2 * Copyright (C) 2006, 2007 Eugene Konev
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/phy.h>
36 #include <linux/phy_fixed.h>
37 #include <linux/platform_device.h>
38 #include <linux/dma-mapping.h>
40 #include <asm/atomic.h>
42 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
43 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
44 MODULE_LICENSE("GPL");
45 MODULE_ALIAS("platform:cpmac");
47 static int debug_level = 8;
48 static int dumb_switch;
50 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
51 module_param(debug_level, int, 0444);
52 module_param(dumb_switch, int, 0444);
54 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
55 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
57 #define CPMAC_VERSION "0.5.0"
58 /* frame size + 802.1q tag */
59 #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + 4)
60 #define CPMAC_QUEUES 8
62 /* Ethernet registers */
63 #define CPMAC_TX_CONTROL 0x0004
64 #define CPMAC_TX_TEARDOWN 0x0008
65 #define CPMAC_RX_CONTROL 0x0014
66 #define CPMAC_RX_TEARDOWN 0x0018
67 #define CPMAC_MBP 0x0100
68 # define MBP_RXPASSCRC 0x40000000
69 # define MBP_RXQOS 0x20000000
70 # define MBP_RXNOCHAIN 0x10000000
71 # define MBP_RXCMF 0x01000000
72 # define MBP_RXSHORT 0x00800000
73 # define MBP_RXCEF 0x00400000
74 # define MBP_RXPROMISC 0x00200000
75 # define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
76 # define MBP_RXBCAST 0x00002000
77 # define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
78 # define MBP_RXMCAST 0x00000020
79 # define MBP_MCASTCHAN(channel) ((channel) & 0x7)
80 #define CPMAC_UNICAST_ENABLE 0x0104
81 #define CPMAC_UNICAST_CLEAR 0x0108
82 #define CPMAC_MAX_LENGTH 0x010c
83 #define CPMAC_BUFFER_OFFSET 0x0110
84 #define CPMAC_MAC_CONTROL 0x0160
85 # define MAC_TXPTYPE 0x00000200
86 # define MAC_TXPACE 0x00000040
87 # define MAC_MII 0x00000020
88 # define MAC_TXFLOW 0x00000010
89 # define MAC_RXFLOW 0x00000008
90 # define MAC_MTEST 0x00000004
91 # define MAC_LOOPBACK 0x00000002
92 # define MAC_FDX 0x00000001
93 #define CPMAC_MAC_STATUS 0x0164
94 # define MAC_STATUS_QOS 0x00000004
95 # define MAC_STATUS_RXFLOW 0x00000002
96 # define MAC_STATUS_TXFLOW 0x00000001
97 #define CPMAC_TX_INT_ENABLE 0x0178
98 #define CPMAC_TX_INT_CLEAR 0x017c
99 #define CPMAC_MAC_INT_VECTOR 0x0180
100 # define MAC_INT_STATUS 0x00080000
101 # define MAC_INT_HOST 0x00040000
102 # define MAC_INT_RX 0x00020000
103 # define MAC_INT_TX 0x00010000
104 #define CPMAC_MAC_EOI_VECTOR 0x0184
105 #define CPMAC_RX_INT_ENABLE 0x0198
106 #define CPMAC_RX_INT_CLEAR 0x019c
107 #define CPMAC_MAC_INT_ENABLE 0x01a8
108 #define CPMAC_MAC_INT_CLEAR 0x01ac
109 #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
110 #define CPMAC_MAC_ADDR_MID 0x01d0
111 #define CPMAC_MAC_ADDR_HI 0x01d4
112 #define CPMAC_MAC_HASH_LO 0x01d8
113 #define CPMAC_MAC_HASH_HI 0x01dc
114 #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
115 #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
116 #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
117 #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
118 #define CPMAC_REG_END 0x0680
121 * TODO: use some of them to fill stats in cpmac_stats()
123 #define CPMAC_STATS_RX_GOOD 0x0200
124 #define CPMAC_STATS_RX_BCAST 0x0204
125 #define CPMAC_STATS_RX_MCAST 0x0208
126 #define CPMAC_STATS_RX_PAUSE 0x020c
127 #define CPMAC_STATS_RX_CRC 0x0210
128 #define CPMAC_STATS_RX_ALIGN 0x0214
129 #define CPMAC_STATS_RX_OVER 0x0218
130 #define CPMAC_STATS_RX_JABBER 0x021c
131 #define CPMAC_STATS_RX_UNDER 0x0220
132 #define CPMAC_STATS_RX_FRAG 0x0224
133 #define CPMAC_STATS_RX_FILTER 0x0228
134 #define CPMAC_STATS_RX_QOSFILTER 0x022c
135 #define CPMAC_STATS_RX_OCTETS 0x0230
137 #define CPMAC_STATS_TX_GOOD 0x0234
