1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/errno.h>
4 #include <linux/hpet.h>
5 #include <linux/init.h>
10 extern struct clock_event_device *global_clock_event;
12 #define HPET_MASK CLOCKSOURCE_MASK(32)
15 /* FSEC = 10^-15 NSEC = 10^-9 */
16 #define FSEC_PER_NSEC 1000000
19 * HPET address is set in acpi/boot.c, when an ACPI entry exists
21 unsigned long hpet_address;
22 static void __iomem * hpet_virt_address;
24 static inline unsigned long hpet_readl(unsigned long a)
26 return readl(hpet_virt_address + a);
29 static inline void hpet_writel(unsigned long d, unsigned long a)
31 writel(d, hpet_virt_address + a);
35 * HPET command line enable / disable
37 static int boot_hpet_disable;
39 static int __init hpet_setup(char* str)
42 if (!strncmp("disable", str, 7))
43 boot_hpet_disable = 1;
47 __setup("hpet=", hpet_setup);
49 static inline int is_hpet_capable(void)
51 return (!boot_hpet_disable && hpet_address);
55 * HPET timer interrupt enable / disable
57 static int hpet_legacy_int_enabled;
60 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
62 int is_hpet_enabled(void)
64 return is_hpet_capable() && hpet_legacy_int_enabled;
68 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
69 * timer 0 and timer 1 in case of RTC emulation.
72 static void hpet_reserve_platform_timers(unsigned long id)
74 struct hpet __iomem *hpet = hpet_virt_address;
75 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
76 unsigned int nrtimers, i;
79 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
81 memset(&hd, 0, sizeof (hd));
82 hd.hd_phys_address = hpet_address;
83 hd.hd_address = hpet_virt_address;
84 hd.hd_nirqs = nrtimers;
85 hd.hd_flags = HPET_DATA_PLATFORM;
86 hpet_reserve_timer(&hd, 0);
88 #ifdef CONFIG_HPET_EMULATE_RTC
89 hpet_reserve_timer(&hd, 1);
92 hd.hd_irq[0] = HPET_LEGACY_8254;
93 hd.hd_irq[1] = HPET_LEGACY_RTC;
95 for (i = 2; i < nrtimers; timer++, i++)
96 hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
97 Tn_INT_ROUTE_CNF_SHIFT;
103 static void hpet_reserve_platform_timers(unsigned long id) { }
109 static unsigned long hpet_period;
111 static void hpet_set_mode(enum clock_event_mode mode,
112 struct clock_event_device *evt);
113 static int hpet_next_event(unsigned long delta,
114 struct clock_event_device *evt);
117 * The hpet clock event device
119 static struct clock_event_device hpet_clockevent = {
121 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
122 .set_mode = hpet_set_mode,
123 .set_next_event = hpet_next_event,
128 static void hpet_start_counter(void)
130 unsigned long cfg = hpet_readl(HPET_CFG);
132 cfg &= ~HPET_CFG_ENABLE;
133 hpet_writel(cfg, HPET_CFG);
134 hpet_writel(0, HPET_COUNTER);
135 hpet_writel(0, HPET_COUNTER + 4);
136 cfg |= HPET_CFG_ENABLE;
137 hpet_writel(cfg, HPET_CFG);
140 static void hpet_enable_int(void)
142 unsigned long cfg = hpet_readl(HPET_CFG);
144 cfg |= HPET_CFG_LEGACY;
145 hpet_writel(cfg, HPET_CFG);
146 hpet_legacy_int_enabled = 1;
149 static void hpet_set_mode(enum clock_event_mode mode,
150 struct clock_event_device *evt)
152 unsigned long cfg, cmp, now;
156 case CLOCK_EVT_MODE_PERIODIC:
157 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
158 delta >>= hpet_clockevent.shift;
159 now = hpet_readl(HPET_COUNTER);
160 cmp = now + (unsigned long) delta;
161 cfg = hpet_readl(HPET_T0_CFG);
162 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
163 HPET_TN_SETVAL | HPET_TN_32BIT;
164 hpet_writel(cfg, HPET_T0_CFG);
166 * The first write after writing TN_SETVAL to the
167 * config register sets the counter value, the second
168 * write sets the period.
