Merge branch 'cpus4096' into irq/threaded
[linux-2.6] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/ftrace.h>
12 #include <asm/system.h>
13 #include <asm/apic.h>
14 #include <asm/idle.h>
15 #include <asm/uaccess.h>
16 #include <asm/i387.h>
17
18 unsigned long idle_halt;
19 EXPORT_SYMBOL(idle_halt);
20 unsigned long idle_nomwait;
21 EXPORT_SYMBOL(idle_nomwait);
22
23 struct kmem_cache *task_xstate_cachep;
24
25 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
26 {
27         *dst = *src;
28         if (src->thread.xstate) {
29                 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
30                                                       GFP_KERNEL);
31                 if (!dst->thread.xstate)
32                         return -ENOMEM;
33                 WARN_ON((unsigned long)dst->thread.xstate & 15);
34                 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
35         }
36         return 0;
37 }
38
39 void free_thread_xstate(struct task_struct *tsk)
40 {
41         if (tsk->thread.xstate) {
42                 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
43                 tsk->thread.xstate = NULL;
44         }
45 }
46
47 void free_thread_info(struct thread_info *ti)
48 {
49         free_thread_xstate(ti->task);
50         free_pages((unsigned long)ti, get_order(THREAD_SIZE));
51 }
52
53 void arch_task_cache_init(void)
54 {
55         task_xstate_cachep =
56                 kmem_cache_create("task_xstate", xstate_size,
57                                   __alignof__(union thread_xstate),
58                                   SLAB_PANIC, NULL);
59 }
60
61 /*
62  * Free current thread data structures etc..
63  */
64 void exit_thread(void)
65 {
66         struct task_struct *me = current;
67         struct thread_struct *t = &me->thread;
68
69         if (me->thread.io_bitmap_ptr) {
70                 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
71
72                 kfree(t->io_bitmap_ptr);
73                 t->io_bitmap_ptr = NULL;
74                 clear_thread_flag(TIF_IO_BITMAP);
75                 /*
76                  * Careful, clear this in the TSS too:
77                  */
78                 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
79                 t->io_bitmap_max = 0;
80                 put_cpu();
81         }
82
83         ds_exit_thread(current);
84 }
85
86 void flush_thread(void)
87 {
88         struct task_struct *tsk = current;
89
90 #ifdef CONFIG_X86_64
91         if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
92                 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
93                 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
94                         clear_tsk_thread_flag(tsk, TIF_IA32);
95                 } else {
96                         set_tsk_thread_flag(tsk, TIF_IA32);
97                         current_thread_info()->status |= TS_COMPAT;
98                 }
99         }
100 #endif
101
102         clear_tsk_thread_flag(tsk, TIF_DEBUG);
103
104         tsk->thread.debugreg0 = 0;
105         tsk->thread.debugreg1 = 0;
106         tsk->thread.debugreg2 = 0;
107         tsk->thread.debugreg3 = 0;
108         tsk->thread.debugreg6 = 0;
109         tsk->thread.debugreg7 = 0;
110         memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
111         /*
112          * Forget coprocessor state..
113          */
114         tsk->fpu_counter = 0;
115         clear_fpu(tsk);
116         clear_used_math();
117 }
118
119 static void hard_disable_TSC(void)
120 {
121         write_cr4(read_cr4() | X86_CR4_TSD);
122 }
123
124 void disable_TSC(void)
125 {
126         preempt_disable();
127         if (!test_and_set_thread_flag(TIF_NOTSC))
128                 /*
129                  * Must flip the CPU state synchronously with
130                  * TIF_NOTSC in the current running context.
131                  */
132                 hard_disable_TSC();
133         preempt_enable();
134 }
135
136 static void hard_enable_TSC(void)
137 {
138         write_cr4(read_cr4() & ~X86_CR4_TSD);
139 }
140
141 static void enable_TSC(void)
142 {
143         preempt_disable();
144         if (test_and_clear_thread_flag(TIF_NOTSC))
145                 /*
146                  * Must flip the CPU state synchronously with
147                  * TIF_NOTSC in the current running context.
