_probe_nic_variant(efx);
 
2888         /* Probe secondary function if expected */
 
2889         if (FALCON_IS_DUAL_FUNC(efx)) {
 
2890                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
 
2892                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
 
2894                         if (dev->bus == efx->pci_dev->bus &&
 
2895                             dev->devfn == efx->pci_dev->devfn + 1) {
 
2896                                 nic_data->pci_dev2 = dev;
 
2900                 if (!nic_data->pci_dev2) {
 
2901                         EFX_ERR(efx, "failed to find secondary function\n");
 
2907         /* Now we can reset the NIC */
 
2908         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
 
2910                 EFX_ERR(efx, "failed to reset NIC\n");
 
2914         /* Allocate memory for INT_KER */
 
2915         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
 
2918         BUG_ON(efx->irq_status.dma_addr & 0x0f);
 
2920         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
 
2921                 (unsigned long long)efx->irq_status.dma_addr,
 
2922                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
 
2924         falcon_probe_spi_devices(efx);
 
2926         /* Read in the non-volatile configuration */
 
2927         rc = falcon_probe_nvconfig(efx);
 
2931         /* Initialise I2C adapter */
 
2932         efx->i2c_adap.owner = THIS_MODULE;
 
2933         nic_data->i2c_data = falcon_i2c_bit_operations;
 
2934         nic_data->i2c_data.data = efx;
 
2935         efx->i2c_adap.algo_data = &nic_data->i2c_data;
 
2936         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
 
2937         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
 
2938         rc = i2c_bit_add_bus(&efx->i2c_adap);
 
2945         falcon_remove_spi_devices(efx);
 
2946         falcon_free_buffer(efx, &efx->irq_status);
 
2949         if (nic_data->pci_dev2) {
 
2950                 pci_dev_put(nic_data->pci_dev2);
 
2951                 nic_data->pci_dev2 = NULL;
 
2955         kfree(efx->nic_data);
 
2959 /* This call performs hardware-specific global initialisation, such as
 
2960  * defining the descriptor cache sizes and number of RSS channels.
 
2961  * It does not set up any buffers, descriptor rings or event queues.
 
2963 int falcon_init_nic(struct efx_nic *efx)
 
2969         /* Use on-chip SRAM */
 
2970         falcon_read(efx, &temp, NIC_STAT_REG);
 
2971         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
 
2972         falcon_write(efx, &temp, NIC_STAT_REG);
 
2974         /* Set the source of the GMAC clock */
 
2975         if (falcon_rev(efx) == FALCON_REV_B0) {
 
2976                 falcon_read(efx, &temp, GPIO_CTL_REG_KER);
 
2977                 EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
 
2978                 falcon_write(efx, &temp, GPIO_CTL_REG_KER);
 
2981         /* Set buffer table mode */
 
2982         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
 
2983         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
 
2985         rc = falcon_reset_sram(efx);
 
2989         /* Set positions of descriptor caches in SRAM. */
 
2990         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
 
2991         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
 
2992         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
 
2993         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
 
2995         /* Set TX descriptor cache size. */
 
2996         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
 
2997         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
 
2998         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
 
3000         /* Set RX descriptor cache size.  Set low watermark to size-8, as
 
3001          * this allows most efficient prefetching.
 
3003         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
 
3004         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
 
3005         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
 
3006         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
 
3007         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
 
3009         /* Clear the parity enables on the TX data fifos as
 
3010          * they produce false parity errors because of timing issues
 
3012         if (EFX_WORKAROUND_5129(efx)) {
 
3013                 falcon_read(efx, &temp, SPARE_REG_KER);
 
3014                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
 
3015                 falcon_write(efx, &temp, SPARE_REG_KER);
 
3018         /* Enable all the genuinely fatal interrupts.  (They are still
 
3019          * masked by the overall interrupt mask, controlled by
 
3020          * falcon_interrupts()).
 
3022          * Note: All other fatal interrupts are enabled
 
3024         EFX_POPULATE_OWORD_3(temp,
 
3025                              ILL_ADR_INT_KER_EN, 1,
 
3026                              RBUF_OWN_INT_KER_EN, 1,
 
3027                              TBUF_OWN_INT_KER_EN, 1);
 
3028         EFX_INVERT_OWORD(temp);
 
3029         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
 
3031         if (EFX_WORKAROUND_7244(efx)) {
 
3032                 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
 
3033                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
 
3034                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
 
3035                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
 
3036                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
 
3037                 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
 
3040         falcon_setup_rss_indir_table(efx);
 
3042         /* Setup RX.  Wait for descriptor is broken and must
 
3043          * be disabled.  RXDP recovery shouldn't be needed, but is.
 