138 #define CPMAC_STATS_TX_BCAST 0x0238
139 #define CPMAC_STATS_TX_MCAST 0x023c
140 #define CPMAC_STATS_TX_PAUSE 0x0240
141 #define CPMAC_STATS_TX_DEFER 0x0244
142 #define CPMAC_STATS_TX_COLLISION 0x0248
143 #define CPMAC_STATS_TX_SINGLECOLL 0x024c
144 #define CPMAC_STATS_TX_MULTICOLL 0x0250
145 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254
146 #define CPMAC_STATS_TX_LATECOLL 0x0258
147 #define CPMAC_STATS_TX_UNDERRUN 0x025c
148 #define CPMAC_STATS_TX_CARRIERSENSE 0x0260
149 #define CPMAC_STATS_TX_OCTETS 0x0264
151 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
152 #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
156 #define CPMAC_MDIO_VERSION 0x0000
157 #define CPMAC_MDIO_CONTROL 0x0004
158 # define MDIOC_IDLE 0x80000000
159 # define MDIOC_ENABLE 0x40000000
160 # define MDIOC_PREAMBLE 0x00100000
161 # define MDIOC_FAULT 0x00080000
162 # define MDIOC_FAULTDETECT 0x00040000
163 # define MDIOC_INTTEST 0x00020000
164 # define MDIOC_CLKDIV(div) ((div) & 0xff)
165 #define CPMAC_MDIO_ALIVE 0x0008
166 #define CPMAC_MDIO_LINK 0x000c
167 #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
168 # define MDIO_BUSY 0x80000000
169 # define MDIO_WRITE 0x40000000
170 # define MDIO_REG(reg) (((reg) & 0x1f) << 21)
171 # define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
172 # define MDIO_DATA(data) ((data) & 0xffff)
173 #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
174 # define PHYSEL_LINKSEL 0x00000040
175 # define PHYSEL_LINKINT 0x00000020
184 #define CPMAC_SOP 0x8000
185 #define CPMAC_EOP 0x4000
186 #define CPMAC_OWN 0x2000
187 #define CPMAC_EOQ 0x1000
189 struct cpmac_desc *next;
190 struct cpmac_desc *prev;
192 dma_addr_t data_mapping;
198 struct cpmac_desc *rx_head;
200 struct cpmac_desc *desc_ring;
203 struct mii_bus *mii_bus;
204 struct phy_device *phy;
205 char phy_name[BUS_ID_SIZE];
206 int oldlink, oldspeed, oldduplex;
208 struct net_device *dev;
209 struct work_struct reset_work;
210 struct platform_device *pdev;
211 struct napi_struct napi;
212 atomic_t reset_pending;
215 static irqreturn_t cpmac_irq(int, void *);
216 static void cpmac_hw_start(struct net_device *dev);
217 static void cpmac_hw_stop(struct net_device *dev);
218 static int cpmac_stop(struct net_device *dev);
219 static int cpmac_open(struct net_device *dev);
221 static void cpmac_dump_regs(struct net_device *dev)
224 struct cpmac_priv *priv = netdev_priv(dev);
225 for (i = 0; i < CPMAC_REG_END; i += 4) {
229 printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
232 printk(" %08x", cpmac_read(priv->regs, i));
237 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
240 printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
241 for (i = 0; i < sizeof(*desc) / 4; i++)
242 printk(" %08x", ((u32 *)desc)[i]);
246 static void cpmac_dump_all_desc(struct net_device *dev)
248 struct cpmac_priv *priv = netdev_priv(dev);
249 struct cpmac_desc *dump = priv->rx_head;
251 cpmac_dump_desc(dev, dump);
253 } while (dump != priv->rx_head);
256 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
259 printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
260 for (i = 0; i < skb->len; i++) {
264 printk(KERN_DEBUG "%s: data[%p]:", dev->name,
267 printk(" %02x", ((u8 *)skb->data)[i]);
272 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
276 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
278 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
280 while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
282 return MDIO_DATA(val);
285 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
288 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
290 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
291 MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
