2 raid0.c : Multiple Devices driver for Linux
3 Copyright (C) 1994-96 Marc ZYNGIER
4 <zyngier@ufr-info-p7.ibp.fr> or
6 Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
9 RAID-0 management functions.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
16 You should have received a copy of the GNU General Public License
17 (for example /usr/src/linux/COPYING); if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/blkdev.h>
22 #include <linux/seq_file.h>
26 static void raid0_unplug(struct request_queue *q)
28 mddev_t *mddev = q->queuedata;
29 raid0_conf_t *conf = mddev_to_conf(mddev);
30 mdk_rdev_t **devlist = conf->strip_zone[0].dev;
33 for (i=0; i<mddev->raid_disks; i++) {
34 struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
40 static int raid0_congested(void *data, int bits)
42 mddev_t *mddev = data;
43 raid0_conf_t *conf = mddev_to_conf(mddev);
44 mdk_rdev_t **devlist = conf->strip_zone[0].dev;
47 for (i = 0; i < mddev->raid_disks && !ret ; i++) {
48 struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
50 ret |= bdi_congested(&q->backing_dev_info, bits);
56 static int create_strip_zones (mddev_t *mddev)
59 sector_t current_start, curr_zone_start;
61 raid0_conf_t *conf = mddev_to_conf(mddev);
62 mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
63 struct strip_zone *zone;
65 char b[BDEVNAME_SIZE];
68 * The number of 'same size groups'
70 conf->nr_strip_zones = 0;
72 list_for_each_entry(rdev1, &mddev->disks, same_set) {
73 printk(KERN_INFO "raid0: looking at %s\n",
74 bdevname(rdev1->bdev,b));
76 list_for_each_entry(rdev2, &mddev->disks, same_set) {
77 printk(KERN_INFO "raid0: comparing %s(%llu)",
78 bdevname(rdev1->bdev,b),
79 (unsigned long long)rdev1->sectors);
80 printk(KERN_INFO " with %s(%llu)\n",
81 bdevname(rdev2->bdev,b),
82 (unsigned long long)rdev2->sectors);
84 printk(KERN_INFO "raid0: END\n");
87 if (rdev2->sectors == rdev1->sectors) {
89 * Not unique, don't count it as a new
92 printk(KERN_INFO "raid0: EQUAL\n");
96 printk(KERN_INFO "raid0: NOT EQUAL\n");
99 printk(KERN_INFO "raid0: ==> UNIQUE\n");
100 conf->nr_strip_zones++;
101 printk(KERN_INFO "raid0: %d zones\n",
102 conf->nr_strip_zones);
105 printk(KERN_INFO "raid0: FINAL %d zones\n", conf->nr_strip_zones);
107 conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
108 conf->nr_strip_zones, GFP_KERNEL);
109 if (!conf->strip_zone)
111 conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
112 conf->nr_strip_zones*mddev->raid_disks,
117 /* The first zone must contain all devices, so here we check that
118 * there is a proper alignment of slots to devices and find them all
120 zone = &conf->strip_zone[0];
123 zone->dev = conf->devlist;
124 list_for_each_entry(rdev1, &mddev->disks, same_set) {
125 int j = rdev1->raid_disk;
127 if (j < 0 || j >= mddev->raid_disks) {
128 printk(KERN_ERR "raid0: bad disk number %d - "
133 printk(KERN_ERR "raid0: multiple devices for %d - "
137 zone->dev[j] = rdev1;
139 blk_queue_stack_limits(mddev->queue,
140 rdev1->bdev->bd_disk->queue);
141 /* as we don't honour merge_bvec_fn, we must never risk
142 * violating it, so limit ->max_sector to one PAGE, as
143 * a one page request is never in violation.
146 if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
147 mddev->queue->max_sectors > (PAGE_SIZE>>9))
148 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
150 if (!smallest || (rdev1->sectors < smallest->sectors))
154 if (cnt != mddev->raid_disks) {
155 printk(KERN_ERR "raid0: too few disks (%d of %d) - "
156 "aborting!\n", cnt, mddev->raid_disks);
160 zone->sectors = smallest->sectors * cnt;
161 zone->zone_start = 0;
163 current_start = smallest->sectors;
164 curr_zone_start = zone->sectors;
166 /* now do the other zones */
167 for (i = 1; i < conf->nr_strip_zones; i++)
169 zone = conf->strip_zone + i;
170 zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
172 printk(KERN_INFO "raid0: zone %d\n", i);
173 zone->dev_start = current_start;
177 for (j=0; j<cnt; j++) {
178 char b[BDEVNAME_SIZE];
179 rdev = conf->strip_zone[0].dev[j];
180 printk(KERN_INFO "raid0: checking %s ...",
181 bdevname(rdev->bdev, b));
182 if (rdev->sectors <= current_start) {
183 printk(KERN_INFO " nope.\n");
186 printk(KERN_INFO " contained as device %d\n", c);
189 if (!smallest || rdev->sectors < smallest->sectors) {
191 printk(KERN_INFO " (%llu) is smallest!.\n",
192 (unsigned long long)rdev->sectors);
197 zone->sectors = (smallest->sectors - current_start) * c;
198 printk(KERN_INFO "raid0: zone->nb_dev: %d, sectors: %llu\n",
199 zone->nb_dev, (unsigned long long)zone->sectors);
201 zone->zone_start = curr_zone_start;
202 curr_zone_start += zone->sectors;
204 current_start = smallest->sectors;
205 printk(KERN_INFO "raid0: current zone start: %llu\n",
206 (unsigned long long)current_start);
209 /* Now find appropriate hash spacing.
