2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2x00 generic device routines.
27 * Set enviroment defines for rt2x00.h
29 #define DRV_NAME "rt2x00lib"
31 #include <linux/kernel.h>
32 #include <linux/module.h>
35 #include "rt2x00lib.h"
40 struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
41 const unsigned int queue)
43 int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags);
46 * Check if we are requesting a reqular TX ring,
47 * or if we are requesting a Beacon or Atim ring.
48 * For Atim rings, we should check if it is supported.
50 if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
51 return &rt2x00dev->tx[queue];
53 if (!rt2x00dev->bcn || !beacon)
56 if (queue == IEEE80211_TX_QUEUE_BEACON)
57 return &rt2x00dev->bcn[0];
58 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
59 return &rt2x00dev->bcn[1];
63 EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
66 * Link tuning handlers
68 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
70 rt2x00_clear_link(&rt2x00dev->link);
73 * Reset the link tuner.
75 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 cancel_delayed_work_sync(&rt2x00dev->link.work);
86 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
88 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
91 rt2x00lib_stop_link_tuner(rt2x00dev);
92 rt2x00lib_start_link_tuner(rt2x00dev);
96 * Radio control handlers.
98 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
103 * Don't enable the radio twice.
104 * And check if the hardware button has been disabled.
106 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
107 test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
113 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
118 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
123 rt2x00lib_toggle_rx(rt2x00dev, 1);
126 * Start the TX queues.
128 ieee80211_start_queues(rt2x00dev->hw);
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
135 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
139 * Stop all scheduled work.
141 if (work_pending(&rt2x00dev->beacon_work))
142 cancel_work_sync(&rt2x00dev->beacon_work);
143 if (work_pending(&rt2x00dev->filter_work))
144 cancel_work_sync(&rt2x00dev->filter_work);
147 * Stop the TX queues.
149 ieee80211_stop_queues(rt2x00dev->hw);
154 rt2x00lib_toggle_rx(rt2x00dev, 0);
159 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
162 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, int enable)
164 enum dev_state state = enable ? STATE_RADIO_RX_ON : STATE_RADIO_RX_OFF;
167 * When we are disabling the RX, we should also stop the link tuner.
170 rt2x00lib_stop_link_tuner(rt2x00dev);
172 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
175 * When we are enabling the RX, we should also start the link tuner.
177 if (enable && is_interface_present(&rt2x00dev->interface))
178 rt2x00lib_start_link_tuner(rt2x00dev);
181 static void rt2x00lib_precalculate_link_signal(struct link *link)
183 if (link->rx_failed || link->rx_success)
184 link->rx_percentage =
185 (link->rx_success * 100) /
186 (link->rx_failed + link->rx_success);
188 link->rx_percentage = 50;
190 if (link->tx_failed || link->tx_success)
191 link->tx_percentage =
192 (link->tx_success * 100) /
193 (link->tx_failed + link->tx_success);
195 link->tx_percentage = 50;
197 link->rx_success = 0;
199 link->tx_success = 0;
203 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
206 int rssi_percentage = 0;
210 * We need a positive value for the RSSI.
213 rssi += rt2x00dev->rssi_offset;
216 * Calculate the different percentages,
217 * which will be used for the signal.
219 if (rt2x00dev->rssi_offset)
220 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
223 * Add the individual percentages and use the WEIGHT
224 * defines to calculate the current link signal.
226 signal = ((WEIGHT_RSSI * rssi_percentage) +
227 (WEIGHT_TX * rt2x00dev->link.tx_percentage) +
228 (WEIGHT_RX * rt2x00dev->link.rx_percentage)) / 100;
230 return (signal > 100) ? 100 : signal;
233 static void rt2x00lib_link_tuner(struct work_struct *work)
235 struct rt2x00_dev *rt2x00dev =
236 container_of(work, struct rt2x00_dev, link.work.work);
239 * When the radio is shutting down we should
240 * immediately cease all link tuning.
242 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
248 rt2x00dev->ops->lib->link_stats(rt2x00dev);
250 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
251 rt2x00dev->link.rx_failed;
254 * Only perform the link tuning when Link tuning
255 * has been enabled (This could have been disabled from the EEPROM).
257 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
258 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
261 * Precalculate a portion of the link signal which is
262 * in based on the tx/rx success/failure counters.
