2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
48 static struct kvm_stats_debugfs_item {
51 struct dentry *dentry;
52 } debugfs_entries[] = {
53 { "pf_fixed", &kvm_stat.pf_fixed },
54 { "pf_guest", &kvm_stat.pf_guest },
55 { "tlb_flush", &kvm_stat.tlb_flush },
56 { "invlpg", &kvm_stat.invlpg },
57 { "exits", &kvm_stat.exits },
58 { "io_exits", &kvm_stat.io_exits },
59 { "mmio_exits", &kvm_stat.mmio_exits },
60 { "signal_exits", &kvm_stat.signal_exits },
61 { "irq_exits", &kvm_stat.irq_exits },
65 static struct dentry *debugfs_dir;
67 #define MAX_IO_MSRS 256
69 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
70 #define LMSW_GUEST_MASK 0x0eULL
71 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
72 #define CR8_RESEVED_BITS (~0x0fULL)
73 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
76 // LDT or TSS descriptor in the GDT. 16 bytes.
77 struct segment_descriptor_64 {
78 struct segment_descriptor s;
85 unsigned long segment_base(u16 selector)
87 struct descriptor_table gdt;
88 struct segment_descriptor *d;
89 unsigned long table_base;
90 typedef unsigned long ul;
96 asm ("sgdt %0" : "=m"(gdt));
97 table_base = gdt.base;
99 if (selector & 4) { /* from ldt */
102 asm ("sldt %0" : "=g"(ldt_selector));
103 table_base = segment_base(ldt_selector);
105 d = (struct segment_descriptor *)(table_base + (selector & ~7));
106 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
109 && (d->type == 2 || d->type == 9 || d->type == 11))
110 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 EXPORT_SYMBOL_GPL(segment_base);
116 static inline int valid_vcpu(int n)
118 return likely(n >= 0 && n < KVM_MAX_VCPUS);
121 int kvm_read_guest(struct kvm_vcpu *vcpu,
126 unsigned char *host_buf = dest;
127 unsigned long req_size = size;
135 paddr = gva_to_hpa(vcpu, addr);
137 if (is_error_hpa(paddr))
140 guest_buf = (hva_t)kmap_atomic(
141 pfn_to_page(paddr >> PAGE_SHIFT),
143 offset = addr & ~PAGE_MASK;
145 now = min(size, PAGE_SIZE - offset);
146 memcpy(host_buf, (void*)guest_buf, now);
150 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
152 return req_size - size;
154 EXPORT_SYMBOL_GPL(kvm_read_guest);
156 int kvm_write_guest(struct kvm_vcpu *vcpu,
161 unsigned char *host_buf = data;
162 unsigned long req_size = size;
170 paddr = gva_to_hpa(vcpu, addr);
172 if (is_error_hpa(paddr))
175 guest_buf = (hva_t)kmap_atomic(
176 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
177 offset = addr & ~PAGE_MASK;
179 now = min(size, PAGE_SIZE - offset);
180 memcpy((void*)guest_buf, host_buf, now);
184 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
186 return req_size - size;
188 EXPORT_SYMBOL_GPL(kvm_write_guest);
190 static int vcpu_slot(struct kvm_vcpu *vcpu)
192 return vcpu - vcpu->kvm->vcpus;
196 * Switches to specified vcpu, until a matching vcpu_put()
198 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
200 struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
202 mutex_lock(&vcpu->mutex);
203 if (unlikely(!vcpu->vmcs)) {
204 mutex_unlock(&vcpu->mutex);
207 return kvm_arch_ops->vcpu_load(vcpu);
210 static void vcpu_put(struct kvm_vcpu *vcpu)
212 kvm_arch_ops->vcpu_put(vcpu);
213 mutex_unlock(&vcpu->mutex);
216 static int kvm_dev_open(struct inode *inode, struct file *filp)
218 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
224 spin_lock_init(&kvm->lock);
225 INIT_LIST_HEAD(&kvm->active_mmu_pages);
226 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
227 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
229 mutex_init(&vcpu->mutex);
230 vcpu->mmu.root_hpa = INVALID_PAGE;
231 INIT_LIST_HEAD(&vcpu->free_pages);
233 filp->private_data = kvm;
238 * Free any memory in @free but not in @dont.
