2 * linux/fs/jbd2/commit.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Journal commit routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
16 #include <linux/time.h>
18 #include <linux/jbd2.h>
19 #include <linux/errno.h>
20 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/crc32.h>
25 #include <linux/writeback.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bio.h>
28 #include <trace/events/jbd2.h>
31 * Default IO end handler for temporary BJ_IO buffer_heads.
33 static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
37 set_buffer_uptodate(bh);
39 clear_buffer_uptodate(bh);
44 * When an ext4 file is truncated, it is possible that some pages are not
45 * successfully freed, because they are attached to a committing transaction.
46 * After the transaction commits, these pages are left on the LRU, with no
47 * ->mapping, and with attached buffers. These pages are trivially reclaimable
48 * by the VM, but their apparent absence upsets the VM accounting, and it makes
49 * the numbers in /proc/meminfo look odd.
51 * So here, we have a buffer which has just come off the forget list. Look to
52 * see if we can strip all buffers from the backing page.
54 * Called under lock_journal(), and possibly under journal_datalist_lock. The
55 * caller provided us with a ref against the buffer, and we drop that here.
57 static void release_buffer_page(struct buffer_head *bh)
63 if (atomic_read(&bh->b_count) != 1)
71 /* OK, it's a truncated page */
72 if (!trylock_page(page))
77 try_to_free_buffers(page);
79 page_cache_release(page);
87 * Done it all: now submit the commit record. We should have
88 * cleaned up our previous buffers by now, so if we are in abort
89 * mode we can now just skip the rest of the journal write
92 * Returns 1 if the journal needs to be aborted or 0 on success
94 static int journal_submit_commit_record(journal_t *journal,
95 transaction_t *commit_transaction,
96 struct buffer_head **cbh,
99 struct journal_head *descriptor;
100 struct commit_header *tmp;
101 struct buffer_head *bh;
103 int barrier_done = 0;
104 struct timespec now = current_kernel_time();
106 if (is_journal_aborted(journal))
109 descriptor = jbd2_journal_get_descriptor_buffer(journal);
113 bh = jh2bh(descriptor);
115 tmp = (struct commit_header *)bh->b_data;
116 tmp->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
117 tmp->h_blocktype = cpu_to_be32(JBD2_COMMIT_BLOCK);
118 tmp->h_sequence = cpu_to_be32(commit_transaction->t_tid);
119 tmp->h_commit_sec = cpu_to_be64(now.tv_sec);
120 tmp->h_commit_nsec = cpu_to_be32(now.tv_nsec);
122 if (JBD2_HAS_COMPAT_FEATURE(journal,
123 JBD2_FEATURE_COMPAT_CHECKSUM)) {
124 tmp->h_chksum_type = JBD2_CRC32_CHKSUM;
125 tmp->h_chksum_size = JBD2_CRC32_CHKSUM_SIZE;
126 tmp->h_chksum[0] = cpu_to_be32(crc32_sum);
129 JBUFFER_TRACE(descriptor, "submit commit block");
131 clear_buffer_dirty(bh);
132 set_buffer_uptodate(bh);
133 bh->b_end_io = journal_end_buffer_io_sync;
135 if (journal->j_flags & JBD2_BARRIER &&
136 !JBD2_HAS_INCOMPAT_FEATURE(journal,
137 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT)) {
138 set_buffer_ordered(bh);
141 ret = submit_bh(WRITE_SYNC_PLUG, bh);
143 clear_buffer_ordered(bh);
145 /* is it possible for another commit to fail at roughly
146 * the same time as this one? If so, we don't want to
147 * trust the barrier flag in the super, but instead want
148 * to remember if we sent a barrier request
150 if (ret == -EOPNOTSUPP && barrier_done) {
152 "JBD: barrier-based sync failed on %s - "
153 "disabling barriers\n", journal->j_devname);
154 spin_lock(&journal->j_state_lock);
155 journal->j_flags &= ~JBD2_BARRIER;
156 spin_unlock(&journal->j_state_lock);
158 /* And try again, without the barrier */
160 set_buffer_uptodate(bh);
161 clear_buffer_dirty(bh);
162 ret = submit_bh(WRITE_SYNC_PLUG, bh);
169 * This function along with journal_submit_commit_record
170 * allows to write the commit record asynchronously.