295 static int cpmac_mdio_reset(struct mii_bus *bus)
297 ar7_device_reset(AR7_RESET_BIT_MDIO);
298 cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
299 MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
303 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
305 static struct mii_bus cpmac_mii = {
307 .read = cpmac_mdio_read,
308 .write = cpmac_mdio_write,
309 .reset = cpmac_mdio_reset,
313 static int cpmac_config(struct net_device *dev, struct ifmap *map)
315 if (dev->flags & IFF_UP)
318 /* Don't allow changing the I/O address */
319 if (map->base_addr != dev->base_addr)
322 /* ignore other fields */
326 static void cpmac_set_multicast_list(struct net_device *dev)
328 struct dev_mc_list *iter;
331 u32 mbp, bit, hash[2] = { 0, };
332 struct cpmac_priv *priv = netdev_priv(dev);
334 mbp = cpmac_read(priv->regs, CPMAC_MBP);
335 if (dev->flags & IFF_PROMISC) {
336 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
339 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
340 if (dev->flags & IFF_ALLMULTI) {
341 /* enable all multicast mode */
342 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
343 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
346 * cpmac uses some strange mac address hashing
349 for (i = 0, iter = dev->mc_list; i < dev->mc_count;
350 i++, iter = iter->next) {
352 tmp = iter->dmi_addr[0];
353 bit ^= (tmp >> 2) ^ (tmp << 4);
354 tmp = iter->dmi_addr[1];
355 bit ^= (tmp >> 4) ^ (tmp << 2);
356 tmp = iter->dmi_addr[2];
357 bit ^= (tmp >> 6) ^ tmp;
358 tmp = iter->dmi_addr[3];
359 bit ^= (tmp >> 2) ^ (tmp << 4);
360 tmp = iter->dmi_addr[4];
361 bit ^= (tmp >> 4) ^ (tmp << 2);
362 tmp = iter->dmi_addr[5];
363 bit ^= (tmp >> 6) ^ tmp;
365 hash[bit / 32] |= 1 << (bit % 32);
368 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
369 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
374 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
375 struct cpmac_desc *desc)
377 struct sk_buff *skb, *result = NULL;
379 if (unlikely(netif_msg_hw(priv)))
380 cpmac_dump_desc(priv->dev, desc);
381 cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
382 if (unlikely(!desc->datalen)) {
383 if (netif_msg_rx_err(priv) && net_ratelimit())
384 printk(KERN_WARNING "%s: rx: spurious interrupt\n",
389 skb = netdev_alloc_skb(priv->dev, CPMAC_SKB_SIZE);
392 skb_put(desc->skb, desc->datalen);
393 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
394 desc->skb->ip_summed = CHECKSUM_NONE;
395 priv->dev->stats.rx_packets++;
396 priv->dev->stats.rx_bytes += desc->datalen;
398 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
399 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
401 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
404 desc->hw_data = (u32)desc->data_mapping;
405 if (unlikely(netif_msg_pktdata(priv))) {
406 printk(KERN_DEBUG "%s: received packet:\n",
408 cpmac_dump_skb(priv->dev, result);
411 if (netif_msg_rx_err(priv) && net_ratelimit())
413 "%s: low on skbs, dropping packet\n",
415 priv->dev->stats.rx_dropped++;
418 desc->buflen = CPMAC_SKB_SIZE;
419 desc->dataflags = CPMAC_OWN;
424 static int cpmac_poll(struct napi_struct *napi, int budget)
427 struct cpmac_desc *desc, *restart;
428 struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
429 int received = 0, processed = 0;
431 spin_lock(&priv->rx_lock);
432 if (unlikely(!priv->rx_head)) {
433 if (netif_msg_rx_err(priv) && net_ratelimit())
434 printk(KERN_WARNING "%s: rx: polling, but no queue\n",
436 spin_unlock(&priv->rx_lock);
437 netif_rx_complete(priv->dev, napi);
441 desc = priv->rx_head;
443 while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
446 if ((desc->dataflags & CPMAC_EOQ) != 0) {
447 /* The last update to eoq->hw_next didn't happen
448 * soon enough, and the receiver stopped here.