240 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
241 struct kvm_memory_slot *dont)
245 if (!dont || free->phys_mem != dont->phys_mem)
246 if (free->phys_mem) {
247 for (i = 0; i < free->npages; ++i)
248 if (free->phys_mem[i])
249 __free_page(free->phys_mem[i]);
250 vfree(free->phys_mem);
253 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
254 vfree(free->dirty_bitmap);
258 free->dirty_bitmap = 0;
261 static void kvm_free_physmem(struct kvm *kvm)
265 for (i = 0; i < kvm->nmemslots; ++i)
266 kvm_free_physmem_slot(&kvm->memslots[i], 0);
269 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
271 kvm_arch_ops->vcpu_free(vcpu);
272 kvm_mmu_destroy(vcpu);
275 static void kvm_free_vcpus(struct kvm *kvm)
279 for (i = 0; i < KVM_MAX_VCPUS; ++i)
280 kvm_free_vcpu(&kvm->vcpus[i]);
283 static int kvm_dev_release(struct inode *inode, struct file *filp)
285 struct kvm *kvm = filp->private_data;
288 kvm_free_physmem(kvm);
293 static void inject_gp(struct kvm_vcpu *vcpu)
295 kvm_arch_ops->inject_gp(vcpu, 0);
298 static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
301 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
302 unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
306 struct kvm_memory_slot *memslot;
308 spin_lock(&vcpu->kvm->lock);
309 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
310 /* FIXME: !memslot - emulate? 0xff? */
311 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
313 for (i = 0; i < 4; ++i) {
314 pdpte = pdpt[offset + i];
315 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
319 kunmap_atomic(pdpt, KM_USER0);
320 spin_unlock(&vcpu->kvm->lock);
325 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
327 if (cr0 & CR0_RESEVED_BITS) {
328 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
334 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
335 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
340 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
341 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
342 "and a clear PE flag\n");
347 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
349 if ((vcpu->shadow_efer & EFER_LME)) {
353 printk(KERN_DEBUG "set_cr0: #GP, start paging "
354 "in long mode while PAE is disabled\n");
358 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
360 printk(KERN_DEBUG "set_cr0: #GP, start paging "
361 "in long mode while CS.L == 1\n");
369 pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
370 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
378 kvm_arch_ops->set_cr0(vcpu, cr0);
381 spin_lock(&vcpu->kvm->lock);
382 kvm_mmu_reset_context(vcpu);
383 spin_unlock(&vcpu->kvm->lock);
386 EXPORT_SYMBOL_GPL(set_cr0);
388 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
390 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
392 EXPORT_SYMBOL_GPL(lmsw);
394 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
396 if (cr4 & CR4_RESEVED_BITS) {
397 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
402 if (is_long_mode(vcpu)) {
403 if (!(cr4 & CR4_PAE_MASK)) {
404 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
409 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
410 && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
411 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
415 if (cr4 & CR4_VMXE_MASK) {
416 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
420 kvm_arch_ops->set_cr4(vcpu, cr4);
421 spin_lock(&vcpu->kvm->lock);
422 kvm_mmu_reset_context(vcpu);
423 spin_unlock(&vcpu->kvm->lock);
425 EXPORT_SYMBOL_GPL(set_cr4);
427 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
429 if (is_long_mode(vcpu)) {
430 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
431 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
436 if (cr3 & CR3_RESEVED_BITS) {
437 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
441 if (is_paging(vcpu) && is_pae(vcpu) &&
442 pdptrs_have_reserved_bits_set(vcpu, cr3)) {
443 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
451 spin_lock(&vcpu->kvm->lock);
452 vcpu->mmu.new_cr3(vcpu);
453 spin_unlock(&vcpu->kvm->lock);
455 EXPORT_SYMBOL_GPL(set_cr3);
457 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
459 if ( cr8 & CR8_RESEVED_BITS) {
460 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
466 EXPORT_SYMBOL_GPL(set_cr8);
468 void fx_init(struct kvm_vcpu *vcpu)
470 struct __attribute__ ((__packed__)) fx_image_s {
476 u64 operand;// fpu dp
482 fx_save(vcpu->host_fx_image);
484 fx_save(vcpu->guest_fx_image);
485 fx_restore(vcpu->host_fx_image);
487 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
488 fx_image->mxcsr = 0x1f80;
489 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
490 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
492 EXPORT_SYMBOL_GPL(fx_init);
495 * Creates some virtual cpus. Good luck creating more than one.
497 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
500 struct kvm_vcpu *vcpu;
506 vcpu = &kvm->vcpus[n];
508 mutex_lock(&vcpu->mutex);
511 mutex_unlock(&vcpu->mutex);
515 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
517 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
519 vcpu->cpu = -1; /* First load will set up TR */
521 r = kvm_arch_ops->vcpu_create(vcpu);
525 r = kvm_mmu_create(vcpu);
529 kvm_arch_ops->vcpu_load(vcpu);
530 r = kvm_mmu_setup(vcpu);
532 r = kvm_arch_ops->vcpu_setup(vcpu);
542 mutex_unlock(&vcpu->mutex);
548 * Allocate some memory and give it an address in the guest physical address
551 * Discontiguous memory is allowed, mostly for framebuffers.