172 static int journal_wait_on_commit_record(journal_t *journal,
173 struct buffer_head *bh)
178 clear_buffer_dirty(bh);
180 if (buffer_eopnotsupp(bh) && (journal->j_flags & JBD2_BARRIER)) {
182 "JBD2: wait_on_commit_record: sync failed on %s - "
183 "disabling barriers\n", journal->j_devname);
184 spin_lock(&journal->j_state_lock);
185 journal->j_flags &= ~JBD2_BARRIER;
186 spin_unlock(&journal->j_state_lock);
189 clear_buffer_dirty(bh);
190 set_buffer_uptodate(bh);
191 bh->b_end_io = journal_end_buffer_io_sync;
193 ret = submit_bh(WRITE_SYNC_PLUG, bh);
201 if (unlikely(!buffer_uptodate(bh)))
203 put_bh(bh); /* One for getblk() */
204 jbd2_journal_put_journal_head(bh2jh(bh));
210 * write the filemap data using writepage() address_space_operations.
211 * We don't do block allocation here even for delalloc. We don't
212 * use writepages() because with dealyed allocation we may be doing
213 * block allocation in writepages().
215 static int journal_submit_inode_data_buffers(struct address_space *mapping)
218 struct writeback_control wbc = {
219 .sync_mode = WB_SYNC_ALL,
220 .nr_to_write = mapping->nrpages * 2,
222 .range_end = i_size_read(mapping->host),
226 ret = generic_writepages(mapping, &wbc);
231 * Submit all the data buffers of inode associated with the transaction to
234 * We are in a committing transaction. Therefore no new inode can be added to
235 * our inode list. We use JI_COMMIT_RUNNING flag to protect inode we currently
236 * operate on from being released while we write out pages.
238 static int journal_submit_data_buffers(journal_t *journal,
239 transaction_t *commit_transaction)
241 struct jbd2_inode *jinode;
243 struct address_space *mapping;
245 spin_lock(&journal->j_list_lock);
246 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
247 mapping = jinode->i_vfs_inode->i_mapping;
248 jinode->i_flags |= JI_COMMIT_RUNNING;
249 spin_unlock(&journal->j_list_lock);
251 * submit the inode data buffers. We use writepage
252 * instead of writepages. Because writepages can do
253 * block allocation with delalloc. We need to write
254 * only allocated blocks here.
256 trace_jbd2_submit_inode_data(jinode->i_vfs_inode);
257 err = journal_submit_inode_data_buffers(mapping);
260 spin_lock(&journal->j_list_lock);
261 J_ASSERT(jinode->i_transaction == commit_transaction);
262 jinode->i_flags &= ~JI_COMMIT_RUNNING;
263 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
265 spin_unlock(&journal->j_list_lock);
270 * Wait for data submitted for writeout, refile inodes to proper
271 * transaction if needed.
274 static int journal_finish_inode_data_buffers(journal_t *journal,
275 transaction_t *commit_transaction)
277 struct jbd2_inode *jinode, *next_i;
280 /* For locking, see the comment in journal_submit_data_buffers() */
281 spin_lock(&journal->j_list_lock);
282 list_for_each_entry(jinode, &commit_transaction->t_inode_list, i_list) {
283 jinode->i_flags |= JI_COMMIT_RUNNING;
284 spin_unlock(&journal->j_list_lock);
285 err = filemap_fdatawait(jinode->i_vfs_inode->i_mapping);
288 * Because AS_EIO is cleared by
289 * wait_on_page_writeback_range(), set it again so
290 * that user process can get -EIO from fsync().
