[CPUFREQ] move policy's governor initialisation out of low-level drivers into cpufreq...
[linux-2.6] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *      Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *      Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33                                                 "cpufreq-core", msg)
34
35 /**
36  * The "cpufreq driver" - the arch- or hardware-dependent low
37  * level driver of CPUFreq support, and its spinlock. This lock
38  * also protects the cpufreq_cpu_data array.
39  */
40 static struct cpufreq_driver *cpufreq_driver;
41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static struct cpufreq_governor *cpufreq_cpu_governor[NR_CPUS];
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50  * all cpufreq/hotplug/workqueue/etc related lock issues.
51  *
52  * The rules for this semaphore:
53  * - Any routine that wants to read from the policy structure will
54  *   do a down_read on this semaphore.
55  * - Any routine that will write to the policy structure and/or may take away
56  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
57  *   mode before doing so.
58  *
59  * Additional rules:
60  * - All holders of the lock should check to make sure that the CPU they
61  *   are concerned with are online after they get the lock.
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu)                                    \
69 int lock_policy_rwsem_##mode                                            \
70 (int cpu)                                                               \
71 {                                                                       \
72         int policy_cpu = per_cpu(policy_cpu, cpu);                      \
73         BUG_ON(policy_cpu == -1);                                       \
74         down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));            \
75         if (unlikely(!cpu_online(cpu))) {                               \
76                 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));      \
77                 return -1;                                              \
78         }                                                               \
79                                                                         \
80         return 0;                                                       \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89 void unlock_policy_rwsem_read(int cpu)
90 {
91         int policy_cpu = per_cpu(policy_cpu, cpu);
92         BUG_ON(policy_cpu == -1);
93         up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97 void unlock_policy_rwsem_write(int cpu)
98 {
99         int policy_cpu = per_cpu(policy_cpu, cpu);
100         BUG_ON(policy_cpu == -1);
101         up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
108 static unsigned int __cpufreq_get(unsigned int cpu);
109 static void handle_update(struct work_struct *work);
110
111 /**
112  * Two notifier lists: the "policy" list is involved in the
113  * validation process for a new CPU frequency policy; the
114  * "transition" list for kernel code that needs to handle
115  * changes to devices when the CPU clock speed changes.
116  * The mutex locks both lists.
117  */
118 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
119 static struct srcu_notifier_head cpufreq_transition_notifier_list;
120
121 static int __init init_cpufreq_transition_notifier_list(void)
122 {
123         srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124         return 0;
125 }
126 pure_initcall(init_cpufreq_transition_notifier_list);
127
128 static LIST_HEAD(cpufreq_governor_list);
129 static DEFINE_MUTEX (cpufreq_governor_mutex);
130
131 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
132 {
133         struct cpufreq_policy *data;
134         unsigned long flags;
135
136         if (cpu >= NR_CPUS)
137                 goto err_out;
138
139         /* get the cpufreq driver */
140         spin_lock_irqsave(&cpufreq_driver_lock, flags);
141
142         if (!cpufreq_driver)
143                 goto err_out_unlock;
144
145         if (!try_module_get(cpufreq_driver->owner))
146                 goto err_out_unlock;
147
148
149         /* get the CPU */
150         data = cpufreq_cpu_data[cpu];
151
152         if (!data)
153                 goto err_out_put_module;
154
155         if (!kobject_get(&data->kobj))
156                 goto err_out_put_module;
157
158         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
159         return data;
160
161 err_out_put_module:
162         module_put(cpufreq_driver->owner);
163 err_out_unlock:
164         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
165 err_out:
166         return NULL;
167 }
168 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
169
170
171 void cpufreq_cpu_put(struct cpufreq_policy *data)
172 {
173         kobject_put(&data->kobj);
174         module_put(cpufreq_driver->owner);
175 }
176 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
177
178
179 /*********************************************************************
180  *                     UNIFIED DEBUG HELPERS                         *
181  *********************************************************************/
182 #ifdef CONFIG_CPU_FREQ_DEBUG
183
184 /* what part(s) of the CPUfreq subsystem are debugged? */
185 static unsigned int debug;
186
187 /* is the debug output ratelimit'ed using printk_ratelimit? User can
188  * set or modify this value.
189  */
190 static unsigned int debug_ratelimit = 1;
191
192 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
193  * loading of a cpufreq driver, temporarily disabled when a new policy
194  * is set, and disabled upon cpufreq driver removal
195  */
196 static unsigned int disable_ratelimit = 1;
197 static DEFINE_SPINLOCK(disable_ratelimit_lock);
198
199 static void cpufreq_debug_enable_ratelimit(void)
200 {
201         unsigned long flags;
202
203         spin_lock_irqsave(&disable_ratelimit_lock, flags);
204         if (disable_ratelimit)
205                 disable_ratelimit--;
206         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
207 }
208
209 static void cpufreq_debug_disable_ratelimit(void)
210 {
211         unsigned long flags;
212
213         spin_lock_irqsave(&disable_ratelimit_lock, flags);
214         disable_ratelimit++;
215         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
216 }
217
218 void cpufreq_debug_printk(unsigned int type, const char *prefix,
219                                                         const char *fmt, ...)
220 {
221         char s[256];
222         va_list args;
223         unsigned int len;
224         unsigned long flags;
225
226         WARN_ON(!prefix);
227         if (type & debug) {
228                 spin_lock_irqsave(&disable_ratelimit_lock, flags);
229                 if (!disable_ratelimit && debug_ratelimit
230                                         && !printk_ratelimit()) {
231                         spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
232                         return;
233                 }
234                 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235
236                 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
237
238                 va_start(args, fmt);
239                 len += vsnprintf(&s[len], (256 - len), fmt, args);
240                 va_end(args);
241
242                 printk(s);
243
244                 WARN_ON(len < 5);
245         }
246 }
247 EXPORT_SYMBOL(cpufreq_debug_printk);
248
249
250 module_param(debug, uint, 0644);
251 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
252                         " 2 to debug drivers, and 4 to debug governors.");
253
254 module_param(debug_ratelimit, uint, 0644);
255 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
256                                         " set to 0 to disable ratelimiting.");
257
258 #else /* !CONFIG_CPU_FREQ_DEBUG */
259
260 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
261 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
262
263 #endif /* CONFIG_CPU_FREQ_DEBUG */
264
265
266 /*********************************************************************
267  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
268  *********************************************************************/
269
270 /**
271  * adjust_jiffies - adjust the system "loops_per_jiffy"
272  *
273  * This function alters the system "loops_per_jiffy" for the clock
274  * speed change. Note that loops_per_jiffy cannot be updated on SMP
275  * systems as each CPU might be scaled differently. So, use the arch
276  * per-CPU loops_per_jiffy value wherever possible.