449 *Remember this descriptor so we can restart
450 * the receiver after freeing some space.
452 if (unlikely(restart)) {
453 if (netif_msg_rx_err(priv))
454 printk(KERN_ERR "%s: poll found a"
455 " duplicate EOQ: %p and %p\n",
456 priv->dev->name, restart, desc);
460 restart = desc->next;
463 skb = cpmac_rx_one(priv, desc);
465 netif_receive_skb(skb);
471 if (desc != priv->rx_head) {
472 /* We freed some buffers, but not the whole ring,
473 * add what we did free to the rx list */
474 desc->prev->hw_next = (u32)0;
475 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
478 /* Optimization: If we did not actually process an EOQ (perhaps because
479 * of quota limits), check to see if the tail of the queue has EOQ set.
480 * We should immediately restart in that case so that the receiver can
481 * restart and run in parallel with more packet processing.
482 * This lets us handle slightly larger bursts before running
483 * out of ring space (assuming dev->weight < ring_size) */
486 (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
488 (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
489 /* reset EOQ so the poll loop (above) doesn't try to
490 * restart this when it eventually gets to this descriptor.
492 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
493 restart = priv->rx_head;
497 priv->dev->stats.rx_errors++;
498 priv->dev->stats.rx_fifo_errors++;
499 if (netif_msg_rx_err(priv) && net_ratelimit())
500 printk(KERN_WARNING "%s: rx dma ring overrun\n",
503 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
504 if (netif_msg_drv(priv))
505 printk(KERN_ERR "%s: cpmac_poll is trying to "
506 "restart rx from a descriptor that's "
508 priv->dev->name, restart);
512 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
515 priv->rx_head = desc;
516 spin_unlock(&priv->rx_lock);
517 if (unlikely(netif_msg_rx_status(priv)))
518 printk(KERN_DEBUG "%s: poll processed %d packets\n",
519 priv->dev->name, received);
520 if (processed == 0) {
521 /* we ran out of packets to read,
522 * revert to interrupt-driven mode */
523 netif_rx_complete(priv->dev, napi);
524 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
531 /* Something went horribly wrong.
532 * Reset hardware to try to recover rather than wedging. */
534 if (netif_msg_drv(priv)) {
535 printk(KERN_ERR "%s: cpmac_poll is confused. "
536 "Resetting hardware\n", priv->dev->name);
537 cpmac_dump_all_desc(priv->dev);
538 printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
540 cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
541 cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
544 spin_unlock(&priv->rx_lock);
545 netif_rx_complete(priv->dev, napi);
546 netif_tx_stop_all_queues(priv->dev);
547 napi_disable(&priv->napi);
549 atomic_inc(&priv->reset_pending);
550 cpmac_hw_stop(priv->dev);
551 if (!schedule_work(&priv->reset_work))
552 atomic_dec(&priv->reset_pending);
557 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
560 struct cpmac_desc *desc;
561 struct cpmac_priv *priv = netdev_priv(dev);
563 if (unlikely(atomic_read(&priv->reset_pending)))
564 return NETDEV_TX_BUSY;
566 if (unlikely(skb_padto(skb, ETH_ZLEN)))
569 len = max(skb->len, ETH_ZLEN);
570 queue = skb_get_queue_mapping(skb);
571 netif_stop_subqueue(dev, queue);
573 desc = &priv->desc_ring[queue];
574 if (unlikely(desc->dataflags & CPMAC_OWN)) {
575 if (netif_msg_tx_err(priv) && net_ratelimit())
576 printk(KERN_WARNING "%s: tx dma ring full\n",
578 return NETDEV_TX_BUSY;
581 spin_lock(&priv->lock);
582 dev->trans_start = jiffies;
583 spin_unlock(&priv->lock);
584 desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
586 desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
588 desc->hw_data = (u32)desc->data_mapping;
591 if (unlikely(netif_msg_tx_queued(priv)))
592 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
594 if (unlikely(netif_msg_hw(priv)))
595 cpmac_dump_desc(dev, desc);
596 if (unlikely(netif_msg_pktdata(priv)))
597 cpmac_dump_skb(dev, skb);
598 cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
603 static void cpmac_end_xmit(struct net_device *dev, int queue)
605 struct cpmac_desc *desc;
606 struct cpmac_priv *priv = netdev_priv(dev);
608 desc = &priv->desc_ring[queue];
609 cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
610 if (likely(desc->skb)) {
611 spin_lock(&priv->lock);
612 dev->stats.tx_packets++;
613 dev->stats.tx_bytes += desc->skb->len;
614 spin_unlock(&priv->lock);
615 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
618 if (unlikely(netif_msg_tx_done(priv)))
619 printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
620 desc->skb, desc->skb->len);
622 dev_kfree_skb_irq(desc->skb);
624 if (netif_subqueue_stopped(dev, queue))