148                  */
149                 hard_enable_TSC();
150         preempt_enable();
151 }
152
153 int get_tsc_mode(unsigned long adr)
154 {
155         unsigned int val;
156
157         if (test_thread_flag(TIF_NOTSC))
158                 val = PR_TSC_SIGSEGV;
159         else
160                 val = PR_TSC_ENABLE;
161
162         return put_user(val, (unsigned int __user *)adr);
163 }
164
165 int set_tsc_mode(unsigned int val)
166 {
167         if (val == PR_TSC_SIGSEGV)
168                 disable_TSC();
169         else if (val == PR_TSC_ENABLE)
170                 enable_TSC();
171         else
172                 return -EINVAL;
173
174         return 0;
175 }
176
177 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178                       struct tss_struct *tss)
179 {
180         struct thread_struct *prev, *next;
181
182         prev = &prev_p->thread;
183         next = &next_p->thread;
184
185         if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
186             test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
187                 ds_switch_to(prev_p, next_p);
188         else if (next->debugctlmsr != prev->debugctlmsr)
189                 update_debugctlmsr(next->debugctlmsr);
190
191         if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
192                 set_debugreg(next->debugreg0, 0);
193                 set_debugreg(next->debugreg1, 1);
194                 set_debugreg(next->debugreg2, 2);
195                 set_debugreg(next->debugreg3, 3);
196                 /* no 4 and 5 */
197                 set_debugreg(next->debugreg6, 6);
198                 set_debugreg(next->debugreg7, 7);
199         }
200
201         if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
202             test_tsk_thread_flag(next_p, TIF_NOTSC)) {
203                 /* prev and next are different */
204                 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
205                         hard_disable_TSC();
206                 else
207                         hard_enable_TSC();
208         }
209
210         if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
211                 /*
212                  * Copy the relevant range of the IO bitmap.
213                  * Normally this is 128 bytes or less:
214                  */
215                 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
216                        max(prev->io_bitmap_max, next->io_bitmap_max));
217         } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
218                 /*
219                  * Clear any possible leftover bits:
220                  */
221                 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
222         }
223 }
224
225 int sys_fork(struct pt_regs *regs)
226 {
227         return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
228 }
229
230 /*
231  * This is trivial, and on the face of it looks like it
232  * could equally well be done in user mode.
233  *
234  * Not so, for quite unobvious reasons - register pressure.
235  * In user mode vfork() cannot have a stack frame, and if
236  * done by calling the "clone()" system call directly, you
237  * do not have enough call-clobbered registers to hold all
238  * the information you need.
239  */
240 int sys_vfork(struct pt_regs *regs)
241 {
242         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
243                        NULL, NULL);
244 }
245
246
247 /*
248  * Idle related variables and functions
249  */
250 unsigned long boot_option_idle_override = 0;
251 EXPORT_SYMBOL(boot_option_idle_override);
252
253 /*
254  * Powermanagement idle function, if any..
255  */
256 void (*pm_idle)(void);
257 EXPORT_SYMBOL(pm_idle);
258
259 #ifdef CONFIG_X86_32
260 /*
261  * This halt magic was a workaround for ancient floppy DMA
262  * wreckage. It should be safe to remove.
263  */
264 static int hlt_counter;
265 void disable_hlt(void)
266 {
267         hlt_counter++;
268 }
269 EXPORT_SYMBOL(disable_hlt);
270
271 void enable_hlt(void)
272 {
273         hlt_counter--;
274 }
275 EXPORT_SYMBOL(enable_hlt);
276
277 static inline int hlt_use_halt(void)
278 {
279         return (!hlt_counter && boot_cpu_data.hlt_works_ok);
280 }
281 #else
282 static inline int hlt_use_halt(void)
283 {
284         return 1;
285 }
286 #endif
287
288 /*
289  * We use this if we don't have any better
290  * idle routine..
291  */
292 void default_idle(void)
293 {
294         if (hlt_use_halt()) {
295                 struct power_trace it;
296
297                 trace_power_start(&it, POWER_CSTATE, 1);
298                 current_thread_info()->status &= ~TS_POLLING;
299                 /*
300                  * TS_POLLING-cleared state must be visible before we
301                  * test NEED_RESCHED:
302                  */
303                 smp_mb();
304
305                 if (!need_resched())
306                         safe_halt();    /* enables interrupts racelessly */
307                 else
308                         local_irq_enable();
309                 current_thread_info()->status |= TS_POLLING;
310                 trace_power_end(&it);
311         } else {
312                 local_irq_enable();
313                 /* loop is done by the caller */
314                 cpu_relax();
315         }
316 }
317 #ifdef CONFIG_APM_MODULE
318 EXPORT_SYMBOL(default_idle);
319 #endif
320
321 void stop_this_cpu(void *dummy)
322 {
323         local_irq_disable();
324         /*
325          * Remove this CPU:
326          */
327         set_cpu_online(smp_processor_id(), false);
328         disable_local_APIC();
329
330         for (;;) {
331                 if (hlt_works(smp_processor_id()))
332                         halt();
333         }
334 }
335
336 static void do_nothing(void *unused)
337 {
338 }
339
340 /*
341  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
342  * pm_idle and update to new pm_idle value. Required while changing pm_idle
343  * handler on SMP systems.