277  */
278 #ifndef CONFIG_SMP
279 static unsigned long l_p_j_ref;
280 static unsigned int  l_p_j_ref_freq;
281
282 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
283 {
284         if (ci->flags & CPUFREQ_CONST_LOOPS)
285                 return;
286
287         if (!l_p_j_ref_freq) {
288                 l_p_j_ref = loops_per_jiffy;
289                 l_p_j_ref_freq = ci->old;
290                 dprintk("saving %lu as reference value for loops_per_jiffy;"
291                         "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
292         }
293         if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
294             (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
295             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
296                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297                                                                 ci->new);
298                 dprintk("scaling loops_per_jiffy to %lu"
299                         "for frequency %u kHz\n", loops_per_jiffy, ci->new);
300         }
301 }
302 #else
303 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
304 {
305         return;
306 }
307 #endif
308
309
310 /**
311  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
312  * on frequency transition.
313  *
314  * This function calls the transition notifiers and the "adjust_jiffies"
315  * function. It is called twice on all CPU frequency changes that have
316  * external effects.
317  */
318 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
319 {
320         struct cpufreq_policy *policy;
321
322         BUG_ON(irqs_disabled());
323
324         freqs->flags = cpufreq_driver->flags;
325         dprintk("notification %u of frequency transition to %u kHz\n",
326                 state, freqs->new);
327
328         policy = cpufreq_cpu_data[freqs->cpu];
329         switch (state) {
330
331         case CPUFREQ_PRECHANGE:
332                 /* detect if the driver reported a value as "old frequency"
333                  * which is not equal to what the cpufreq core thinks is
334                  * "old frequency".
335                  */
336                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
337                         if ((policy) && (policy->cpu == freqs->cpu) &&
338                             (policy->cur) && (policy->cur != freqs->old)) {
339                                 dprintk("Warning: CPU frequency is"
340                                         " %u, cpufreq assumed %u kHz.\n",
341                                         freqs->old, policy->cur);
342                                 freqs->old = policy->cur;
343                         }
344                 }
345                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
346                                 CPUFREQ_PRECHANGE, freqs);
347                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
348                 break;
349
350         case CPUFREQ_POSTCHANGE:
351                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
352                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
353                                 CPUFREQ_POSTCHANGE, freqs);
354                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
355                         policy->cur = freqs->new;
356                 break;
357         }
358 }
359 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
360
361
362
363 /*********************************************************************
364  *                          SYSFS INTERFACE                          *
365  *********************************************************************/
366
367 static struct cpufreq_governor *__find_governor(const char *str_governor)
368 {
369         struct cpufreq_governor *t;
370
371         list_for_each_entry(t, &cpufreq_governor_list, governor_list)
372                 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN))
373                         return t;
374
375         return NULL;
376 }
377
378 /**
379  * cpufreq_parse_governor - parse a governor string
380  */
381 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
382                                 struct cpufreq_governor **governor)
383 {
384         int err = -EINVAL;
385
386         if (!cpufreq_driver)
387                 goto out;
388
389         if (cpufreq_driver->setpolicy) {
390                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
391                         *policy = CPUFREQ_POLICY_PERFORMANCE;
392                         err = 0;
393                 } else if (!strnicmp(str_governor, "powersave",
394                                                 CPUFREQ_NAME_LEN)) {
395                         *policy = CPUFREQ_POLICY_POWERSAVE;
396                         err = 0;
397                 }
398         } else if (cpufreq_driver->target) {
399                 struct cpufreq_governor *t;
400
401                 mutex_lock(&cpufreq_governor_mutex);
402
403                 t = __find_governor(str_governor);
404
405                 if (t == NULL) {
406                         char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
407                                                                 str_governor);
408
409                         if (name) {
410                                 int ret;
411
412                                 mutex_unlock(&cpufreq_governor_mutex);
413                                 ret = request_module(name);
414                                 mutex_lock(&cpufreq_governor_mutex);
415
416                                 if (ret == 0)
417                                         t = __find_governor(str_governor);
418                         }
419
420                         kfree(name);
421                 }
422
423                 if (t != NULL) {
424                         *governor = t;
425                         err = 0;
426                 }
427
428                 mutex_unlock(&cpufreq_governor_mutex);
429         }
430   out:
431         return err;
432 }
433
434
435 /* drivers/base/cpu.c */
436 extern struct sysdev_class cpu_sysdev_class;
437
438
439 /**
440  * cpufreq_per_cpu_attr_read() / show_##file_name() -
441  * print out cpufreq information
442  *
443  * Write out information from cpufreq_driver->policy[cpu]; object must be
444  * "unsigned int".
445  */
446
447 #define show_one(file_name, object)                     \
448 static ssize_t show_##file_name                         \
449 (struct cpufreq_policy * policy, char *buf)             \
450 {                                                       \
451         return sprintf (buf, "%u\n", policy->object);   \
452 }
453
454 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
455 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461                                 struct cpufreq_policy *policy);
462
463 /**
464  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465  */
466 #define store_one(file_name, object)                    \
467 static ssize_t store_##file_name                                        \
468 (struct cpufreq_policy * policy, const char *buf, size_t count)         \
469 {                                                                       \
470         unsigned int ret = -EINVAL;                                     \
471         struct cpufreq_policy new_policy;                               \
472                                                                         \
473         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
474         if (ret)                                                        \
475                 return -EINVAL;                                         \
476                                                                         \
477         ret = sscanf (buf, "%u", &new_policy.object);                   \
