2 * linux/drivers/char/keyboard.c
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
7 * Some additional features added by Christoph Niemann (ChN), March 1993
9 * Loadable keymaps by Risto Kankkunen, May 1993
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/irq.h>
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/sysrq.h>
42 #include <linux/input.h>
43 #include <linux/reboot.h>
44 #include <linux/notifier.h>
45 #include <linux/jiffies.h>
47 extern void ctrl_alt_del(void);
49 #define to_handle_h(n) container_of(n, struct input_handle, h_node)
52 * Exported functions/variables
55 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
59 * This seems a good reason to start with NumLock off. On HIL keyboards
60 * of PARISC machines however there is no NumLock key and everyone expects the keypad
61 * to be used for numbers.
64 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
65 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
72 void compute_shiftstate(void);
79 k_self, k_fn, k_spec, k_pad,\
80 k_dead, k_cons, k_cur, k_shift,\
81 k_meta, k_ascii, k_lock, k_lowercase,\
82 k_slock, k_dead2, k_brl, k_ignore
84 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
86 static k_handler_fn K_HANDLERS;
87 k_handler_fn *k_handler[16] = { K_HANDLERS };
88 EXPORT_SYMBOL_GPL(k_handler);
91 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
92 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
93 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
94 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
95 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
97 typedef void (fn_handler_fn)(struct vc_data *vc);
98 static fn_handler_fn FN_HANDLERS;
99 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
102 * Variables exported for vt_ioctl.c
105 /* maximum values each key_handler can handle */
106 const int max_vals[] = {
107 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
108 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
109 255, NR_LOCK - 1, 255, NR_BRL - 1
112 const int NR_TYPES = ARRAY_SIZE(max_vals);
114 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
115 EXPORT_SYMBOL_GPL(kbd_table);
116 static struct kbd_struct *kbd = kbd_table;
118 struct vt_spawn_console vt_spawn_con = {
119 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
125 * Variables exported for vt.c
134 static struct input_handler kbd_handler;
135 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
136 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
137 static int dead_key_next;
138 static int npadch = -1; /* -1 or number assembled on pad */
139 static unsigned int diacr;
140 static char rep; /* flag telling character repeat */
142 static unsigned char ledstate = 0xff; /* undefined */
143 static unsigned char ledioctl;
145 static struct ledptr {
148 unsigned char valid:1;
151 /* Simple translation table for the SysRq keys */
153 #ifdef CONFIG_MAGIC_SYSRQ
154 unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
155 "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
156 "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
157 "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
158 "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
159 "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
160 "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
161 "\r\000/"; /* 0x60 - 0x6f */
162 static int sysrq_down;
163 static int sysrq_alt_use;
165 static int sysrq_alt;
168 * Notifier list for console keyboard events
170 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
172 int register_keyboard_notifier(struct notifier_block *nb)
174 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
176 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
178 int unregister_keyboard_notifier(struct notifier_block *nb)
180 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
182 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
185 * Translation of scancodes to keycodes. We set them on only the first
186 * keyboard in the list that accepts the scancode and keycode.
187 * Explanation for not choosing the first attached keyboard anymore:
188 * USB keyboards for example have two event devices: one for all "normal"
189 * keys and one for extra function keys (like "volume up", "make coffee",
190 * etc.). So this means that scancodes for the extra function keys won't
191 * be valid for the first event device, but will be for the second.
193 int getkeycode(unsigned int scancode)
195 struct input_handle *handle;
199 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
200 error = input_get_keycode(handle->dev, scancode, &keycode);
208 int setkeycode(unsigned int scancode, unsigned int keycode)
210 struct input_handle *handle;
213 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
214 error = input_set_keycode(handle->dev, scancode, keycode);
223 * Making beeps and bells.
