Pull misc-for-upstream into release branch
[linux-2.6] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
27
28 #include "sas_internal.h"
29
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37                              u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39
40 #if 0
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
44 #endif
45
46 /* ---------- SMP task management ---------- */
47
48 static void smp_task_timedout(unsigned long _task)
49 {
50         struct sas_task *task = (void *) _task;
51         unsigned long flags;
52
53         spin_lock_irqsave(&task->task_state_lock, flags);
54         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56         spin_unlock_irqrestore(&task->task_state_lock, flags);
57
58         complete(&task->completion);
59 }
60
61 static void smp_task_done(struct sas_task *task)
62 {
63         if (!del_timer(&task->timer))
64                 return;
65         complete(&task->completion);
66 }
67
68 /* Give it some long enough timeout. In seconds. */
69 #define SMP_TIMEOUT 10
70
71 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72                             void *resp, int resp_size)
73 {
74         int res, retry;
75         struct sas_task *task = NULL;
76         struct sas_internal *i =
77                 to_sas_internal(dev->port->ha->core.shost->transportt);
78
79         for (retry = 0; retry < 3; retry++) {
80                 task = sas_alloc_task(GFP_KERNEL);
81                 if (!task)
82                         return -ENOMEM;
83
84                 task->dev = dev;
85                 task->task_proto = dev->tproto;
86                 sg_init_one(&task->smp_task.smp_req, req, req_size);
87                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
88
89                 task->task_done = smp_task_done;
90
91                 task->timer.data = (unsigned long) task;
92                 task->timer.function = smp_task_timedout;
93                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
94                 add_timer(&task->timer);
95
96                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
97
98                 if (res) {
99                         del_timer(&task->timer);
100                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
101                         goto ex_err;
102                 }
103
104                 wait_for_completion(&task->completion);
105                 res = -ETASK;
106                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
107                         SAS_DPRINTK("smp task timed out or aborted\n");
108                         i->dft->lldd_abort_task(task);
109                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
110                                 SAS_DPRINTK("SMP task aborted and not done\n");
111                                 goto ex_err;
112                         }
113                 }
114                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
115                     task->task_status.stat == SAM_GOOD) {
116                         res = 0;
117                         break;
118                 } else {
119                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
120                                     "status 0x%x\n", __FUNCTION__,
121                                     SAS_ADDR(dev->sas_addr),
122                                     task->task_status.resp,
123                                     task->task_status.stat);
124                         sas_free_task(task);
125                         task = NULL;
126                 }
127         }
128 ex_err:
129         BUG_ON(retry == 3 && task != NULL);
130         if (task != NULL) {
131                 sas_free_task(task);
132         }
133         return res;
134 }
135
136 /* ---------- Allocations ---------- */
137
138 static inline void *alloc_smp_req(int size)
139 {
140         u8 *p = kzalloc(size, GFP_KERNEL);
141         if (p)
142                 p[0] = SMP_REQUEST;
143         return p;
144 }
145
146 static inline void *alloc_smp_resp(int size)
147 {
148         return kzalloc(size, GFP_KERNEL);
149 }
150
151 /* ---------- Expander configuration ---------- */
152
153 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
154                            void *disc_resp)
155 {
156         struct expander_device *ex = &dev->ex_dev;
157         struct ex_phy *phy = &ex->ex_phy[phy_id];
158         struct smp_resp *resp = disc_resp;
159         struct discover_resp *dr = &resp->disc;
160         struct sas_rphy *rphy = dev->rphy;
161         int rediscover = (phy->phy != NULL);
162
163         if (!rediscover) {
164                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
165
166                 /* FIXME: error_handling */
167                 BUG_ON(!phy->phy);
168         }
169
170         switch (resp->result) {
171         case SMP_RESP_PHY_VACANT:
172                 phy->phy_state = PHY_VACANT;
173                 return;
174         default:
175                 phy->phy_state = PHY_NOT_PRESENT;
176                 return;
177         case SMP_RESP_FUNC_ACC:
178                 phy->phy_state = PHY_EMPTY; /* do not know yet */
179                 break;
180         }
181
182         phy->phy_id = phy_id;
183         phy->attached_dev_type = dr->attached_dev_type;
184         phy->linkrate = dr->linkrate;
185         phy->attached_sata_host = dr->attached_sata_host;
186         phy->attached_sata_dev  = dr->attached_sata_dev;
187         phy->attached_sata_ps   = dr->attached_sata_ps;
188         phy->attached_iproto = dr->iproto << 1;
189         phy->attached_tproto = dr->tproto << 1;
190         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
191         phy->attached_phy_id = dr->attached_phy_id;
192         phy->phy_change_count = dr->change_count;
193         phy->routing_attr = dr->routing_attr;
194         phy->virtual = dr->virtual;
195         phy->last_da_index = -1;
196
197         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
198         phy->phy->identify.target_port_protocols = phy->attached_tproto;
199         phy->phy->identify.phy_identifier = phy_id;
200         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
201         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
202         phy->phy->minimum_linkrate = dr->pmin_linkrate;
203         phy->phy->maximum_linkrate = dr->pmax_linkrate;
204         phy->phy->negotiated_linkrate = phy->linkrate;
205
206         if (!rediscover)
207                 sas_phy_add(phy->phy);
208
209         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
210                     SAS_ADDR(dev->sas_addr), phy->phy_id,
211                     phy->routing_attr == TABLE_ROUTING ? 'T' :
212                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
213                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
214                     SAS_ADDR(phy->attached_sas_addr));
215
216         return;
217 }
218
219 #define DISCOVER_REQ_SIZE  16
220 #define DISCOVER_RESP_SIZE 56
221
222 static int sas_ex_phy_discover(struct domain_device *dev, int single)
223 {
224         struct expander_device *ex = &dev->ex_dev;
225         int  res = 0;
226         u8   *disc_req;
227         u8   *disc_resp;
228
229         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
230         if (!disc_req)
231                 return -ENOMEM;
232
233         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
234         if (!disc_resp) {
235                 kfree(disc_req);
236                 return -ENOMEM;
237         }
238
239         disc_req[1] = SMP_DISCOVER;
240
241         if (0 <= single && single < ex->num_phys) {
242                 disc_req[9] = single;
243                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
244                                        disc_resp, DISCOVER_RESP_SIZE);
245                 if (res)
246                         goto out_err;
247                 sas_set_ex_phy(dev, single, disc_resp);
248         } else {
249                 int i;
250
251                 for (i = 0; i < ex->num_phys; i++) {
252                         disc_req[9] = i;
253                         res = smp_execute_task(dev, disc_req,
254                                                DISCOVER_REQ_SIZE, disc_resp,
255                                                DISCOVER_RESP_SIZE);
256                         if (res)
257                                 goto out_err;
258                         sas_set_ex_phy(dev, i, disc_resp);
259                 }
260         }
261 out_err:
262         kfree(disc_resp);
263         kfree(disc_req);
264         return res;
