block: make blk_rq_map_user take a NULL user-space buffer
[linux-2.6] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54                                          struct ocfs2_extent_block *eb);
55
56 /*
57  * Structures which describe a path through a btree, and functions to
58  * manipulate them.
59  *
60  * The idea here is to be as generic as possible with the tree
61  * manipulation code.
62  */
63 struct ocfs2_path_item {
64         struct buffer_head              *bh;
65         struct ocfs2_extent_list        *el;
66 };
67
68 #define OCFS2_MAX_PATH_DEPTH    5
69
70 struct ocfs2_path {
71         int                     p_tree_depth;
72         struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80
81 /*
82  * Reset the actual path elements so that we can re-use the structure
83  * to build another path. Generally, this involves freeing the buffer
84  * heads.
85  */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88         int i, start = 0, depth = 0;
89         struct ocfs2_path_item *node;
90
91         if (keep_root)
92                 start = 1;
93
94         for(i = start; i < path_num_items(path); i++) {
95                 node = &path->p_node[i];
96
97                 brelse(node->bh);
98                 node->bh = NULL;
99                 node->el = NULL;
100         }
101
102         /*
103          * Tree depth may change during truncate, or insert. If we're
104          * keeping the root extent list, then make sure that our path
105          * structure reflects the proper depth.
106          */
107         if (keep_root)
108                 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109
110         path->p_tree_depth = depth;
111 }
112
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115         if (path) {
116                 ocfs2_reinit_path(path, 0);
117                 kfree(path);
118         }
119 }
120
121 /*
122  * All the elements of src into dest. After this call, src could be freed
123  * without affecting dest.
124  *
125  * Both paths should have the same root. Any non-root elements of dest
126  * will be freed.
127  */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130         int i;
131
132         BUG_ON(path_root_bh(dest) != path_root_bh(src));
133         BUG_ON(path_root_el(dest) != path_root_el(src));
134
135         ocfs2_reinit_path(dest, 1);
136
137         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138                 dest->p_node[i].bh = src->p_node[i].bh;
139                 dest->p_node[i].el = src->p_node[i].el;
140
141                 if (dest->p_node[i].bh)
142                         get_bh(dest->p_node[i].bh);
143         }
144 }
145
146 /*
147  * Make the *dest path the same as src and re-initialize src path to
148  * have a root only.
149  */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152         int i;
153
154         BUG_ON(path_root_bh(dest) != path_root_bh(src));
155
156         for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157                 brelse(dest->p_node[i].bh);
158
159                 dest->p_node[i].bh = src->p_node[i].bh;
160                 dest->p_node[i].el = src->p_node[i].el;
161
162                 src->p_node[i].bh = NULL;
163                 src->p_node[i].el = NULL;
164         }
165 }
166
167 /*
168  * Insert an extent block at given index.
169  *
170  * This will not take an additional reference on eb_bh.
171  */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173                                         struct buffer_head *eb_bh)
174 {
175         struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176
177         /*
178          * Right now, no root bh is an extent block, so this helps
179          * catch code errors with dinode trees. The assertion can be
180          * safely removed if we ever need to insert extent block
181          * structures at the root.
182          */
183         BUG_ON(index == 0);
184
185         path->p_node[index].bh = eb_bh;
186         path->p_node[index].el = &eb->h_list;
187 }
188
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190                                          struct ocfs2_extent_list *root_el)
191 {
192         struct ocfs2_path *path;
193
194         BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195
196         path = kzalloc(sizeof(*path), GFP_NOFS);
197         if (path) {
198                 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199                 get_bh(root_bh);
200                 path_root_bh(path) = root_bh;
201                 path_root_el(path) = root_el;
202         }
203
204         return path;
205 }
206
207 /*
208  * Allocate and initialize a new path based on a disk inode tree.
209  */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213         struct ocfs2_extent_list *el = &di->id2.i_list;
214
215         return ocfs2_new_path(di_bh, el);
216 }
217
218 /*
219  * Convenience function to journal all components in a path.
220  */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222                                      struct ocfs2_path *path)
223 {
224         int i, ret = 0;
225
226         if (!path)
227                 goto out;
228
229         for(i = 0; i < path_num_items(path); i++) {
230                 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231                                            OCFS2_JOURNAL_ACCESS_WRITE);
232                 if (ret < 0) {
233                         mlog_errno(ret);
234                         goto out;
235                 }
236         }
237
238 out:
239         return ret;
240 }
241
242 /*
243  * Return the index of the extent record which contains cluster #v_cluster.
244  * -1 is returned if it was not found.
245  *
246  * Should work fine on interior and exterior nodes.
247  */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250         int ret = -1;
251         int i;
252         struct ocfs2_extent_rec *rec;
253         u32 rec_end, rec_start, clusters;
254
255         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256                 rec = &el->l_recs[i];
257
258                 rec_start = le32_to_cpu(rec->e_cpos);
259                 clusters = ocfs2_rec_clusters(el, rec);
260
261                 rec_end = rec_start + clusters;
262
263                 if (v_cluster >= rec_start && v_cluster < rec_end) {
264                         ret = i;
265                         break;
266                 }
267         }
268
269         return ret;
270 }
271
272 enum ocfs2_contig_type {
273         CONTIG_NONE = 0,
274         CONTIG_LEFT,
275         CONTIG_RIGHT,
276         CONTIG_LEFTRIGHT,
277 };
278
279
280 /*
281  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282  * ocfs2_extent_contig only work properly against leaf nodes!