625 netif_wake_subqueue(dev, queue);
627 if (netif_msg_tx_err(priv) && net_ratelimit())
629 "%s: end_xmit: spurious interrupt\n", dev->name);
630 if (netif_subqueue_stopped(dev, queue))
631 netif_wake_subqueue(dev, queue);
635 static void cpmac_hw_stop(struct net_device *dev)
638 struct cpmac_priv *priv = netdev_priv(dev);
639 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
641 ar7_device_reset(pdata->reset_bit);
642 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
643 cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
644 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
645 cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
646 for (i = 0; i < 8; i++) {
647 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
648 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
650 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
651 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
652 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
653 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
654 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
655 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
658 static void cpmac_hw_start(struct net_device *dev)
661 struct cpmac_priv *priv = netdev_priv(dev);
662 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
664 ar7_device_reset(pdata->reset_bit);
665 for (i = 0; i < 8; i++) {
666 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
667 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
669 cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
671 cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
673 cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
674 for (i = 0; i < 8; i++)
675 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
676 cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
677 cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
678 (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
679 (dev->dev_addr[3] << 24));
680 cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
681 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
682 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
683 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
684 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
685 cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
686 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
687 cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
688 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
690 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
691 cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
692 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
693 cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
694 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
695 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
699 static void cpmac_clear_rx(struct net_device *dev)
701 struct cpmac_priv *priv = netdev_priv(dev);
702 struct cpmac_desc *desc;
704 if (unlikely(!priv->rx_head))
706 desc = priv->rx_head;
707 for (i = 0; i < priv->ring_size; i++) {
708 if ((desc->dataflags & CPMAC_OWN) == 0) {
709 if (netif_msg_rx_err(priv) && net_ratelimit())
710 printk(KERN_WARNING "%s: packet dropped\n",
712 if (unlikely(netif_msg_hw(priv)))
713 cpmac_dump_desc(dev, desc);
714 desc->dataflags = CPMAC_OWN;
715 dev->stats.rx_dropped++;
717 desc->hw_next = desc->next->mapping;
720 priv->rx_head->prev->hw_next = 0;
723 static void cpmac_clear_tx(struct net_device *dev)
725 struct cpmac_priv *priv = netdev_priv(dev);
727 if (unlikely(!priv->desc_ring))
729 for (i = 0; i < CPMAC_QUEUES; i++) {
730 priv->desc_ring[i].dataflags = 0;
731 if (priv->desc_ring[i].skb) {
732 dev_kfree_skb_any(priv->desc_ring[i].skb);
733 priv->desc_ring[i].skb = NULL;
738 static void cpmac_hw_error(struct work_struct *work)
741 struct cpmac_priv *priv =
742 container_of(work, struct cpmac_priv, reset_work);
744 spin_lock(&priv->rx_lock);
745 cpmac_clear_rx(priv->dev);
746 spin_unlock(&priv->rx_lock);
747 cpmac_clear_tx(priv->dev);
748 cpmac_hw_start(priv->dev);
750 atomic_dec(&priv->reset_pending);
752 netif_tx_wake_all_queues(priv->dev);
753 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
756 static void cpmac_check_status(struct net_device *dev)
758 struct cpmac_priv *priv = netdev_priv(dev);
760 u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
761 int rx_channel = (macstatus >> 8) & 7;
762 int rx_code = (macstatus >> 12) & 15;
763 int tx_channel = (macstatus >> 16) & 7;
764 int tx_code = (macstatus >> 20) & 15;
766 if (rx_code || tx_code) {
767 if (netif_msg_drv(priv) && net_ratelimit()) {
768 /* Can't find any documentation on what these
769 *error codes actually are. So just log them and hope..