265 }
266
267 static int sas_expander_discover(struct domain_device *dev)
268 {
269         struct expander_device *ex = &dev->ex_dev;
270         int res = -ENOMEM;
271
272         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
273         if (!ex->ex_phy)
274                 return -ENOMEM;
275
276         res = sas_ex_phy_discover(dev, -1);
277         if (res)
278                 goto out_err;
279
280         return 0;
281  out_err:
282         kfree(ex->ex_phy);
283         ex->ex_phy = NULL;
284         return res;
285 }
286
287 #define MAX_EXPANDER_PHYS 128
288
289 static void ex_assign_report_general(struct domain_device *dev,
290                                             struct smp_resp *resp)
291 {
292         struct report_general_resp *rg = &resp->rg;
293
294         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
295         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
296         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
297         dev->ex_dev.conf_route_table = rg->conf_route_table;
298         dev->ex_dev.configuring = rg->configuring;
299         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
300 }
301
302 #define RG_REQ_SIZE   8
303 #define RG_RESP_SIZE 32
304
305 static int sas_ex_general(struct domain_device *dev)
306 {
307         u8 *rg_req;
308         struct smp_resp *rg_resp;
309         int res;
310         int i;
311
312         rg_req = alloc_smp_req(RG_REQ_SIZE);
313         if (!rg_req)
314                 return -ENOMEM;
315
316         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
317         if (!rg_resp) {
318                 kfree(rg_req);
319                 return -ENOMEM;
320         }
321
322         rg_req[1] = SMP_REPORT_GENERAL;
323
324         for (i = 0; i < 5; i++) {
325                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
326                                        RG_RESP_SIZE);
327
328                 if (res) {
329                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
330                                     SAS_ADDR(dev->sas_addr), res);
331                         goto out;
332                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
333                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
334                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
335                         res = rg_resp->result;
336                         goto out;
337                 }
338
339                 ex_assign_report_general(dev, rg_resp);
340
341                 if (dev->ex_dev.configuring) {
342                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
343                                     SAS_ADDR(dev->sas_addr));
344                         schedule_timeout_interruptible(5*HZ);
345                 } else
346                         break;
347         }
348 out:
349         kfree(rg_req);
350         kfree(rg_resp);
351         return res;
352 }
353
354 static void ex_assign_manuf_info(struct domain_device *dev, void
355                                         *_mi_resp)
356 {
357         u8 *mi_resp = _mi_resp;
358         struct sas_rphy *rphy = dev->rphy;
359         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
360
361         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
362         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
363         memcpy(edev->product_rev, mi_resp + 36,
364                SAS_EXPANDER_PRODUCT_REV_LEN);
365
366         if (mi_resp[8] & 1) {
367                 memcpy(edev->component_vendor_id, mi_resp + 40,
368                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
369                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
370                 edev->component_revision_id = mi_resp[50];
371         }
372 }
373
374 #define MI_REQ_SIZE   8
375 #define MI_RESP_SIZE 64
376
377 static int sas_ex_manuf_info(struct domain_device *dev)
378 {
379         u8 *mi_req;
380         u8 *mi_resp;
381         int res;
382
383         mi_req = alloc_smp_req(MI_REQ_SIZE);
384         if (!mi_req)
385                 return -ENOMEM;
386
387         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
388         if (!mi_resp) {
389                 kfree(mi_req);
390                 return -ENOMEM;
391         }
392
393         mi_req[1] = SMP_REPORT_MANUF_INFO;
394
395         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
396         if (res) {
397                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
398                             SAS_ADDR(dev->sas_addr), res);
399                 goto out;
400         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
401                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
402                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
403                 goto out;
404         }
405
406         ex_assign_manuf_info(dev, mi_resp);
407 out:
408         kfree(mi_req);
409         kfree(mi_resp);
410         return res;
411 }
412
413 #define PC_REQ_SIZE  44
414 #define PC_RESP_SIZE 8
415
416 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
417                         enum phy_func phy_func,
418                         struct sas_phy_linkrates *rates)
419 {
420         u8 *pc_req;
421         u8 *pc_resp;
422         int res;
423
424         pc_req = alloc_smp_req(PC_REQ_SIZE);
425         if (!pc_req)
426                 return -ENOMEM;
427
428         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
429         if (!pc_resp) {
430                 kfree(pc_req);
431                 return -ENOMEM;
432         }
433
434         pc_req[1] = SMP_PHY_CONTROL;
435         pc_req[9] = phy_id;
436         pc_req[10]= phy_func;
437         if (rates) {
438                 pc_req[32] = rates->minimum_linkrate << 4;
439                 pc_req[33] = rates->maximum_linkrate << 4;
440         }
441
442         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
443
444         kfree(pc_resp);
445         kfree(pc_req);
446         return res;
447 }
448
449 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
450 {
451         struct expander_device *ex = &dev->ex_dev;
452         struct ex_phy *phy = &ex->ex_phy[phy_id];
453
454         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
455         phy->linkrate = SAS_PHY_DISABLED;
456 }
457
458 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
459 {
460         struct expander_device *ex = &dev->ex_dev;
461         int i;
462
463         for (i = 0; i < ex->num_phys; i++) {
464                 struct ex_phy *phy = &ex->ex_phy[i];
465
466                 if (phy->phy_state == PHY_VACANT ||
467                     phy->phy_state == PHY_NOT_PRESENT)
468                         continue;
469
470                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
471                         sas_ex_disable_phy(dev, i);
472         }
473 }
474
475 static int sas_dev_present_in_domain(struct asd_sas_port *port,
476                                             u8 *sas_addr)
477 {
478         struct domain_device *dev;
479
480         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
481                 return 1;
482         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
483                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
484                         return 1;
485         }
486         return 0;
487 }
488
489 #define RPEL_REQ_SIZE   16
490 #define RPEL_RESP_SIZE  32
491 int sas_smp_get_phy_events(struct sas_phy *phy)
492 {
493         int res;
494         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
495         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
496         u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
497         u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
498
499         if (!resp)
500                 return -ENOMEM;
501
502         req[1] = SMP_REPORT_PHY_ERR_LOG;
503         req[9] = phy->number;
504
505         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
506                                     resp, RPEL_RESP_SIZE);
507
508         if (!res)
509                 goto out;
510
511         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
512         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
513         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
514         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
515
516  out:
517         kfree(resp);
518         return res;
519
520 }
521
522 #define RPS_REQ_SIZE  16
523 #define RPS_RESP_SIZE 60
524
525 static int sas_get_report_phy_sata(struct domain_device *dev,
526                                           int phy_id,