210 * We want a number which causes most hash entries to cover
211 * at most two strips, but the hash table must be at most
212 * 1 PAGE. We choose the smallest strip, or contiguous collection
213 * of strips, that has big enough size. We never consider the last
214 * strip though as it's size has no bearing on the efficacy of the hash
217 conf->spacing = curr_zone_start;
218 min_spacing = curr_zone_start;
219 sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
220 for (i=0; i < conf->nr_strip_zones-1; i++) {
222 for (j = i; j < conf->nr_strip_zones - 1 &&
223 s < min_spacing; j++)
224 s += conf->strip_zone[j].sectors;
225 if (s >= min_spacing && s < conf->spacing)
229 mddev->queue->unplug_fn = raid0_unplug;
231 mddev->queue->backing_dev_info.congested_fn = raid0_congested;
232 mddev->queue->backing_dev_info.congested_data = mddev;
234 printk(KERN_INFO "raid0: done.\n");
241 * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
243 * @bvm: properties of new bio
244 * @biovec: the request that could be merged to it.
246 * Return amount of bytes we can accept at this offset
248 static int raid0_mergeable_bvec(struct request_queue *q,
249 struct bvec_merge_data *bvm,
250 struct bio_vec *biovec)
252 mddev_t *mddev = q->queuedata;
253 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
255 unsigned int chunk_sectors = mddev->chunk_size >> 9;
256 unsigned int bio_sectors = bvm->bi_size >> 9;
258 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
259 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
260 if (max <= biovec->bv_len && bio_sectors == 0)
261 return biovec->bv_len;
266 static sector_t raid0_size(mddev_t *mddev, sector_t sectors, int raid_disks)
268 sector_t array_sectors = 0;
271 WARN_ONCE(sectors || raid_disks,
272 "%s does not support generic reshape\n", __func__);
274 list_for_each_entry(rdev, &mddev->disks, same_set)
275 array_sectors += rdev->sectors;
277 return array_sectors;
280 static int raid0_run (mddev_t *mddev)
282 unsigned cur=0, i=0, nb_zone;
286 if (mddev->chunk_size == 0) {
287 printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
290 printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
292 mddev->chunk_size >> 9,
293 (mddev->chunk_size>>1)-1);
294 blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
295 blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
296 mddev->queue->queue_lock = &mddev->queue->__queue_lock;
298 conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
301 mddev->private = (void *)conf;
303 conf->strip_zone = NULL;
304 conf->devlist = NULL;
305 if (create_strip_zones (mddev))
308 /* calculate array device size */
309 md_set_array_sectors(mddev, raid0_size(mddev, 0, 0));
311 printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
312 (unsigned long long)mddev->array_sectors);
313 printk(KERN_INFO "raid0 : conf->spacing is %llu sectors.\n",
314 (unsigned long long)conf->spacing);
316 sector_t s = raid0_size(mddev, 0, 0);
317 sector_t space = conf->spacing;
319 conf->sector_shift = 0;
320 if (sizeof(sector_t) > sizeof(u32)) {
321 /*shift down space and s so that sector_div will work */
322 while (space > (sector_t) (~(u32)0)) {
325 s += 1; /* force round-up */
326 conf->sector_shift++;
329 round = sector_div(s, (u32)space) ? 1 : 0;
332 printk(KERN_INFO "raid0 : nb_zone is %d.\n", nb_zone);
334 printk(KERN_INFO "raid0 : Allocating %zu bytes for hash.\n",
335 nb_zone*sizeof(struct strip_zone*));
336 conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
337 if (!conf->hash_table)
339 sectors = conf->strip_zone[cur].sectors;
341 conf->hash_table[0] = conf->strip_zone + cur;
342 for (i=1; i< nb_zone; i++) {
343 while (sectors <= conf->spacing) {
345 sectors += conf->strip_zone[cur].sectors;
347 sectors -= conf->spacing;
348 conf->hash_table[i] = conf->strip_zone + cur;
350 if (conf->sector_shift) {
351 conf->spacing >>= conf->sector_shift;
352 /* round spacing up so when we divide by it, we
353 * err on the side of too-low, which is safest
358 /* calculate the max read-ahead size.