283  */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285                                      struct ocfs2_extent_rec *ext,
286                                      u64 blkno)
287 {
288         u64 blk_end = le64_to_cpu(ext->e_blkno);
289
290         blk_end += ocfs2_clusters_to_blocks(sb,
291                                     le16_to_cpu(ext->e_leaf_clusters));
292
293         return blkno == blk_end;
294 }
295
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297                                   struct ocfs2_extent_rec *right)
298 {
299         u32 left_range;
300
301         left_range = le32_to_cpu(left->e_cpos) +
302                 le16_to_cpu(left->e_leaf_clusters);
303
304         return (left_range == le32_to_cpu(right->e_cpos));
305 }
306
307 static enum ocfs2_contig_type
308         ocfs2_extent_contig(struct inode *inode,
309                             struct ocfs2_extent_rec *ext,
310                             struct ocfs2_extent_rec *insert_rec)
311 {
312         u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313
314         /*
315          * Refuse to coalesce extent records with different flag
316          * fields - we don't want to mix unwritten extents with user
317          * data.
318          */
319         if (ext->e_flags != insert_rec->e_flags)
320                 return CONTIG_NONE;
321
322         if (ocfs2_extents_adjacent(ext, insert_rec) &&
323             ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324                         return CONTIG_RIGHT;
325
326         blkno = le64_to_cpu(ext->e_blkno);
327         if (ocfs2_extents_adjacent(insert_rec, ext) &&
328             ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329                 return CONTIG_LEFT;
330
331         return CONTIG_NONE;
332 }
333
334 /*
335  * NOTE: We can have pretty much any combination of contiguousness and
336  * appending.
337  *
338  * The usefulness of APPEND_TAIL is more in that it lets us know that
339  * we'll have to update the path to that leaf.
340  */
341 enum ocfs2_append_type {
342         APPEND_NONE = 0,
343         APPEND_TAIL,
344 };
345
346 enum ocfs2_split_type {
347         SPLIT_NONE = 0,
348         SPLIT_LEFT,
349         SPLIT_RIGHT,
350 };
351
352 struct ocfs2_insert_type {
353         enum ocfs2_split_type   ins_split;
354         enum ocfs2_append_type  ins_appending;
355         enum ocfs2_contig_type  ins_contig;
356         int                     ins_contig_index;
357         int                     ins_tree_depth;
358 };
359
360 struct ocfs2_merge_ctxt {
361         enum ocfs2_contig_type  c_contig_type;
362         int                     c_has_empty_extent;
363         int                     c_split_covers_rec;
364 };
365
366 /*
367  * How many free extents have we got before we need more meta data?
368  */
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
370                            struct inode *inode,
371                            struct ocfs2_dinode *fe)
372 {
373         int retval;
374         struct ocfs2_extent_list *el;
375         struct ocfs2_extent_block *eb;
376         struct buffer_head *eb_bh = NULL;
377
378         mlog_entry_void();
379
380         if (!OCFS2_IS_VALID_DINODE(fe)) {
381                 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
382                 retval = -EIO;
383                 goto bail;
384         }
385
386         if (fe->i_last_eb_blk) {
387                 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
388                                           &eb_bh, OCFS2_BH_CACHED, inode);
389                 if (retval < 0) {
390                         mlog_errno(retval);
391                         goto bail;
392                 }
393                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
394                 el = &eb->h_list;
395         } else
396                 el = &fe->id2.i_list;
397
398         BUG_ON(el->l_tree_depth != 0);
399
400         retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
401 bail:
402         if (eb_bh)
403                 brelse(eb_bh);
404
405         mlog_exit(retval);
406         return retval;
407 }
408
409 /* expects array to already be allocated
410  *
411  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
412  * l_count for you
413  */
414 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
415                                      handle_t *handle,
416                                      struct inode *inode,
417                                      int wanted,
418                                      struct ocfs2_alloc_context *meta_ac,
419                                      struct buffer_head *bhs[])
420 {
421         int count, status, i;
422         u16 suballoc_bit_start;
423         u32 num_got;
424         u64 first_blkno;
425         struct ocfs2_extent_block *eb;
426
427         mlog_entry_void();
428
429         count = 0;
430         while (count < wanted) {
431                 status = ocfs2_claim_metadata(osb,
432                                               handle,
433                                               meta_ac,
434                                               wanted - count,
435                                               &suballoc_bit_start,
436                                               &num_got,
437                                               &first_blkno);
438                 if (status < 0) {
439                         mlog_errno(status);
440                         goto bail;
441                 }
442
443                 for(i = count;  i < (num_got + count); i++) {
444                         bhs[i] = sb_getblk(osb->sb, first_blkno);
445                         if (bhs[i] == NULL) {
446                                 status = -EIO;
447                                 mlog_errno(status);
448                                 goto bail;
449                         }
450                         ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
451
452                         status = ocfs2_journal_access(handle, inode, bhs[i],
453                                                       OCFS2_JOURNAL_ACCESS_CREATE);
454                         if (status < 0) {
455                                 mlog_errno(status);
456                                 goto bail;
457                         }
458
459                         memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
460                         eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
461                         /* Ok, setup the minimal stuff here. */
462                         strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
463                         eb->h_blkno = cpu_to_le64(first_blkno);
464                         eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
465                         eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
466                         eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
467                         eb->h_list.l_count =
468                                 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
469
470                         suballoc_bit_start++;
471                         first_blkno++;
472
473                         /* We'll also be dirtied by the caller, so
474                          * this isn't absolutely necessary. */
475                         status = ocfs2_journal_dirty(handle, bhs[i]);
476                         if (status < 0) {
477                                 mlog_errno(status);
478                                 goto bail;
479                         }
480                 }
481
482                 count += num_got;
483         }
484
485         status = 0;
486 bail:
487         if (status < 0) {
488                 for(i = 0; i < wanted; i++) {
489                         if (bhs[i])
490                                 brelse(bhs[i]);
491                         bhs[i] = NULL;
492                 }
493         }
494         mlog_exit(status);
495         return status;
496 }
497
498 /*
499  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
500  *
501  * Returns the sum of the rightmost extent rec logical offset and
502  * cluster count.