170 hpet_writel(cmp, HPET_T0_CMP);
172 hpet_writel((unsigned long) delta, HPET_T0_CMP);
175 case CLOCK_EVT_MODE_ONESHOT:
176 cfg = hpet_readl(HPET_T0_CFG);
177 cfg &= ~HPET_TN_PERIODIC;
178 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
179 hpet_writel(cfg, HPET_T0_CFG);
182 case CLOCK_EVT_MODE_UNUSED:
183 case CLOCK_EVT_MODE_SHUTDOWN:
184 cfg = hpet_readl(HPET_T0_CFG);
185 cfg &= ~HPET_TN_ENABLE;
186 hpet_writel(cfg, HPET_T0_CFG);
191 static int hpet_next_event(unsigned long delta,
192 struct clock_event_device *evt)
196 cnt = hpet_readl(HPET_COUNTER);
198 hpet_writel(cnt, HPET_T0_CMP);
200 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0);
204 * Try to setup the HPET timer
206 int __init hpet_enable(void)
211 if (!is_hpet_capable())
214 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
217 * Read the period and check for a sane value:
219 hpet_period = hpet_readl(HPET_PERIOD);
220 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
224 * The period is a femto seconds value. We need to calculate the
225 * scaled math multiplication factor for nanosecond to hpet tick
228 hpet_freq = 1000000000000000ULL;
229 do_div(hpet_freq, hpet_period);
230 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
232 /* Calculate the min / max delta */
233 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
235 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
239 * Read the HPET ID register to retrieve the IRQ routing
240 * information and the number of channels
242 id = hpet_readl(HPET_ID);
244 #ifdef CONFIG_HPET_EMULATE_RTC
246 * The legacy routing mode needs at least two channels, tick timer
247 * and the rtc emulation channel.
249 if (!(id & HPET_ID_NUMBER))
253 /* Start the counter */
254 hpet_start_counter();
256 if (id & HPET_ID_LEGSUP) {
258 hpet_reserve_platform_timers(id);
260 * Start hpet with the boot cpu mask and make it
261 * global after the IO_APIC has been initialized.
263 hpet_clockevent.cpumask =cpumask_of_cpu(0);
264 clockevents_register_device(&hpet_clockevent);
265 global_clock_event = &hpet_clockevent;
271 iounmap(hpet_virt_address);
272 hpet_virt_address = NULL;
277 * Clock source related code
279 static cycle_t read_hpet(void)
281 return (cycle_t)hpet_readl(HPET_COUNTER);
284 static struct clocksource clocksource_hpet = {
290 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
293 static int __init init_hpet_clocksource(void)
297 if (!hpet_virt_address)
301 * hpet period is in femto seconds per cycle
302 * so we need to convert this to ns/cyc units
303 * aproximated by mult/2^shift
305 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
306 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
307 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
308 * (fsec/cyc << shift)/1000000 = mult
309 * (hpet_period << shift)/FSEC_PER_NSEC = mult
311 tmp = (u64)hpet_period << HPET_SHIFT;
312 do_div(tmp, FSEC_PER_NSEC);
313 clocksource_hpet.mult = (u32)tmp;
315 return clocksource_register(&clocksource_hpet);
318 module_init(init_hpet_clocksource);
320 #ifdef CONFIG_HPET_EMULATE_RTC
322 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
323 * is enabled, we support RTC interrupt functionality in software.
324 * RTC has 3 kinds of interrupts:
325 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
327 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
328 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
329 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
330 * (1) and (2) above are implemented using polling at a frequency of
331 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
332 * overhead. (DEFAULT_RTC_INT_FREQ)
333 * For (3), we use interrupts at 64Hz or user specified periodic
334 * frequency, whichever is higher.