293 &jinode->i_vfs_inode->i_mapping->flags);
298 spin_lock(&journal->j_list_lock);
299 jinode->i_flags &= ~JI_COMMIT_RUNNING;
300 wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
303 /* Now refile inode to proper lists */
304 list_for_each_entry_safe(jinode, next_i,
305 &commit_transaction->t_inode_list, i_list) {
306 list_del(&jinode->i_list);
307 if (jinode->i_next_transaction) {
308 jinode->i_transaction = jinode->i_next_transaction;
309 jinode->i_next_transaction = NULL;
310 list_add(&jinode->i_list,
311 &jinode->i_transaction->t_inode_list);
313 jinode->i_transaction = NULL;
316 spin_unlock(&journal->j_list_lock);
321 static __u32 jbd2_checksum_data(__u32 crc32_sum, struct buffer_head *bh)
323 struct page *page = bh->b_page;
327 addr = kmap_atomic(page, KM_USER0);
328 checksum = crc32_be(crc32_sum,
329 (void *)(addr + offset_in_page(bh->b_data)), bh->b_size);
330 kunmap_atomic(addr, KM_USER0);
335 static void write_tag_block(int tag_bytes, journal_block_tag_t *tag,
336 unsigned long long block)
338 tag->t_blocknr = cpu_to_be32(block & (u32)~0);
339 if (tag_bytes > JBD2_TAG_SIZE32)
340 tag->t_blocknr_high = cpu_to_be32((block >> 31) >> 1);
344 * jbd2_journal_commit_transaction
346 * The primary function for committing a transaction to the log. This
347 * function is called by the journal thread to begin a complete commit.
349 void jbd2_journal_commit_transaction(journal_t *journal)
351 struct transaction_stats_s stats;
352 transaction_t *commit_transaction;
353 struct journal_head *jh, *new_jh, *descriptor;
354 struct buffer_head **wbuf = journal->j_wbuf;
358 unsigned long long blocknr;
362 journal_header_t *header;
363 journal_block_tag_t *tag = NULL;
368 int tag_bytes = journal_tag_bytes(journal);
369 struct buffer_head *cbh = NULL; /* For transactional checksums */
370 __u32 crc32_sum = ~0;
371 int write_op = WRITE;
374 * First job: lock down the current transaction and wait for
375 * all outstanding updates to complete.
379 spin_lock(&journal->j_list_lock);
380 summarise_journal_usage(journal);
381 spin_unlock(&journal->j_list_lock);
384 /* Do we need to erase the effects of a prior jbd2_journal_flush? */
385 if (journal->j_flags & JBD2_FLUSHED) {
386 jbd_debug(3, "super block updated\n");
387 jbd2_journal_update_superblock(journal, 1);
389 jbd_debug(3, "superblock not updated\n");
392 J_ASSERT(journal->j_running_transaction != NULL);
393 J_ASSERT(journal->j_committing_transaction == NULL);
395 commit_transaction = journal->j_running_transaction;
396 J_ASSERT(commit_transaction->t_state == T_RUNNING);
398 trace_jbd2_start_commit(journal, commit_transaction);
399 jbd_debug(1, "JBD: starting commit of transaction %d\n",
400 commit_transaction->t_tid);
402 spin_lock(&journal->j_state_lock);
403 commit_transaction->t_state = T_LOCKED;
406 * Use plugged writes here, since we want to submit several before
407 * we unplug the device. We don't do explicit unplugging in here,
408 * instead we rely on sync_buffer() doing the unplug for us.
410 if (commit_transaction->t_synchronous_commit)
411 write_op = WRITE_SYNC_PLUG;
412 trace_jbd2_commit_locking(journal, commit_transaction);
413 stats.u.run.rs_wait = commit_transaction->t_max_wait;
414 stats.u.run.rs_locked = jiffies;
415 stats.u.run.rs_running = jbd2_time_diff(commit_transaction->t_start,
416 stats.u.run.rs_locked);
418 spin_lock(&commit_transaction->t_handle_lock);
419 while (commit_transaction->t_updates) {
422 prepare_to_wait(&journal->j_wait_updates, &wait,
423 TASK_UNINTERRUPTIBLE);
424 if (commit_transaction->t_updates) {
425 spin_unlock(&commit_transaction->t_handle_lock);
426 spin_unlock(&journal->j_state_lock);
428 spin_lock(&journal->j_state_lock);
429 spin_lock(&commit_transaction->t_handle_lock);
431 finish_wait(&journal->j_wait_updates, &wait);
433 spin_unlock(&commit_transaction->t_handle_lock);
435 J_ASSERT (commit_transaction->t_outstanding_credits <=
436 journal->j_max_transaction_buffers);
439 * First thing we are allowed to do is to discard any remaining
440 * BJ_Reserved buffers. Note, it is _not_ permissible to assume
441 * that there are no such buffers: if a large filesystem
442 * operation like a truncate needs to split itself over multiple
443 * transactions, then it may try to do a jbd2_journal_restart() while
444 * there are still BJ_Reserved buffers outstanding. These must
445 * be released cleanly from the current transaction.