264 rt2x00lib_precalculate_link_signal(&rt2x00dev->link);
267 * Increase tuner counter, and reschedule the next link tuner run.
269 rt2x00dev->link.count++;
270 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
274 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
276 struct rt2x00_dev *rt2x00dev =
277 container_of(work, struct rt2x00_dev, filter_work);
278 unsigned int filter = rt2x00dev->interface.filter;
281 * Since we had stored the filter inside interface.filter,
282 * we should now clear that field. Otherwise the driver will
283 * assume nothing has changed (*total_flags will be compared
284 * to interface.filter to determine if any action is required).
286 rt2x00dev->interface.filter = 0;
288 rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
289 filter, &filter, 0, NULL);
293 * Interrupt context handlers.
295 static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
297 struct rt2x00_dev *rt2x00dev =
298 container_of(work, struct rt2x00_dev, beacon_work);
299 struct data_ring *ring =
300 rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
301 struct data_entry *entry = rt2x00_get_data_entry(ring);
304 skb = ieee80211_beacon_get(rt2x00dev->hw,
305 rt2x00dev->interface.id,
306 &entry->tx_status.control);
310 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
311 &entry->tx_status.control);
316 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
318 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
321 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
323 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
325 void rt2x00lib_txdone(struct data_entry *entry,
326 const int status, const int retry)
328 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
329 struct ieee80211_tx_status *tx_status = &entry->tx_status;
330 struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
331 int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
332 int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
333 status == TX_FAIL_OTHER);
336 * Update TX statistics.
338 tx_status->flags = 0;
339 tx_status->ack_signal = 0;
340 tx_status->excessive_retries = (status == TX_FAIL_RETRY);
341 tx_status->retry_count = retry;
342 rt2x00dev->link.tx_success += success;
343 rt2x00dev->link.tx_failed += retry + fail;
345 if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
347 tx_status->flags |= IEEE80211_TX_STATUS_ACK;
349 stats->dot11ACKFailureCount++;
352 tx_status->queue_length = entry->ring->stats.limit;
353 tx_status->queue_number = tx_status->control.queue;
355 if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
357 stats->dot11RTSSuccessCount++;
359 stats->dot11RTSFailureCount++;
363 * Send the tx_status to mac80211,
364 * that method also cleans up the skb structure.
366 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
369 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
371 void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
372 struct rxdata_entry_desc *desc)
374 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
375 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
376 struct ieee80211_hw_mode *mode;
377 struct ieee80211_rate *rate;
382 * Update RX statistics.
384 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
385 for (i = 0; i < mode->num_rates; i++) {
386 rate = &mode->rates[i];
389 * When frame was received with an OFDM bitrate,
390 * the signal is the PLCP value. If it was received with
391 * a CCK bitrate the signal is the rate in 0.5kbit/s.
394 val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
396 val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
398 if (val == desc->signal) {
404 rt2x00_update_link_rssi(&rt2x00dev->link, desc->rssi);
405 rt2x00dev->link.rx_success++;
406 rx_status->rate = val;
408 rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi);
409 rx_status->ssi = desc->rssi;
410 rx_status->flag = desc->flags;
413 * Send frame to mac80211
415 ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
417 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
420 * TX descriptor initializer
422 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
423 struct data_desc *txd,
424 struct ieee80211_hdr *ieee80211hdr,
426 struct ieee80211_tx_control *control)
428 struct txdata_entry_desc desc;
429 struct data_ring *ring;
438 * Make sure the descriptor is properly cleared.
440 memset(&desc, 0x00, sizeof(desc));
443 * Get ring pointer, if we fail to obtain the
444 * correct ring, then use the first TX ring.
446 ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
448 ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
450 desc.cw_min = ring->tx_params.cw_min;
451 desc.cw_max = ring->tx_params.cw_max;
452 desc.aifs = ring->tx_params.aifs;
457 if (control->queue < rt2x00dev->hw->queues)
458 desc.queue = control->queue;
459 else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
460 control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
461 desc.queue = QUEUE_MGMT;
463 desc.queue = QUEUE_OTHER;
466 * Read required fields from ieee80211 header.