772 printk(KERN_WARNING "%s: host error %d on rx "
773 "channel %d (macstatus %08x), resetting\n",
774 dev->name, rx_code, rx_channel, macstatus);
776 printk(KERN_WARNING "%s: host error %d on tx "
777 "channel %d (macstatus %08x), resetting\n",
778 dev->name, tx_code, tx_channel, macstatus);
781 netif_tx_stop_all_queues(dev);
783 if (schedule_work(&priv->reset_work))
784 atomic_inc(&priv->reset_pending);
785 if (unlikely(netif_msg_hw(priv)))
786 cpmac_dump_regs(dev);
788 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
791 static irqreturn_t cpmac_irq(int irq, void *dev_id)
793 struct net_device *dev = dev_id;
794 struct cpmac_priv *priv;
798 priv = netdev_priv(dev);
800 status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
802 if (unlikely(netif_msg_intr(priv)))
803 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
806 if (status & MAC_INT_TX)
807 cpmac_end_xmit(dev, (status & 7));
809 if (status & MAC_INT_RX) {
810 queue = (status >> 8) & 7;
811 if (netif_rx_schedule_prep(dev, &priv->napi)) {
812 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
813 __netif_rx_schedule(dev, &priv->napi);
817 cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
819 if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
820 cpmac_check_status(dev);
825 static void cpmac_tx_timeout(struct net_device *dev)
828 struct cpmac_priv *priv = netdev_priv(dev);
830 spin_lock(&priv->lock);
831 dev->stats.tx_errors++;
832 spin_unlock(&priv->lock);
833 if (netif_msg_tx_err(priv) && net_ratelimit())
834 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
836 atomic_inc(&priv->reset_pending);
840 atomic_dec(&priv->reset_pending);
842 netif_tx_wake_all_queues(priv->dev);
845 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
847 struct cpmac_priv *priv = netdev_priv(dev);
848 if (!(netif_running(dev)))
852 if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
853 (cmd == SIOCSMIIREG))
854 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
859 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
861 struct cpmac_priv *priv = netdev_priv(dev);
864 return phy_ethtool_gset(priv->phy, cmd);
869 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
871 struct cpmac_priv *priv = netdev_priv(dev);
873 if (!capable(CAP_NET_ADMIN))
877 return phy_ethtool_sset(priv->phy, cmd);
882 static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
884 struct cpmac_priv *priv = netdev_priv(dev);
886 ring->rx_max_pending = 1024;
887 ring->rx_mini_max_pending = 1;
888 ring->rx_jumbo_max_pending = 1;
889 ring->tx_max_pending = 1;
891 ring->rx_pending = priv->ring_size;
892 ring->rx_mini_pending = 1;
893 ring->rx_jumbo_pending = 1;
894 ring->tx_pending = 1;
897 static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
899 struct cpmac_priv *priv = netdev_priv(dev);
901 if (netif_running(dev))
903 priv->ring_size = ring->rx_pending;
907 static void cpmac_get_drvinfo(struct net_device *dev,
908 struct ethtool_drvinfo *info)
910 strcpy(info->driver, "cpmac");
911 strcpy(info->version, CPMAC_VERSION);
912 info->fw_version[0] = '\0';
913 sprintf(info->bus_info, "%s", "cpmac");
914 info->regdump_len = 0;
917 static const struct ethtool_ops cpmac_ethtool_ops = {
918 .get_settings = cpmac_get_settings,
919 .set_settings = cpmac_set_settings,
920 .get_drvinfo = cpmac_get_drvinfo,
921 .get_link = ethtool_op_get_link,
922 .get_ringparam = cpmac_get_ringparam,
923 .set_ringparam = cpmac_set_ringparam,
926 static void cpmac_adjust_link(struct net_device *dev)