225 static void kd_nosound(unsigned long ignored)
227 struct input_handle *handle;
229 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
230 if (test_bit(EV_SND, handle->dev->evbit)) {
231 if (test_bit(SND_TONE, handle->dev->sndbit))
232 input_inject_event(handle, EV_SND, SND_TONE, 0);
233 if (test_bit(SND_BELL, handle->dev->sndbit))
234 input_inject_event(handle, EV_SND, SND_BELL, 0);
239 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
241 void kd_mksound(unsigned int hz, unsigned int ticks)
243 struct list_head *node;
245 del_timer(&kd_mksound_timer);
248 list_for_each_prev(node, &kbd_handler.h_list) {
249 struct input_handle *handle = to_handle_h(node);
250 if (test_bit(EV_SND, handle->dev->evbit)) {
251 if (test_bit(SND_TONE, handle->dev->sndbit)) {
252 input_inject_event(handle, EV_SND, SND_TONE, hz);
255 if (test_bit(SND_BELL, handle->dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_BELL, 1);
262 mod_timer(&kd_mksound_timer, jiffies + ticks);
266 EXPORT_SYMBOL(kd_mksound);
269 * Setting the keyboard rate.
272 int kbd_rate(struct kbd_repeat *rep)
274 struct list_head *node;
278 list_for_each(node, &kbd_handler.h_list) {
279 struct input_handle *handle = to_handle_h(node);
280 struct input_dev *dev = handle->dev;
282 if (test_bit(EV_REP, dev->evbit)) {
284 input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
286 input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
287 d = dev->rep[REP_DELAY];
288 p = dev->rep[REP_PERIOD];
299 static void put_queue(struct vc_data *vc, int ch)
301 struct tty_struct *tty = vc->vc_tty;
304 tty_insert_flip_char(tty, ch, 0);
305 con_schedule_flip(tty);
309 static void puts_queue(struct vc_data *vc, char *cp)
311 struct tty_struct *tty = vc->vc_tty;
317 tty_insert_flip_char(tty, *cp, 0);
320 con_schedule_flip(tty);
323 static void applkey(struct vc_data *vc, int key, char mode)
325 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
327 buf[1] = (mode ? 'O' : '[');
333 * Many other routines do put_queue, but I think either
334 * they produce ASCII, or they produce some user-assigned
335 * string, and in both cases we might assume that it is
338 static void to_utf8(struct vc_data *vc, uint c)
343 else if (c < 0x800) {
344 /* 110***** 10****** */
345 put_queue(vc, 0xc0 | (c >> 6));
346 put_queue(vc, 0x80 | (c & 0x3f));
347 } else if (c < 0x10000) {
348 if (c >= 0xD800 && c < 0xE000)
352 /* 1110**** 10****** 10****** */
353 put_queue(vc, 0xe0 | (c >> 12));
354 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
355 put_queue(vc, 0x80 | (c & 0x3f));
356 } else if (c < 0x110000) {
357 /* 11110*** 10****** 10****** 10****** */
358 put_queue(vc, 0xf0 | (c >> 18));
359 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
360 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
361 put_queue(vc, 0x80 | (c & 0x3f));
366 * Called after returning from RAW mode or when changing consoles - recompute
367 * shift_down[] and shift_state from key_down[] maybe called when keymap is
368 * undefined, so that shiftkey release is seen
370 void compute_shiftstate(void)
372 unsigned int i, j, k, sym, val;
375 memset(shift_down, 0, sizeof(shift_down));
377 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
382 k = i * BITS_PER_LONG;
384 for (j = 0; j < BITS_PER_LONG; j++, k++) {
386 if (!test_bit(k, key_down))
389 sym = U(key_maps[0][k]);
390 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
394 if (val == KVAL(K_CAPSSHIFT))
398 shift_state |= (1 << val);
404 * We have a combining character DIACR here, followed by the character CH.
405 * If the combination occurs in the table, return the corresponding value.
406 * Otherwise, if CH is a space or equals DIACR, return DIACR.
407 * Otherwise, conclude that DIACR was not combining after all,
408 * queue it and return CH.