478         if (ret != 1)                                                   \
479                 return -EINVAL;                                         \
480                                                                         \
481         ret = __cpufreq_set_policy(policy, &new_policy);                \
482         policy->user_policy.object = policy->object;                    \
483                                                                         \
484         return ret ? ret : count;                                       \
485 }
486
487 store_one(scaling_min_freq,min);
488 store_one(scaling_max_freq,max);
489
490 /**
491  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492  */
493 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy,
494                                                         char *buf)
495 {
496         unsigned int cur_freq = __cpufreq_get(policy->cpu);
497         if (!cur_freq)
498                 return sprintf(buf, "<unknown>");
499         return sprintf(buf, "%u\n", cur_freq);
500 }
501
502
503 /**
504  * show_scaling_governor - show the current policy for the specified CPU
505  */
506 static ssize_t show_scaling_governor (struct cpufreq_policy * policy,
507                                                         char *buf)
508 {
509         if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
510                 return sprintf(buf, "powersave\n");
511         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
512                 return sprintf(buf, "performance\n");
513         else if (policy->governor)
514                 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
515         return -EINVAL;
516 }
517
518
519 /**
520  * store_scaling_governor - store policy for the specified CPU
521  */
522 static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
523                                        const char *buf, size_t count)
524 {
525         unsigned int ret = -EINVAL;
526         char    str_governor[16];
527         struct cpufreq_policy new_policy;
528
529         ret = cpufreq_get_policy(&new_policy, policy->cpu);
530         if (ret)
531                 return ret;
532
533         ret = sscanf (buf, "%15s", str_governor);
534         if (ret != 1)
535                 return -EINVAL;
536
537         if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538                                                 &new_policy.governor))
539                 return -EINVAL;
540
541         /* Do not use cpufreq_set_policy here or the user_policy.max
542            will be wrongly overridden */
543         ret = __cpufreq_set_policy(policy, &new_policy);
544
545         policy->user_policy.policy = policy->policy;
546         policy->user_policy.governor = policy->governor;
547
548         if (ret)
549                 return ret;
550         else
551                 return count;
552 }
553
554 /**
555  * show_scaling_driver - show the cpufreq driver currently loaded
556  */
557 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
558 {
559         return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560 }
561
562 /**
563  * show_scaling_available_governors - show the available CPUfreq governors
564  */
565 static ssize_t show_scaling_available_governors (struct cpufreq_policy *policy,
566                                 char *buf)
567 {
568         ssize_t i = 0;
569         struct cpufreq_governor *t;
570
571         if (!cpufreq_driver->target) {
572                 i += sprintf(buf, "performance powersave");
573                 goto out;
574         }
575
576         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
578                         goto out;
579                 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
580         }
581 out:
582         i += sprintf(&buf[i], "\n");
583         return i;
584 }
585 /**
586  * show_affected_cpus - show the CPUs affected by each transition
587  */
588 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
589 {
590         ssize_t i = 0;
591         unsigned int cpu;
592
593         for_each_cpu_mask(cpu, policy->cpus) {
594                 if (i)
595                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
596                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
597                 if (i >= (PAGE_SIZE - 5))
598                     break;
599         }
600         i += sprintf(&buf[i], "\n");
601         return i;
602 }
603
604
605 #define define_one_ro(_name) \
606 static struct freq_attr _name = \
607 __ATTR(_name, 0444, show_##_name, NULL)
608
609 #define define_one_ro0400(_name) \
610 static struct freq_attr _name = \
611 __ATTR(_name, 0400, show_##_name, NULL)
612
613 #define define_one_rw(_name) \
614 static struct freq_attr _name = \
615 __ATTR(_name, 0644, show_##_name, store_##_name)
616
617 define_one_ro0400(cpuinfo_cur_freq);
618 define_one_ro(cpuinfo_min_freq);
619 define_one_ro(cpuinfo_max_freq);
620 define_one_ro(scaling_available_governors);
621 define_one_ro(scaling_driver);
622 define_one_ro(scaling_cur_freq);
623 define_one_ro(affected_cpus);
624 define_one_rw(scaling_min_freq);
625 define_one_rw(scaling_max_freq);
626 define_one_rw(scaling_governor);
627
628 static struct attribute * default_attrs[] = {
629         &cpuinfo_min_freq.attr,
630         &cpuinfo_max_freq.attr,
631         &scaling_min_freq.attr,
632         &scaling_max_freq.attr,
633         &affected_cpus.attr,
634         &scaling_governor.attr,
635         &scaling_driver.attr,
636         &scaling_available_governors.attr,
637         NULL
638 };
639
640 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
641 #define to_attr(a) container_of(a,struct freq_attr,attr)
642
643 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
644 {
645         struct cpufreq_policy * policy = to_policy(kobj);
646         struct freq_attr * fattr = to_attr(attr);
647         ssize_t ret;
648         policy = cpufreq_cpu_get(policy->cpu);
649         if (!policy)
650                 return -EINVAL;
651
652         if (lock_policy_rwsem_read(policy->cpu) < 0)
653                 return -EINVAL;
654
655         if (fattr->show)
656                 ret = fattr->show(policy, buf);
657         else
658                 ret = -EIO;
659
660         unlock_policy_rwsem_read(policy->cpu);
661
662         cpufreq_cpu_put(policy);
663         return ret;
664 }
665
666 static ssize_t store(struct kobject * kobj, struct attribute * attr,
667                      const char * buf, size_t count)
668 {
669         struct cpufreq_policy * policy = to_policy(kobj);
670         struct freq_attr * fattr = to_attr(attr);
671         ssize_t ret;
672         policy = cpufreq_cpu_get(policy->cpu);
673         if (!policy)
674                 return -EINVAL;
675
676         if (lock_policy_rwsem_write(policy->cpu) < 0)
677                 return -EINVAL;
678
679         if (fattr->store)
680                 ret = fattr->store(policy, buf, count);
681         else
682                 ret = -EIO;
683
684         unlock_policy_rwsem_write(policy->cpu);
685
686         cpufreq_cpu_put(policy);
687         return ret;
688 }
689
690 static void cpufreq_sysfs_release(struct kobject * kobj)
691 {
692         struct cpufreq_policy * policy = to_policy(kobj);
693         dprintk("last reference is dropped\n");
694         complete(&policy->kobj_unregister);
695 }
696
697 static struct sysfs_ops sysfs_ops = {
698         .show   = show,
699         .store  = store,
700 };
701
702 static struct kobj_type ktype_cpufreq = {
703         .sysfs_ops      = &sysfs_ops,
704         .default_attrs  = default_attrs,
705         .release        = cpufreq_sysfs_release,
706 };
707
708
709 /**
710  * cpufreq_add_dev - add a CPU device
711  *
712  * Adds the cpufreq interface for a CPU device.