527                                           struct smp_resp *rps_resp)
528 {
529         int res;
530         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
531
532         if (!rps_req)
533                 return -ENOMEM;
534
535         rps_req[1] = SMP_REPORT_PHY_SATA;
536         rps_req[9] = phy_id;
537
538         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
539                                     rps_resp, RPS_RESP_SIZE);
540
541         kfree(rps_req);
542         return 0;
543 }
544
545 static void sas_ex_get_linkrate(struct domain_device *parent,
546                                        struct domain_device *child,
547                                        struct ex_phy *parent_phy)
548 {
549         struct expander_device *parent_ex = &parent->ex_dev;
550         struct sas_port *port;
551         int i;
552
553         child->pathways = 0;
554
555         port = parent_phy->port;
556
557         for (i = 0; i < parent_ex->num_phys; i++) {
558                 struct ex_phy *phy = &parent_ex->ex_phy[i];
559
560                 if (phy->phy_state == PHY_VACANT ||
561                     phy->phy_state == PHY_NOT_PRESENT)
562                         continue;
563
564                 if (SAS_ADDR(phy->attached_sas_addr) ==
565                     SAS_ADDR(child->sas_addr)) {
566
567                         child->min_linkrate = min(parent->min_linkrate,
568                                                   phy->linkrate);
569                         child->max_linkrate = max(parent->max_linkrate,
570                                                   phy->linkrate);
571                         child->pathways++;
572                         sas_port_add_phy(port, phy->phy);
573                 }
574         }
575         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
576         child->pathways = min(child->pathways, parent->pathways);
577 }
578
579 static struct domain_device *sas_ex_discover_end_dev(
580         struct domain_device *parent, int phy_id)
581 {
582         struct expander_device *parent_ex = &parent->ex_dev;
583         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
584         struct domain_device *child = NULL;
585         struct sas_rphy *rphy;
586         int res;
587
588         if (phy->attached_sata_host || phy->attached_sata_ps)
589                 return NULL;
590
591         child = kzalloc(sizeof(*child), GFP_KERNEL);
592         if (!child)
593                 return NULL;
594
595         child->parent = parent;
596         child->port   = parent->port;
597         child->iproto = phy->attached_iproto;
598         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
599         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
600         if (!phy->port) {
601                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
602                 if (unlikely(!phy->port))
603                         goto out_err;
604                 if (unlikely(sas_port_add(phy->port) != 0)) {
605                         sas_port_free(phy->port);
606                         goto out_err;
607                 }
608         }
609         sas_ex_get_linkrate(parent, child, phy);
610
611         if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
612                 child->dev_type = SATA_DEV;
613                 if (phy->attached_tproto & SAS_PROTO_STP)
614                         child->tproto = phy->attached_tproto;
615                 if (phy->attached_sata_dev)
616                         child->tproto |= SATA_DEV;
617                 res = sas_get_report_phy_sata(parent, phy_id,
618                                               &child->sata_dev.rps_resp);
619                 if (res) {
620                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
621                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
622                                     phy_id, res);
623                         goto out_free;
624                 }
625                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
626                        sizeof(struct dev_to_host_fis));
627                 sas_init_dev(child);
628                 res = sas_discover_sata(child);
629                 if (res) {
630                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
631                                     "%016llx:0x%x returned 0x%x\n",
632                                     SAS_ADDR(child->sas_addr),
633                                     SAS_ADDR(parent->sas_addr), phy_id, res);
634                         goto out_free;
635                 }
636         } else if (phy->attached_tproto & SAS_PROTO_SSP) {
637                 child->dev_type = SAS_END_DEV;
638                 rphy = sas_end_device_alloc(phy->port);
639                 /* FIXME: error handling */
640                 if (unlikely(!rphy))
641                         goto out_free;
642                 child->tproto = phy->attached_tproto;
643                 sas_init_dev(child);
644
645                 child->rphy = rphy;
646                 sas_fill_in_rphy(child, rphy);
647
648                 spin_lock(&parent->port->dev_list_lock);
649                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
650                 spin_unlock(&parent->port->dev_list_lock);
651
652                 res = sas_discover_end_dev(child);
653                 if (res) {
654                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
655                                     "at %016llx:0x%x returned 0x%x\n",
656                                     SAS_ADDR(child->sas_addr),
657                                     SAS_ADDR(parent->sas_addr), phy_id, res);
658                         goto out_list_del;
659                 }
660         } else {
661                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
662                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
663                             phy_id);
664         }
665
666         list_add_tail(&child->siblings, &parent_ex->children);
667         return child;
668
669  out_list_del:
670         sas_rphy_free(child->rphy);
671         child->rphy = NULL;
672         list_del(&child->dev_list_node);
673  out_free:
674         sas_port_delete(phy->port);
675  out_err:
676         phy->port = NULL;
677         kfree(child);
678         return NULL;
679 }
680
681 /* See if this phy is part of a wide port */
682 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
683 {
684         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
685         int i;
686
687         for (i = 0; i < parent->ex_dev.num_phys; i++) {
688                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
689
690                 if (ephy == phy)
691                         continue;
692
693                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
694                             SAS_ADDR_SIZE) && ephy->port) {
695                         sas_port_add_phy(ephy->port, phy->phy);
696                         phy->phy_state = PHY_DEVICE_DISCOVERED;
697                         return 0;
698                 }
699         }
700
701         return -ENODEV;
702 }
703
704 static struct domain_device *sas_ex_discover_expander(
705         struct domain_device *parent, int phy_id)
706 {
707         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
708         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
709         struct domain_device *child = NULL;
710         struct sas_rphy *rphy;
711         struct sas_expander_device *edev;
712         struct asd_sas_port *port;
713         int res;
714
715         if (phy->routing_attr == DIRECT_ROUTING) {
716                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
717                             "allowed\n",
718                             SAS_ADDR(parent->sas_addr), phy_id,
719                             SAS_ADDR(phy->attached_sas_addr),
720                             phy->attached_phy_id);
721                 return NULL;
722         }
723         child = kzalloc(sizeof(*child), GFP_KERNEL);
724         if (!child)
725                 return NULL;
726
727         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
728         /* FIXME: better error handling */
729         BUG_ON(sas_port_add(phy->port) != 0);
730
731
732         switch (phy->attached_dev_type) {
733         case EDGE_DEV:
734                 rphy = sas_expander_alloc(phy->port,
735                                           SAS_EDGE_EXPANDER_DEVICE);
736                 break;
737         case FANOUT_DEV:
738                 rphy = sas_expander_alloc(phy->port,
739                                           SAS_FANOUT_EXPANDER_DEVICE);