553 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
554 struct kvm_memory_region *mem)
558 unsigned long npages;
560 struct kvm_memory_slot *memslot;
561 struct kvm_memory_slot old, new;
562 int memory_config_version;
565 /* General sanity checks */
566 if (mem->memory_size & (PAGE_SIZE - 1))
568 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
570 if (mem->slot >= KVM_MEMORY_SLOTS)
572 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
575 memslot = &kvm->memslots[mem->slot];
576 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
577 npages = mem->memory_size >> PAGE_SHIFT;
580 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
583 spin_lock(&kvm->lock);
585 memory_config_version = kvm->memory_config_version;
586 new = old = *memslot;
588 new.base_gfn = base_gfn;
590 new.flags = mem->flags;
592 /* Disallow changing a memory slot's size. */
594 if (npages && old.npages && npages != old.npages)
597 /* Check for overlaps */
599 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
600 struct kvm_memory_slot *s = &kvm->memslots[i];
604 if (!((base_gfn + npages <= s->base_gfn) ||
605 (base_gfn >= s->base_gfn + s->npages)))
609 * Do memory allocations outside lock. memory_config_version will
612 spin_unlock(&kvm->lock);
614 /* Deallocate if slot is being removed */
618 /* Free page dirty bitmap if unneeded */
619 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
620 new.dirty_bitmap = 0;
624 /* Allocate if a slot is being created */
625 if (npages && !new.phys_mem) {
626 new.phys_mem = vmalloc(npages * sizeof(struct page *));
631 memset(new.phys_mem, 0, npages * sizeof(struct page *));
632 for (i = 0; i < npages; ++i) {
633 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
635 if (!new.phys_mem[i])
640 /* Allocate page dirty bitmap if needed */
641 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
642 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
644 new.dirty_bitmap = vmalloc(dirty_bytes);
645 if (!new.dirty_bitmap)
647 memset(new.dirty_bitmap, 0, dirty_bytes);
650 spin_lock(&kvm->lock);
652 if (memory_config_version != kvm->memory_config_version) {
653 spin_unlock(&kvm->lock);
654 kvm_free_physmem_slot(&new, &old);
662 if (mem->slot >= kvm->nmemslots)
663 kvm->nmemslots = mem->slot + 1;
666 ++kvm->memory_config_version;
668 spin_unlock(&kvm->lock);
670 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
671 struct kvm_vcpu *vcpu;
673 vcpu = vcpu_load(kvm, i);
676 kvm_mmu_reset_context(vcpu);
680 kvm_free_physmem_slot(&old, &new);
684 spin_unlock(&kvm->lock);
686 kvm_free_physmem_slot(&new, &old);
692 * Get (and clear) the dirty memory log for a memory slot.
694 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
695 struct kvm_dirty_log *log)
697 struct kvm_memory_slot *memslot;
700 unsigned long any = 0;
702 spin_lock(&kvm->lock);
705 * Prevent changes to guest memory configuration even while the lock
709 spin_unlock(&kvm->lock);
711 if (log->slot >= KVM_MEMORY_SLOTS)
714 memslot = &kvm->memslots[log->slot];
716 if (!memslot->dirty_bitmap)
719 n = ALIGN(memslot->npages, 8) / 8;
721 for (i = 0; !any && i < n; ++i)
722 any = memslot->dirty_bitmap[i];
725 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
730 spin_lock(&kvm->lock);
731 kvm_mmu_slot_remove_write_access(kvm, log->slot);
732 spin_unlock(&kvm->lock);
733 memset(memslot->dirty_bitmap, 0, n);
734 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
735 struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
739 kvm_arch_ops->tlb_flush(vcpu);
747 spin_lock(&kvm->lock);
749 spin_unlock(&kvm->lock);
753 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
757 for (i = 0; i < kvm->nmemslots; ++i) {
758 struct kvm_memory_slot *memslot = &kvm->memslots[i];
760 if (gfn >= memslot->base_gfn
761 && gfn < memslot->base_gfn + memslot->npages)
766 EXPORT_SYMBOL_GPL(gfn_to_memslot);
768 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