713  */
714 static int cpufreq_add_dev (struct sys_device * sys_dev)
715 {
716         unsigned int cpu = sys_dev->id;
717         int ret = 0;
718         struct cpufreq_policy new_policy;
719         struct cpufreq_policy *policy;
720         struct freq_attr **drv_attr;
721         struct sys_device *cpu_sys_dev;
722         unsigned long flags;
723         unsigned int j;
724 #ifdef CONFIG_SMP
725         struct cpufreq_policy *managed_policy;
726 #endif
727
728         if (cpu_is_offline(cpu))
729                 return 0;
730
731         cpufreq_debug_disable_ratelimit();
732         dprintk("adding CPU %u\n", cpu);
733
734 #ifdef CONFIG_SMP
735         /* check whether a different CPU already registered this
736          * CPU because it is in the same boat. */
737         policy = cpufreq_cpu_get(cpu);
738         if (unlikely(policy)) {
739                 cpufreq_cpu_put(policy);
740                 cpufreq_debug_enable_ratelimit();
741                 return 0;
742         }
743 #endif
744
745         if (!try_module_get(cpufreq_driver->owner)) {
746                 ret = -EINVAL;
747                 goto module_out;
748         }
749
750         policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
751         if (!policy) {
752                 ret = -ENOMEM;
753                 goto nomem_out;
754         }
755
756         policy->cpu = cpu;
757         policy->cpus = cpumask_of_cpu(cpu);
758
759         /* Initially set CPU itself as the policy_cpu */
760         per_cpu(policy_cpu, cpu) = cpu;
761         lock_policy_rwsem_write(cpu);
762
763         init_completion(&policy->kobj_unregister);
764         INIT_WORK(&policy->update, handle_update);
765
766         /* Set governor before ->init, so that driver could check it */
767         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
768         /* call driver. From then on the cpufreq must be able
769          * to accept all calls to ->verify and ->setpolicy for this CPU
770          */
771         ret = cpufreq_driver->init(policy);
772         if (ret) {
773                 dprintk("initialization failed\n");
774                 unlock_policy_rwsem_write(cpu);
775                 goto err_out;
776         }
777         policy->user_policy.min = policy->cpuinfo.min_freq;
778         policy->user_policy.max = policy->cpuinfo.max_freq;
779
780 #ifdef CONFIG_SMP
781
782 #ifdef CONFIG_HOTPLUG_CPU
783         if (cpufreq_cpu_governor[cpu]){
784                 policy->governor = cpufreq_cpu_governor[cpu];
785                 dprintk("Restoring governor %s for cpu %d\n",
786                        policy->governor->name, cpu);
787         }
788 #endif
789
790         for_each_cpu_mask(j, policy->cpus) {
791                 if (cpu == j)
792                         continue;
793
794                 /* check for existing affected CPUs.  They may not be aware
795                  * of it due to CPU Hotplug.
796                  */
797                 managed_policy = cpufreq_cpu_get(j);
798                 if (unlikely(managed_policy)) {
799
800                         /* Set proper policy_cpu */
801                         unlock_policy_rwsem_write(cpu);
802                         per_cpu(policy_cpu, cpu) = managed_policy->cpu;
803
804                         if (lock_policy_rwsem_write(cpu) < 0)
805                                 goto err_out_driver_exit;
806
807                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
808                         managed_policy->cpus = policy->cpus;
809                         cpufreq_cpu_data[cpu] = managed_policy;
810                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
811
812                         dprintk("CPU already managed, adding link\n");
813                         ret = sysfs_create_link(&sys_dev->kobj,
814                                                 &managed_policy->kobj,
815                                                 "cpufreq");
816                         if (ret) {
817                                 unlock_policy_rwsem_write(cpu);
818                                 goto err_out_driver_exit;
819                         }
820
821                         cpufreq_debug_enable_ratelimit();
822                         ret = 0;
823                         unlock_policy_rwsem_write(cpu);
824                         goto err_out_driver_exit; /* call driver->exit() */
825                 }
826         }
827 #endif
828         memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
829
830         /* prepare interface data */
831         policy->kobj.parent = &sys_dev->kobj;
832         policy->kobj.ktype = &ktype_cpufreq;
833         strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN);
834
835         ret = kobject_register(&policy->kobj);
836         if (ret) {
837                 unlock_policy_rwsem_write(cpu);
838                 goto err_out_driver_exit;
839         }
840         /* set up files for this cpu device */
841         drv_attr = cpufreq_driver->attr;
842         while ((drv_attr) && (*drv_attr)) {
843                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
844                 if (ret)
845                         goto err_out_driver_exit;
846                 drv_attr++;
847         }
848         if (cpufreq_driver->get){
849                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
850                 if (ret)
851                         goto err_out_driver_exit;
852         }
853         if (cpufreq_driver->target){
854                 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
855                 if (ret)
856                         goto err_out_driver_exit;
857         }
858
859         spin_lock_irqsave(&cpufreq_driver_lock, flags);
860         for_each_cpu_mask(j, policy->cpus) {
861                 cpufreq_cpu_data[j] = policy;
862                 per_cpu(policy_cpu, j) = policy->cpu;
863         }
864         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
865
866         /* symlink affected CPUs */
867         for_each_cpu_mask(j, policy->cpus) {
868                 if (j == cpu)
869                         continue;
870                 if (!cpu_online(j))
871                         continue;
872
873                 dprintk("CPU %u already managed, adding link\n", j);
874                 cpufreq_cpu_get(cpu);
875                 cpu_sys_dev = get_cpu_sysdev(j);
876                 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
877                                         "cpufreq");
878                 if (ret) {
879                         unlock_policy_rwsem_write(cpu);
880                         goto err_out_unregister;
881                 }
882         }
883
884         policy->governor = NULL; /* to assure that the starting sequence is
885                                   * run in cpufreq_set_policy */
886
887         /* set default policy */
888         ret = __cpufreq_set_policy(policy, &new_policy);
889         policy->user_policy.policy = policy->policy;
890         policy->user_policy.governor = policy->governor;
891
892         unlock_policy_rwsem_write(cpu);
893
894         if (ret) {
895                 dprintk("setting policy failed\n");
896                 goto err_out_unregister;
897         }
898
899         module_put(cpufreq_driver->owner);
900         dprintk("initialization complete\n");
901         cpufreq_debug_enable_ratelimit();
902
903         return 0;
904
905
906 err_out_unregister:
907         spin_lock_irqsave(&cpufreq_driver_lock, flags);
908         for_each_cpu_mask(j, policy->cpus)
909                 cpufreq_cpu_data[j] = NULL;
910         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
911
912         kobject_unregister(&policy->kobj);
913         wait_for_completion(&policy->kobj_unregister);
914
915 err_out_driver_exit:
916         if (cpufreq_driver->exit)
917                 cpufreq_driver->exit(policy);
918
919 err_out:
920         kfree(policy);
921
922 nomem_out:
923         module_put(cpufreq_driver->owner);
924 module_out:
925         cpufreq_debug_enable_ratelimit();
926         return ret;
927 }
928
929
930 /**
931  * __cpufreq_remove_dev - remove a CPU device
932  *
933  * Removes the cpufreq interface for a CPU device.
934  * Caller should already have policy_rwsem in write mode for this CPU.
935  * This routine frees the rwsem before returning.