336 #include <linux/mc146818rtc.h>
337 #include <linux/rtc.h>
339 #define DEFAULT_RTC_INT_FREQ 64
340 #define DEFAULT_RTC_SHIFT 6
341 #define RTC_NUM_INTS 1
343 static unsigned long hpet_rtc_flags;
344 static unsigned long hpet_prev_update_sec;
345 static struct rtc_time hpet_alarm_time;
346 static unsigned long hpet_pie_count;
347 static unsigned long hpet_t1_cmp;
348 static unsigned long hpet_default_delta;
349 static unsigned long hpet_pie_delta;
350 static unsigned long hpet_pie_limit;
353 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
354 * is not supported by all HPET implementations for timer 1.
356 * hpet_rtc_timer_init() is called when the rtc is initialized.
358 int hpet_rtc_timer_init(void)
360 unsigned long cfg, cnt, delta, flags;
362 if (!is_hpet_enabled())
365 if (!hpet_default_delta) {
368 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
369 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
370 hpet_default_delta = (unsigned long) clc;
373 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
374 delta = hpet_default_delta;
376 delta = hpet_pie_delta;
378 local_irq_save(flags);
380 cnt = delta + hpet_readl(HPET_COUNTER);
381 hpet_writel(cnt, HPET_T1_CMP);
384 cfg = hpet_readl(HPET_T1_CFG);
385 cfg &= ~HPET_TN_PERIODIC;
386 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
387 hpet_writel(cfg, HPET_T1_CFG);
389 local_irq_restore(flags);
395 * The functions below are called from rtc driver.
396 * Return 0 if HPET is not being used.
397 * Otherwise do the necessary changes and return 1.
399 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
401 if (!is_hpet_enabled())
404 hpet_rtc_flags &= ~bit_mask;
408 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
410 unsigned long oldbits = hpet_rtc_flags;
412 if (!is_hpet_enabled())
415 hpet_rtc_flags |= bit_mask;
418 hpet_rtc_timer_init();
423 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
426 if (!is_hpet_enabled())
429 hpet_alarm_time.tm_hour = hrs;
430 hpet_alarm_time.tm_min = min;
431 hpet_alarm_time.tm_sec = sec;
436 int hpet_set_periodic_freq(unsigned long freq)
440 if (!is_hpet_enabled())
443 if (freq <= DEFAULT_RTC_INT_FREQ)
444 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
446 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
448 clc >>= hpet_clockevent.shift;
449 hpet_pie_delta = (unsigned long) clc;
454 int hpet_rtc_dropped_irq(void)
456 return is_hpet_enabled();
459 static void hpet_rtc_timer_reinit(void)
461 unsigned long cfg, delta;
464 if (unlikely(!hpet_rtc_flags)) {
465 cfg = hpet_readl(HPET_T1_CFG);
466 cfg &= ~HPET_TN_ENABLE;
467 hpet_writel(cfg, HPET_T1_CFG);
471 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
472 delta = hpet_default_delta;
474 delta = hpet_pie_delta;
477 * Increment the comparator value until we are ahead of the
481 hpet_t1_cmp += delta;
482 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
484 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
487 if (hpet_rtc_flags & RTC_PIE)
488 hpet_pie_count += lost_ints;
489 if (printk_ratelimit())
490 printk(KERN_WARNING "rtc: lost %d interrupts\n",
495 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
497 struct rtc_time curr_time;
498 unsigned long rtc_int_flag = 0;
500 hpet_rtc_timer_reinit();
502 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
503 rtc_get_rtc_time(&curr_time);
505 if (hpet_rtc_flags & RTC_UIE &&
506 curr_time.tm_sec != hpet_prev_update_sec) {
507 rtc_int_flag = RTC_UF;
508 hpet_prev_update_sec = curr_time.tm_sec;
511 if (hpet_rtc_flags & RTC_PIE &&
512 ++hpet_pie_count >= hpet_pie_limit) {
513 rtc_int_flag |= RTC_PF;
517 if (hpet_rtc_flags & RTC_PIE &&
518 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
519 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
520 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
521 rtc_int_flag |= RTC_AF;
524 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
525 rtc_interrupt(rtc_int_flag, dev_id);