740                 break;
741         default:
742                 rphy = NULL;    /* shut gcc up */
743                 BUG();
744         }
745         port = parent->port;
746         child->rphy = rphy;
747         edev = rphy_to_expander_device(rphy);
748         child->dev_type = phy->attached_dev_type;
749         child->parent = parent;
750         child->port = port;
751         child->iproto = phy->attached_iproto;
752         child->tproto = phy->attached_tproto;
753         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
754         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
755         sas_ex_get_linkrate(parent, child, phy);
756         edev->level = parent_ex->level + 1;
757         parent->port->disc.max_level = max(parent->port->disc.max_level,
758                                            edev->level);
759         sas_init_dev(child);
760         sas_fill_in_rphy(child, rphy);
761         sas_rphy_add(rphy);
762
763         spin_lock(&parent->port->dev_list_lock);
764         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
765         spin_unlock(&parent->port->dev_list_lock);
766
767         res = sas_discover_expander(child);
768         if (res) {
769                 kfree(child);
770                 return NULL;
771         }
772         list_add_tail(&child->siblings, &parent->ex_dev.children);
773         return child;
774 }
775
776 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
777 {
778         struct expander_device *ex = &dev->ex_dev;
779         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
780         struct domain_device *child = NULL;
781         int res = 0;
782
783         /* Phy state */
784         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
785                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
786                         res = sas_ex_phy_discover(dev, phy_id);
787                 if (res)
788                         return res;
789         }
790
791         /* Parent and domain coherency */
792         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
793                              SAS_ADDR(dev->port->sas_addr))) {
794                 sas_add_parent_port(dev, phy_id);
795                 return 0;
796         }
797         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
798                             SAS_ADDR(dev->parent->sas_addr))) {
799                 sas_add_parent_port(dev, phy_id);
800                 if (ex_phy->routing_attr == TABLE_ROUTING)
801                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
802                 return 0;
803         }
804
805         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
806                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
807
808         if (ex_phy->attached_dev_type == NO_DEVICE) {
809                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
810                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
811                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
812                 }
813                 return 0;
814         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
815                 return 0;
816
817         if (ex_phy->attached_dev_type != SAS_END_DEV &&
818             ex_phy->attached_dev_type != FANOUT_DEV &&
819             ex_phy->attached_dev_type != EDGE_DEV) {
820                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
821                             "phy 0x%x\n", ex_phy->attached_dev_type,
822                             SAS_ADDR(dev->sas_addr),
823                             phy_id);
824                 return 0;
825         }
826
827         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
828         if (res) {
829                 SAS_DPRINTK("configure routing for dev %016llx "
830                             "reported 0x%x. Forgotten\n",
831                             SAS_ADDR(ex_phy->attached_sas_addr), res);
832                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
833                 return res;
834         }
835
836         res = sas_ex_join_wide_port(dev, phy_id);
837         if (!res) {
838                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
839                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
840                 return res;
841         }
842
843         switch (ex_phy->attached_dev_type) {
844         case SAS_END_DEV:
845                 child = sas_ex_discover_end_dev(dev, phy_id);
846                 break;
847         case FANOUT_DEV:
848                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
849                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
850                                     "attached to ex %016llx phy 0x%x\n",
851                                     SAS_ADDR(ex_phy->attached_sas_addr),
852                                     ex_phy->attached_phy_id,
853                                     SAS_ADDR(dev->sas_addr),
854                                     phy_id);
855                         sas_ex_disable_phy(dev, phy_id);
856                         break;
857                 } else
858                         memcpy(dev->port->disc.fanout_sas_addr,
859                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
860                 /* fallthrough */
861         case EDGE_DEV:
862                 child = sas_ex_discover_expander(dev, phy_id);
863                 break;
864         default:
865                 break;
866         }
867
868         if (child) {
869                 int i;
870
871                 for (i = 0; i < ex->num_phys; i++) {
872                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
873                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
874                                 continue;
875
876                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
877                             SAS_ADDR(child->sas_addr))
878                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
879                 }
880         }
881
882         return res;
883 }
884
885 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
886 {
887         struct expander_device *ex = &dev->ex_dev;
888         int i;
889
890         for (i = 0; i < ex->num_phys; i++) {
891                 struct ex_phy *phy = &ex->ex_phy[i];
892
893                 if (phy->phy_state == PHY_VACANT ||
894                     phy->phy_state == PHY_NOT_PRESENT)
895                         continue;
896
897                 if ((phy->attached_dev_type == EDGE_DEV ||
898                      phy->attached_dev_type == FANOUT_DEV) &&
899                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
900
901                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
902
903                         return 1;
904                 }
905         }
906         return 0;
907 }
908
909 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
910 {
911         struct expander_device *ex = &dev->ex_dev;
912         struct domain_device *child;
913         u8 sub_addr[8] = {0, };
914
915         list_for_each_entry(child, &ex->children, siblings) {
916                 if (child->dev_type != EDGE_DEV &&
917                     child->dev_type != FANOUT_DEV)
918                         continue;
919                 if (sub_addr[0] == 0) {
920                         sas_find_sub_addr(child, sub_addr);
921                         continue;
922                 } else {
923                         u8 s2[8];
924
925                         if (sas_find_sub_addr(child, s2) &&
926                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
927
928                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
929                                             "diverges from subtractive "
930                                             "boundary %016llx\n",
931                                             SAS_ADDR(dev->sas_addr),
932                                             SAS_ADDR(child->sas_addr),
933                                             SAS_ADDR(s2),
934                                             SAS_ADDR(sub_addr));
935
936                                 sas_ex_disable_port(child, s2);
937                         }
938                 }
939         }
940         return 0;
941 }
942 /**
943  * sas_ex_discover_devices -- discover devices attached to this expander
944  * dev: pointer to the expander domain device
945  * single: if you want to do a single phy, else set to -1;
946  *
947  * Configure this expander for use with its devices and register the
948  * devices of this expander.