468 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
469 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
471 tx_rate = control->tx_rate;
474 * Check if this is a RTS/CTS frame
476 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
477 __set_bit(ENTRY_TXD_BURST, &desc.flags);
478 if (is_rts_frame(frame_control))
479 __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
480 if (control->rts_cts_rate)
481 tx_rate = control->rts_cts_rate;
487 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
488 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
491 * Check if more fragments are pending
493 if (ieee80211_get_morefrag(ieee80211hdr)) {
494 __set_bit(ENTRY_TXD_BURST, &desc.flags);
495 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
499 * Beacons and probe responses require the tsf timestamp
500 * to be inserted into the frame.
502 if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
503 is_probe_resp(frame_control))
504 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
507 * Determine with what IFS priority this frame should be send.
508 * Set ifs to IFS_SIFS when the this is not the first fragment,
509 * or this fragment came after RTS/CTS.
511 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
512 test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
515 desc.ifs = IFS_BACKOFF;
519 * Length calculation depends on OFDM/CCK rate.
521 desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
524 if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
525 desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
526 desc.length_low = ((length + FCS_LEN) & 0x3f);
528 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
531 * Convert length to microseconds.
533 residual = get_duration_res(length + FCS_LEN, bitrate);
534 duration = get_duration(length + FCS_LEN, bitrate);
540 * Check if we need to set the Length Extension
542 if (bitrate == 110 && residual <= 3)
543 desc.service |= 0x80;
546 desc.length_high = (duration >> 8) & 0xff;
547 desc.length_low = duration & 0xff;
550 * When preamble is enabled we should set the
551 * preamble bit for the signal.
553 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
557 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
558 ieee80211hdr, length, control);
560 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
563 * Driver initialization handlers.
565 static void rt2x00lib_channel(struct ieee80211_channel *entry,
566 const int channel, const int tx_power,
569 entry->chan = channel;
571 entry->freq = 2407 + (5 * channel);
573 entry->freq = 5000 + (5 * channel);
576 IEEE80211_CHAN_W_IBSS |
577 IEEE80211_CHAN_W_ACTIVE_SCAN |
578 IEEE80211_CHAN_W_SCAN;
579 entry->power_level = tx_power;
580 entry->antenna_max = 0xff;
583 static void rt2x00lib_rate(struct ieee80211_rate *entry,
584 const int rate, const int mask,
585 const int plcp, const int flags)
589 DEVICE_SET_RATE_FIELD(rate, RATE) |
590 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
591 DEVICE_SET_RATE_FIELD(plcp, PLCP);
592 entry->flags = flags;
593 entry->val2 = entry->val;
594 if (entry->flags & IEEE80211_RATE_PREAMBLE2)
595 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
596 entry->min_rssi_ack = 0;
597 entry->min_rssi_ack_delta = 0;
600 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
601 struct hw_mode_spec *spec)
603 struct ieee80211_hw *hw = rt2x00dev->hw;
604 struct ieee80211_hw_mode *hwmodes;
605 struct ieee80211_channel *channels;
606 struct ieee80211_rate *rates;
608 unsigned char tx_power;
610 hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
614 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
616 goto exit_free_modes;
618 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
620 goto exit_free_channels;
623 * Initialize Rate list.
625 rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
626 0x00, IEEE80211_RATE_CCK);
627 rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
628 0x01, IEEE80211_RATE_CCK_2);
629 rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
630 0x02, IEEE80211_RATE_CCK_2);
631 rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
632 0x03, IEEE80211_RATE_CCK_2);
634 if (spec->num_rates > 4) {
635 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
636 0x0b, IEEE80211_RATE_OFDM);
637 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
638 0x0f, IEEE80211_RATE_OFDM);
639 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
640 0x0a, IEEE80211_RATE_OFDM);
641 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
642 0x0e, IEEE80211_RATE_OFDM);
643 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
644 0x09, IEEE80211_RATE_OFDM);
645 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
646 0x0d, IEEE80211_RATE_OFDM);
647 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
648 0x08, IEEE80211_RATE_OFDM);
649 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
650 0x0c, IEEE80211_RATE_OFDM);
654 * Initialize Channel list.