503  *
504  * ocfs2_add_branch() uses this to determine what logical cluster
505  * value should be populated into the leftmost new branch records.
506  *
507  * ocfs2_shift_tree_depth() uses this to determine the # clusters
508  * value for the new topmost tree record.
509  */
510 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
511 {
512         int i;
513
514         i = le16_to_cpu(el->l_next_free_rec) - 1;
515
516         return le32_to_cpu(el->l_recs[i].e_cpos) +
517                 ocfs2_rec_clusters(el, &el->l_recs[i]);
518 }
519
520 /*
521  * Add an entire tree branch to our inode. eb_bh is the extent block
522  * to start at, if we don't want to start the branch at the dinode
523  * structure.
524  *
525  * last_eb_bh is required as we have to update it's next_leaf pointer
526  * for the new last extent block.
527  *
528  * the new branch will be 'empty' in the sense that every block will
529  * contain a single record with cluster count == 0.
530  */
531 static int ocfs2_add_branch(struct ocfs2_super *osb,
532                             handle_t *handle,
533                             struct inode *inode,
534                             struct buffer_head *fe_bh,
535                             struct buffer_head *eb_bh,
536                             struct buffer_head **last_eb_bh,
537                             struct ocfs2_alloc_context *meta_ac)
538 {
539         int status, new_blocks, i;
540         u64 next_blkno, new_last_eb_blk;
541         struct buffer_head *bh;
542         struct buffer_head **new_eb_bhs = NULL;
543         struct ocfs2_dinode *fe;
544         struct ocfs2_extent_block *eb;
545         struct ocfs2_extent_list  *eb_el;
546         struct ocfs2_extent_list  *el;
547         u32 new_cpos;
548
549         mlog_entry_void();
550
551         BUG_ON(!last_eb_bh || !*last_eb_bh);
552
553         fe = (struct ocfs2_dinode *) fe_bh->b_data;
554
555         if (eb_bh) {
556                 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
557                 el = &eb->h_list;
558         } else
559                 el = &fe->id2.i_list;
560
561         /* we never add a branch to a leaf. */
562         BUG_ON(!el->l_tree_depth);
563
564         new_blocks = le16_to_cpu(el->l_tree_depth);
565
566         /* allocate the number of new eb blocks we need */
567         new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
568                              GFP_KERNEL);
569         if (!new_eb_bhs) {
570                 status = -ENOMEM;
571                 mlog_errno(status);
572                 goto bail;
573         }
574
575         status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
576                                            meta_ac, new_eb_bhs);
577         if (status < 0) {
578                 mlog_errno(status);
579                 goto bail;
580         }
581
582         eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
583         new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
584
585         /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
586          * linked with the rest of the tree.
587          * conversly, new_eb_bhs[0] is the new bottommost leaf.
588          *
589          * when we leave the loop, new_last_eb_blk will point to the
590          * newest leaf, and next_blkno will point to the topmost extent
591          * block. */
592         next_blkno = new_last_eb_blk = 0;
593         for(i = 0; i < new_blocks; i++) {
594                 bh = new_eb_bhs[i];
595                 eb = (struct ocfs2_extent_block *) bh->b_data;
596                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
597                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
598                         status = -EIO;
599                         goto bail;
600                 }
601                 eb_el = &eb->h_list;
602
603                 status = ocfs2_journal_access(handle, inode, bh,
604                                               OCFS2_JOURNAL_ACCESS_CREATE);
605                 if (status < 0) {
606                         mlog_errno(status);
607                         goto bail;
608                 }
609
610                 eb->h_next_leaf_blk = 0;
611                 eb_el->l_tree_depth = cpu_to_le16(i);
612                 eb_el->l_next_free_rec = cpu_to_le16(1);
613                 /*
614                  * This actually counts as an empty extent as
615                  * c_clusters == 0
616                  */
617                 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
618                 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
619                 /*
620                  * eb_el isn't always an interior node, but even leaf
621                  * nodes want a zero'd flags and reserved field so
622                  * this gets the whole 32 bits regardless of use.