410 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
412 unsigned int d = diacr;
417 if ((d & ~0xff) == BRL_UC_ROW) {
418 if ((ch & ~0xff) == BRL_UC_ROW)
421 for (i = 0; i < accent_table_size; i++)
422 if (accent_table[i].diacr == d && accent_table[i].base == ch)
423 return accent_table[i].result;
426 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
429 if (kbd->kbdmode == VC_UNICODE)
432 int c = conv_uni_to_8bit(d);
441 * Special function handlers
443 static void fn_enter(struct vc_data *vc)
446 if (kbd->kbdmode == VC_UNICODE)
449 int c = conv_uni_to_8bit(diacr);
456 if (vc_kbd_mode(kbd, VC_CRLF))
460 static void fn_caps_toggle(struct vc_data *vc)
464 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
467 static void fn_caps_on(struct vc_data *vc)
471 set_vc_kbd_led(kbd, VC_CAPSLOCK);
474 static void fn_show_ptregs(struct vc_data *vc)
476 struct pt_regs *regs = get_irq_regs();
481 static void fn_hold(struct vc_data *vc)
483 struct tty_struct *tty = vc->vc_tty;
489 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
490 * these routines are also activated by ^S/^Q.
491 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
499 static void fn_num(struct vc_data *vc)
501 if (vc_kbd_mode(kbd,VC_APPLIC))
508 * Bind this to Shift-NumLock if you work in application keypad mode
509 * but want to be able to change the NumLock flag.
510 * Bind this to NumLock if you prefer that the NumLock key always
511 * changes the NumLock flag.
513 static void fn_bare_num(struct vc_data *vc)
516 chg_vc_kbd_led(kbd, VC_NUMLOCK);
519 static void fn_lastcons(struct vc_data *vc)
521 /* switch to the last used console, ChN */
522 set_console(last_console);
525 static void fn_dec_console(struct vc_data *vc)
527 int i, cur = fg_console;
529 /* Currently switching? Queue this next switch relative to that. */
530 if (want_console != -1)
533 for (i = cur - 1; i != cur; i--) {
535 i = MAX_NR_CONSOLES - 1;
536 if (vc_cons_allocated(i))
542 static void fn_inc_console(struct vc_data *vc)
544 int i, cur = fg_console;
546 /* Currently switching? Queue this next switch relative to that. */
547 if (want_console != -1)
550 for (i = cur+1; i != cur; i++) {
551 if (i == MAX_NR_CONSOLES)
553 if (vc_cons_allocated(i))
559 static void fn_send_intr(struct vc_data *vc)
561 struct tty_struct *tty = vc->vc_tty;
565 tty_insert_flip_char(tty, 0, TTY_BREAK);
566 con_schedule_flip(tty);
569 static void fn_scroll_forw(struct vc_data *vc)
574 static void fn_scroll_back(struct vc_data *vc)
579 static void fn_show_mem(struct vc_data *vc)
584 static void fn_show_state(struct vc_data *vc)
589 static void fn_boot_it(struct vc_data *vc)
594 static void fn_compose(struct vc_data *vc)
599 static void fn_spawn_con(struct vc_data *vc)
601 spin_lock(&vt_spawn_con.lock);
602 if (vt_spawn_con.pid)
603 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
604 put_pid(vt_spawn_con.pid);
605 vt_spawn_con.pid = NULL;
607 spin_unlock(&vt_spawn_con.lock);
610 static void fn_SAK(struct vc_data *vc)
612 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
613 schedule_work(SAK_work);
616 static void fn_null(struct vc_data *vc)
618 compute_shiftstate();
622 * Special key handlers
624 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
628 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
632 if (value >= ARRAY_SIZE(fn_handler))
634 if ((kbd->kbdmode == VC_RAW ||
635 kbd->kbdmode == VC_MEDIUMRAW) &&
636 value != KVAL(K_SAK))
637 return; /* SAK is allowed even in raw mode */
638 fn_handler[value](vc);
641 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
643 printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
646 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
649 return; /* no action, if this is a key release */
652 value = handle_diacr(vc, value);
659 if (kbd->kbdmode == VC_UNICODE)
662 int c = conv_uni_to_8bit(value);
669 * Handle dead key. Note that we now may have several
670 * dead keys modifying the same character. Very useful
673 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
677 diacr = (diacr ? handle_diacr(vc, value) : value);
680 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
682 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
685 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
687 k_deadunicode(vc, value, up_flag);
691 * Obsolete - for backwards compatibility only
693 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
695 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
696 value = ret_diacr[value];
697 k_deadunicode(vc, value, up_flag);
700 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
707 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
714 if (v < ARRAY_SIZE(func_table)) {