936  */
937 static int __cpufreq_remove_dev (struct sys_device * sys_dev)
938 {
939         unsigned int cpu = sys_dev->id;
940         unsigned long flags;
941         struct cpufreq_policy *data;
942 #ifdef CONFIG_SMP
943         struct sys_device *cpu_sys_dev;
944         unsigned int j;
945 #endif
946
947         cpufreq_debug_disable_ratelimit();
948         dprintk("unregistering CPU %u\n", cpu);
949
950         spin_lock_irqsave(&cpufreq_driver_lock, flags);
951         data = cpufreq_cpu_data[cpu];
952
953         if (!data) {
954                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
955                 cpufreq_debug_enable_ratelimit();
956                 unlock_policy_rwsem_write(cpu);
957                 return -EINVAL;
958         }
959         cpufreq_cpu_data[cpu] = NULL;
960
961
962 #ifdef CONFIG_SMP
963         /* if this isn't the CPU which is the parent of the kobj, we
964          * only need to unlink, put and exit
965          */
966         if (unlikely(cpu != data->cpu)) {
967                 dprintk("removing link\n");
968                 cpu_clear(cpu, data->cpus);
969                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
970                 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
971                 cpufreq_cpu_put(data);
972                 cpufreq_debug_enable_ratelimit();
973                 unlock_policy_rwsem_write(cpu);
974                 return 0;
975         }
976 #endif
977
978
979         if (!kobject_get(&data->kobj)) {
980                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
981                 cpufreq_debug_enable_ratelimit();
982                 unlock_policy_rwsem_write(cpu);
983                 return -EFAULT;
984         }
985
986 #ifdef CONFIG_SMP
987
988 #ifdef CONFIG_HOTPLUG_CPU
989         cpufreq_cpu_governor[cpu] = data->governor;
990 #endif
991
992         /* if we have other CPUs still registered, we need to unlink them,
993          * or else wait_for_completion below will lock up. Clean the
994          * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
995          * links afterwards.
996          */
997         if (unlikely(cpus_weight(data->cpus) > 1)) {
998                 for_each_cpu_mask(j, data->cpus) {
999                         if (j == cpu)
1000                                 continue;
1001                         cpufreq_cpu_data[j] = NULL;
1002                 }
1003         }
1004
1005         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1006
1007         if (unlikely(cpus_weight(data->cpus) > 1)) {
1008                 for_each_cpu_mask(j, data->cpus) {
1009                         if (j == cpu)
1010                                 continue;
1011                         dprintk("removing link for cpu %u\n", j);
1012 #ifdef CONFIG_HOTPLUG_CPU
1013                         cpufreq_cpu_governor[j] = data->governor;
1014 #endif
1015                         cpu_sys_dev = get_cpu_sysdev(j);
1016                         sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1017                         cpufreq_cpu_put(data);
1018                 }
1019         }
1020 #else
1021         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1022 #endif
1023
1024         if (cpufreq_driver->target)
1025                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1026
1027         unlock_policy_rwsem_write(cpu);
1028
1029         kobject_unregister(&data->kobj);
1030
1031         kobject_put(&data->kobj);
1032
1033         /* we need to make sure that the underlying kobj is actually
1034          * not referenced anymore by anybody before we proceed with
1035          * unloading.
1036          */
1037         dprintk("waiting for dropping of refcount\n");
1038         wait_for_completion(&data->kobj_unregister);
1039         dprintk("wait complete\n");
1040
1041         if (cpufreq_driver->exit)
1042                 cpufreq_driver->exit(data);
1043
1044         kfree(data);
1045
1046         cpufreq_debug_enable_ratelimit();
1047         return 0;
1048 }
1049
1050
1051 static int cpufreq_remove_dev (struct sys_device * sys_dev)
1052 {
1053         unsigned int cpu = sys_dev->id;
1054         int retval;
1055
1056         if (cpu_is_offline(cpu))
1057                 return 0;
1058
1059         if (unlikely(lock_policy_rwsem_write(cpu)))
1060                 BUG();
1061
1062         retval = __cpufreq_remove_dev(sys_dev);
1063         return retval;
1064 }
1065
1066
1067 static void handle_update(struct work_struct *work)
1068 {
1069         struct cpufreq_policy *policy =
1070                 container_of(work, struct cpufreq_policy, update);
1071         unsigned int cpu = policy->cpu;
1072         dprintk("handle_update for cpu %u called\n", cpu);
1073         cpufreq_update_policy(cpu);
1074 }
1075
1076 /**
1077  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1078  *      @cpu: cpu number
1079  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
1080  *      @new_freq: CPU frequency the CPU actually runs at
1081  *
1082  *      We adjust to current frequency first, and need to clean up later. So either call
1083  *      to cpufreq_update_policy() or schedule handle_update()).
1084  */
1085 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1086                                 unsigned int new_freq)
1087 {
1088         struct cpufreq_freqs freqs;
1089
1090         dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1091                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1092
1093         freqs.cpu = cpu;
1094         freqs.old = old_freq;
1095         freqs.new = new_freq;
1096         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1097         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1098 }
1099
1100
1101 /**
1102  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1103  * @cpu: CPU number
1104  *
1105  * This is the last known freq, without actually getting it from the driver.
1106  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1107  */
1108 unsigned int cpufreq_quick_get(unsigned int cpu)
1109 {
1110         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1111         unsigned int ret_freq = 0;
1112
1113         if (policy) {
1114                 if (unlikely(lock_policy_rwsem_read(cpu)))
1115                         return ret_freq;
1116
1117                 ret_freq = policy->cur;
1118
1119                 unlock_policy_rwsem_read(cpu);
1120                 cpufreq_cpu_put(policy);
1121         }
1122
1123         return (ret_freq);
1124 }
1125 EXPORT_SYMBOL(cpufreq_quick_get);
1126
1127
1128 static unsigned int __cpufreq_get(unsigned int cpu)
1129 {
1130         struct cpufreq_policy *policy = cpufreq_cpu_data[cpu];
1131         unsigned int ret_freq = 0;
1132
1133         if (!cpufreq_driver->get)
1134                 return (ret_freq);
1135
1136         ret_freq = cpufreq_driver->get(cpu);
1137
1138         if (ret_freq && policy->cur &&
1139                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1140                 /* verify no discrepancy between actual and
1141                                         saved value exists */
1142                 if (unlikely(ret_freq != policy->cur)) {
1143                         cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1144                         schedule_work(&policy->update);
1145                 }
1146         }
1147
1148         return (ret_freq);
1149 }
1150
1151 /**
1152  * cpufreq_get - get the current CPU frequency (in kHz)
1153  * @cpu: CPU number
1154  *
1155  * Get the CPU current (static) CPU frequency
1156  */
1157 unsigned int cpufreq_get(unsigned int cpu)
1158 {
1159         unsigned int ret_freq = 0;
1160         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1161
1162         if (!policy)
1163                 goto out;
1164
1165         if (unlikely(lock_policy_rwsem_read(cpu)))
1166                 goto out_policy;
1167
1168         ret_freq = __cpufreq_get(cpu);
1169
1170         unlock_policy_rwsem_read(cpu);
1171
1172 out_policy:
1173         cpufreq_cpu_put(policy);
1174 out:
1175         return (ret_freq);
1176 }
1177 EXPORT_SYMBOL(cpufreq_get);
1178
1179
1180 /**
1181  *      cpufreq_suspend - let the low level driver prepare for suspend
1182  */
1183
1184 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
1185 {
1186         int cpu = sysdev->id;
1187         int ret = 0;
1188         unsigned int cur_freq = 0;
1189         struct cpufreq_policy *cpu_policy;
1190
1191         dprintk("suspending cpu %u\n", cpu);
1192
1193         if (!cpu_online(cpu))
1194                 return 0;
1195
1196         /* we may be lax here as interrupts are off. Nonetheless
1197          * we need to grab the correct cpu policy, as to check
1198          * whether we really run on this CPU.