928 struct cpmac_priv *priv = netdev_priv(dev);
931 spin_lock(&priv->lock);
932 if (priv->phy->link) {
933 netif_tx_start_all_queues(dev);
934 if (priv->phy->duplex != priv->oldduplex) {
936 priv->oldduplex = priv->phy->duplex;
939 if (priv->phy->speed != priv->oldspeed) {
941 priv->oldspeed = priv->phy->speed;
944 if (!priv->oldlink) {
948 } else if (priv->oldlink) {
952 priv->oldduplex = -1;
955 if (new_state && netif_msg_link(priv) && net_ratelimit())
956 phy_print_status(priv->phy);
958 spin_unlock(&priv->lock);
961 static int cpmac_open(struct net_device *dev)
964 struct cpmac_priv *priv = netdev_priv(dev);
965 struct resource *mem;
966 struct cpmac_desc *desc;
969 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
970 if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
971 if (netif_msg_drv(priv))
972 printk(KERN_ERR "%s: failed to request registers\n",
978 priv->regs = ioremap(mem->start, mem->end - mem->start);
980 if (netif_msg_drv(priv))
981 printk(KERN_ERR "%s: failed to remap registers\n",
987 size = priv->ring_size + CPMAC_QUEUES;
988 priv->desc_ring = dma_alloc_coherent(&dev->dev,
989 sizeof(struct cpmac_desc) * size,
992 if (!priv->desc_ring) {
997 for (i = 0; i < size; i++)
998 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
1000 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1001 for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
1002 skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
1003 if (unlikely(!skb)) {
1007 skb_reserve(skb, 2);
1009 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1012 desc->hw_data = (u32)desc->data_mapping;
1013 desc->buflen = CPMAC_SKB_SIZE;
1014 desc->dataflags = CPMAC_OWN;
1015 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1016 desc->next->prev = desc;
1017 desc->hw_next = (u32)desc->next->mapping;
1020 priv->rx_head->prev->hw_next = (u32)0;
1022 if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
1024 if (netif_msg_drv(priv))
1025 printk(KERN_ERR "%s: failed to obtain irq\n",
1030 atomic_set(&priv->reset_pending, 0);
1031 INIT_WORK(&priv->reset_work, cpmac_hw_error);
1032 cpmac_hw_start(dev);
1034 napi_enable(&priv->napi);
1035 priv->phy->state = PHY_CHANGELINK;
1036 phy_start(priv->phy);
1042 for (i = 0; i < priv->ring_size; i++) {
1043 if (priv->rx_head[i].skb) {
1044 dma_unmap_single(&dev->dev,
1045 priv->rx_head[i].data_mapping,
1048 kfree_skb(priv->rx_head[i].skb);
1052 kfree(priv->desc_ring);
1053 iounmap(priv->regs);
1056 release_mem_region(mem->start, mem->end - mem->start);
1062 static int cpmac_stop(struct net_device *dev)
1065 struct cpmac_priv *priv = netdev_priv(dev);
1066 struct resource *mem;
1068 netif_tx_stop_all_queues(dev);
1070 cancel_work_sync(&priv->reset_work);
1071 napi_disable(&priv->napi);
1072 phy_stop(priv->phy);
1076 for (i = 0; i < 8; i++)
1077 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1078 cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1079 cpmac_write(priv->regs, CPMAC_MBP, 0);
1081 free_irq(dev->irq, dev);
1082 iounmap(priv->regs);
1083 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1084 release_mem_region(mem->start, mem->end - mem->start);
1085 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1086 for (i = 0; i < priv->ring_size; i++) {
1087 if (priv->rx_head[i].skb) {
1088 dma_unmap_single(&dev->dev,
1089 priv->rx_head[i].data_mapping,
1092 kfree_skb(priv->rx_head[i].skb);
1096 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1097 (CPMAC_QUEUES + priv->ring_size),
1098 priv->desc_ring, priv->dma_ring);