715 if (func_table[value])
716 puts_queue(vc, func_table[value]);
718 printk(KERN_ERR "k_fn called with value=%d\n", value);
721 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
723 static const char cur_chars[] = "BDCA";
727 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
730 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
732 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
733 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
736 return; /* no action, if this is a key release */
738 /* kludge... shift forces cursor/number keys */
739 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
740 applkey(vc, app_map[value], 1);
744 if (!vc_kbd_led(kbd, VC_NUMLOCK))
748 k_fn(vc, KVAL(K_REMOVE), 0);
751 k_fn(vc, KVAL(K_INSERT), 0);
754 k_fn(vc, KVAL(K_SELECT), 0);
757 k_cur(vc, KVAL(K_DOWN), 0);
760 k_fn(vc, KVAL(K_PGDN), 0);
763 k_cur(vc, KVAL(K_LEFT), 0);
766 k_cur(vc, KVAL(K_RIGHT), 0);
769 k_fn(vc, KVAL(K_FIND), 0);
772 k_cur(vc, KVAL(K_UP), 0);
775 k_fn(vc, KVAL(K_PGUP), 0);
778 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
782 put_queue(vc, pad_chars[value]);
783 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
787 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
789 int old_state = shift_state;
795 * a CapsShift key acts like Shift but undoes CapsLock
797 if (value == KVAL(K_CAPSSHIFT)) {
798 value = KVAL(K_SHIFT);
800 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
805 * handle the case that two shift or control
806 * keys are depressed simultaneously
808 if (shift_down[value])
813 if (shift_down[value])
814 shift_state |= (1 << value);
816 shift_state &= ~(1 << value);
819 if (up_flag && shift_state != old_state && npadch != -1) {
820 if (kbd->kbdmode == VC_UNICODE)
823 put_queue(vc, npadch & 0xff);
828 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
833 if (vc_kbd_mode(kbd, VC_META)) {
834 put_queue(vc, '\033');
835 put_queue(vc, value);
837 put_queue(vc, value | 0x80);
840 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
848 /* decimal input of code, while Alt depressed */
851 /* hexadecimal input of code, while AltGr depressed */
859 npadch = npadch * base + value;
862 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
866 chg_vc_kbd_lock(kbd, value);
869 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
871 k_shift(vc, value, up_flag);
874 chg_vc_kbd_slock(kbd, value);
875 /* try to make Alt, oops, AltGr and such work */
876 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
878 chg_vc_kbd_slock(kbd, value);
882 /* by default, 300ms interval for combination release */
883 static unsigned brl_timeout = 300;
884 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
885 module_param(brl_timeout, uint, 0644);
887 static unsigned brl_nbchords = 1;
888 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
889 module_param(brl_nbchords, uint, 0644);
891 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
893 static unsigned long chords;
894 static unsigned committed;
897 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
899 committed |= pattern;
901 if (chords == brl_nbchords) {
902 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
909 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
911 static unsigned pressed,committing;
912 static unsigned long releasestart;
914 if (kbd->kbdmode != VC_UNICODE) {
916 printk("keyboard mode must be unicode for braille patterns\n");
921 k_unicode(vc, BRL_UC_ROW, up_flag);
932 releasestart + msecs_to_jiffies(brl_timeout))) {
933 committing = pressed;
934 releasestart = jiffies;
936 pressed &= ~(1 << (value - 1));
939 k_brlcommit(vc, committing, 0);
945 k_brlcommit(vc, committing, 0);
948 pressed &= ~(1 << (value - 1));
951 pressed |= 1 << (value - 1);
953 committing = pressed;
958 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
959 * or (ii) whatever pattern of lights people want to show using KDSETLED,
960 * or (iii) specified bits of specified words in kernel memory.
962 unsigned char getledstate(void)
967 void setledstate(struct kbd_struct *kbd, unsigned int led)
971 kbd->ledmode = LED_SHOW_IOCTL;
973 kbd->ledmode = LED_SHOW_FLAGS;
977 static inline unsigned char getleds(void)
979 struct kbd_struct *kbd = kbd_table + fg_console;
983 if (kbd->ledmode == LED_SHOW_IOCTL)
986 leds = kbd->ledflagstate;
988 if (kbd->ledmode == LED_SHOW_MEM) {
989 for (i = 0; i < 3; i++)
990 if (ledptrs[i].valid) {
991 if (*ledptrs[i].addr & ledptrs[i].mask)
1001 * This routine is the bottom half of the keyboard interrupt
1002 * routine, and runs with all interrupts enabled. It does
1003 * console changing, led setting and copy_to_cooked, which can
1004 * take a reasonably long time.