344  *
345  * Caller must have changed pm_idle to the new value before the call. Old
346  * pm_idle value will not be used by any CPU after the return of this function.
347  */
348 void cpu_idle_wait(void)
349 {
350         smp_mb();
351         /* kick all the CPUs so that they exit out of pm_idle */
352         smp_call_function(do_nothing, NULL, 1);
353 }
354 EXPORT_SYMBOL_GPL(cpu_idle_wait);
355
356 /*
357  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
358  * which can obviate IPI to trigger checking of need_resched.
359  * We execute MONITOR against need_resched and enter optimized wait state
360  * through MWAIT. Whenever someone changes need_resched, we would be woken
361  * up from MWAIT (without an IPI).
362  *
363  * New with Core Duo processors, MWAIT can take some hints based on CPU
364  * capability.
365  */
366 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
367 {
368         struct power_trace it;
369
370         trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
371         if (!need_resched()) {
372                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
373                         clflush((void *)&current_thread_info()->flags);
374
375                 __monitor((void *)&current_thread_info()->flags, 0, 0);
376                 smp_mb();
377                 if (!need_resched())
378                         __mwait(ax, cx);
379         }
380         trace_power_end(&it);
381 }
382
383 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
384 static void mwait_idle(void)
385 {
386         struct power_trace it;
387         if (!need_resched()) {
388                 trace_power_start(&it, POWER_CSTATE, 1);
389                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
390                         clflush((void *)&current_thread_info()->flags);
391
392                 __monitor((void *)&current_thread_info()->flags, 0, 0);
393                 smp_mb();
394                 if (!need_resched())
395                         __sti_mwait(0, 0);
396                 else
397                         local_irq_enable();
398                 trace_power_end(&it);
399         } else
400                 local_irq_enable();
401 }
402
403 /*
404  * On SMP it's slightly faster (but much more power-consuming!)
405  * to poll the ->work.need_resched flag instead of waiting for the
406  * cross-CPU IPI to arrive. Use this option with caution.
407  */
408 static void poll_idle(void)
409 {
410         struct power_trace it;
411
412         trace_power_start(&it, POWER_CSTATE, 0);
413         local_irq_enable();
414         while (!need_resched())
415                 cpu_relax();
416         trace_power_end(&it);
417 }
418
419 /*
420  * mwait selection logic:
421  *
422  * It depends on the CPU. For AMD CPUs that support MWAIT this is
423  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
424  * then depend on a clock divisor and current Pstate of the core. If
425  * all cores of a processor are in halt state (C1) the processor can
426  * enter the C1E (C1 enhanced) state. If mwait is used this will never
427  * happen.
428  *
429  * idle=mwait overrides this decision and forces the usage of mwait.
