Merge /spare/repo/linux-2.6/
[linux-2.6] / arch / arm / common / dmabounce.c
1 /*
2  *  arch/arm/common/dmabounce.c
3  *
4  *  Special dma_{map/unmap/dma_sync}_* routines for systems that have
5  *  limited DMA windows. These functions utilize bounce buffers to
6  *  copy data to/from buffers located outside the DMA region. This
7  *  only works for systems in which DMA memory is at the bottom of
8  *  RAM and the remainder of memory is at the top an the DMA memory
9  *  can be marked as ZONE_DMA. Anything beyond that such as discontigous
10  *  DMA windows will require custom implementations that reserve memory
11  *  areas at early bootup.
12  *
13  *  Original version by Brad Parker (brad@heeltoe.com)
14  *  Re-written by Christopher Hoover <ch@murgatroid.com>
15  *  Made generic by Deepak Saxena <dsaxena@plexity.net>
16  *
17  *  Copyright (C) 2002 Hewlett Packard Company.
18  *  Copyright (C) 2004 MontaVista Software, Inc.
19  *
20  *  This program is free software; you can redistribute it and/or
21  *  modify it under the terms of the GNU General Public License
22  *  version 2 as published by the Free Software Foundation.
23  */
24
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/list.h>
32
33 #include <asm/cacheflush.h>
34
35 #undef DEBUG
36
37 #undef STATS
38 #ifdef STATS
39 #define DO_STATS(X) do { X ; } while (0)
40 #else
41 #define DO_STATS(X) do { } while (0)
42 #endif
43
44 /* ************************************************** */
45
46 struct safe_buffer {
47         struct list_head node;
48
49         /* original request */
50         void            *ptr;
51         size_t          size;
52         int             direction;
53
54         /* safe buffer info */
55         struct dma_pool *pool;
56         void            *safe;
57         dma_addr_t      safe_dma_addr;
58 };
59
60 struct dmabounce_device_info {
61         struct list_head node;
62
63         struct device *dev;
64         struct dma_pool *small_buffer_pool;
65         struct dma_pool *large_buffer_pool;
66         struct list_head safe_buffers;
67         unsigned long small_buffer_size, large_buffer_size;
68 #ifdef STATS
69         unsigned long sbp_allocs;
70         unsigned long lbp_allocs;
71         unsigned long total_allocs;
72         unsigned long map_op_count;
73         unsigned long bounce_count;
74 #endif
75 };
76
77 static LIST_HEAD(dmabounce_devs);
78
79 #ifdef STATS
80 static void print_alloc_stats(struct dmabounce_device_info *device_info)
81 {
82         printk(KERN_INFO
83                 "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
84                 device_info->dev->bus_id,
85                 device_info->sbp_allocs, device_info->lbp_allocs,
86                 device_info->total_allocs - device_info->sbp_allocs -
87                         device_info->lbp_allocs,
88                 device_info->total_allocs);
89 }
90 #endif
91
92 /* find the given device in the dmabounce device list */
93 static inline struct dmabounce_device_info *
94 find_dmabounce_dev(struct device *dev)
95 {
96         struct list_head *entry;
97
98         list_for_each(entry, &dmabounce_devs) {
99                 struct dmabounce_device_info *d =
100                         list_entry(entry, struct dmabounce_device_info, node);
101
102                 if (d->dev == dev)
103                         return d;
104         }
105         return NULL;
106 }
107
108
109 /* allocate a 'safe' buffer and keep track of it */
110 static inline struct safe_buffer *
111 alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
112                         size_t size, enum dma_data_direction dir)
113 {
114         struct safe_buffer *buf;
115         struct dma_pool *pool;
116         struct device *dev = device_info->dev;
117         void *safe;
118         dma_addr_t safe_dma_addr;
119
120         dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
121                 __func__, ptr, size, dir);
122
123         DO_STATS ( device_info->total_allocs++ );
124