1006 * Aside from timing (which isn't really that important for
1007 * keyboard interrupts as they happen often), using the software
1008 * interrupt routines for this thing allows us to easily mask
1009 * this when we don't want any of the above to happen.
1010 * This allows for easy and efficient race-condition prevention
1011 * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
1014 static void kbd_bh(unsigned long dummy)
1016 struct list_head *node;
1017 unsigned char leds = getleds();
1019 if (leds != ledstate) {
1020 list_for_each(node, &kbd_handler.h_list) {
1021 struct input_handle *handle = to_handle_h(node);
1022 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1023 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1024 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1025 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1032 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1034 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1035 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1036 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1037 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1038 defined(CONFIG_AVR32)
1040 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1041 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1043 static const unsigned short x86_keycodes[256] =
1044 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1045 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1046 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1047 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1048 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1049 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1050 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1051 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1052 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1053 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1054 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1055 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1056 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1057 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1058 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1061 static int sparc_l1_a_state = 0;
1062 extern void sun_do_break(void);
1065 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1066 unsigned char up_flag)
1072 put_queue(vc, 0xe1);
1073 put_queue(vc, 0x1d | up_flag);
1074 put_queue(vc, 0x45 | up_flag);
1079 put_queue(vc, 0xf2);
1084 put_queue(vc, 0xf1);
1089 * Real AT keyboards (that's what we're trying
1090 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1091 * pressing PrtSc/SysRq alone, but simply 0x54
1092 * when pressing Alt+PrtSc/SysRq.
1095 put_queue(vc, 0x54 | up_flag);
1097 put_queue(vc, 0xe0);
1098 put_queue(vc, 0x2a | up_flag);
1099 put_queue(vc, 0xe0);
1100 put_queue(vc, 0x37 | up_flag);
1108 code = x86_keycodes[keycode];
1113 put_queue(vc, 0xe0);
1114 put_queue(vc, (code & 0x7f) | up_flag);
1124 #define HW_RAW(dev) 0
1126 #warning "Cannot generate rawmode keyboard for your architecture yet."
1128 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1133 put_queue(vc, keycode | up_flag);
1138 static void kbd_rawcode(unsigned char data)
1140 struct vc_data *vc = vc_cons[fg_console].d;
1141 kbd = kbd_table + fg_console;
1142 if (kbd->kbdmode == VC_RAW)
1143 put_queue(vc, data);
1146 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1148 struct vc_data *vc = vc_cons[fg_console].d;
1149 unsigned short keysym, *key_map;
1150 unsigned char type, raw_mode;
1151 struct tty_struct *tty;
1153 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1157 if (tty && (!tty->driver_data)) {
1158 /* No driver data? Strange. Okay we fix it then. */
1159 tty->driver_data = vc;
1162 kbd = kbd_table + fg_console;
1164 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
1165 sysrq_alt = down ? keycode : 0;
1167 if (keycode == KEY_STOP)
1168 sparc_l1_a_state = down;
1173 #ifdef CONFIG_MAC_EMUMOUSEBTN
1174 if (mac_hid_mouse_emulate_buttons(1, keycode, down))
1176 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1178 if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
1179 if (emulate_raw(vc, keycode, !down << 7))
1180 if (keycode < BTN_MISC && printk_ratelimit())
1181 printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
1183 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
1184 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
1187 sysrq_alt_use = sysrq_alt;
1191 if (sysrq_down && !down && keycode == sysrq_alt_use)
1193 if (sysrq_down && down && !rep) {
1194 handle_sysrq(kbd_sysrq_xlate[keycode], tty);
1199 if (keycode == KEY_A && sparc_l1_a_state) {
1200 sparc_l1_a_state = 0;
1205 if (kbd->kbdmode == VC_MEDIUMRAW) {
1207 * This is extended medium raw mode, with keys above 127
1208 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1209 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1210 * interfere with anything else. The two bytes after 0 will
1211 * always have the up flag set not to interfere with older
1212 * applications. This allows for 16384 different keycodes,
1213 * which should be enough.