656 for (i = 0; i < spec->num_channels; i++) {
657 if (spec->channels[i].channel <= 14)
658 tx_power = spec->tx_power_bg[i];
659 else if (spec->tx_power_a)
660 tx_power = spec->tx_power_a[i];
662 tx_power = spec->tx_power_default;
664 rt2x00lib_channel(&channels[i],
665 spec->channels[i].channel, tx_power, i);
669 * Intitialize 802.11b
673 if (spec->num_modes > HWMODE_B) {
674 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
675 hwmodes[HWMODE_B].num_channels = 14;
676 hwmodes[HWMODE_B].num_rates = 4;
677 hwmodes[HWMODE_B].channels = channels;
678 hwmodes[HWMODE_B].rates = rates;
682 * Intitialize 802.11g
686 if (spec->num_modes > HWMODE_G) {
687 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
688 hwmodes[HWMODE_G].num_channels = 14;
689 hwmodes[HWMODE_G].num_rates = spec->num_rates;
690 hwmodes[HWMODE_G].channels = channels;
691 hwmodes[HWMODE_G].rates = rates;
695 * Intitialize 802.11a
697 * Channels: OFDM, UNII, HiperLAN2.
699 if (spec->num_modes > HWMODE_A) {
700 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
701 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
702 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
703 hwmodes[HWMODE_A].channels = &channels[14];
704 hwmodes[HWMODE_A].rates = &rates[4];
707 if (spec->num_modes > HWMODE_G &&
708 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
709 goto exit_free_rates;
711 if (spec->num_modes > HWMODE_B &&
712 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
713 goto exit_free_rates;
715 if (spec->num_modes > HWMODE_A &&
716 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
717 goto exit_free_rates;
719 rt2x00dev->hwmodes = hwmodes;
733 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
737 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
739 if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
740 ieee80211_unregister_hw(rt2x00dev->hw);
742 if (likely(rt2x00dev->hwmodes)) {
743 kfree(rt2x00dev->hwmodes->channels);
744 kfree(rt2x00dev->hwmodes->rates);
745 kfree(rt2x00dev->hwmodes);
746 rt2x00dev->hwmodes = NULL;
750 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
752 struct hw_mode_spec *spec = &rt2x00dev->spec;
756 * Initialize HW modes.
758 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
765 status = ieee80211_register_hw(rt2x00dev->hw);
767 rt2x00lib_remove_hw(rt2x00dev);
771 __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
777 * Initialization/uninitialization handlers.
779 static int rt2x00lib_alloc_entries(struct data_ring *ring,
780 const u16 max_entries, const u16 data_size,
783 struct data_entry *entry;
786 ring->stats.limit = max_entries;
787 ring->data_size = data_size;
788 ring->desc_size = desc_size;
791 * Allocate all ring entries.
793 entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
797 for (i = 0; i < ring->stats.limit; i++) {
799 entry[i].ring = ring;
808 static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
810 struct data_ring *ring;
813 * Allocate the RX ring.
815 if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
816 rt2x00dev->ops->rxd_size))
820 * First allocate the TX rings.
822 txring_for_each(rt2x00dev, ring) {
823 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
824 rt2x00dev->ops->txd_size))
828 if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
832 * Allocate the BEACON ring.
834 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
835 MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
839 * Allocate the Atim ring.
841 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
842 DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
848 static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
850 struct data_ring *ring;
852 ring_for_each(rt2x00dev, ring) {
858 void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
860 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
866 rt2x00rfkill_unregister(rt2x00dev);
869 * Allow the HW to uninitialize.
871 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
874 * Free allocated ring entries.
876 rt2x00lib_free_ring_entries(rt2x00dev);
879 int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
883 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
887 * Allocate all ring entries.
889 status = rt2x00lib_alloc_ring_entries(rt2x00dev);
891 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
896 * Initialize the device.
898 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
902 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
905 * Register the rfkill handler.
907 status = rt2x00rfkill_register(rt2x00dev);
909 goto exit_unitialize;
914 rt2x00lib_uninitialize(rt2x00dev);
917 rt2x00lib_free_ring_entries(rt2x00dev);
923 * driver allocation handlers.
925 static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
927 struct data_ring *ring;
930 * We need the following rings:
933 * Beacon: 1 (if required)
934 * Atim: 1 (if required)
936 rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
937 (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags));
939 ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
941 ERROR(rt2x00dev, "Ring allocation failed.\n");
946 * Initialize pointers
948 rt2x00dev->rx = ring;
949 rt2x00dev->tx = &rt2x00dev->rx[1];
950 if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags))
951 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
954 * Initialize ring parameters.
956 * cw_max: 2^10 = 1024.