125         buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
126         if (buf == NULL) {
127                 dev_warn(dev, "%s: kmalloc failed\n", __func__);
128                 return NULL;
129         }
130
131         if (size <= device_info->small_buffer_size) {
132                 pool = device_info->small_buffer_pool;
133                 safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
134
135                 DO_STATS ( device_info->sbp_allocs++ );
136         } else if (size <= device_info->large_buffer_size) {
137                 pool = device_info->large_buffer_pool;
138                 safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
139
140                 DO_STATS ( device_info->lbp_allocs++ );
141         } else {
142                 pool = NULL;
143                 safe = dma_alloc_coherent(dev, size, &safe_dma_addr, GFP_ATOMIC);
144         }
145
146         if (safe == NULL) {
147                 dev_warn(device_info->dev,
148                         "%s: could not alloc dma memory (size=%d)\n",
149                        __func__, size);
150                 kfree(buf);
151                 return NULL;
152         }
153
154 #ifdef STATS
155         if (device_info->total_allocs % 1000 == 0)
156                 print_alloc_stats(device_info);
157 #endif
158
159         buf->ptr = ptr;
160         buf->size = size;
161         buf->direction = dir;
162         buf->pool = pool;
163         buf->safe = safe;
164         buf->safe_dma_addr = safe_dma_addr;
165
166         list_add(&buf->node, &device_info->safe_buffers);
167
168         return buf;
169 }
170
171 /* determine if a buffer is from our "safe" pool */
172 static inline struct safe_buffer *
173 find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
174 {
175         struct list_head *entry;
176
177         list_for_each(entry, &device_info->safe_buffers) {
178                 struct safe_buffer *b =
179                         list_entry(entry, struct safe_buffer, node);
180
181                 if (b->safe_dma_addr == safe_dma_addr)
182                         return b;
183         }
184
185         return NULL;
186 }
187
188 static inline void
189 free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
190 {
191         dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
192
193         list_del(&buf->node);
194
195         if (buf->pool)
196                 dma_pool_free(buf->pool, buf->safe, buf->safe_dma_addr);
197         else
198                 dma_free_coherent(device_info->dev, buf->size, buf->safe,
199                                     buf->safe_dma_addr);
200
201         kfree(buf);
202 }
203
204 /* ************************************************** */
205
206 #ifdef STATS
207
208 static void print_map_stats(struct dmabounce_device_info *device_info)
209 {
210         printk(KERN_INFO
211                 "%s: dmabounce: map_op_count=%lu, bounce_count=%lu\n",
212                 device_info->dev->bus_id,
213                 device_info->map_op_count, device_info->bounce_count);
214 }
215 #endif
216
217 static inline dma_addr_t
218 map_single(struct device *dev, void *ptr, size_t size,
219                 enum dma_data_direction dir)
220 {
221         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
222         dma_addr_t dma_addr;
223         int needs_bounce = 0;
224
225         if (device_info)
226                 DO_STATS ( device_info->map_op_count++ );
227
228         dma_addr = virt_to_dma(dev, ptr);
229
230         if (dev->dma_mask) {
231                 unsigned long mask = *dev->dma_mask;
232                 unsigned long limit;
233
234                 limit = (mask + 1) & ~mask;
235                 if (limit && size > limit) {
236                         dev_err(dev, "DMA mapping too big (requested %#x "
237                                 "mask %#Lx)\n", size, *dev->dma_mask);
238                         return ~0;
239                 }
240
241                 /*
242                  * Figure out if we need to bounce from the DMA mask.