1102 static int external_switch;
1104 static int __devinit cpmac_probe(struct platform_device *pdev)
1107 char *mdio_bus_id = "0";
1108 struct resource *mem;
1109 struct cpmac_priv *priv;
1110 struct net_device *dev;
1111 struct plat_cpmac_data *pdata;
1112 DECLARE_MAC_BUF(mac);
1114 pdata = pdev->dev.platform_data;
1116 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1117 if (!(pdata->phy_mask & (1 << phy_id)))
1119 if (!cpmac_mii.phy_map[phy_id])
1124 if (phy_id == PHY_MAX_ADDR) {
1125 if (external_switch || dumb_switch) {
1126 mdio_bus_id = 0; /* fixed phys bus */
1129 dev_err(&pdev->dev, "no PHY present\n");
1134 dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1137 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1141 platform_set_drvdata(pdev, dev);
1142 priv = netdev_priv(dev);
1145 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1151 dev->irq = platform_get_irq_byname(pdev, "irq");
1153 dev->open = cpmac_open;
1154 dev->stop = cpmac_stop;
1155 dev->set_config = cpmac_config;
1156 dev->hard_start_xmit = cpmac_start_xmit;
1157 dev->do_ioctl = cpmac_ioctl;
1158 dev->set_multicast_list = cpmac_set_multicast_list;
1159 dev->tx_timeout = cpmac_tx_timeout;
1160 dev->ethtool_ops = &cpmac_ethtool_ops;
1162 netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1164 spin_lock_init(&priv->lock);
1165 spin_lock_init(&priv->rx_lock);
1167 priv->ring_size = 64;
1168 priv->msg_enable = netif_msg_init(debug_level, 0xff);
1169 memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
1171 priv->phy = phy_connect(dev, cpmac_mii.phy_map[phy_id]->dev.bus_id,
1172 &cpmac_adjust_link, 0, PHY_INTERFACE_MODE_MII);
1173 if (IS_ERR(priv->phy)) {
1174 if (netif_msg_drv(priv))
1175 printk(KERN_ERR "%s: Could not attach to PHY\n",
1177 return PTR_ERR(priv->phy);
1180 if ((rc = register_netdev(dev))) {
1181 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1186 if (netif_msg_probe(priv)) {
1188 "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1189 "mac: %s)\n", dev->name, (void *)mem->start, dev->irq,
1190 priv->phy_name, print_mac(mac, dev->dev_addr));
1199 static int __devexit cpmac_remove(struct platform_device *pdev)
1201 struct net_device *dev = platform_get_drvdata(pdev);
1202 unregister_netdev(dev);
1207 static struct platform_driver cpmac_driver = {
1208 .driver.name = "cpmac",
1209 .driver.owner = THIS_MODULE,
1210 .probe = cpmac_probe,
1211 .remove = __devexit_p(cpmac_remove),
1214 int __devinit cpmac_init(void)
1219 cpmac_mii.priv = ioremap(AR7_REGS_MDIO, 256);
1221 if (!cpmac_mii.priv) {
1222 printk(KERN_ERR "Can't ioremap mdio registers\n");
1226 #warning FIXME: unhardcode gpio&reset bits
1227 ar7_gpio_disable(26);
1228 ar7_gpio_disable(27);
1229 ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1230 ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1231 ar7_device_reset(AR7_RESET_BIT_EPHY);
1233 cpmac_mii.reset(&cpmac_mii);
1235 for (i = 0; i < 300000; i++)
1236 if ((mask = cpmac_read(cpmac_mii.priv, CPMAC_MDIO_ALIVE)))
1242 if (mask & (mask - 1)) {
1243 external_switch = 1;
1247 cpmac_mii.phy_mask = ~(mask | 0x80000000);
1248 snprintf(cpmac_mii.id, MII_BUS_ID_SIZE, "0");
1250 res = mdiobus_register(&cpmac_mii);
1254 res = platform_driver_register(&cpmac_driver);
1261 mdiobus_unregister(&cpmac_mii);
1264 iounmap(cpmac_mii.priv);
1269 void __devexit cpmac_exit(void)
1271 platform_driver_unregister(&cpmac_driver);
1272 mdiobus_unregister(&cpmac_mii);
1273 iounmap(cpmac_mii.priv);
1276 module_init(cpmac_init);
1277 module_exit(cpmac_exit);