958 ring_for_each(rt2x00dev, ring) {
959 ring->rt2x00dev = rt2x00dev;
960 ring->tx_params.aifs = 2;
961 ring->tx_params.cw_min = 5;
962 ring->tx_params.cw_max = 10;
968 static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
970 kfree(rt2x00dev->rx);
971 rt2x00dev->rx = NULL;
972 rt2x00dev->tx = NULL;
973 rt2x00dev->bcn = NULL;
976 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
978 int retval = -ENOMEM;
981 * Let the driver probe the device to detect the capabilities.
983 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
985 ERROR(rt2x00dev, "Failed to allocate device.\n");
990 * Initialize configuration work.
992 INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
993 INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
994 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
997 * Reset current working type.
999 rt2x00dev->interface.type = INVALID_INTERFACE;
1002 * Allocate ring array.
1004 retval = rt2x00lib_alloc_rings(rt2x00dev);
1009 * Initialize ieee80211 structure.
1011 retval = rt2x00lib_probe_hw(rt2x00dev);
1013 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1020 retval = rt2x00rfkill_allocate(rt2x00dev);
1025 * Open the debugfs entry.
1027 rt2x00debug_register(rt2x00dev);
1029 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1034 rt2x00lib_remove_dev(rt2x00dev);
1038 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1040 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1042 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1047 rt2x00lib_disable_radio(rt2x00dev);
1050 * Uninitialize device.
1052 rt2x00lib_uninitialize(rt2x00dev);
1055 * Close debugfs entry.
1057 rt2x00debug_deregister(rt2x00dev);
1062 rt2x00rfkill_free(rt2x00dev);
1065 * Free ieee80211_hw memory.
1067 rt2x00lib_remove_hw(rt2x00dev);
1070 * Free firmware image.
1072 rt2x00lib_free_firmware(rt2x00dev);
1075 * Free ring structures.
1077 rt2x00lib_free_rings(rt2x00dev);
1079 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1082 * Device state handlers
1085 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1089 NOTICE(rt2x00dev, "Going to sleep.\n");
1090 __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1093 * Only continue if mac80211 has open interfaces.
1095 if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1097 __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1100 * Disable radio and unitialize all items
1101 * that must be recreated on resume.
1103 rt2x00mac_stop(rt2x00dev->hw);
1104 rt2x00lib_uninitialize(rt2x00dev);
1105 rt2x00debug_deregister(rt2x00dev);
1109 * Set device mode to sleep for power management.
1111 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1117 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1119 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1121 struct interface *intf = &rt2x00dev->interface;
1124 NOTICE(rt2x00dev, "Waking up.\n");
1125 __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1128 * Open the debugfs entry.
1130 rt2x00debug_register(rt2x00dev);
1133 * Only continue if mac80211 had open interfaces.
1135 if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1139 * Reinitialize device and all active interfaces.
1141 retval = rt2x00mac_start(rt2x00dev->hw);
1146 * Reconfigure device.
1148 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1149 if (!rt2x00dev->hw->conf.radio_enabled)
1150 rt2x00lib_disable_radio(rt2x00dev);
1152 rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1153 rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1154 rt2x00lib_config_type(rt2x00dev, intf->type);
1157 * It is possible that during that mac80211 has attempted
1158 * to send frames while we were suspending or resuming.
1159 * In that case we have disabled the TX queue and should
1160 * now enable it again
1162 ieee80211_start_queues(rt2x00dev->hw);
1165 * When in Master or Ad-hoc mode,
1166 * restart Beacon transmitting by faking a beacondone event.
1168 if (intf->type == IEEE80211_IF_TYPE_AP ||
1169 intf->type == IEEE80211_IF_TYPE_IBSS)
1170 rt2x00lib_beacondone(rt2x00dev);
1175 rt2x00lib_disable_radio(rt2x00dev);
1176 rt2x00lib_uninitialize(rt2x00dev);
1177 rt2x00debug_deregister(rt2x00dev);
1181 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1182 #endif /* CONFIG_PM */
1185 * rt2x00lib module information.
1187 MODULE_AUTHOR(DRV_PROJECT);
1188 MODULE_VERSION(DRV_VERSION);
1189 MODULE_DESCRIPTION("rt2x00 library");
1190 MODULE_LICENSE("GPL");