1199          */
1200
1201         cpu_policy = cpufreq_cpu_get(cpu);
1202         if (!cpu_policy)
1203                 return -EINVAL;
1204
1205         /* only handle each CPU group once */
1206         if (unlikely(cpu_policy->cpu != cpu)) {
1207                 cpufreq_cpu_put(cpu_policy);
1208                 return 0;
1209         }
1210
1211         if (cpufreq_driver->suspend) {
1212                 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1213                 if (ret) {
1214                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1215                                         "step on CPU %u\n", cpu_policy->cpu);
1216                         cpufreq_cpu_put(cpu_policy);
1217                         return ret;
1218                 }
1219         }
1220
1221
1222         if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1223                 goto out;
1224
1225         if (cpufreq_driver->get)
1226                 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1227
1228         if (!cur_freq || !cpu_policy->cur) {
1229                 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1230                        "frequency is what timing core thinks it is.\n");
1231                 goto out;
1232         }
1233
1234         if (unlikely(cur_freq != cpu_policy->cur)) {
1235                 struct cpufreq_freqs freqs;
1236
1237                 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1238                         dprintk("Warning: CPU frequency is %u, "
1239                                "cpufreq assumed %u kHz.\n",
1240                                cur_freq, cpu_policy->cur);
1241
1242                 freqs.cpu = cpu;
1243                 freqs.old = cpu_policy->cur;
1244                 freqs.new = cur_freq;
1245
1246                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1247                                     CPUFREQ_SUSPENDCHANGE, &freqs);
1248                 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1249
1250                 cpu_policy->cur = cur_freq;
1251         }
1252
1253 out:
1254         cpufreq_cpu_put(cpu_policy);
1255         return 0;
1256 }
1257
1258 /**
1259  *      cpufreq_resume -  restore proper CPU frequency handling after resume
1260  *
1261  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1262  *      2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1263  *      3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1264  *          restored.
1265  */
1266 static int cpufreq_resume(struct sys_device * sysdev)
1267 {
1268         int cpu = sysdev->id;
1269         int ret = 0;
1270         struct cpufreq_policy *cpu_policy;
1271
1272         dprintk("resuming cpu %u\n", cpu);
1273
1274         if (!cpu_online(cpu))
1275                 return 0;
1276
1277         /* we may be lax here as interrupts are off. Nonetheless
1278          * we need to grab the correct cpu policy, as to check
1279          * whether we really run on this CPU.
1280          */
1281
1282         cpu_policy = cpufreq_cpu_get(cpu);
1283         if (!cpu_policy)
1284                 return -EINVAL;
1285
1286         /* only handle each CPU group once */
1287         if (unlikely(cpu_policy->cpu != cpu)) {
1288                 cpufreq_cpu_put(cpu_policy);
1289                 return 0;
1290         }
1291
1292         if (cpufreq_driver->resume) {
1293                 ret = cpufreq_driver->resume(cpu_policy);
1294                 if (ret) {
1295                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1296                                         "step on CPU %u\n", cpu_policy->cpu);
1297                         cpufreq_cpu_put(cpu_policy);
1298                         return ret;
1299                 }
1300         }
1301
1302         if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1303                 unsigned int cur_freq = 0;
1304
1305                 if (cpufreq_driver->get)
1306                         cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1307
1308                 if (!cur_freq || !cpu_policy->cur) {
1309                         printk(KERN_ERR "cpufreq: resume failed to assert "
1310                                         "current frequency is what timing core "
1311                                         "thinks it is.\n");
1312                         goto out;
1313                 }
1314
1315                 if (unlikely(cur_freq != cpu_policy->cur)) {
1316                         struct cpufreq_freqs freqs;
1317
1318                         if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1319                                 dprintk("Warning: CPU frequency"
1320                                        "is %u, cpufreq assumed %u kHz.\n",
1321                                        cur_freq, cpu_policy->cur);
1322
1323                         freqs.cpu = cpu;
1324                         freqs.old = cpu_policy->cur;
1325                         freqs.new = cur_freq;
1326
1327                         srcu_notifier_call_chain(
1328                                         &cpufreq_transition_notifier_list,
1329                                         CPUFREQ_RESUMECHANGE, &freqs);
1330                         adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1331
1332                         cpu_policy->cur = cur_freq;
1333                 }
1334         }
1335
1336 out:
1337         schedule_work(&cpu_policy->update);
1338         cpufreq_cpu_put(cpu_policy);
1339         return ret;
1340 }
1341
1342 static struct sysdev_driver cpufreq_sysdev_driver = {
1343         .add            = cpufreq_add_dev,
1344         .remove         = cpufreq_remove_dev,
1345         .suspend        = cpufreq_suspend,
1346         .resume         = cpufreq_resume,
1347 };
1348
1349
1350 /*********************************************************************
1351  *                     NOTIFIER LISTS INTERFACE                      *
1352  *********************************************************************/
1353
1354 /**
1355  *      cpufreq_register_notifier - register a driver with cpufreq
1356  *      @nb: notifier function to register
1357  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1358  *
1359  *      Add a driver to one of two lists: either a list of drivers that
1360  *      are notified about clock rate changes (once before and once after
1361  *      the transition), or a list of drivers that are notified about
1362  *      changes in cpufreq policy.
1363  *
1364  *      This function may sleep, and has the same return conditions as
1365  *      blocking_notifier_chain_register.
1366  */
1367 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1368 {
1369         int ret;
1370
1371         switch (list) {
1372         case CPUFREQ_TRANSITION_NOTIFIER:
1373                 ret = srcu_notifier_chain_register(
1374                                 &cpufreq_transition_notifier_list, nb);
1375                 break;
1376         case CPUFREQ_POLICY_NOTIFIER:
1377                 ret = blocking_notifier_chain_register(
1378                                 &cpufreq_policy_notifier_list, nb);
1379                 break;
1380         default:
1381                 ret = -EINVAL;
1382         }
1383
1384         return ret;
1385 }
1386 EXPORT_SYMBOL(cpufreq_register_notifier);
1387
1388
1389 /**
1390  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1391  *      @nb: notifier block to be unregistered
1392  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1393  *
1394  *      Remove a driver from the CPU frequency notifier list.
1395  *
1396  *      This function may sleep, and has the same return conditions as
1397  *      blocking_notifier_chain_unregister.