243                  */
244                 needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
245         }
246
247         if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
248                 struct safe_buffer *buf;
249
250                 buf = alloc_safe_buffer(device_info, ptr, size, dir);
251                 if (buf == 0) {
252                         dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
253                                __func__, ptr);
254                         return 0;
255                 }
256
257                 dev_dbg(dev,
258                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
259                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
260                         buf->safe, (void *) buf->safe_dma_addr);
261
262                 if ((dir == DMA_TO_DEVICE) ||
263                     (dir == DMA_BIDIRECTIONAL)) {
264                         dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
265                                 __func__, ptr, buf->safe, size);
266                         memcpy(buf->safe, ptr, size);
267                 }
268                 consistent_sync(buf->safe, size, dir);
269
270                 dma_addr = buf->safe_dma_addr;
271         } else {
272                 consistent_sync(ptr, size, dir);
273         }
274
275         return dma_addr;
276 }
277
278 static inline void
279 unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
280                 enum dma_data_direction dir)
281 {
282         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
283         struct safe_buffer *buf = NULL;
284
285         /*
286          * Trying to unmap an invalid mapping
287          */
288         if (dma_addr == ~0) {
289                 dev_err(dev, "Trying to unmap invalid mapping\n");
290                 return;
291         }
292
293         if (device_info)
294                 buf = find_safe_buffer(device_info, dma_addr);
295
296         if (buf) {
297                 BUG_ON(buf->size != size);
298
299                 dev_dbg(dev,
300                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
301                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
302                         buf->safe, (void *) buf->safe_dma_addr);
303
304
305                 DO_STATS ( device_info->bounce_count++ );
306
307                 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
308                         unsigned long ptr;
309
310                         dev_dbg(dev,
311                                 "%s: copy back safe %p to unsafe %p size %d\n",
312                                 __func__, buf->safe, buf->ptr, size);
313                         memcpy(buf->ptr, buf->safe, size);
314
315                         /*
316                          * DMA buffers must have the same cache properties
317                          * as if they were really used for DMA - which means
318                          * data must be written back to RAM.  Note that
319                          * we don't use dmac_flush_range() here for the
320                          * bidirectional case because we know the cache
321                          * lines will be coherent with the data written.
322                          */
323                         ptr = (unsigned long)buf->ptr;
324                         dmac_clean_range(ptr, ptr + size);
325                 }
326                 free_safe_buffer(device_info, buf);
327         }
328 }
329
330 static inline void
331 sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
332                 enum dma_data_direction dir)
333 {
334         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
335         struct safe_buffer *buf = NULL;
336
337         if (device_info)
338                 buf = find_safe_buffer(device_info, dma_addr);
339
340         if (buf) {
341                 /*
342                  * Both of these checks from original code need to be
343                  * commented out b/c some drivers rely on the following:
344                  *
345                  * 1) Drivers may map a large chunk of memory into DMA space
346                  *    but only sync a small portion of it. Good example is
347                  *    allocating a large buffer, mapping it, and then
348                  *    breaking it up into small descriptors. No point
349                  *    in syncing the whole buffer if you only have to
350                  *    touch one descriptor.
351                  *
352                  * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
353                  *    usually only synced in one dir at a time.
354                  *
355                  * See drivers/net/eepro100.c for examples of both cases.
356                  *
357                  * -ds
358                  *
359                  * BUG_ON(buf->size != size);
360                  * BUG_ON(buf->direction != dir);
361                  */
362
363                 dev_dbg(dev,
364                         "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
365                         __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
366                         buf->safe, (void *) buf->safe_dma_addr);
367
368                 DO_STATS ( device_info->bounce_count++ );
369
370                 switch (dir) {
371                 case DMA_FROM_DEVICE:
372                         dev_dbg(dev,
373                                 "%s: copy back safe %p to unsafe %p size %d\n",
374                                 __func__, buf->safe, buf->ptr, size);
375                         memcpy(buf->ptr, buf->safe, size);
376                         break;
377                 case DMA_TO_DEVICE:
378                         dev_dbg(dev,
379                                 "%s: copy out unsafe %p to safe %p, size %d\n",
380                                 __func__,buf->ptr, buf->safe, size);
381                         memcpy(buf->safe, buf->ptr, size);
382                         break;
383                 case DMA_BIDIRECTIONAL:
384                         BUG();  /* is this allowed?  what does it mean? */
385                 default:
386                         BUG();
387                 }
388                 consistent_sync(buf->safe, size, dir);
389         } else {
390                 consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
391         }
392 }
393
394 /* ************************************************** */
395
396 /*
397  * see if a buffer address is in an 'unsafe' range.  if it is
398  * allocate a 'safe' buffer and copy the unsafe buffer into it.