771 struct kvm_memory_slot *memslot = 0;
772 unsigned long rel_gfn;
774 for (i = 0; i < kvm->nmemslots; ++i) {
775 memslot = &kvm->memslots[i];
777 if (gfn >= memslot->base_gfn
778 && gfn < memslot->base_gfn + memslot->npages) {
780 if (!memslot || !memslot->dirty_bitmap)
783 rel_gfn = gfn - memslot->base_gfn;
786 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
787 set_bit(rel_gfn, memslot->dirty_bitmap);
793 static int emulator_read_std(unsigned long addr,
796 struct x86_emulate_ctxt *ctxt)
798 struct kvm_vcpu *vcpu = ctxt->vcpu;
802 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
803 unsigned offset = addr & (PAGE_SIZE-1);
804 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
806 struct kvm_memory_slot *memslot;
809 if (gpa == UNMAPPED_GVA)
810 return X86EMUL_PROPAGATE_FAULT;
811 pfn = gpa >> PAGE_SHIFT;
812 memslot = gfn_to_memslot(vcpu->kvm, pfn);
814 return X86EMUL_UNHANDLEABLE;
815 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
817 memcpy(data, page + offset, tocopy);
819 kunmap_atomic(page, KM_USER0);
826 return X86EMUL_CONTINUE;
829 static int emulator_write_std(unsigned long addr,
832 struct x86_emulate_ctxt *ctxt)
834 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
836 return X86EMUL_UNHANDLEABLE;
839 static int emulator_read_emulated(unsigned long addr,
842 struct x86_emulate_ctxt *ctxt)
844 struct kvm_vcpu *vcpu = ctxt->vcpu;
846 if (vcpu->mmio_read_completed) {
847 memcpy(val, vcpu->mmio_data, bytes);
848 vcpu->mmio_read_completed = 0;
849 return X86EMUL_CONTINUE;
850 } else if (emulator_read_std(addr, val, bytes, ctxt)
852 return X86EMUL_CONTINUE;
854 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
855 if (gpa == UNMAPPED_GVA)
856 return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
857 vcpu->mmio_needed = 1;
858 vcpu->mmio_phys_addr = gpa;
859 vcpu->mmio_size = bytes;
860 vcpu->mmio_is_write = 0;
862 return X86EMUL_UNHANDLEABLE;
866 static int emulator_write_emulated(unsigned long addr,
869 struct x86_emulate_ctxt *ctxt)
871 struct kvm_vcpu *vcpu = ctxt->vcpu;
872 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
874 if (gpa == UNMAPPED_GVA)
875 return X86EMUL_PROPAGATE_FAULT;
877 vcpu->mmio_needed = 1;
878 vcpu->mmio_phys_addr = gpa;
879 vcpu->mmio_size = bytes;
880 vcpu->mmio_is_write = 1;
881 memcpy(vcpu->mmio_data, &val, bytes);
883 return X86EMUL_CONTINUE;
886 static int emulator_cmpxchg_emulated(unsigned long addr,
890 struct x86_emulate_ctxt *ctxt)
896 printk(KERN_WARNING "kvm: emulating exchange as write\n");
898 return emulator_write_emulated(addr, new, bytes, ctxt);
901 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
903 return kvm_arch_ops->get_segment_base(vcpu, seg);
906 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
908 spin_lock(&vcpu->kvm->lock);
909 vcpu->mmu.inval_page(vcpu, address);
910 spin_unlock(&vcpu->kvm->lock);
911 kvm_arch_ops->invlpg(vcpu, address);
912 return X86EMUL_CONTINUE;
915 int emulate_clts(struct kvm_vcpu *vcpu)
917 unsigned long cr0 = vcpu->cr0;
920 kvm_arch_ops->set_cr0(vcpu, cr0);
921 return X86EMUL_CONTINUE;
924 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
926 struct kvm_vcpu *vcpu = ctxt->vcpu;
930 *dest = kvm_arch_ops->get_dr(vcpu, dr);
931 return X86EMUL_CONTINUE;
933 printk(KERN_DEBUG "%s: unexpected dr %u\n",
935 return X86EMUL_UNHANDLEABLE;
939 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
941 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
944 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
946 /* FIXME: better handling */
947 return X86EMUL_UNHANDLEABLE;
949 return X86EMUL_CONTINUE;
952 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
956 unsigned long rip = ctxt->vcpu->rip;
957 unsigned long rip_linear;
959 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
964 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
966 printk(KERN_ERR "emulation failed but !mmio_needed?"