1398  */
1399 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1400 {
1401         int ret;
1402
1403         switch (list) {
1404         case CPUFREQ_TRANSITION_NOTIFIER:
1405                 ret = srcu_notifier_chain_unregister(
1406                                 &cpufreq_transition_notifier_list, nb);
1407                 break;
1408         case CPUFREQ_POLICY_NOTIFIER:
1409                 ret = blocking_notifier_chain_unregister(
1410                                 &cpufreq_policy_notifier_list, nb);
1411                 break;
1412         default:
1413                 ret = -EINVAL;
1414         }
1415
1416         return ret;
1417 }
1418 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1419
1420
1421 /*********************************************************************
1422  *                              GOVERNORS                            *
1423  *********************************************************************/
1424
1425
1426 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1427                             unsigned int target_freq,
1428                             unsigned int relation)
1429 {
1430         int retval = -EINVAL;
1431
1432         dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1433                 target_freq, relation);
1434         if (cpu_online(policy->cpu) && cpufreq_driver->target)
1435                 retval = cpufreq_driver->target(policy, target_freq, relation);
1436
1437         return retval;
1438 }
1439 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1440
1441 int cpufreq_driver_target(struct cpufreq_policy *policy,
1442                           unsigned int target_freq,
1443                           unsigned int relation)
1444 {
1445         int ret;
1446
1447         policy = cpufreq_cpu_get(policy->cpu);
1448         if (!policy)
1449                 return -EINVAL;
1450
1451         if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1452                 return -EINVAL;
1453
1454         ret = __cpufreq_driver_target(policy, target_freq, relation);
1455
1456         unlock_policy_rwsem_write(policy->cpu);
1457
1458         cpufreq_cpu_put(policy);
1459         return ret;
1460 }
1461 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1462
1463 int __cpufreq_driver_getavg(struct cpufreq_policy *policy)
1464 {
1465         int ret = 0;
1466
1467         policy = cpufreq_cpu_get(policy->cpu);
1468         if (!policy)
1469                 return -EINVAL;
1470
1471         if (cpu_online(policy->cpu) && cpufreq_driver->getavg)
1472                 ret = cpufreq_driver->getavg(policy->cpu);
1473
1474         cpufreq_cpu_put(policy);
1475         return ret;
1476 }
1477 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1478
1479 /*
1480  * when "event" is CPUFREQ_GOV_LIMITS
1481  */
1482
1483 static int __cpufreq_governor(struct cpufreq_policy *policy,
1484                                         unsigned int event)
1485 {
1486         int ret;
1487
1488         if (!try_module_get(policy->governor->owner))
1489                 return -EINVAL;
1490
1491         dprintk("__cpufreq_governor for CPU %u, event %u\n",
1492                                                 policy->cpu, event);
1493         ret = policy->governor->governor(policy, event);
1494
1495         /* we keep one module reference alive for
1496                         each CPU governed by this CPU */
1497         if ((event != CPUFREQ_GOV_START) || ret)
1498                 module_put(policy->governor->owner);
1499         if ((event == CPUFREQ_GOV_STOP) && !ret)
1500                 module_put(policy->governor->owner);
1501
1502         return ret;
1503 }
1504
1505
1506 int cpufreq_register_governor(struct cpufreq_governor *governor)
1507 {
1508         int err;
1509
1510         if (!governor)
1511                 return -EINVAL;
1512
1513         mutex_lock(&cpufreq_governor_mutex);
1514
1515         err = -EBUSY;
1516         if (__find_governor(governor->name) == NULL) {
1517                 err = 0;
1518                 list_add(&governor->governor_list, &cpufreq_governor_list);
1519         }
1520
1521         mutex_unlock(&cpufreq_governor_mutex);
1522         return err;
1523 }
1524 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1525
1526
1527 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1528 {
1529         if (!governor)
1530                 return;
1531
1532         mutex_lock(&cpufreq_governor_mutex);
1533         list_del(&governor->governor_list);
1534         mutex_unlock(&cpufreq_governor_mutex);
1535         return;
1536 }
1537 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1538
1539
1540
1541 /*********************************************************************
1542  *                          POLICY INTERFACE                         *
1543  *********************************************************************/
1544
1545 /**
1546  * cpufreq_get_policy - get the current cpufreq_policy
1547  * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1548  *
1549  * Reads the current cpufreq policy.
1550  */
1551 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1552 {
1553         struct cpufreq_policy *cpu_policy;
1554         if (!policy)
1555                 return -EINVAL;
1556
1557         cpu_policy = cpufreq_cpu_get(cpu);
1558         if (!cpu_policy)
1559                 return -EINVAL;
1560
1561         memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1562
1563         cpufreq_cpu_put(cpu_policy);
1564         return 0;
1565 }
1566 EXPORT_SYMBOL(cpufreq_get_policy);
1567
1568
1569 /*
1570  * data   : current policy.
1571  * policy : policy to be set.
1572  */
1573 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1574                                 struct cpufreq_policy *policy)
1575 {
1576         int ret = 0;
1577
1578         cpufreq_debug_disable_ratelimit();
1579         dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1580                 policy->min, policy->max);
1581
1582         memcpy(&policy->cpuinfo, &data->cpuinfo,
1583                                 sizeof(struct cpufreq_cpuinfo));
1584
1585         if (policy->min > data->min && policy->min > policy->max) {
1586                 ret = -EINVAL;
1587                 goto error_out;
1588         }
1589
1590         /* verify the cpu speed can be set within this limit */
1591         ret = cpufreq_driver->verify(policy);
1592         if (ret)
1593                 goto error_out;
1594
1595         /* adjust if necessary - all reasons */
1596         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1597                         CPUFREQ_ADJUST, policy);
1598
1599         /* adjust if necessary - hardware incompatibility*/
1600         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1601                         CPUFREQ_INCOMPATIBLE, policy);
1602
1603         /* verify the cpu speed can be set within this limit,
1604            which might be different to the first one */
1605         ret = cpufreq_driver->verify(policy);
1606         if (ret)
1607                 goto error_out;
1608
1609         /* notification of the new policy */
1610         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1611                         CPUFREQ_NOTIFY, policy);
1612
1613         data->min = policy->min;
1614         data->max = policy->max;
1615
1616         dprintk("new min and max freqs are %u - %u kHz\n",
1617                                         data->min, data->max);
1618
1619         if (cpufreq_driver->setpolicy) {
1620                 data->policy = policy->policy;
1621                 dprintk("setting range\n");
1622                 ret = cpufreq_driver->setpolicy(policy);
1623         } else {
1624                 if (policy->governor != data->governor) {
1625                         /* save old, working values */
1626                         struct cpufreq_governor *old_gov = data->governor;
1627
1628                         dprintk("governor switch\n");
1629
1630                         /* end old governor */
1631                         if (data->governor)
1632                                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1633
1634                         /* start new governor */
1635                         data->governor = policy->governor;
1636                         if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1637                                 /* new governor failed, so re-start old one */
1638                                 dprintk("starting governor %s failed\n",
1639                                                         data->governor->name);
1640                                 if (old_gov) {
1641                                         data->governor = old_gov;
1642                                         __cpufreq_governor(data,
1643                                                            CPUFREQ_GOV_START);
1644                                 }
1645                                 ret = -EINVAL;
1646                                 goto error_out;
1647                         }
1648                         /* might be a policy change, too, so fall through */
1649                 }
1650                 dprintk("governor: change or update limits\n");
1651                 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1652         }
1653
1654 error_out:
1655         cpufreq_debug_enable_ratelimit();
1656         return ret;
1657 }
1658
1659 /**
1660  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1661  *      @cpu: CPU which shall be re-evaluated
1662  *
1663  *      Usefull for policy notifiers which have different necessities
1664  *      at different times.