623                  */
624                 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
625                 if (!eb_el->l_tree_depth)
626                         new_last_eb_blk = le64_to_cpu(eb->h_blkno);
627
628                 status = ocfs2_journal_dirty(handle, bh);
629                 if (status < 0) {
630                         mlog_errno(status);
631                         goto bail;
632                 }
633
634                 next_blkno = le64_to_cpu(eb->h_blkno);
635         }
636
637         /* This is a bit hairy. We want to update up to three blocks
638          * here without leaving any of them in an inconsistent state
639          * in case of error. We don't have to worry about
640          * journal_dirty erroring as it won't unless we've aborted the
641          * handle (in which case we would never be here) so reserving
642          * the write with journal_access is all we need to do. */
643         status = ocfs2_journal_access(handle, inode, *last_eb_bh,
644                                       OCFS2_JOURNAL_ACCESS_WRITE);
645         if (status < 0) {
646                 mlog_errno(status);
647                 goto bail;
648         }
649         status = ocfs2_journal_access(handle, inode, fe_bh,
650                                       OCFS2_JOURNAL_ACCESS_WRITE);
651         if (status < 0) {
652                 mlog_errno(status);
653                 goto bail;
654         }
655         if (eb_bh) {
656                 status = ocfs2_journal_access(handle, inode, eb_bh,
657                                               OCFS2_JOURNAL_ACCESS_WRITE);
658                 if (status < 0) {
659                         mlog_errno(status);
660                         goto bail;
661                 }
662         }
663
664         /* Link the new branch into the rest of the tree (el will
665          * either be on the fe, or the extent block passed in. */
666         i = le16_to_cpu(el->l_next_free_rec);
667         el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
668         el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
669         el->l_recs[i].e_int_clusters = 0;
670         le16_add_cpu(&el->l_next_free_rec, 1);
671
672         /* fe needs a new last extent block pointer, as does the
673          * next_leaf on the previously last-extent-block. */
674         fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
675
676         eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
677         eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
678
679         status = ocfs2_journal_dirty(handle, *last_eb_bh);
680         if (status < 0)
681                 mlog_errno(status);
682         status = ocfs2_journal_dirty(handle, fe_bh);
683         if (status < 0)
684                 mlog_errno(status);
685         if (eb_bh) {
686                 status = ocfs2_journal_dirty(handle, eb_bh);
687                 if (status < 0)
688                         mlog_errno(status);
689         }
690
691         /*
692          * Some callers want to track the rightmost leaf so pass it
693          * back here.
694          */
695         brelse(*last_eb_bh);
696         get_bh(new_eb_bhs[0]);
697         *last_eb_bh = new_eb_bhs[0];
698
699         status = 0;
700 bail:
701         if (new_eb_bhs) {
702                 for (i = 0; i < new_blocks; i++)
703                         if (new_eb_bhs[i])
704                                 brelse(new_eb_bhs[i]);
705                 kfree(new_eb_bhs);
706         }
707
708         mlog_exit(status);
709         return status;
710 }
711
712 /*
713  * adds another level to the allocation tree.
714  * returns back the new extent block so you can add a branch to it
715  * after this call.
716  */
717 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
718                                   handle_t *handle,
719                                   struct inode *inode,
720                                   struct buffer_head *fe_bh,
721                                   struct ocfs2_alloc_context *meta_ac,
722                                   struct buffer_head **ret_new_eb_bh)
723 {
724         int status, i;
725         u32 new_clusters;
726         struct buffer_head *new_eb_bh = NULL;
727         struct ocfs2_dinode *fe;
728         struct ocfs2_extent_block *eb;
729         struct ocfs2_extent_list  *fe_el;
730         struct ocfs2_extent_list  *eb_el;
731
732         mlog_entry_void();
733
734         status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
735                                            &new_eb_bh);
736         if (status < 0) {
737                 mlog_errno(status);
738                 goto bail;
739         }
740
741         eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
742         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
743                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
744                 status = -EIO;
745                 goto bail;
746         }
747
748         eb_el = &eb->h_list;
749         fe = (struct ocfs2_dinode *) fe_bh->b_data;
750         fe_el = &fe->id2.i_list;
751
752         status = ocfs2_journal_access(handle, inode, new_eb_bh,
753                                       OCFS2_JOURNAL_ACCESS_CREATE);
754         if (status < 0) {
755                 mlog_errno(status);
756                 goto bail;
757         }
758
759         /* copy the fe data into the new extent block */
760         eb_el->l_tree_depth = fe_el->l_tree_depth;
761         eb_el->l_next_free_rec = fe_el->l_next_free_rec;
762         for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
763                 eb_el->l_recs[i] = fe_el->l_recs[i];
764
765         status = ocfs2_journal_dirty(handle, new_eb_bh);
766         if (status < 0) {
767                 mlog_errno(status);
768                 goto bail;
769         }
770
771         status = ocfs2_journal_access(handle, inode, fe_bh,
772                                       OCFS2_JOURNAL_ACCESS_WRITE);
773         if (status < 0) {
774                 mlog_errno(status);
775                 goto bail;
776         }
777
778         new_clusters = ocfs2_sum_rightmost_rec(eb_el);
779
780         /* update fe now */
781         le16_add_cpu(&fe_el->l_tree_depth, 1);
782         fe_el->l_recs[0].e_cpos = 0;
783         fe_el->l_recs[0].e_blkno = eb->h_blkno;
784         fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
785         for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
786                 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
787         fe_el->l_next_free_rec = cpu_to_le16(1);
788
789         /* If this is our 1st tree depth shift, then last_eb_blk
790          * becomes the allocated extent block */
791         if (fe_el->l_tree_depth == cpu_to_le16(1))
792                 fe->i_last_eb_blk = eb->h_blkno;
793
794         status = ocfs2_journal_dirty(handle, fe_bh);
795         if (status < 0) {
796                 mlog_errno(status);
797                 goto bail;
798         }
799
800         *ret_new_eb_bh = new_eb_bh;
801         new_eb_bh = NULL;
802         status = 0;
803 bail:
804         if (new_eb_bh)
805                 brelse(new_eb_bh);
806
807         mlog_exit(status);
808         return status;
809 }
810
811 /*
812  * Should only be called when there is no space left in any of the
813  * leaf nodes. What we want to do is find the lowest tree depth
814  * non-leaf extent block with room for new records. There are three
815  * valid results of this search:
816  *
817  * 1) a lowest extent block is found, then we pass it back in
818  *    *lowest_eb_bh and return '0'
819  *
820  * 2) the search fails to find anything, but the dinode has room. We
821  *    pass NULL back in *lowest_eb_bh, but still return '0'
822  *
823  * 3) the search fails to find anything AND the dinode is full, in
824  *    which case we return > 0
825  *
826  * return status < 0 indicates an error.