359 * For read-ahead of large files to be effective, we need to
360 * readahead at least twice a whole stripe. i.e. number of devices
361 * multiplied by chunk size times 2.
362 * If an individual device has an ra_pages greater than the
363 * chunk size, then we will not drive that device as hard as it
364 * wants. We consider this a configuration error: a larger
365 * chunksize should be used in that case.
368 int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
369 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
370 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
374 blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
378 kfree(conf->strip_zone);
379 kfree(conf->devlist);
381 mddev->private = NULL;
386 static int raid0_stop (mddev_t *mddev)
388 raid0_conf_t *conf = mddev_to_conf(mddev);
390 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
391 kfree(conf->hash_table);
392 conf->hash_table = NULL;
393 kfree(conf->strip_zone);
394 conf->strip_zone = NULL;
396 mddev->private = NULL;
401 static int raid0_make_request (struct request_queue *q, struct bio *bio)
403 mddev_t *mddev = q->queuedata;
404 unsigned int sect_in_chunk, chunksect_bits, chunk_sects;
405 raid0_conf_t *conf = mddev_to_conf(mddev);
406 struct strip_zone *zone;
409 sector_t sector, rsect;
410 const int rw = bio_data_dir(bio);
413 if (unlikely(bio_barrier(bio))) {
414 bio_endio(bio, -EOPNOTSUPP);
418 cpu = part_stat_lock();
419 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
420 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
424 chunk_sects = mddev->chunk_size >> 9;
425 chunksect_bits = ffz(~chunk_sects);
426 sector = bio->bi_sector;
428 if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
430 /* Sanity check -- queue functions should prevent this happening */
431 if (bio->bi_vcnt != 1 ||
434 /* This is a one page bio that upper layers
435 * refuse to split for us, so we need to split it.
437 bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)));
438 if (raid0_make_request(q, &bp->bio1))
439 generic_make_request(&bp->bio1);
440 if (raid0_make_request(q, &bp->bio2))
441 generic_make_request(&bp->bio2);
443 bio_pair_release(bp);
449 sector_t x = sector >> conf->sector_shift;
450 sector_div(x, (u32)conf->spacing);
451 zone = conf->hash_table[x];
454 while (sector >= zone->zone_start + zone->sectors)
457 sect_in_chunk = bio->bi_sector & (chunk_sects - 1);
461 sector_t x = (sector - zone->zone_start) >> chunksect_bits;
463 sector_div(x, zone->nb_dev);
466 x = sector >> chunksect_bits;
467 tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
469 rsect = (chunk << chunksect_bits) + zone->dev_start + sect_in_chunk;
471 bio->bi_bdev = tmp_dev->bdev;
472 bio->bi_sector = rsect + tmp_dev->data_offset;
475 * Let the main block layer submit the IO and resolve recursion:
480 printk("raid0_make_request bug: can't convert block across chunks"
481 " or bigger than %dk %llu %d\n", chunk_sects / 2,
482 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
488 static void raid0_status (struct seq_file *seq, mddev_t *mddev)
493 char b[BDEVNAME_SIZE];
494 raid0_conf_t *conf = mddev_to_conf(mddev);
497 for (j = 0; j < conf->nr_strip_zones; j++) {
498 seq_printf(seq, " z%d", j);
499 if (conf->hash_table[h] == conf->strip_zone+j)
500 seq_printf(seq, "(h%d)", h++);
501 seq_printf(seq, "=[");
502 for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
503 seq_printf(seq, "%s/", bdevname(
504 conf->strip_zone[j].dev[k]->bdev,b));
506 seq_printf(seq, "] zs=%d ds=%d s=%d\n",
507 conf->strip_zone[j].zone_start,
508 conf->strip_zone[j].dev_start,
509 conf->strip_zone[j].sectors);
512 seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
516 static struct mdk_personality raid0_personality=
520 .owner = THIS_MODULE,
521 .make_request = raid0_make_request,
524 .status = raid0_status,
528 static int __init raid0_init (void)
530 return register_md_personality (&raid0_personality);
533 static void raid0_exit (void)
535 unregister_md_personality (&raid0_personality);
538 module_init(raid0_init);
539 module_exit(raid0_exit);
540 MODULE_LICENSE("GPL");
541 MODULE_ALIAS("md-personality-2"); /* RAID0 */
542 MODULE_ALIAS("md-raid0");
543 MODULE_ALIAS("md-level-0");