447 * In this case, the filesystem must still reserve write access
448 * again before modifying the buffer in the new transaction, but
449 * we do not require it to remember exactly which old buffers it
450 * has reserved. This is consistent with the existing behaviour
451 * that multiple jbd2_journal_get_write_access() calls to the same
452 * buffer are perfectly permissable.
454 while (commit_transaction->t_reserved_list) {
455 jh = commit_transaction->t_reserved_list;
456 JBUFFER_TRACE(jh, "reserved, unused: refile");
458 * A jbd2_journal_get_undo_access()+jbd2_journal_release_buffer() may
459 * leave undo-committed data.
461 if (jh->b_committed_data) {
462 struct buffer_head *bh = jh2bh(jh);
464 jbd_lock_bh_state(bh);
465 jbd2_free(jh->b_committed_data, bh->b_size);
466 jh->b_committed_data = NULL;
467 jbd_unlock_bh_state(bh);
469 jbd2_journal_refile_buffer(journal, jh);
473 * Now try to drop any written-back buffers from the journal's
474 * checkpoint lists. We do this *before* commit because it potentially
477 spin_lock(&journal->j_list_lock);
478 __jbd2_journal_clean_checkpoint_list(journal);
479 spin_unlock(&journal->j_list_lock);
481 jbd_debug (3, "JBD: commit phase 1\n");
484 * Switch to a new revoke table.
486 jbd2_journal_switch_revoke_table(journal);
488 trace_jbd2_commit_flushing(journal, commit_transaction);
489 stats.u.run.rs_flushing = jiffies;
490 stats.u.run.rs_locked = jbd2_time_diff(stats.u.run.rs_locked,
491 stats.u.run.rs_flushing);
493 commit_transaction->t_state = T_FLUSH;
494 journal->j_committing_transaction = commit_transaction;
495 journal->j_running_transaction = NULL;
496 start_time = ktime_get();
497 commit_transaction->t_log_start = journal->j_head;
498 wake_up(&journal->j_wait_transaction_locked);
499 spin_unlock(&journal->j_state_lock);
501 jbd_debug (3, "JBD: commit phase 2\n");
504 * Now start flushing things to disk, in the order they appear
505 * on the transaction lists. Data blocks go first.
507 err = journal_submit_data_buffers(journal, commit_transaction);
509 jbd2_journal_abort(journal, err);
511 jbd2_journal_write_revoke_records(journal, commit_transaction,
514 jbd_debug(3, "JBD: commit phase 2\n");
517 * Way to go: we have now written out all of the data for a
518 * transaction! Now comes the tricky part: we need to write out
519 * metadata. Loop over the transaction's entire buffer list:
521 spin_lock(&journal->j_state_lock);
522 commit_transaction->t_state = T_COMMIT;
523 spin_unlock(&journal->j_state_lock);
525 trace_jbd2_commit_logging(journal, commit_transaction);
526 stats.u.run.rs_logging = jiffies;
527 stats.u.run.rs_flushing = jbd2_time_diff(stats.u.run.rs_flushing,
528 stats.u.run.rs_logging);
529 stats.u.run.rs_blocks = commit_transaction->t_outstanding_credits;
530 stats.u.run.rs_blocks_logged = 0;
532 J_ASSERT(commit_transaction->t_nr_buffers <=
533 commit_transaction->t_outstanding_credits);
538 while (commit_transaction->t_buffers) {
540 /* Find the next buffer to be journaled... */
542 jh = commit_transaction->t_buffers;
544 /* If we're in abort mode, we just un-journal the buffer and
547 if (is_journal_aborted(journal)) {
548 clear_buffer_jbddirty(jh2bh(jh));
549 JBUFFER_TRACE(jh, "journal is aborting: refile");
550 jbd2_buffer_abort_trigger(jh,
552 jh->b_frozen_triggers :
554 jbd2_journal_refile_buffer(journal, jh);
555 /* If that was the last one, we need to clean up
556 * any descriptor buffers which may have been
557 * already allocated, even if we are now
559 if (!commit_transaction->t_buffers)
560 goto start_journal_io;
564 /* Make sure we have a descriptor block in which to
565 record the metadata buffer. */
568 struct buffer_head *bh;
570 J_ASSERT (bufs == 0);
572 jbd_debug(4, "JBD: get descriptor\n");
574 descriptor = jbd2_journal_get_descriptor_buffer(journal);
576 jbd2_journal_abort(journal, -EIO);