967 " rip %lx %02x %02x %02x %02x\n",
968 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
972 struct x86_emulate_ops emulate_ops = {
973 .read_std = emulator_read_std,
974 .write_std = emulator_write_std,
975 .read_emulated = emulator_read_emulated,
976 .write_emulated = emulator_write_emulated,
977 .cmpxchg_emulated = emulator_cmpxchg_emulated,
980 int emulate_instruction(struct kvm_vcpu *vcpu,
985 struct x86_emulate_ctxt emulate_ctxt;
989 kvm_arch_ops->cache_regs(vcpu);
991 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
993 emulate_ctxt.vcpu = vcpu;
994 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
995 emulate_ctxt.cr2 = cr2;
996 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
997 ? X86EMUL_MODE_REAL : cs_l
998 ? X86EMUL_MODE_PROT64 : cs_db
999 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1001 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1002 emulate_ctxt.cs_base = 0;
1003 emulate_ctxt.ds_base = 0;
1004 emulate_ctxt.es_base = 0;
1005 emulate_ctxt.ss_base = 0;
1007 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1008 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1009 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1010 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1013 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1014 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1016 vcpu->mmio_is_write = 0;
1017 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1019 if ((r || vcpu->mmio_is_write) && run) {
1020 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1021 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1022 run->mmio.len = vcpu->mmio_size;
1023 run->mmio.is_write = vcpu->mmio_is_write;
1027 if (!vcpu->mmio_needed) {
1028 report_emulation_failure(&emulate_ctxt);
1029 return EMULATE_FAIL;
1031 return EMULATE_DO_MMIO;
1034 kvm_arch_ops->decache_regs(vcpu);
1035 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1037 if (vcpu->mmio_is_write)
1038 return EMULATE_DO_MMIO;
1040 return EMULATE_DONE;
1042 EXPORT_SYMBOL_GPL(emulate_instruction);
1044 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1046 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1049 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1051 struct descriptor_table dt = { limit, base };
1053 kvm_arch_ops->set_gdt(vcpu, &dt);
1056 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1058 struct descriptor_table dt = { limit, base };
1060 kvm_arch_ops->set_idt(vcpu, &dt);
1063 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1064 unsigned long *rflags)
1067 *rflags = kvm_arch_ops->get_rflags(vcpu);
1070 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1082 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1087 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1088 unsigned long *rflags)
1092 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1093 *rflags = kvm_arch_ops->get_rflags(vcpu);
1102 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1105 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1109 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1114 case 0xc0010010: /* SYSCFG */
1115 case 0xc0010015: /* HWCR */
1116 case MSR_IA32_PLATFORM_ID:
1117 case MSR_IA32_P5_MC_ADDR:
1118 case MSR_IA32_P5_MC_TYPE:
1119 case MSR_IA32_MC0_CTL:
1120 case MSR_IA32_MCG_STATUS:
1121 case MSR_IA32_MCG_CAP:
1122 case MSR_IA32_MC0_MISC:
1123 case MSR_IA32_MC0_MISC+4:
1124 case MSR_IA32_MC0_MISC+8:
1125 case MSR_IA32_MC0_MISC+12:
1126 case MSR_IA32_MC0_MISC+16:
1127 case MSR_IA32_UCODE_REV:
1128 case MSR_IA32_PERF_STATUS:
1129 /* MTRR registers */
1131 case 0x200 ... 0x2ff:
1134 case 0xcd: /* fsb frequency */
1137 case MSR_IA32_APICBASE:
1138 data = vcpu->apic_base;
1140 #ifdef CONFIG_X86_64
1142 data = vcpu->shadow_efer;
1146 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1152 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1155 * Reads an msr value (of 'msr_index') into 'pdata'.
1156 * Returns 0 on success, non-0 otherwise.
1157 * Assumes vcpu_load() was already called.
1159 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1161 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1164 #ifdef CONFIG_X86_64
1166 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1168 if (efer & EFER_RESERVED_BITS) {
1169 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1176 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1177 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1182 kvm_arch_ops->set_efer(vcpu, efer);
1185 efer |= vcpu->shadow_efer & EFER_LMA;
1187 vcpu->shadow_efer = efer;
1192 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1195 #ifdef CONFIG_X86_64
1197 set_efer(vcpu, data);
1200 case MSR_IA32_MC0_STATUS:
1201 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1202 __FUNCTION__, data);
1204 case MSR_IA32_UCODE_REV:
1205 case MSR_IA32_UCODE_WRITE:
1206 case 0x200 ... 0x2ff: /* MTRRs */
1208 case MSR_IA32_APICBASE:
1209 vcpu->apic_base = data;
1212 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1217 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1220 * Writes msr value into into the appropriate "register".
1221 * Returns 0 on success, non-0 otherwise.