399  * substitute the safe buffer for the unsafe one.
400  * (basically move the buffer from an unsafe area to a safe one)
401  */
402 dma_addr_t
403 dma_map_single(struct device *dev, void *ptr, size_t size,
404                 enum dma_data_direction dir)
405 {
406         unsigned long flags;
407         dma_addr_t dma_addr;
408
409         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
410                 __func__, ptr, size, dir);
411
412         BUG_ON(dir == DMA_NONE);
413
414         local_irq_save(flags);
415
416         dma_addr = map_single(dev, ptr, size, dir);
417
418         local_irq_restore(flags);
419
420         return dma_addr;
421 }
422
423 /*
424  * see if a mapped address was really a "safe" buffer and if so, copy
425  * the data from the safe buffer back to the unsafe buffer and free up
426  * the safe buffer.  (basically return things back to the way they
427  * should be)
428  */
429
430 void
431 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
432                         enum dma_data_direction dir)
433 {
434         unsigned long flags;
435
436         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
437                 __func__, (void *) dma_addr, size, dir);
438
439         BUG_ON(dir == DMA_NONE);
440
441         local_irq_save(flags);
442
443         unmap_single(dev, dma_addr, size, dir);
444
445         local_irq_restore(flags);
446 }
447
448 int
449 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
450                 enum dma_data_direction dir)
451 {
452         unsigned long flags;
453         int i;
454
455         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
456                 __func__, sg, nents, dir);
457
458         BUG_ON(dir == DMA_NONE);
459
460         local_irq_save(flags);
461
462         for (i = 0; i < nents; i++, sg++) {
463                 struct page *page = sg->page;
464                 unsigned int offset = sg->offset;
465                 unsigned int length = sg->length;
466                 void *ptr = page_address(page) + offset;
467
468                 sg->dma_address =
469                         map_single(dev, ptr, length, dir);
470         }
471
472         local_irq_restore(flags);
473
474         return nents;
475 }
476
477 void
478 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
479                 enum dma_data_direction dir)
480 {
481         unsigned long flags;
482         int i;
483
484         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
485                 __func__, sg, nents, dir);
486
487         BUG_ON(dir == DMA_NONE);
488
489         local_irq_save(flags);
490
491         for (i = 0; i < nents; i++, sg++) {
492                 dma_addr_t dma_addr = sg->dma_address;
493                 unsigned int length = sg->length;
494
495                 unmap_single(dev, dma_addr, length, dir);
496         }
497
498         local_irq_restore(flags);
499 }
500
501 void
502 dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
503                                 enum dma_data_direction dir)
504 {
505         unsigned long flags;
506
507         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
508                 __func__, (void *) dma_addr, size, dir);
509
510         local_irq_save(flags);
511
512         sync_single(dev, dma_addr, size, dir);
513
514         local_irq_restore(flags);
515 }
516
517 void
518 dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
519                                 enum dma_data_direction dir)
520 {
521         unsigned long flags;
522
523         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
524                 __func__, (void *) dma_addr, size, dir);
525
526         local_irq_save(flags);
527
528         sync_single(dev, dma_addr, size, dir);
529
530         local_irq_restore(flags);
531 }
532
533 void
534 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
535                         enum dma_data_direction dir)
536 {
537         unsigned long flags;
538         int i;
539
540         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
541                 __func__, sg, nents, dir);
542
543         BUG_ON(dir == DMA_NONE);
544
545         local_irq_save(flags);
546
547         for (i = 0; i < nents; i++, sg++) {
548                 dma_addr_t dma_addr = sg->dma_address;
549                 unsigned int length = sg->length;
550
551                 sync_single(dev, dma_addr, length, dir);
552         }
553
554         local_irq_restore(flags);
555 }
556
557 void
558 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
559                         enum dma_data_direction dir)
560 {
561         unsigned long flags;
562         int i;
563
564         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