3045         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
 
3046         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
 
3047         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
 
3048         if (EFX_WORKAROUND_5583(efx))
 
3049                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
 
3050         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
 
3052         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
 
3053          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
 
3055         falcon_read(efx, &temp, TX_CFG2_REG_KER);
 
3056         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
 
3057         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
 
3058         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
 
3059         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
 
3060         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
 
3061         /* Enable SW_EV to inherit in char driver - assume harmless here */
 
3062         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
 
3063         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
 
3064         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
 
3065         /* Squash TX of packets of 16 bytes or less */
 
3066         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
 
3067                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
 
3068         falcon_write(efx, &temp, TX_CFG2_REG_KER);
 
3070         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
 
3071          * descriptors (which is bad).
 
3073         falcon_read(efx, &temp, TX_CFG_REG_KER);
 
3074         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
 
3075         falcon_write(efx, &temp, TX_CFG_REG_KER);
 
3078         falcon_read(efx, &temp, RX_CFG_REG_KER);
 
3079         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
 
3080         if (EFX_WORKAROUND_7575(efx))
 
3081                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
 
3083         if (falcon_rev(efx) >= FALCON_REV_B0)
 
3084                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
 
3086         /* RX FIFO flow control thresholds */
 
3087         thresh = ((rx_xon_thresh_bytes >= 0) ?
 
3088                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
 
3089         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
 
3090         thresh = ((rx_xoff_thresh_bytes >= 0) ?
 
3091                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
 
3092         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
 
3093         /* RX control FIFO thresholds [32 entries] */
 
3094         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
 
3095         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
 
3096         falcon_write(efx, &temp, RX_CFG_REG_KER);
 
3098         /* Set destination of both TX and RX Flush events */
 
3099         if (falcon_rev(efx) >= FALCON_REV_B0) {
 
3100                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
 
3101                 falcon_write(efx, &temp, DP_CTRL_REG);
 
3107 void falcon_remove_nic(struct efx_nic *efx)
 
3109         struct falcon_nic_data *nic_data = efx->nic_data;
 
3112         rc = i2c_del_adapter(&efx->i2c_adap);
 
3115         falcon_remove_spi_devices(efx);
 
3116         falcon_free_buffer(efx, &efx->irq_status);
 
3118         falcon_reset_hw(efx, RESET_TYPE_ALL);
 
3120         /* Release the second function after the reset */
 
3121         if (nic_data->pci_dev2) {
 
3122                 pci_dev_put(nic_data->pci_dev2);
 
3123                 nic_data->pci_dev2 = NULL;
 
3126         /* Tear down the private nic state */
 
3127         kfree(efx->nic_data);
 
3128         efx->nic_data = NULL;
 
3131 void falcon_update_nic_stats(struct efx_nic *efx)
 
3135         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
 
3136         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
 
3139 /**************************************************************************
 
3141  * Revision-dependent attributes used by efx.c
 
3143  **************************************************************************
 
3146 struct efx_nic_type falcon_a_nic_type = {
 
3148         .mem_map_size = 0x20000,
 
3149         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
 
3150         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
 
3151         .buf_tbl_base = BUF_TBL_KER_A1,
 
3152         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
 
3153         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
 
3154         .txd_ring_mask = FALCON_TXD_RING_MASK,
 
3155         .rxd_ring_mask = FALCON_RXD_RING_MASK,
 
3156         .evq_size = FALCON_EVQ_SIZE,
 
3157         .max_dma_mask = FALCON_DMA_MASK,
 
3158         .tx_dma_mask = FALCON_TX_DMA_MASK,
 
3159         .bug5391_mask = 0xf,
 
3160         .rx_xoff_thresh = 2048,
 
3161         .rx_xon_thresh = 512,
 
3162         .rx_buffer_padding = 0x24,
 
3163         .max_interrupt_mode = EFX_INT_MODE_MSI,
 
3164         .phys_addr_channels = 4,
 
3167 struct efx_nic_type falcon_b_nic_type = {
 
3169         /* Map everything up to and including the RSS indirection
 
3170          * table.  Don't map MSI-X table, MSI-X PBA since Linux
 
3171          * requires that they not be mapped.  */
 
3172         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
 
3173         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
 
3174         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
 
3175         .buf_tbl_base = BUF_TBL_KER_B0,
 
3176         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
 
3177         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
 
3178         .txd_ring_mask = FALCON_TXD_RING_MASK,
 
3179         .rxd_ring_mask = FALCON_RXD_RING_MASK,
 
3180         .evq_size = FALCON_EVQ_SIZE,
 
3181         .max_dma_mask = FALCON_DMA_MASK,
 
3182         .tx_dma_mask = FALCON_TX_DMA_MASK,
 
3184         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
 
3185         .rx_xon_thresh = 27648,  /* ~3*max MTU */
 
3186         .rx_buffer_padding = 0,
 
3187         .max_interrupt_mode = EFX_INT_MODE_MSIX,
 
3188         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
 
3189                                    * interrupt handler only supports 32