827  */
828 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
829                                     struct inode *inode,
830                                     struct buffer_head *fe_bh,
831                                     struct buffer_head **target_bh)
832 {
833         int status = 0, i;
834         u64 blkno;
835         struct ocfs2_dinode *fe;
836         struct ocfs2_extent_block *eb;
837         struct ocfs2_extent_list  *el;
838         struct buffer_head *bh = NULL;
839         struct buffer_head *lowest_bh = NULL;
840
841         mlog_entry_void();
842
843         *target_bh = NULL;
844
845         fe = (struct ocfs2_dinode *) fe_bh->b_data;
846         el = &fe->id2.i_list;
847
848         while(le16_to_cpu(el->l_tree_depth) > 1) {
849                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
850                         ocfs2_error(inode->i_sb, "Dinode %llu has empty "
851                                     "extent list (next_free_rec == 0)",
852                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
853                         status = -EIO;
854                         goto bail;
855                 }
856                 i = le16_to_cpu(el->l_next_free_rec) - 1;
857                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
858                 if (!blkno) {
859                         ocfs2_error(inode->i_sb, "Dinode %llu has extent "
860                                     "list where extent # %d has no physical "
861                                     "block start",
862                                     (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
863                         status = -EIO;
864                         goto bail;
865                 }
866
867                 if (bh) {
868                         brelse(bh);
869                         bh = NULL;
870                 }
871
872                 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
873                                           inode);
874                 if (status < 0) {
875                         mlog_errno(status);
876                         goto bail;
877                 }
878
879                 eb = (struct ocfs2_extent_block *) bh->b_data;
880                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
881                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
882                         status = -EIO;
883                         goto bail;
884                 }
885                 el = &eb->h_list;
886
887                 if (le16_to_cpu(el->l_next_free_rec) <
888                     le16_to_cpu(el->l_count)) {
889                         if (lowest_bh)
890                                 brelse(lowest_bh);
891                         lowest_bh = bh;
892                         get_bh(lowest_bh);
893                 }
894         }
895
896         /* If we didn't find one and the fe doesn't have any room,
897          * then return '1' */
898         if (!lowest_bh
899             && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
900                 status = 1;
901
902         *target_bh = lowest_bh;
903 bail:
904         if (bh)
905                 brelse(bh);
906
907         mlog_exit(status);
908         return status;
909 }
910
911 /*
912  * Grow a b-tree so that it has more records.
913  *
914  * We might shift the tree depth in which case existing paths should
915  * be considered invalid.
916  *
917  * Tree depth after the grow is returned via *final_depth.
918  *
919  * *last_eb_bh will be updated by ocfs2_add_branch().
920  */
921 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
922                            struct buffer_head *di_bh, int *final_depth,
923                            struct buffer_head **last_eb_bh,
924                            struct ocfs2_alloc_context *meta_ac)
925 {
926         int ret, shift;
927         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
928         int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
929         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
930         struct buffer_head *bh = NULL;
931
932         BUG_ON(meta_ac == NULL);
933
934         shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
935         if (shift < 0) {
936                 ret = shift;
937                 mlog_errno(ret);
938                 goto out;
939         }
940
941         /* We traveled all the way to the bottom of the allocation tree
942          * and didn't find room for any more extents - we need to add
943          * another tree level */
944         if (shift) {
945                 BUG_ON(bh);
946                 mlog(0, "need to shift tree depth (current = %d)\n", depth);
947
948                 /* ocfs2_shift_tree_depth will return us a buffer with
949                  * the new extent block (so we can pass that to
950                  * ocfs2_add_branch). */
951                 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
952                                              meta_ac, &bh);
953                 if (ret < 0) {
954                         mlog_errno(ret);
955                         goto out;
956                 }
957                 depth++;
958                 if (depth == 1) {
959                         /*
960                          * Special case: we have room now if we shifted from
961                          * tree_depth 0, so no more work needs to be done.
962                          *
963                          * We won't be calling add_branch, so pass
964                          * back *last_eb_bh as the new leaf. At depth
965                          * zero, it should always be null so there's
966                          * no reason to brelse.
967                          */
968                         BUG_ON(*last_eb_bh);
969                         get_bh(bh);
970                         *last_eb_bh = bh;
971                         goto out;
972                 }
973         }
974
975         /* call ocfs2_add_branch to add the final part of the tree with
976          * the new data. */
977         mlog(0, "add branch. bh = %p\n", bh);
978         ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
979                                meta_ac);
980         if (ret < 0) {
981                 mlog_errno(ret);
982                 goto out;
983         }
984
985 out:
986         if (final_depth)
987                 *final_depth = depth;
988         brelse(bh);
989         return ret;
990 }
991
992 /*
993  * This is only valid for leaf nodes, which are the only ones that can
994  * have empty extents anyway.