949  */
950 static int sas_ex_discover_devices(struct domain_device *dev, int single)
951 {
952         struct expander_device *ex = &dev->ex_dev;
953         int i = 0, end = ex->num_phys;
954         int res = 0;
955
956         if (0 <= single && single < end) {
957                 i = single;
958                 end = i+1;
959         }
960
961         for ( ; i < end; i++) {
962                 struct ex_phy *ex_phy = &ex->ex_phy[i];
963
964                 if (ex_phy->phy_state == PHY_VACANT ||
965                     ex_phy->phy_state == PHY_NOT_PRESENT ||
966                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
967                         continue;
968
969                 switch (ex_phy->linkrate) {
970                 case SAS_PHY_DISABLED:
971                 case SAS_PHY_RESET_PROBLEM:
972                 case SAS_SATA_PORT_SELECTOR:
973                         continue;
974                 default:
975                         res = sas_ex_discover_dev(dev, i);
976                         if (res)
977                                 break;
978                         continue;
979                 }
980         }
981
982         if (!res)
983                 sas_check_level_subtractive_boundary(dev);
984
985         return res;
986 }
987
988 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
989 {
990         struct expander_device *ex = &dev->ex_dev;
991         int i;
992         u8  *sub_sas_addr = NULL;
993
994         if (dev->dev_type != EDGE_DEV)
995                 return 0;
996
997         for (i = 0; i < ex->num_phys; i++) {
998                 struct ex_phy *phy = &ex->ex_phy[i];
999
1000                 if (phy->phy_state == PHY_VACANT ||
1001                     phy->phy_state == PHY_NOT_PRESENT)
1002                         continue;
1003
1004                 if ((phy->attached_dev_type == FANOUT_DEV ||
1005                      phy->attached_dev_type == EDGE_DEV) &&
1006                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1007
1008                         if (!sub_sas_addr)
1009                                 sub_sas_addr = &phy->attached_sas_addr[0];
1010                         else if (SAS_ADDR(sub_sas_addr) !=
1011                                  SAS_ADDR(phy->attached_sas_addr)) {
1012
1013                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1014                                             "diverges(%016llx) on subtractive "
1015                                             "boundary(%016llx). Disabled\n",
1016                                             SAS_ADDR(dev->sas_addr), i,
1017                                             SAS_ADDR(phy->attached_sas_addr),
1018                                             SAS_ADDR(sub_sas_addr));
1019                                 sas_ex_disable_phy(dev, i);
1020                         }
1021                 }
1022         }
1023         return 0;
1024 }
1025
1026 static void sas_print_parent_topology_bug(struct domain_device *child,
1027                                                  struct ex_phy *parent_phy,
1028                                                  struct ex_phy *child_phy)
1029 {
1030         static const char ra_char[] = {
1031                 [DIRECT_ROUTING] = 'D',
1032                 [SUBTRACTIVE_ROUTING] = 'S',
1033                 [TABLE_ROUTING] = 'T',
1034         };
1035         static const char *ex_type[] = {
1036                 [EDGE_DEV] = "edge",
1037                 [FANOUT_DEV] = "fanout",
1038         };
1039         struct domain_device *parent = child->parent;
1040
1041         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1042                    "has %c:%c routing link!\n",
1043
1044                    ex_type[parent->dev_type],
1045                    SAS_ADDR(parent->sas_addr),
1046                    parent_phy->phy_id,
1047
1048                    ex_type[child->dev_type],
1049                    SAS_ADDR(child->sas_addr),
1050                    child_phy->phy_id,
1051
1052                    ra_char[parent_phy->routing_attr],
1053                    ra_char[child_phy->routing_attr]);
1054 }
1055
1056 static int sas_check_eeds(struct domain_device *child,
1057                                  struct ex_phy *parent_phy,
1058                                  struct ex_phy *child_phy)
1059 {
1060         int res = 0;
1061         struct domain_device *parent = child->parent;
1062
1063         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1064                 res = -ENODEV;
1065                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1066                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1067                             SAS_ADDR(parent->sas_addr),
1068                             parent_phy->phy_id,
1069                             SAS_ADDR(child->sas_addr),
1070                             child_phy->phy_id,
1071                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1072         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1073                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1074                        SAS_ADDR_SIZE);
1075                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1076                        SAS_ADDR_SIZE);
1077         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1078                     SAS_ADDR(parent->sas_addr)) ||
1079                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1080                     SAS_ADDR(child->sas_addr)))
1081                    &&
1082                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1083                      SAS_ADDR(parent->sas_addr)) ||
1084                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1085                      SAS_ADDR(child->sas_addr))))
1086                 ;
1087         else {
1088                 res = -ENODEV;
1089                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1090                             "phy 0x%x link forms a third EEDS!\n",
1091                             SAS_ADDR(parent->sas_addr),
1092                             parent_phy->phy_id,
1093                             SAS_ADDR(child->sas_addr),
1094                             child_phy->phy_id);
1095         }
1096
1097         return res;
1098 }
1099
1100 /* Here we spill over 80 columns.  It is intentional.
1101  */
1102 static int sas_check_parent_topology(struct domain_device *child)
1103 {
1104         struct expander_device *child_ex = &child->ex_dev;
1105         struct expander_device *parent_ex;
1106         int i;
1107         int res = 0;
1108
1109         if (!child->parent)
1110                 return 0;
1111
1112         if (child->parent->dev_type != EDGE_DEV &&
1113             child->parent->dev_type != FANOUT_DEV)
1114                 return 0;
1115
1116         parent_ex = &child->parent->ex_dev;
1117
1118         for (i = 0; i < parent_ex->num_phys; i++) {
1119                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1120                 struct ex_phy *child_phy;
1121
1122                 if (parent_phy->phy_state == PHY_VACANT ||
1123                     parent_phy->phy_state == PHY_NOT_PRESENT)
1124                         continue;
1125
1126                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1127                         continue;
1128
1129                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1130
1131                 switch (child->parent->dev_type) {
1132                 case EDGE_DEV:
1133                         if (child->dev_type == FANOUT_DEV) {
1134                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1135                                     child_phy->routing_attr != TABLE_ROUTING) {
1136                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1137                                         res = -ENODEV;
1138                                 }
1139                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1140                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1141                                         res = sas_check_eeds(child, parent_phy, child_phy);
1142                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1143                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1144                                         res = -ENODEV;
1145                                 }
1146                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1147                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1148                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1149                                 res = -ENODEV;
1150                         }
1151                         break;