1215 if (keycode < 128) {
1216 put_queue(vc, keycode | (!down << 7));
1218 put_queue(vc, !down << 7);
1219 put_queue(vc, (keycode >> 7) | 0x80);
1220 put_queue(vc, keycode | 0x80);
1226 set_bit(keycode, key_down);
1228 clear_bit(keycode, key_down);
1231 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1232 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1234 * Don't repeat a key if the input buffers are not empty and the
1235 * characters get aren't echoed locally. This makes key repeat
1236 * usable with slow applications and under heavy loads.
1241 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1242 param.ledstate = kbd->ledflagstate;
1243 key_map = key_maps[shift_final];
1245 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, ¶m) == NOTIFY_STOP || !key_map) {
1246 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, ¶m);
1247 compute_shiftstate();
1248 kbd->slockstate = 0;
1252 if (keycode >= NR_KEYS)
1253 if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1254 keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
1258 keysym = key_map[keycode];
1260 type = KTYP(keysym);
1263 param.value = keysym;
1264 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, ¶m) == NOTIFY_STOP)
1266 if (down && !raw_mode)
1267 to_utf8(vc, keysym);
1273 if (type == KT_LETTER) {
1275 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1276 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1278 keysym = key_map[keycode];
1281 param.value = keysym;
1283 if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, ¶m) == NOTIFY_STOP)
1286 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1289 (*k_handler[type])(vc, keysym & 0xff, !down);
1291 param.ledstate = kbd->ledflagstate;
1292 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1294 if (type != KT_SLOCK)
1295 kbd->slockstate = 0;
1298 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1299 unsigned int event_code, int value)
1301 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1303 if (event_type == EV_KEY)
1304 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1305 tasklet_schedule(&keyboard_tasklet);
1306 do_poke_blanked_console = 1;
1307 schedule_console_callback();
1311 * When a keyboard (or other input device) is found, the kbd_connect
1312 * function is called. The function then looks at the device, and if it
1313 * likes it, it can open it and get events from it. In this (kbd_connect)
1314 * function, we should decide which VT to bind that keyboard to initially.
1316 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1317 const struct input_device_id *id)
1319 struct input_handle *handle;
1323 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1324 if (test_bit(i, dev->keybit))
1327 if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
1330 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1335 handle->handler = handler;
1336 handle->name = "kbd";
1338 error = input_register_handle(handle);
1340 goto err_free_handle;
1342 error = input_open_device(handle);
1344 goto err_unregister_handle;
1348 err_unregister_handle:
1349 input_unregister_handle(handle);
1355 static void kbd_disconnect(struct input_handle *handle)
1357 input_close_device(handle);
1358 input_unregister_handle(handle);
1363 * Start keyboard handler on the new keyboard by refreshing LED state to
1364 * match the rest of the system.
1366 static void kbd_start(struct input_handle *handle)
1368 unsigned char leds = ledstate;
1370 tasklet_disable(&keyboard_tasklet);
1372 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1373 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1374 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1375 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1377 tasklet_enable(&keyboard_tasklet);
1380 static const struct input_device_id kbd_ids[] = {
1382 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1383 .evbit = { BIT_MASK(EV_KEY) },
1387 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1388 .evbit = { BIT_MASK(EV_SND) },
1391 { }, /* Terminating entry */
1394 MODULE_DEVICE_TABLE(input, kbd_ids);
1396 static struct input_handler kbd_handler = {
1398 .connect = kbd_connect,
1399 .disconnect = kbd_disconnect,
1402 .id_table = kbd_ids,
1405 int __init kbd_init(void)
1410 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1411 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1412 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1413 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1414 kbd_table[i].lockstate = KBD_DEFLOCK;
1415 kbd_table[i].slockstate = 0;
1416 kbd_table[i].modeflags = KBD_DEFMODE;
1417 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1420 error = input_register_handler(&kbd_handler);
1424 tasklet_enable(&keyboard_tasklet);
1425 tasklet_schedule(&keyboard_tasklet);