580 bh = jh2bh(descriptor);
581 jbd_debug(4, "JBD: got buffer %llu (%p)\n",
582 (unsigned long long)bh->b_blocknr, bh->b_data);
583 header = (journal_header_t *)&bh->b_data[0];
584 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
585 header->h_blocktype = cpu_to_be32(JBD2_DESCRIPTOR_BLOCK);
586 header->h_sequence = cpu_to_be32(commit_transaction->t_tid);
588 tagp = &bh->b_data[sizeof(journal_header_t)];
589 space_left = bh->b_size - sizeof(journal_header_t);
591 set_buffer_jwrite(bh);
592 set_buffer_dirty(bh);
595 /* Record it so that we can wait for IO
597 BUFFER_TRACE(bh, "ph3: file as descriptor");
598 jbd2_journal_file_buffer(descriptor, commit_transaction,
602 /* Where is the buffer to be written? */
604 err = jbd2_journal_next_log_block(journal, &blocknr);
605 /* If the block mapping failed, just abandon the buffer
606 and repeat this loop: we'll fall into the
607 refile-on-abort condition above. */
609 jbd2_journal_abort(journal, err);
614 * start_this_handle() uses t_outstanding_credits to determine
615 * the free space in the log, but this counter is changed
616 * by jbd2_journal_next_log_block() also.
618 commit_transaction->t_outstanding_credits--;
620 /* Bump b_count to prevent truncate from stumbling over
621 the shadowed buffer! @@@ This can go if we ever get
622 rid of the BJ_IO/BJ_Shadow pairing of buffers. */
623 atomic_inc(&jh2bh(jh)->b_count);
625 /* Make a temporary IO buffer with which to write it out
626 (this will requeue both the metadata buffer and the
627 temporary IO buffer). new_bh goes on BJ_IO*/
629 set_bit(BH_JWrite, &jh2bh(jh)->b_state);
631 * akpm: jbd2_journal_write_metadata_buffer() sets
632 * new_bh->b_transaction to commit_transaction.
633 * We need to clean this up before we release new_bh
634 * (which is of type BJ_IO)
636 JBUFFER_TRACE(jh, "ph3: write metadata");
637 flags = jbd2_journal_write_metadata_buffer(commit_transaction,
638 jh, &new_jh, blocknr);
639 set_bit(BH_JWrite, &jh2bh(new_jh)->b_state);
640 wbuf[bufs++] = jh2bh(new_jh);
642 /* Record the new block's tag in the current descriptor
647 tag_flag |= JBD2_FLAG_ESCAPE;
649 tag_flag |= JBD2_FLAG_SAME_UUID;
651 tag = (journal_block_tag_t *) tagp;
652 write_tag_block(tag_bytes, tag, jh2bh(jh)->b_blocknr);
653 tag->t_flags = cpu_to_be32(tag_flag);
655 space_left -= tag_bytes;
658 memcpy (tagp, journal->j_uuid, 16);
664 /* If there's no more to do, or if the descriptor is full,
667 if (bufs == journal->j_wbufsize ||
668 commit_transaction->t_buffers == NULL ||
669 space_left < tag_bytes + 16) {
671 jbd_debug(4, "JBD: Submit %d IOs\n", bufs);
673 /* Write an end-of-descriptor marker before
674 submitting the IOs. "tag" still points to
675 the last tag we set up. */
677 tag->t_flags |= cpu_to_be32(JBD2_FLAG_LAST_TAG);
680 for (i = 0; i < bufs; i++) {
681 struct buffer_head *bh = wbuf[i];
685 if (JBD2_HAS_COMPAT_FEATURE(journal,
686 JBD2_FEATURE_COMPAT_CHECKSUM)) {
688 jbd2_checksum_data(crc32_sum, bh);
692 clear_buffer_dirty(bh);
693 set_buffer_uptodate(bh);
694 bh->b_end_io = journal_end_buffer_io_sync;
695 submit_bh(write_op, bh);
698 stats.u.run.rs_blocks_logged += bufs;
700 /* Force a new descriptor to be generated next
701 time round the loop. */
707 /* Done it all: now write the commit record asynchronously. */
709 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
710 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT)) {
711 err = journal_submit_commit_record(journal, commit_transaction,
714 __jbd2_journal_abort_hard(journal);
718 * This is the right place to wait for data buffers both for ASYNC
719 * and !ASYNC commit. If commit is ASYNC, we need to wait only after
720 * the commit block went to disk (which happens above). If commit is
721 * SYNC, we need to wait for data buffers before we start writing
722 * commit block, which happens below in such setting.