1152                 case FANOUT_DEV:
1153                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1154                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1155                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1156                                 res = -ENODEV;
1157                         }
1158                         break;
1159                 default:
1160                         break;
1161                 }
1162         }
1163
1164         return res;
1165 }
1166
1167 #define RRI_REQ_SIZE  16
1168 #define RRI_RESP_SIZE 44
1169
1170 static int sas_configure_present(struct domain_device *dev, int phy_id,
1171                                  u8 *sas_addr, int *index, int *present)
1172 {
1173         int i, res = 0;
1174         struct expander_device *ex = &dev->ex_dev;
1175         struct ex_phy *phy = &ex->ex_phy[phy_id];
1176         u8 *rri_req;
1177         u8 *rri_resp;
1178
1179         *present = 0;
1180         *index = 0;
1181
1182         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1183         if (!rri_req)
1184                 return -ENOMEM;
1185
1186         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1187         if (!rri_resp) {
1188                 kfree(rri_req);
1189                 return -ENOMEM;
1190         }
1191
1192         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1193         rri_req[9] = phy_id;
1194
1195         for (i = 0; i < ex->max_route_indexes ; i++) {
1196                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1197                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1198                                        RRI_RESP_SIZE);
1199                 if (res)
1200                         goto out;
1201                 res = rri_resp[2];
1202                 if (res == SMP_RESP_NO_INDEX) {
1203                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1204                                     "phy 0x%x index 0x%x\n",
1205                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1206                         goto out;
1207                 } else if (res != SMP_RESP_FUNC_ACC) {
1208                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1209                                     "result 0x%x\n", __FUNCTION__,
1210                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1211                         goto out;
1212                 }
1213                 if (SAS_ADDR(sas_addr) != 0) {
1214                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1215                                 *index = i;
1216                                 if ((rri_resp[12] & 0x80) == 0x80)
1217                                         *present = 0;
1218                                 else
1219                                         *present = 1;
1220                                 goto out;
1221                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1222                                 *index = i;
1223                                 *present = 0;
1224                                 goto out;
1225                         }
1226                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1227                            phy->last_da_index < i) {
1228                         phy->last_da_index = i;
1229                         *index = i;
1230                         *present = 0;
1231                         goto out;
1232                 }
1233         }
1234         res = -1;
1235 out:
1236         kfree(rri_req);
1237         kfree(rri_resp);
1238         return res;
1239 }
1240
1241 #define CRI_REQ_SIZE  44
1242 #define CRI_RESP_SIZE  8
1243
1244 static int sas_configure_set(struct domain_device *dev, int phy_id,
1245                              u8 *sas_addr, int index, int include)
1246 {
1247         int res;
1248         u8 *cri_req;
1249         u8 *cri_resp;
1250
1251         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1252         if (!cri_req)
1253                 return -ENOMEM;
1254
1255         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1256         if (!cri_resp) {
1257                 kfree(cri_req);
1258                 return -ENOMEM;
1259         }
1260
1261         cri_req[1] = SMP_CONF_ROUTE_INFO;
1262         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1263         cri_req[9] = phy_id;
1264         if (SAS_ADDR(sas_addr) == 0 || !include)
1265                 cri_req[12] |= 0x80;
1266         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1267
1268         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1269                                CRI_RESP_SIZE);
1270         if (res)
1271                 goto out;
1272         res = cri_resp[2];
1273         if (res == SMP_RESP_NO_INDEX) {
1274                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1275                             "index 0x%x\n",
1276                             SAS_ADDR(dev->sas_addr), phy_id, index);
1277         }
1278 out:
1279         kfree(cri_req);
1280         kfree(cri_resp);
1281         return res;
1282 }
1283
1284 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1285                                     u8 *sas_addr, int include)
1286 {
1287         int index;
1288         int present;
1289         int res;
1290
1291         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1292         if (res)
1293                 return res;
1294         if (include ^ present)
1295                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1296
1297         return res;
1298 }
1299
1300 /**
1301  * sas_configure_parent -- configure routing table of parent
1302  * parent: parent expander
1303  * child: child expander
1304  * sas_addr: SAS port identifier of device directly attached to child
1305  */
1306 static int sas_configure_parent(struct domain_device *parent,
1307                                 struct domain_device *child,
1308                                 u8 *sas_addr, int include)
1309 {
1310         struct expander_device *ex_parent = &parent->ex_dev;
1311         int res = 0;
1312         int i;
1313
1314         if (parent->parent) {
1315                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1316                                            include);
1317                 if (res)
1318                         return res;
1319         }
1320
1321         if (ex_parent->conf_route_table == 0) {
1322                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1323                             SAS_ADDR(parent->sas_addr));
1324                 return 0;
1325         }
1326
1327         for (i = 0; i < ex_parent->num_phys; i++) {
1328                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1329
1330                 if ((phy->routing_attr == TABLE_ROUTING) &&
1331                     (SAS_ADDR(phy->attached_sas_addr) ==
1332                      SAS_ADDR(child->sas_addr))) {
1333                         res = sas_configure_phy(parent, i, sas_addr, include);
1334                         if (res)
1335                                 return res;
1336                 }
1337         }
1338
1339         return res;
1340 }
1341
1342 /**
1343  * sas_configure_routing -- configure routing
1344  * dev: expander device
1345  * sas_addr: port identifier of device directly attached to the expander device
1346  */
1347 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1348 {
1349         if (dev->parent)
1350                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1351         return 0;
1352 }
1353
1354 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1355 {
1356         if (dev->parent)
1357                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1358         return 0;
1359 }
1360
1361 #if 0
1362 #define SMP_BIN_ATTR_NAME "smp_portal"
1363
1364 static void sas_ex_smp_hook(struct domain_device *dev)
1365 {
1366         struct expander_device *ex_dev = &dev->ex_dev;
1367         struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1368
1369         memset(bin_attr, 0, sizeof(*bin_attr));
1370
1371         bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1372         bin_attr->attr.owner = THIS_MODULE;
1373         bin_attr->attr.mode = 0600;
1374
1375         bin_attr->size = 0;
1376         bin_attr->private = NULL;
1377         bin_attr->read = smp_portal_read;
1378         bin_attr->write= smp_portal_write;
1379         bin_attr->mmap = NULL;
1380
1381         ex_dev->smp_portal_pid = -1;
1382         init_MUTEX(&ex_dev->smp_sema);
1383 }
1384 #endif
1385
1386 /**
1387  * sas_discover_expander -- expander discovery
1388  * @ex: pointer to expander domain device
1389  *
1390  * See comment in sas_discover_sata().