995  */
996 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
997 {
998         return !rec->e_leaf_clusters;
999 }
1000
1001 /*
1002  * This function will discard the rightmost extent record.
1003  */
1004 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1005 {
1006         int next_free = le16_to_cpu(el->l_next_free_rec);
1007         int count = le16_to_cpu(el->l_count);
1008         unsigned int num_bytes;
1009
1010         BUG_ON(!next_free);
1011         /* This will cause us to go off the end of our extent list. */
1012         BUG_ON(next_free >= count);
1013
1014         num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1015
1016         memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1017 }
1018
1019 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1020                               struct ocfs2_extent_rec *insert_rec)
1021 {
1022         int i, insert_index, next_free, has_empty, num_bytes;
1023         u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1024         struct ocfs2_extent_rec *rec;
1025
1026         next_free = le16_to_cpu(el->l_next_free_rec);
1027         has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1028
1029         BUG_ON(!next_free);
1030
1031         /* The tree code before us didn't allow enough room in the leaf. */
1032         BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1033
1034         /*
1035          * The easiest way to approach this is to just remove the
1036          * empty extent and temporarily decrement next_free.
1037          */
1038         if (has_empty) {
1039                 /*
1040                  * If next_free was 1 (only an empty extent), this
1041                  * loop won't execute, which is fine. We still want
1042                  * the decrement above to happen.
1043                  */
1044                 for(i = 0; i < (next_free - 1); i++)
1045                         el->l_recs[i] = el->l_recs[i+1];
1046
1047                 next_free--;
1048         }
1049
1050         /*
1051          * Figure out what the new record index should be.
1052          */
1053         for(i = 0; i < next_free; i++) {
1054                 rec = &el->l_recs[i];
1055
1056                 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1057                         break;
1058         }
1059         insert_index = i;
1060
1061         mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1062              insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1063
1064         BUG_ON(insert_index < 0);
1065         BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1066         BUG_ON(insert_index > next_free);
1067
1068         /*
1069          * No need to memmove if we're just adding to the tail.
1070          */
1071         if (insert_index != next_free) {
1072                 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1073
1074                 num_bytes = next_free - insert_index;
1075                 num_bytes *= sizeof(struct ocfs2_extent_rec);
1076                 memmove(&el->l_recs[insert_index + 1],
1077                         &el->l_recs[insert_index],
1078                         num_bytes);
1079         }
1080
1081         /*
1082          * Either we had an empty extent, and need to re-increment or
1083          * there was no empty extent on a non full rightmost leaf node,
1084          * in which case we still need to increment.
1085          */
1086         next_free++;
1087         el->l_next_free_rec = cpu_to_le16(next_free);
1088         /*
1089          * Make sure none of the math above just messed up our tree.
1090          */
1091         BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1092
1093         el->l_recs[insert_index] = *insert_rec;
1094
1095 }
1096
1097 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1098 {
1099         int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1100
1101         BUG_ON(num_recs == 0);
1102
1103         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1104                 num_recs--;
1105                 size = num_recs * sizeof(struct ocfs2_extent_rec);
1106                 memmove(&el->l_recs[0], &el->l_recs[1], size);
1107                 memset(&el->l_recs[num_recs], 0,
1108                        sizeof(struct ocfs2_extent_rec));
1109                 el->l_next_free_rec = cpu_to_le16(num_recs);
1110         }
1111 }
1112
1113 /*
1114  * Create an empty extent record .
1115  *
1116  * l_next_free_rec may be updated.
1117  *
1118  * If an empty extent already exists do nothing.
1119  */
1120 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1121 {
1122         int next_free = le16_to_cpu(el->l_next_free_rec);
1123
1124         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1125
1126         if (next_free == 0)
1127                 goto set_and_inc;
1128
1129         if (ocfs2_is_empty_extent(&el->l_recs[0]))
1130                 return;
1131
1132         mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1133                         "Asked to create an empty extent in a full list:\n"
1134                         "count = %u, tree depth = %u",
1135                         le16_to_cpu(el->l_count),
1136                         le16_to_cpu(el->l_tree_depth));
1137
1138         ocfs2_shift_records_right(el);
1139
1140 set_and_inc:
1141         le16_add_cpu(&el->l_next_free_rec, 1);
1142         memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1143 }
1144
1145 /*
1146  * For a rotation which involves two leaf nodes, the "root node" is
1147  * the lowest level tree node which contains a path to both leafs. This
1148  * resulting set of information can be used to form a complete "subtree"
1149  *
1150  * This function is passed two full paths from the dinode down to a
1151  * pair of adjacent leaves. It's task is to figure out which path
1152  * index contains the subtree root - this can be the root index itself
1153  * in a worst-case rotation.
1154  *
1155  * The array index of the subtree root is passed back.
1156  */
1157 static int ocfs2_find_subtree_root(struct inode *inode,
1158                                    struct ocfs2_path *left,
1159                                    struct ocfs2_path *right)
1160 {
1161         int i = 0;
1162
1163         /*
1164          * Check that the caller passed in two paths from the same tree.