1665  */
1666 int cpufreq_update_policy(unsigned int cpu)
1667 {
1668         struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1669         struct cpufreq_policy policy;
1670         int ret = 0;
1671
1672         if (!data)
1673                 return -ENODEV;
1674
1675         if (unlikely(lock_policy_rwsem_write(cpu)))
1676                 return -EINVAL;
1677
1678         dprintk("updating policy for CPU %u\n", cpu);
1679         memcpy(&policy, data, sizeof(struct cpufreq_policy));
1680         policy.min = data->user_policy.min;
1681         policy.max = data->user_policy.max;
1682         policy.policy = data->user_policy.policy;
1683         policy.governor = data->user_policy.governor;
1684
1685         /* BIOS might change freq behind our back
1686           -> ask driver for current freq and notify governors about a change */
1687         if (cpufreq_driver->get) {
1688                 policy.cur = cpufreq_driver->get(cpu);
1689                 if (!data->cur) {
1690                         dprintk("Driver did not initialize current freq");
1691                         data->cur = policy.cur;
1692                 } else {
1693                         if (data->cur != policy.cur)
1694                                 cpufreq_out_of_sync(cpu, data->cur,
1695                                                                 policy.cur);
1696                 }
1697         }
1698
1699         ret = __cpufreq_set_policy(data, &policy);
1700
1701         unlock_policy_rwsem_write(cpu);
1702
1703         cpufreq_cpu_put(data);
1704         return ret;
1705 }
1706 EXPORT_SYMBOL(cpufreq_update_policy);
1707
1708 static int cpufreq_cpu_callback(struct notifier_block *nfb,
1709                                         unsigned long action, void *hcpu)
1710 {
1711         unsigned int cpu = (unsigned long)hcpu;
1712         struct sys_device *sys_dev;
1713
1714         sys_dev = get_cpu_sysdev(cpu);
1715         if (sys_dev) {
1716                 switch (action) {
1717                 case CPU_ONLINE:
1718                 case CPU_ONLINE_FROZEN:
1719                         cpufreq_add_dev(sys_dev);
1720                         break;
1721                 case CPU_DOWN_PREPARE:
1722                 case CPU_DOWN_PREPARE_FROZEN:
1723                         if (unlikely(lock_policy_rwsem_write(cpu)))
1724                                 BUG();
1725
1726                         __cpufreq_remove_dev(sys_dev);
1727                         break;
1728                 case CPU_DOWN_FAILED:
1729                 case CPU_DOWN_FAILED_FROZEN:
1730                         cpufreq_add_dev(sys_dev);
1731                         break;
1732                 }
1733         }
1734         return NOTIFY_OK;
1735 }
1736
1737 static struct notifier_block __cpuinitdata cpufreq_cpu_notifier =
1738 {
1739     .notifier_call = cpufreq_cpu_callback,
1740 };
1741
1742 /*********************************************************************
1743  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1744  *********************************************************************/
1745
1746 /**
1747  * cpufreq_register_driver - register a CPU Frequency driver
1748  * @driver_data: A struct cpufreq_driver containing the values#
1749  * submitted by the CPU Frequency driver.
1750  *
1751  *   Registers a CPU Frequency driver to this core code. This code
1752  * returns zero on success, -EBUSY when another driver got here first
1753  * (and isn't unregistered in the meantime).
1754  *
1755  */
1756 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1757 {
1758         unsigned long flags;
1759         int ret;
1760
1761         if (!driver_data || !driver_data->verify || !driver_data->init ||
1762             ((!driver_data->setpolicy) && (!driver_data->target)))
1763                 return -EINVAL;
1764
1765         dprintk("trying to register driver %s\n", driver_data->name);
1766
1767         if (driver_data->setpolicy)
1768                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1769
1770         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1771         if (cpufreq_driver) {
1772                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1773                 return -EBUSY;
1774         }
1775         cpufreq_driver = driver_data;
1776         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1777
1778         ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1779
1780         if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1781                 int i;
1782                 ret = -ENODEV;
1783
1784                 /* check for at least one working CPU */
1785                 for (i=0; i<NR_CPUS; i++)
1786                         if (cpufreq_cpu_data[i])
1787                                 ret = 0;
1788
1789                 /* if all ->init() calls failed, unregister */
1790                 if (ret) {
1791                         dprintk("no CPU initialized for driver %s\n",
1792                                                         driver_data->name);
1793                         sysdev_driver_unregister(&cpu_sysdev_class,
1794                                                 &cpufreq_sysdev_driver);
1795
1796                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1797                         cpufreq_driver = NULL;
1798                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1799                 }
1800         }
1801
1802         if (!ret) {
1803                 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1804                 dprintk("driver %s up and running\n", driver_data->name);
1805                 cpufreq_debug_enable_ratelimit();
1806         }
1807
1808         return (ret);
1809 }
1810 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1811
1812
1813 /**
1814  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1815  *
1816  *    Unregister the current CPUFreq driver. Only call this if you have
1817  * the right to do so, i.e. if you have succeeded in initialising before!
1818  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1819  * currently not initialised.
1820  */
1821 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1822 {
1823         unsigned long flags;
1824
1825         cpufreq_debug_disable_ratelimit();
1826
1827         if (!cpufreq_driver || (driver != cpufreq_driver)) {
1828                 cpufreq_debug_enable_ratelimit();
1829                 return -EINVAL;
1830         }
1831
1832         dprintk("unregistering driver %s\n", driver->name);
1833
1834         sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1835         unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1836
1837         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1838         cpufreq_driver = NULL;
1839         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1840
1841         return 0;
1842 }
1843 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1844
1845 static int __init cpufreq_core_init(void)
1846 {
1847         int cpu;
1848
1849         for_each_possible_cpu(cpu) {
1850                 per_cpu(policy_cpu, cpu) = -1;
1851                 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1852         }
1853         return 0;
1854 }
1855
1856 core_initcall(cpufreq_core_init);