724 err = journal_finish_inode_data_buffers(journal, commit_transaction);
727 "JBD2: Detected IO errors while flushing file data "
728 "on %s\n", journal->j_devname);
729 if (journal->j_flags & JBD2_ABORT_ON_SYNCDATA_ERR)
730 jbd2_journal_abort(journal, err);
734 /* Lo and behold: we have just managed to send a transaction to
735 the log. Before we can commit it, wait for the IO so far to
736 complete. Control buffers being written are on the
737 transaction's t_log_list queue, and metadata buffers are on
738 the t_iobuf_list queue.
740 Wait for the buffers in reverse order. That way we are
741 less likely to be woken up until all IOs have completed, and
742 so we incur less scheduling load.
745 jbd_debug(3, "JBD: commit phase 3\n");
748 * akpm: these are BJ_IO, and j_list_lock is not needed.
749 * See __journal_try_to_free_buffer.
752 while (commit_transaction->t_iobuf_list != NULL) {
753 struct buffer_head *bh;
755 jh = commit_transaction->t_iobuf_list->b_tprev;
757 if (buffer_locked(bh)) {
764 if (unlikely(!buffer_uptodate(bh)))
767 clear_buffer_jwrite(bh);
769 JBUFFER_TRACE(jh, "ph4: unfile after journal write");
770 jbd2_journal_unfile_buffer(journal, jh);
773 * ->t_iobuf_list should contain only dummy buffer_heads
774 * which were created by jbd2_journal_write_metadata_buffer().
776 BUFFER_TRACE(bh, "dumping temporary bh");
777 jbd2_journal_put_journal_head(jh);
779 J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0);
780 free_buffer_head(bh);
782 /* We also have to unlock and free the corresponding
784 jh = commit_transaction->t_shadow_list->b_tprev;
786 clear_bit(BH_JWrite, &bh->b_state);
787 J_ASSERT_BH(bh, buffer_jbddirty(bh));
789 /* The metadata is now released for reuse, but we need
790 to remember it against this transaction so that when
791 we finally commit, we can do any checkpointing
793 JBUFFER_TRACE(jh, "file as BJ_Forget");
794 jbd2_journal_file_buffer(jh, commit_transaction, BJ_Forget);
795 /* Wake up any transactions which were waiting for this
797 wake_up_bit(&bh->b_state, BH_Unshadow);
798 JBUFFER_TRACE(jh, "brelse shadowed buffer");
802 J_ASSERT (commit_transaction->t_shadow_list == NULL);
804 jbd_debug(3, "JBD: commit phase 4\n");
806 /* Here we wait for the revoke record and descriptor record buffers */
808 while (commit_transaction->t_log_list != NULL) {
809 struct buffer_head *bh;
811 jh = commit_transaction->t_log_list->b_tprev;
813 if (buffer_locked(bh)) {
815 goto wait_for_ctlbuf;
818 goto wait_for_ctlbuf;
820 if (unlikely(!buffer_uptodate(bh)))
823 BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile");
824 clear_buffer_jwrite(bh);
825 jbd2_journal_unfile_buffer(journal, jh);
826 jbd2_journal_put_journal_head(jh);
827 __brelse(bh); /* One for getblk */
828 /* AKPM: bforget here */
832 jbd2_journal_abort(journal, err);
834 jbd_debug(3, "JBD: commit phase 5\n");
836 if (!JBD2_HAS_INCOMPAT_FEATURE(journal,
837 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT)) {
838 err = journal_submit_commit_record(journal, commit_transaction,
841 __jbd2_journal_abort_hard(journal);
843 if (!err && !is_journal_aborted(journal))
844 err = journal_wait_on_commit_record(journal, cbh);
847 jbd2_journal_abort(journal, err);
849 /* End of a transaction! Finally, we can do checkpoint
850 processing: any buffers committed as a result of this
851 transaction can be removed from any checkpoint list it was on
854 jbd_debug(3, "JBD: commit phase 6\n");
856 J_ASSERT(list_empty(&commit_transaction->t_inode_list));
857 J_ASSERT(commit_transaction->t_buffers == NULL);
858 J_ASSERT(commit_transaction->t_checkpoint_list == NULL);
859 J_ASSERT(commit_transaction->t_iobuf_list == NULL);
860 J_ASSERT(commit_transaction->t_shadow_list == NULL);
861 J_ASSERT(commit_transaction->t_log_list == NULL);
865 * As there are other places (journal_unmap_buffer()) adding buffers
866 * to this list we have to be careful and hold the j_list_lock.