1222 * Assumes vcpu_load() was already called.
1224 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1226 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1229 void kvm_resched(struct kvm_vcpu *vcpu)
1233 /* Cannot fail - no vcpu unplug yet. */
1234 vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1236 EXPORT_SYMBOL_GPL(kvm_resched);
1238 void load_msrs(struct vmx_msr_entry *e, int n)
1242 for (i = 0; i < n; ++i)
1243 wrmsrl(e[i].index, e[i].data);
1245 EXPORT_SYMBOL_GPL(load_msrs);
1247 void save_msrs(struct vmx_msr_entry *e, int n)
1251 for (i = 0; i < n; ++i)
1252 rdmsrl(e[i].index, e[i].data);
1254 EXPORT_SYMBOL_GPL(save_msrs);
1256 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1258 struct kvm_vcpu *vcpu;
1261 if (!valid_vcpu(kvm_run->vcpu))
1264 vcpu = vcpu_load(kvm, kvm_run->vcpu);
1268 if (kvm_run->emulated) {
1269 kvm_arch_ops->skip_emulated_instruction(vcpu);
1270 kvm_run->emulated = 0;
1273 if (kvm_run->mmio_completed) {
1274 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1275 vcpu->mmio_read_completed = 1;
1278 vcpu->mmio_needed = 0;
1280 r = kvm_arch_ops->run(vcpu, kvm_run);
1286 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1288 struct kvm_vcpu *vcpu;
1290 if (!valid_vcpu(regs->vcpu))
1293 vcpu = vcpu_load(kvm, regs->vcpu);
1297 kvm_arch_ops->cache_regs(vcpu);
1299 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1300 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1301 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1302 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1303 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1304 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1305 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1306 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1307 #ifdef CONFIG_X86_64
1308 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1309 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1310 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1311 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1312 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1313 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1314 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1315 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1318 regs->rip = vcpu->rip;
1319 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1322 * Don't leak debug flags in case they were set for guest debugging
1324 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1325 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1332 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1334 struct kvm_vcpu *vcpu;
1336 if (!valid_vcpu(regs->vcpu))
1339 vcpu = vcpu_load(kvm, regs->vcpu);
1343 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1344 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1345 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1346 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1347 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1348 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1349 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1350 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1351 #ifdef CONFIG_X86_64
1352 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1353 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1354 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1355 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1356 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1357 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1358 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1359 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1362 vcpu->rip = regs->rip;
1363 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1365 kvm_arch_ops->decache_regs(vcpu);
1372 static void get_segment(struct kvm_vcpu *vcpu,
1373 struct kvm_segment *var, int seg)
1375 return kvm_arch_ops->get_segment(vcpu, var, seg);
1378 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1380 struct kvm_vcpu *vcpu;
1381 struct descriptor_table dt;
1383 if (!valid_vcpu(sregs->vcpu))
1385 vcpu = vcpu_load(kvm, sregs->vcpu);
1389 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1390 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1391 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1392 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1393 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1394 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1396 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1397 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1399 kvm_arch_ops->get_idt(vcpu, &dt);
1400 sregs->idt.limit = dt.limit;
1401 sregs->idt.base = dt.base;
1402 kvm_arch_ops->get_gdt(vcpu, &dt);
1403 sregs->gdt.limit = dt.limit;
1404 sregs->gdt.base = dt.base;
1406 sregs->cr0 = vcpu->cr0;
1407 sregs->cr2 = vcpu->cr2;
1408 sregs->cr3 = vcpu->cr3;
1409 sregs->cr4 = vcpu->cr4;
1410 sregs->cr8 = vcpu->cr8;
1411 sregs->efer = vcpu->shadow_efer;
1412 sregs->apic_base = vcpu->apic_base;
1414 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1415 sizeof sregs->interrupt_bitmap);
1422 static void set_segment(struct kvm_vcpu *vcpu,
1423 struct kvm_segment *var, int seg)
1425 return kvm_arch_ops->set_segment(vcpu, var, seg);
1428 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1430 struct kvm_vcpu *vcpu;
1431 int mmu_reset_needed = 0;
1433 struct descriptor_table dt;
1435 if (!valid_vcpu(sregs->vcpu))
1437 vcpu = vcpu_load(kvm, sregs->vcpu);
1441 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1442 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1443 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1444 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1445 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1446 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1448 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1449 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1451 dt.limit = sregs->idt.limit;
1452 dt.base = sregs->idt.base;
1453 kvm_arch_ops->set_idt(vcpu, &dt);
1454 dt.limit = sregs->gdt.limit;
1455 dt.base = sregs->gdt.base;
1456 kvm_arch_ops->set_gdt(vcpu, &dt);
1458 vcpu->cr2 = sregs->cr2;
1459 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1460 vcpu->cr3 = sregs->cr3;
1462 vcpu->cr8 = sregs->cr8;
1464 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1465 #ifdef CONFIG_X86_64
1466 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1468 vcpu->apic_base = sregs->apic_base;
1470 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1471 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1473 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1474 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1476 if (mmu_reset_needed)
1477 kvm_mmu_reset_context(vcpu);
1479 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1480 sizeof vcpu->irq_pending);
1481 vcpu->irq_summary = 0;
1482 for (i = 0; i < NR_IRQ_WORDS; ++i)
1483 if (vcpu->irq_pending[i])
1484 __set_bit(i, &vcpu->irq_summary);
1492 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1493 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1495 * This list is modified at module load time to reflect the
1496 * capabilities of the host cpu.