1165          */
1166         BUG_ON(path_root_bh(left) != path_root_bh(right));
1167
1168         do {
1169                 i++;
1170
1171                 /*
1172                  * The caller didn't pass two adjacent paths.
1173                  */
1174                 mlog_bug_on_msg(i > left->p_tree_depth,
1175                                 "Inode %lu, left depth %u, right depth %u\n"
1176                                 "left leaf blk %llu, right leaf blk %llu\n",
1177                                 inode->i_ino, left->p_tree_depth,
1178                                 right->p_tree_depth,
1179                                 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1180                                 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1181         } while (left->p_node[i].bh->b_blocknr ==
1182                  right->p_node[i].bh->b_blocknr);
1183
1184         return i - 1;
1185 }
1186
1187 typedef void (path_insert_t)(void *, struct buffer_head *);
1188
1189 /*
1190  * Traverse a btree path in search of cpos, starting at root_el.
1191  *
1192  * This code can be called with a cpos larger than the tree, in which
1193  * case it will return the rightmost path.
1194  */
1195 static int __ocfs2_find_path(struct inode *inode,
1196                              struct ocfs2_extent_list *root_el, u32 cpos,
1197                              path_insert_t *func, void *data)
1198 {
1199         int i, ret = 0;
1200         u32 range;
1201         u64 blkno;
1202         struct buffer_head *bh = NULL;
1203         struct ocfs2_extent_block *eb;
1204         struct ocfs2_extent_list *el;
1205         struct ocfs2_extent_rec *rec;
1206         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1207
1208         el = root_el;
1209         while (el->l_tree_depth) {
1210                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1211                         ocfs2_error(inode->i_sb,
1212                                     "Inode %llu has empty extent list at "
1213                                     "depth %u\n",
1214                                     (unsigned long long)oi->ip_blkno,
1215                                     le16_to_cpu(el->l_tree_depth));
1216                         ret = -EROFS;
1217                         goto out;
1218
1219                 }
1220
1221                 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1222                         rec = &el->l_recs[i];
1223
1224                         /*
1225                          * In the case that cpos is off the allocation
1226                          * tree, this should just wind up returning the
1227                          * rightmost record.
1228                          */
1229                         range = le32_to_cpu(rec->e_cpos) +
1230                                 ocfs2_rec_clusters(el, rec);
1231                         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1232                             break;
1233                 }
1234
1235                 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1236                 if (blkno == 0) {
1237                         ocfs2_error(inode->i_sb,
1238                                     "Inode %llu has bad blkno in extent list "
1239                                     "at depth %u (index %d)\n",
1240                                     (unsigned long long)oi->ip_blkno,
1241                                     le16_to_cpu(el->l_tree_depth), i);
1242                         ret = -EROFS;
1243                         goto out;
1244                 }
1245
1246                 brelse(bh);
1247                 bh = NULL;
1248                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1249                                        &bh, OCFS2_BH_CACHED, inode);
1250                 if (ret) {
1251                         mlog_errno(ret);
1252                         goto out;
1253                 }
1254
1255                 eb = (struct ocfs2_extent_block *) bh->b_data;
1256                 el = &eb->h_list;
1257                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1258                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1259                         ret = -EIO;
1260                         goto out;
1261                 }
1262
1263                 if (le16_to_cpu(el->l_next_free_rec) >
1264                     le16_to_cpu(el->l_count)) {
1265                         ocfs2_error(inode->i_sb,
1266                                     "Inode %llu has bad count in extent list "
1267                                     "at block %llu (next free=%u, count=%u)\n",
1268                                     (unsigned long long)oi->ip_blkno,
1269                                     (unsigned long long)bh->b_blocknr,
1270                                     le16_to_cpu(el->l_next_free_rec),
1271                                     le16_to_cpu(el->l_count));
1272                         ret = -EROFS;
1273                         goto out;
1274                 }
1275
1276                 if (func)
1277                         func(data, bh);
1278         }
1279
1280 out:
1281         /*
1282          * Catch any trailing bh that the loop didn't handle.
1283          */
1284         brelse(bh);
1285
1286         return ret;
1287 }
1288
1289 /*
1290  * Given an initialized path (that is, it has a valid root extent
1291  * list), this function will traverse the btree in search of the path
1292  * which would contain cpos.
1293  *
1294  * The path traveled is recorded in the path structure.
1295  *
1296  * Note that this will not do any comparisons on leaf node extent
1297  * records, so it will work fine in the case that we just added a tree
1298  * branch.
1299  */
1300 struct find_path_data {
1301         int index;
1302         struct ocfs2_path *path;
1303 };
1304 static void find_path_ins(void *data, struct buffer_head *bh)
1305 {
1306         struct find_path_data *fp = data;
1307
1308         get_bh(bh);
1309         ocfs2_path_insert_eb(fp->path, fp->index, bh);
1310         fp->index++;
1311 }
1312 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1313                            u32 cpos)
1314 {
1315         struct find_path_data data;
1316
1317         data.index = 1;
1318         data.path = path;
1319         return __ocfs2_find_path(inode, path_root_el(path), cpos,
1320                                  find_path_ins, &data);
1321 }
1322
1323 static void find_leaf_ins(void *data, struct buffer_head *bh)
1324 {
1325         struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1326         struct ocfs2_extent_list *el = &eb->h_list;
1327         struct buffer_head **ret = data;
1328
1329         /* We want to retain only the leaf block. */
1330         if (le16_to_cpu(el->l_tree_depth) == 0) {
1331                 get_bh(bh);
1332                 *ret = bh;
1333         }
1334 }
1335 /*
1336  * Find the leaf block in the tree which would contain cpos. No
1337  * checking of the actual leaf is done.