868 spin_lock(&journal->j_list_lock);
869 while (commit_transaction->t_forget) {
870 transaction_t *cp_transaction;
871 struct buffer_head *bh;
873 jh = commit_transaction->t_forget;
874 spin_unlock(&journal->j_list_lock);
876 jbd_lock_bh_state(bh);
877 J_ASSERT_JH(jh, jh->b_transaction == commit_transaction ||
878 jh->b_transaction == journal->j_running_transaction);
881 * If there is undo-protected committed data against
882 * this buffer, then we can remove it now. If it is a
883 * buffer needing such protection, the old frozen_data
884 * field now points to a committed version of the
885 * buffer, so rotate that field to the new committed
888 * Otherwise, we can just throw away the frozen data now.
890 * We also know that the frozen data has already fired
891 * its triggers if they exist, so we can clear that too.
893 if (jh->b_committed_data) {
894 jbd2_free(jh->b_committed_data, bh->b_size);
895 jh->b_committed_data = NULL;
896 if (jh->b_frozen_data) {
897 jh->b_committed_data = jh->b_frozen_data;
898 jh->b_frozen_data = NULL;
899 jh->b_frozen_triggers = NULL;
901 } else if (jh->b_frozen_data) {
902 jbd2_free(jh->b_frozen_data, bh->b_size);
903 jh->b_frozen_data = NULL;
904 jh->b_frozen_triggers = NULL;
907 spin_lock(&journal->j_list_lock);
908 cp_transaction = jh->b_cp_transaction;
909 if (cp_transaction) {
910 JBUFFER_TRACE(jh, "remove from old cp transaction");
911 cp_transaction->t_chp_stats.cs_dropped++;
912 __jbd2_journal_remove_checkpoint(jh);
915 /* Only re-checkpoint the buffer_head if it is marked
916 * dirty. If the buffer was added to the BJ_Forget list
917 * by jbd2_journal_forget, it may no longer be dirty and
918 * there's no point in keeping a checkpoint record for
921 /* A buffer which has been freed while still being
922 * journaled by a previous transaction may end up still
923 * being dirty here, but we want to avoid writing back
924 * that buffer in the future now that the last use has
925 * been committed. That's not only a performance gain,
926 * it also stops aliasing problems if the buffer is left
927 * behind for writeback and gets reallocated for another
928 * use in a different page. */
929 if (buffer_freed(bh)) {
930 clear_buffer_freed(bh);
931 clear_buffer_jbddirty(bh);
934 if (buffer_jbddirty(bh)) {
935 JBUFFER_TRACE(jh, "add to new checkpointing trans");
936 __jbd2_journal_insert_checkpoint(jh, commit_transaction);
937 if (is_journal_aborted(journal))
938 clear_buffer_jbddirty(bh);
939 JBUFFER_TRACE(jh, "refile for checkpoint writeback");
940 __jbd2_journal_refile_buffer(jh);
941 jbd_unlock_bh_state(bh);
943 J_ASSERT_BH(bh, !buffer_dirty(bh));
944 /* The buffer on BJ_Forget list and not jbddirty means
945 * it has been freed by this transaction and hence it
946 * could not have been reallocated until this
947 * transaction has committed. *BUT* it could be
948 * reallocated once we have written all the data to
949 * disk and before we process the buffer on BJ_Forget
951 JBUFFER_TRACE(jh, "refile or unfile freed buffer");
952 __jbd2_journal_refile_buffer(jh);
953 if (!jh->b_transaction) {
954 jbd_unlock_bh_state(bh);
956 jbd2_journal_remove_journal_head(bh);
957 release_buffer_page(bh);
959 jbd_unlock_bh_state(bh);
961 cond_resched_lock(&journal->j_list_lock);
963 spin_unlock(&journal->j_list_lock);
965 * This is a bit sleazy. We use j_list_lock to protect transition
966 * of a transaction into T_FINISHED state and calling
967 * __jbd2_journal_drop_transaction(). Otherwise we could race with
968 * other checkpointing code processing the transaction...