1498 static u32 msrs_to_save[] = {
1499 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1501 #ifdef CONFIG_X86_64
1502 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1504 MSR_IA32_TIME_STAMP_COUNTER,
1507 static unsigned num_msrs_to_save;
1509 static __init void kvm_init_msr_list(void)
1514 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1515 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1518 msrs_to_save[j] = msrs_to_save[i];
1521 num_msrs_to_save = j;
1525 * Adapt set_msr() to msr_io()'s calling convention
1527 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1529 return set_msr(vcpu, index, *data);
1533 * Read or write a bunch of msrs. All parameters are kernel addresses.
1535 * @return number of msrs set successfully.
1537 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1538 struct kvm_msr_entry *entries,
1539 int (*do_msr)(struct kvm_vcpu *vcpu,
1540 unsigned index, u64 *data))
1542 struct kvm_vcpu *vcpu;
1545 if (!valid_vcpu(msrs->vcpu))
1548 vcpu = vcpu_load(kvm, msrs->vcpu);
1552 for (i = 0; i < msrs->nmsrs; ++i)
1553 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1562 * Read or write a bunch of msrs. Parameters are user addresses.
1564 * @return number of msrs set successfully.
1566 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1567 int (*do_msr)(struct kvm_vcpu *vcpu,
1568 unsigned index, u64 *data),
1571 struct kvm_msrs msrs;
1572 struct kvm_msr_entry *entries;
1577 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1581 if (msrs.nmsrs >= MAX_IO_MSRS)
1585 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1586 entries = vmalloc(size);
1591 if (copy_from_user(entries, user_msrs->entries, size))
1594 r = n = __msr_io(kvm, &msrs, entries, do_msr);
1599 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1611 * Translate a guest virtual address to a guest physical address.
1613 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1615 unsigned long vaddr = tr->linear_address;
1616 struct kvm_vcpu *vcpu;
1619 vcpu = vcpu_load(kvm, tr->vcpu);
1622 spin_lock(&kvm->lock);
1623 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1624 tr->physical_address = gpa;
1625 tr->valid = gpa != UNMAPPED_GVA;
1628 spin_unlock(&kvm->lock);
1634 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1636 struct kvm_vcpu *vcpu;
1638 if (!valid_vcpu(irq->vcpu))
1640 if (irq->irq < 0 || irq->irq >= 256)
1642 vcpu = vcpu_load(kvm, irq->vcpu);
1646 set_bit(irq->irq, vcpu->irq_pending);
1647 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1654 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1655 struct kvm_debug_guest *dbg)
1657 struct kvm_vcpu *vcpu;
1660 if (!valid_vcpu(dbg->vcpu))
1662 vcpu = vcpu_load(kvm, dbg->vcpu);
1666 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1673 static long kvm_dev_ioctl(struct file *filp,
1674 unsigned int ioctl, unsigned long arg)
1676 struct kvm *kvm = filp->private_data;
1680 case KVM_GET_API_VERSION:
1681 r = KVM_API_VERSION;
1683 case KVM_CREATE_VCPU: {
1684 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1690 struct kvm_run kvm_run;
1693 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1695 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1699 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run))
1704 case KVM_GET_REGS: {
1705 struct kvm_regs kvm_regs;
1708 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1710 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1714 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1719 case KVM_SET_REGS: {
1720 struct kvm_regs kvm_regs;
1723 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1725 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1731 case KVM_GET_SREGS: {
1732 struct kvm_sregs kvm_sregs;
1735 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1737 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1741 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1746 case KVM_SET_SREGS: {
1747 struct kvm_sregs kvm_sregs;
1750 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1752 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1758 case KVM_TRANSLATE: {
1759 struct kvm_translation tr;
1762 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1764 r = kvm_dev_ioctl_translate(kvm, &tr);
1768 if (copy_to_user((void *)arg, &tr, sizeof tr))
1773 case KVM_INTERRUPT: {
1774 struct kvm_interrupt irq;