565                 __func__, sg, nents, dir);
566
567         BUG_ON(dir == DMA_NONE);
568
569         local_irq_save(flags);
570
571         for (i = 0; i < nents; i++, sg++) {
572                 dma_addr_t dma_addr = sg->dma_address;
573                 unsigned int length = sg->length;
574
575                 sync_single(dev, dma_addr, length, dir);
576         }
577
578         local_irq_restore(flags);
579 }
580
581 int
582 dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
583                         unsigned long large_buffer_size)
584 {
585         struct dmabounce_device_info *device_info;
586
587         device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
588         if (!device_info) {
589                 printk(KERN_ERR
590                         "Could not allocated dmabounce_device_info for %s",
591                         dev->bus_id);
592                 return -ENOMEM;
593         }
594
595         device_info->small_buffer_pool =
596                 dma_pool_create("small_dmabounce_pool",
597                                 dev,
598                                 small_buffer_size,
599                                 0 /* byte alignment */,
600                                 0 /* no page-crossing issues */);
601         if (!device_info->small_buffer_pool) {
602                 printk(KERN_ERR
603                         "dmabounce: could not allocate small DMA pool for %s\n",
604                         dev->bus_id);
605                 kfree(device_info);
606                 return -ENOMEM;
607         }
608
609         if (large_buffer_size) {
610                 device_info->large_buffer_pool =
611                         dma_pool_create("large_dmabounce_pool",
612                                         dev,
613                                         large_buffer_size,
614                                         0 /* byte alignment */,
615                                         0 /* no page-crossing issues */);
616                 if (!device_info->large_buffer_pool) {
617                 printk(KERN_ERR
618                         "dmabounce: could not allocate large DMA pool for %s\n",
619                         dev->bus_id);
620                         dma_pool_destroy(device_info->small_buffer_pool);
621
622                         return -ENOMEM;
623                 }
624         }
625
626         device_info->dev = dev;
627         device_info->small_buffer_size = small_buffer_size;
628         device_info->large_buffer_size = large_buffer_size;
629         INIT_LIST_HEAD(&device_info->safe_buffers);
630
631 #ifdef STATS
632         device_info->sbp_allocs = 0;
633         device_info->lbp_allocs = 0;
634         device_info->total_allocs = 0;
635         device_info->map_op_count = 0;
636         device_info->bounce_count = 0;
637 #endif
638
639         list_add(&device_info->node, &dmabounce_devs);
640
641         printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
642                 dev->bus_id, dev->bus->name);
643
644         return 0;
645 }
646
647 void
648 dmabounce_unregister_dev(struct device *dev)
649 {
650         struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
651
652         if (!device_info) {
653                 printk(KERN_WARNING
654                         "%s: Never registered with dmabounce but attempting" \
655                         "to unregister!\n", dev->bus_id);
656                 return;
657         }
658
659         if (!list_empty(&device_info->safe_buffers)) {
660                 printk(KERN_ERR
661                         "%s: Removing from dmabounce with pending buffers!\n",
662                         dev->bus_id);
663                 BUG();
664         }
665
666         if (device_info->small_buffer_pool)
667                 dma_pool_destroy(device_info->small_buffer_pool);
668         if (device_info->large_buffer_pool)
669                 dma_pool_destroy(device_info->large_buffer_pool);
670
671 #ifdef STATS
672         print_alloc_stats(device_info);
673         print_map_stats(device_info);
674 #endif
675
676         list_del(&device_info->node);
677
678         kfree(device_info);
679
680         printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
681                 dev->bus_id, dev->bus->name);
682 }
683
684
685 EXPORT_SYMBOL(dma_map_single);
686 EXPORT_SYMBOL(dma_unmap_single);
687 EXPORT_SYMBOL(dma_map_sg);
688 EXPORT_SYMBOL(dma_unmap_sg);
689 EXPORT_SYMBOL(dma_sync_single);
690 EXPORT_SYMBOL(dma_sync_sg);
691 EXPORT_SYMBOL(dmabounce_register_dev);
692 EXPORT_SYMBOL(dmabounce_unregister_dev);
693
694 MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
695 MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
696 MODULE_LICENSE("GPL");