970 spin_lock(&journal->j_state_lock);
971 spin_lock(&journal->j_list_lock);
973 * Now recheck if some buffers did not get attached to the transaction
974 * while the lock was dropped...
976 if (commit_transaction->t_forget) {
977 spin_unlock(&journal->j_list_lock);
978 spin_unlock(&journal->j_state_lock);
982 /* Done with this transaction! */
984 jbd_debug(3, "JBD: commit phase 7\n");
986 J_ASSERT(commit_transaction->t_state == T_COMMIT);
988 commit_transaction->t_start = jiffies;
989 stats.u.run.rs_logging = jbd2_time_diff(stats.u.run.rs_logging,
990 commit_transaction->t_start);
993 * File the transaction for history
995 stats.ts_type = JBD2_STATS_RUN;
996 stats.ts_tid = commit_transaction->t_tid;
997 stats.u.run.rs_handle_count = commit_transaction->t_handle_count;
998 spin_lock(&journal->j_history_lock);
999 memcpy(journal->j_history + journal->j_history_cur, &stats,
1001 if (++journal->j_history_cur == journal->j_history_max)
1002 journal->j_history_cur = 0;
1005 * Calculate overall stats
1007 journal->j_stats.ts_tid++;
1008 journal->j_stats.u.run.rs_wait += stats.u.run.rs_wait;
1009 journal->j_stats.u.run.rs_running += stats.u.run.rs_running;
1010 journal->j_stats.u.run.rs_locked += stats.u.run.rs_locked;
1011 journal->j_stats.u.run.rs_flushing += stats.u.run.rs_flushing;
1012 journal->j_stats.u.run.rs_logging += stats.u.run.rs_logging;
1013 journal->j_stats.u.run.rs_handle_count += stats.u.run.rs_handle_count;
1014 journal->j_stats.u.run.rs_blocks += stats.u.run.rs_blocks;
1015 journal->j_stats.u.run.rs_blocks_logged += stats.u.run.rs_blocks_logged;
1016 spin_unlock(&journal->j_history_lock);
1018 commit_transaction->t_state = T_FINISHED;
1019 J_ASSERT(commit_transaction == journal->j_committing_transaction);
1020 journal->j_commit_sequence = commit_transaction->t_tid;
1021 journal->j_committing_transaction = NULL;
1022 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1025 * weight the commit time higher than the average time so we don't
1026 * react too strongly to vast changes in the commit time
1028 if (likely(journal->j_average_commit_time))
1029 journal->j_average_commit_time = (commit_time +
1030 journal->j_average_commit_time*3) / 4;
1032 journal->j_average_commit_time = commit_time;
1033 spin_unlock(&journal->j_state_lock);
1035 if (commit_transaction->t_checkpoint_list == NULL &&
1036 commit_transaction->t_checkpoint_io_list == NULL) {
1037 __jbd2_journal_drop_transaction(journal, commit_transaction);
1040 if (journal->j_checkpoint_transactions == NULL) {
1041 journal->j_checkpoint_transactions = commit_transaction;
1042 commit_transaction->t_cpnext = commit_transaction;
1043 commit_transaction->t_cpprev = commit_transaction;
1045 commit_transaction->t_cpnext =
1046 journal->j_checkpoint_transactions;
1047 commit_transaction->t_cpprev =
1048 commit_transaction->t_cpnext->t_cpprev;
1049 commit_transaction->t_cpnext->t_cpprev =
1051 commit_transaction->t_cpprev->t_cpnext =
1055 spin_unlock(&journal->j_list_lock);
1057 if (journal->j_commit_callback)
1058 journal->j_commit_callback(journal, commit_transaction);
1060 trace_jbd2_end_commit(journal, commit_transaction);
1061 jbd_debug(1, "JBD: commit %d complete, head %d\n",
1062 journal->j_commit_sequence, journal->j_tail_sequence);
1064 kfree(commit_transaction);
1066 wake_up(&journal->j_wait_done_commit);