1777 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1779 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1785 case KVM_DEBUG_GUEST: {
1786 struct kvm_debug_guest dbg;
1789 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1791 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1797 case KVM_SET_MEMORY_REGION: {
1798 struct kvm_memory_region kvm_mem;
1801 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1803 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1808 case KVM_GET_DIRTY_LOG: {
1809 struct kvm_dirty_log log;
1812 if (copy_from_user(&log, (void *)arg, sizeof log))
1814 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1820 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1823 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1825 case KVM_GET_MSR_INDEX_LIST: {
1826 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1827 struct kvm_msr_list msr_list;
1831 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1834 msr_list.nmsrs = num_msrs_to_save;
1835 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1838 if (n < num_msrs_to_save)
1841 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1842 num_msrs_to_save * sizeof(u32)))
1853 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1854 unsigned long address,
1857 struct kvm *kvm = vma->vm_file->private_data;
1858 unsigned long pgoff;
1859 struct kvm_memory_slot *slot;
1862 *type = VM_FAULT_MINOR;
1863 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1864 slot = gfn_to_memslot(kvm, pgoff);
1866 return NOPAGE_SIGBUS;
1867 page = gfn_to_page(slot, pgoff);
1869 return NOPAGE_SIGBUS;
1874 static struct vm_operations_struct kvm_dev_vm_ops = {
1875 .nopage = kvm_dev_nopage,
1878 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1880 vma->vm_ops = &kvm_dev_vm_ops;
1884 static struct file_operations kvm_chardev_ops = {
1885 .open = kvm_dev_open,
1886 .release = kvm_dev_release,
1887 .unlocked_ioctl = kvm_dev_ioctl,
1888 .compat_ioctl = kvm_dev_ioctl,
1889 .mmap = kvm_dev_mmap,
1892 static struct miscdevice kvm_dev = {
1898 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1901 if (val == SYS_RESTART) {
1903 * Some (well, at least mine) BIOSes hang on reboot if
1906 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1907 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1912 static struct notifier_block kvm_reboot_notifier = {
1913 .notifier_call = kvm_reboot,
1917 static __init void kvm_init_debug(void)
1919 struct kvm_stats_debugfs_item *p;
1921 debugfs_dir = debugfs_create_dir("kvm", 0);
1922 for (p = debugfs_entries; p->name; ++p)
1923 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1927 static void kvm_exit_debug(void)
1929 struct kvm_stats_debugfs_item *p;
1931 for (p = debugfs_entries; p->name; ++p)
1932 debugfs_remove(p->dentry);
1933 debugfs_remove(debugfs_dir);
1936 hpa_t bad_page_address;
1938 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
1943 printk(KERN_ERR "kvm: already loaded the other module\n");
1949 if (!kvm_arch_ops->cpu_has_kvm_support()) {
1950 printk(KERN_ERR "kvm: no hardware support\n");
1953 if (kvm_arch_ops->disabled_by_bios()) {
1954 printk(KERN_ERR "kvm: disabled by bios\n");
1958 r = kvm_arch_ops->hardware_setup();
1962 on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
1963 register_reboot_notifier(&kvm_reboot_notifier);
1965 kvm_chardev_ops.owner = module;
1967 r = misc_register(&kvm_dev);
1969 printk (KERN_ERR "kvm: misc device register failed\n");
1976 unregister_reboot_notifier(&kvm_reboot_notifier);
1977 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1978 kvm_arch_ops->hardware_unsetup();
1982 void kvm_exit_arch(void)
1984 misc_deregister(&kvm_dev);
1986 unregister_reboot_notifier(&kvm_reboot_notifier);
1987 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1988 kvm_arch_ops->hardware_unsetup();
1989 kvm_arch_ops = NULL;
1992 static __init int kvm_init(void)
1994 static struct page *bad_page;
1999 kvm_init_msr_list();
2001 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2006 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2007 memset(__va(bad_page_address), 0, PAGE_SIZE);
2016 static __exit void kvm_exit(void)
2019 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2022 module_init(kvm_init)
2023 module_exit(kvm_exit)
2025 EXPORT_SYMBOL_GPL(kvm_init_arch);
2026 EXPORT_SYMBOL_GPL(kvm_exit_arch);