430  */
431 static int __cpuinitdata force_mwait;
432
433 #define MWAIT_INFO                      0x05
434 #define MWAIT_ECX_EXTENDED_INFO         0x01
435 #define MWAIT_EDX_C1                    0xf0
436
437 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
438 {
439         u32 eax, ebx, ecx, edx;
440
441         if (force_mwait)
442                 return 1;
443
444         if (c->cpuid_level < MWAIT_INFO)
445                 return 0;
446
447         cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
448         /* Check, whether EDX has extended info about MWAIT */
449         if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
450                 return 1;
451
452         /*
453          * edx enumeratios MONITOR/MWAIT extensions. Check, whether
454          * C1  supports MWAIT
455          */
456         return (edx & MWAIT_EDX_C1);
457 }
458
459 /*
460  * Check for AMD CPUs, which have potentially C1E support
461  */
462 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
463 {
464         if (c->x86_vendor != X86_VENDOR_AMD)
465                 return 0;
466
467         if (c->x86 < 0x0F)
468                 return 0;
469
470         /* Family 0x0f models < rev F do not have C1E */
471         if (c->x86 == 0x0f && c->x86_model < 0x40)
472                 return 0;
473
474         return 1;
475 }
476
477 static cpumask_var_t c1e_mask;
478 static int c1e_detected;
479
480 void c1e_remove_cpu(int cpu)
481 {
482         if (c1e_mask != NULL)
483                 cpumask_clear_cpu(cpu, c1e_mask);
484 }
485
486 /*
487  * C1E aware idle routine. We check for C1E active in the interrupt
488  * pending message MSR. If we detect C1E, then we handle it the same
489  * way as C3 power states (local apic timer and TSC stop)
490  */
491 static void c1e_idle(void)
492 {
493         if (need_resched())
494                 return;
495
496         if (!c1e_detected) {
497                 u32 lo, hi;
498
499                 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
500                 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
501                         c1e_detected = 1;
502                         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
503                                 mark_tsc_unstable("TSC halt in AMD C1E");
504                         printk(KERN_INFO "System has AMD C1E enabled\n");
505                         set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
506                 }
507         }
508
509         if (c1e_detected) {
510                 int cpu = smp_processor_id();
511
512                 if (!cpumask_test_cpu(cpu, c1e_mask)) {
513                         cpumask_set_cpu(cpu, c1e_mask);
514                         /*
515                          * Force broadcast so ACPI can not interfere. Needs
516                          * to run with interrupts enabled as it uses
517                          * smp_function_call.
518                          */
519                         local_irq_enable();
520                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
521                                            &cpu);
522                         printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
523                                cpu);
524                         local_irq_disable();
525                 }
526                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
527
528                 default_idle();
529
530                 /*
531                  * The switch back from broadcast mode needs to be
532                  * called with interrupts disabled.
533                  */
534                  local_irq_disable();
535                  clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
536                  local_irq_enable();
537         } else
538                 default_idle();
539 }
540
541 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
542 {
543 #ifdef CONFIG_SMP
544         if (pm_idle == poll_idle && smp_num_siblings > 1) {
545                 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
546                         " performance may degrade.\n");
547         }
548 #endif
549         if (pm_idle)
550                 return;
551
552         if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
553                 /*
554                  * One CPU supports mwait => All CPUs supports mwait
555                  */
556                 printk(KERN_INFO "using mwait in idle threads.\n");
557                 pm_idle = mwait_idle;
558         } else if (check_c1e_idle(c)) {
559                 printk(KERN_INFO "using C1E aware idle routine\n");
560                 pm_idle = c1e_idle;
561         } else
562                 pm_idle = default_idle;
563 }
564
565 void __init init_c1e_mask(void)
566 {
567         /* If we're using c1e_idle, we need to allocate c1e_mask. */
568         if (pm_idle == c1e_idle) {
569                 alloc_cpumask_var(&c1e_mask, GFP_KERNEL);
570                 cpumask_clear(c1e_mask);
571         }
572 }
573
574 static int __init idle_setup(char *str)
575 {
576         if (!str)
577                 return -EINVAL;
578
579         if (!strcmp(str, "poll")) {
580                 printk("using polling idle threads.\n");
581                 pm_idle = poll_idle;
582         } else if (!strcmp(str, "mwait"))
583                 force_mwait = 1;
584         else if (!strcmp(str, "halt")) {
585                 /*
586                  * When the boot option of idle=halt is added, halt is
587                  * forced to be used for CPU idle. In such case CPU C2/C3
588                  * won't be used again.
589                  * To continue to load the CPU idle driver, don't touch
590                  * the boot_option_idle_override.
591                  */
592                 pm_idle = default_idle;
593                 idle_halt = 1;
594                 return 0;
595         } else if (!strcmp(str, "nomwait")) {
596                 /*
597                  * If the boot option of "idle=nomwait" is added,
598                  * it means that mwait will be disabled for CPU C2/C3
599                  * states. In such case it won't touch the variable
600                  * of boot_option_idle_override.
601                  */
602                 idle_nomwait = 1;
603                 return 0;
604         } else
605                 return -1;
606
607         boot_option_idle_override = 1;
608         return 0;
609 }
610 early_param("idle", idle_setup);
611