1391  */
1392 static int sas_discover_expander(struct domain_device *dev)
1393 {
1394         int res;
1395
1396         res = sas_notify_lldd_dev_found(dev);
1397         if (res)
1398                 return res;
1399
1400         res = sas_ex_general(dev);
1401         if (res)
1402                 goto out_err;
1403         res = sas_ex_manuf_info(dev);
1404         if (res)
1405                 goto out_err;
1406
1407         res = sas_expander_discover(dev);
1408         if (res) {
1409                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1410                             SAS_ADDR(dev->sas_addr), res);
1411                 goto out_err;
1412         }
1413
1414         sas_check_ex_subtractive_boundary(dev);
1415         res = sas_check_parent_topology(dev);
1416         if (res)
1417                 goto out_err;
1418         return 0;
1419 out_err:
1420         sas_notify_lldd_dev_gone(dev);
1421         return res;
1422 }
1423
1424 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1425 {
1426         int res = 0;
1427         struct domain_device *dev;
1428
1429         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1430                 if (dev->dev_type == EDGE_DEV ||
1431                     dev->dev_type == FANOUT_DEV) {
1432                         struct sas_expander_device *ex =
1433                                 rphy_to_expander_device(dev->rphy);
1434
1435                         if (level == ex->level)
1436                                 res = sas_ex_discover_devices(dev, -1);
1437                         else if (level > 0)
1438                                 res = sas_ex_discover_devices(port->port_dev, -1);
1439
1440                 }
1441         }
1442
1443         return res;
1444 }
1445
1446 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1447 {
1448         int res;
1449         int level;
1450
1451         do {
1452                 level = port->disc.max_level;
1453                 res = sas_ex_level_discovery(port, level);
1454                 mb();
1455         } while (level < port->disc.max_level);
1456
1457         return res;
1458 }
1459
1460 int sas_discover_root_expander(struct domain_device *dev)
1461 {
1462         int res;
1463         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1464
1465         res = sas_rphy_add(dev->rphy);
1466         if (res)
1467                 goto out_err;
1468
1469         ex->level = dev->port->disc.max_level; /* 0 */
1470         res = sas_discover_expander(dev);
1471         if (res)
1472                 goto out_err2;
1473
1474         sas_ex_bfs_disc(dev->port);
1475
1476         return res;
1477
1478 out_err2:
1479         sas_rphy_remove(dev->rphy);
1480 out_err:
1481         return res;
1482 }
1483
1484 /* ---------- Domain revalidation ---------- */
1485
1486 static int sas_get_phy_discover(struct domain_device *dev,
1487                                 int phy_id, struct smp_resp *disc_resp)
1488 {
1489         int res;
1490         u8 *disc_req;
1491
1492         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1493         if (!disc_req)
1494                 return -ENOMEM;
1495
1496         disc_req[1] = SMP_DISCOVER;
1497         disc_req[9] = phy_id;
1498
1499         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1500                                disc_resp, DISCOVER_RESP_SIZE);
1501         if (res)
1502                 goto out;
1503         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1504                 res = disc_resp->result;
1505                 goto out;
1506         }
1507 out:
1508         kfree(disc_req);
1509         return res;
1510 }
1511
1512 static int sas_get_phy_change_count(struct domain_device *dev,
1513                                     int phy_id, int *pcc)
1514 {
1515         int res;
1516         struct smp_resp *disc_resp;
1517
1518         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1519         if (!disc_resp)
1520                 return -ENOMEM;
1521
1522         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1523         if (!res)
1524                 *pcc = disc_resp->disc.change_count;
1525
1526         kfree(disc_resp);
1527         return res;
1528 }
1529
1530 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1531                                          int phy_id, u8 *attached_sas_addr)
1532 {
1533         int res;
1534         struct smp_resp *disc_resp;
1535         struct discover_resp *dr;
1536
1537         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1538         if (!disc_resp)
1539                 return -ENOMEM;
1540         dr = &disc_resp->disc;
1541
1542         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1543         if (!res) {
1544                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1545                 if (dr->attached_dev_type == 0)
1546                         memset(attached_sas_addr, 0, 8);
1547         }
1548         kfree(disc_resp);
1549         return res;
1550 }
1551
1552 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1553                               int from_phy)
1554 {
1555         struct expander_device *ex = &dev->ex_dev;
1556         int res = 0;
1557         int i;
1558
1559         for (i = from_phy; i < ex->num_phys; i++) {
1560                 int phy_change_count = 0;
1561
1562                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1563                 if (res)
1564                         goto out;
1565                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1566                         ex->ex_phy[i].phy_change_count = phy_change_count;
1567                         *phy_id = i;
1568                         return 0;
1569                 }
1570         }
1571 out:
1572         return res;
1573 }
1574
1575 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1576 {
1577         int res;
1578         u8  *rg_req;
1579         struct smp_resp  *rg_resp;
1580
1581         rg_req = alloc_smp_req(RG_REQ_SIZE);
1582         if (!rg_req)
1583                 return -ENOMEM;
1584
1585         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1586         if (!rg_resp) {
1587                 kfree(rg_req);
1588                 return -ENOMEM;
1589         }
1590
1591         rg_req[1] = SMP_REPORT_GENERAL;
1592
1593         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1594                                RG_RESP_SIZE);
1595         if (res)
1596                 goto out;
1597         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1598                 res = rg_resp->result;
1599                 goto out;
1600         }
1601
1602         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1603 out:
1604         kfree(rg_resp);
1605         kfree(rg_req);
1606         return res;
1607 }
1608
1609 static int sas_find_bcast_dev(struct domain_device *dev,
1610                               struct domain_device **src_dev)
1611 {
1612         struct expander_device *ex = &dev->ex_dev;
1613         int ex_change_count = -1;
1614         int res;
1615
1616         res = sas_get_ex_change_count(dev, &ex_change_count);
1617         if (res)
1618                 goto out;
1619         if (ex_change_count != -1 &&
1620             ex_change_count != ex->ex_change_count) {
1621                 *src_dev = dev;
1622                 ex->ex_change_count = ex_change_count;
1623         } else {
1624                 struct domain_device *ch;
1625
1626                 list_for_each_entry(ch, &ex->children, siblings) {
1627                         if (ch->dev_type == EDGE_DEV ||
1628                             ch->dev_type == FANOUT_DEV) {
1629                                 res = sas_find_bcast_dev(ch, src_dev);
1630                                 if (src_dev)
1631                                         return res;
1632                         }
1633                 }
1634         }
1635 out:
1636         return res;
1637 }
1638
1639 static void sas_unregister_ex_tree(struct domain_device *dev)
1640 {
1641         struct expander_device *ex = &dev->ex_dev;
1642         struct domain_device *child, *n;
1643
1644         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1645                 if (child->dev_type == EDGE_DEV ||
1646                     child->dev_type == FANOUT_DEV)
1647                         sas_unregister_ex_tree(child);
1648                 else
1649                         sas_unregister_dev(child);
1650         }
1651         sas_unregister_dev(dev);
1652 }
1653
1654 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1655                                          int phy_id)
1656 {
1657         struct expander_device *ex_dev = &parent->ex_dev;
1658         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1659         struct domain_device *child, *n;
1660
1661         list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1662                 if (SAS_ADDR(child->sas_addr) ==
1663                     SAS_ADDR(phy->attached_sas_addr)) {
1664                         if (child->dev_type == EDGE_DEV ||
1665                             child->dev_type == FANOUT_DEV)
1666                                 sas_unregister_ex_tree(child);
1667                         else
1668                                 sas_unregister_dev(child);
1669                         break;
1670                 }
1671         }
1672         sas_disable_routing(parent, phy->attached_sas_addr);
1673         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1674         sas_port_delete_phy(phy->port, phy->phy);
1675         if (phy->port->num_phys == 0)
1676                 sas_port_delete(phy->port);
1677         phy->port = NULL;
1678 }
1679
1680 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1681                                           const int level)
1682 {
1683         struct expander_device *ex_root = &root->ex_dev;
1684         struct domain_device *child;
1685         int res = 0;
1686
1687         list_for_each_entry(child, &ex_root->children, siblings) {
1688                 if (child->dev_type == EDGE_DEV ||
1689                     child->dev_type == FANOUT_DEV) {
1690                         struct sas_expander_device *ex =
1691                                 rphy_to_expander_device(child->rphy);
1692
1693                         if (level > ex->level)
1694                                 res = sas_discover_bfs_by_root_level(child,
1695                                                                      level);
1696                         else if (level == ex->level)
1697                                 res = sas_ex_discover_devices(child, -1);
1698                 }
1699         }
1700         return res;
1701 }
1702
1703 static int sas_discover_bfs_by_root(struct domain_device *dev)
1704 {
1705         int res;
1706         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1707         int level = ex->level+1;
1708
1709         res = sas_ex_discover_devices(dev, -1);
1710         if (res)
1711                 goto out;
1712         do {
1713                 res = sas_discover_bfs_by_root_level(dev, level);
1714                 mb();
1715                 level += 1;
1716         } while (level <= dev->port->disc.max_level);
1717 out:
1718         return res;
1719 }
1720
1721 static int sas_discover_new(struct domain_device *dev, int phy_id)
1722 {
1723         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1724         struct domain_device *child;
1725         int res;
1726
1727         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1728                     SAS_ADDR(dev->sas_addr), phy_id);
1729         res = sas_ex_phy_discover(dev, phy_id);
1730         if (res)
1731                 goto out;
1732         res = sas_ex_discover_devices(dev, phy_id);
1733         if (res)
1734                 goto out;
1735         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1736                 if (SAS_ADDR(child->sas_addr) ==
1737                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1738                         if (child->dev_type == EDGE_DEV ||
1739                             child->dev_type == FANOUT_DEV)
1740                                 res = sas_discover_bfs_by_root(child);
1741                         break;
1742                 }
1743         }
1744 out:
1745         return res;
1746 }
1747
1748 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1749 {
1750         struct expander_device *ex = &dev->ex_dev;
1751         struct ex_phy *phy = &ex->ex_phy[phy_id];
1752         u8 attached_sas_addr[8];
1753         int res;
1754
1755         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1756         switch (res) {
1757         case SMP_RESP_NO_PHY:
1758                 phy->phy_state = PHY_NOT_PRESENT;
1759                 sas_unregister_devs_sas_addr(dev, phy_id);
1760                 goto out; break;
1761         case SMP_RESP_PHY_VACANT:
1762                 phy->phy_state = PHY_VACANT;
1763                 sas_unregister_devs_sas_addr(dev, phy_id);
1764                 goto out; break;
1765         case SMP_RESP_FUNC_ACC:
1766                 break;
1767         }
1768
1769         if (SAS_ADDR(attached_sas_addr) == 0) {
1770                 phy->phy_state = PHY_EMPTY;
1771                 sas_unregister_devs_sas_addr(dev, phy_id);
1772         } else if (SAS_ADDR(attached_sas_addr) ==
1773                    SAS_ADDR(phy->attached_sas_addr)) {
1774                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1775                             SAS_ADDR(dev->sas_addr), phy_id);
1776                 sas_ex_phy_discover(dev, phy_id);
1777         } else
1778                 res = sas_discover_new(dev, phy_id);
1779 out:
1780         return res;
1781 }
1782
1783 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1784 {
1785         struct expander_device *ex = &dev->ex_dev;
1786         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1787         int res = 0;
1788         int i;
1789
1790         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1791                     SAS_ADDR(dev->sas_addr), phy_id);
1792
1793         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1794                 for (i = 0; i < ex->num_phys; i++) {
1795                         struct ex_phy *phy = &ex->ex_phy[i];
1796
1797                         if (i == phy_id)
1798                                 continue;
1799                         if (SAS_ADDR(phy->attached_sas_addr) ==
1800                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1801                                 SAS_DPRINTK("phy%d part of wide port with "
1802                                             "phy%d\n", phy_id, i);
1803                                 goto out;
1804                         }
1805                 }
1806                 res = sas_rediscover_dev(dev, phy_id);
1807         } else
1808                 res = sas_discover_new(dev, phy_id);
1809 out:
1810         return res;
1811 }
1812
1813 /**
1814  * sas_revalidate_domain -- revalidate the domain
1815  * @port: port to the domain of interest
1816  *
1817  * NOTE: this process _must_ quit (return) as soon as any connection
1818  * errors are encountered.  Connection recovery is done elsewhere.
1819  * Discover process only interrogates devices in order to discover the
1820  * domain.
1821  */
1822 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1823 {
1824         int res;
1825         struct domain_device *dev = NULL;
1826
1827         res = sas_find_bcast_dev(port_dev, &dev);
1828         if (res)
1829                 goto out;
1830         if (dev) {
1831                 struct expander_device *ex = &dev->ex_dev;
1832                 int i = 0, phy_id;
1833
1834                 do {
1835                         phy_id = -1;
1836                         res = sas_find_bcast_phy(dev, &phy_id, i);
1837                         if (phy_id == -1)
1838                                 break;
1839                         res = sas_rediscover(dev, phy_id);
1840                         i = phy_id + 1;
1841                 } while (i < ex->num_phys);
1842         }
1843 out:
1844         return res;
1845 }
1846
1847 #if 0
1848 /* ---------- SMP portal ---------- */
1849
1850 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1851                                 size_t size)
1852 {
1853         struct domain_device *dev = to_dom_device(kobj);
1854         struct expander_device *ex = &dev->ex_dev;
1855
1856         if (offs != 0)
1857                 return -EFBIG;
1858         else if (size == 0)
1859                 return 0;
1860
1861         down_interruptible(&ex->smp_sema);
1862         if (ex->smp_req)
1863                 kfree(ex->smp_req);
1864         ex->smp_req = kzalloc(size, GFP_USER);
1865         if (!ex->smp_req) {
1866                 up(&ex->smp_sema);
1867                 return -ENOMEM;
1868         }
1869         memcpy(ex->smp_req, buf, size);
1870         ex->smp_req_size = size;
1871         ex->smp_portal_pid = current->pid;
1872         up(&ex->smp_sema);
1873
1874         return size;
1875 }
1876
1877 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1878                                size_t size)
1879 {
1880         struct domain_device *dev = to_dom_device(kobj);
1881         struct expander_device *ex = &dev->ex_dev;
1882         u8 *smp_resp;
1883         int res = -EINVAL;
1884
1885         /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1886          *  it should be 0.
1887          */
1888
1889         down_interruptible(&ex->smp_sema);
1890         if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1891                 goto out;
1892
1893         res = 0;
1894         if (size == 0)
1895                 goto out;
1896
1897         res = -ENOMEM;
1898         smp_resp = alloc_smp_resp(size);
1899         if (!smp_resp)
1900                 goto out;
1901         res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1902                                smp_resp, size);
1903         if (!res) {
1904                 memcpy(buf, smp_resp, size);
1905                 res = size;
1906         }
1907
1908         kfree(smp_resp);
1909 out:
1910         kfree(ex->smp_req);
1911         ex->smp_req = NULL;
1912         ex->smp_req_size = 0;
1913         ex->smp_portal_pid = -1;
1914         up(&ex->smp_sema);
1915         return res;
1916 }
1917 #endif