1338  *
1339  * Some paths want to call this instead of allocating a path structure
1340  * and calling ocfs2_find_path().
1341  *
1342  * This function doesn't handle non btree extent lists.
1343  */
1344 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1345                     u32 cpos, struct buffer_head **leaf_bh)
1346 {
1347         int ret;
1348         struct buffer_head *bh = NULL;
1349
1350         ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1351         if (ret) {
1352                 mlog_errno(ret);
1353                 goto out;
1354         }
1355
1356         *leaf_bh = bh;
1357 out:
1358         return ret;
1359 }
1360
1361 /*
1362  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1363  *
1364  * Basically, we've moved stuff around at the bottom of the tree and
1365  * we need to fix up the extent records above the changes to reflect
1366  * the new changes.
1367  *
1368  * left_rec: the record on the left.
1369  * left_child_el: is the child list pointed to by left_rec
1370  * right_rec: the record to the right of left_rec
1371  * right_child_el: is the child list pointed to by right_rec
1372  *
1373  * By definition, this only works on interior nodes.
1374  */
1375 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1376                                   struct ocfs2_extent_list *left_child_el,
1377                                   struct ocfs2_extent_rec *right_rec,
1378                                   struct ocfs2_extent_list *right_child_el)
1379 {
1380         u32 left_clusters, right_end;
1381
1382         /*
1383          * Interior nodes never have holes. Their cpos is the cpos of
1384          * the leftmost record in their child list. Their cluster
1385          * count covers the full theoretical range of their child list
1386          * - the range between their cpos and the cpos of the record
1387          * immediately to their right.
1388          */
1389         left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1390         if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1391                 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1392                 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1393         }
1394         left_clusters -= le32_to_cpu(left_rec->e_cpos);
1395         left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1396
1397         /*
1398          * Calculate the rightmost cluster count boundary before
1399          * moving cpos - we will need to adjust clusters after
1400          * updating e_cpos to keep the same highest cluster count.
1401          */
1402         right_end = le32_to_cpu(right_rec->e_cpos);
1403         right_end += le32_to_cpu(right_rec->e_int_clusters);
1404
1405         right_rec->e_cpos = left_rec->e_cpos;
1406         le32_add_cpu(&right_rec->e_cpos, left_clusters);
1407
1408         right_end -= le32_to_cpu(right_rec->e_cpos);
1409         right_rec->e_int_clusters = cpu_to_le32(right_end);
1410 }
1411
1412 /*
1413  * Adjust the adjacent root node records involved in a
1414  * rotation. left_el_blkno is passed in as a key so that we can easily
1415  * find it's index in the root list.
1416  */
1417 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1418                                       struct ocfs2_extent_list *left_el,
1419                                       struct ocfs2_extent_list *right_el,
1420                                       u64 left_el_blkno)
1421 {
1422         int i;
1423
1424         BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1425                le16_to_cpu(left_el->l_tree_depth));
1426
1427         for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1428                 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1429                         break;
1430         }
1431
1432         /*
1433          * The path walking code should have never returned a root and
1434          * two paths which are not adjacent.
1435          */
1436         BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1437
1438         ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1439                                       &root_el->l_recs[i + 1], right_el);
1440 }
1441
1442 /*
1443  * We've changed a leaf block (in right_path) and need to reflect that
1444  * change back up the subtree.
1445  *
1446  * This happens in multiple places:
1447  *   - When we've moved an extent record from the left path leaf to the right
1448  *     path leaf to make room for an empty extent in the left path leaf.
1449  *   - When our insert into the right path leaf is at the leftmost edge
1450  *     and requires an update of the path immediately to it's left. This
1451  *     can occur at the end of some types of rotation and appending inserts.
1452  *   - When we've adjusted the last extent record in the left path leaf and the
1453  *     1st extent record in the right path leaf during cross extent block merge.
1454  */
1455 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1456                                        struct ocfs2_path *left_path,
1457                                        struct ocfs2_path *right_path,
1458                                        int subtree_index)
1459 {
1460         int ret, i, idx;
1461         struct ocfs2_extent_list *el, *left_el, *right_el;
1462         struct ocfs2_extent_rec *left_rec, *right_rec;
1463         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1464
1465         /*
1466          * Update the counts and position values within all the
1467          * interior nodes to reflect the leaf rotation we just did.
1468          *
1469          * The root node is handled below the loop.
1470          *
1471          * We begin the loop with right_el and left_el pointing to the
1472          * leaf lists and work our way up.
1473          *
1474          * NOTE: within this loop, left_el and right_el always refer
1475          * to the *child* lists.
1476          */
1477         left_el = path_leaf_el(left_path);
1478         right_el = path_leaf_el(right_path);
1479         for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1480                 mlog(0, "Adjust records at index %u\n", i);
1481
1482                 /*
1483                  * One nice property of knowing that all of these
1484                  * nodes are below the root is that we only deal with
1485                  * the leftmost right node record and the rightmost
1486                  * left node record.
1487                  */
1488                 el = left_path->p_node[i].el;
1489                 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1490                 left_rec = &el->l_recs[idx];
1491
1492                 el = right_path->p_node[i].el;
1493                 right_rec = &el->l_recs[0];
1494
1495                 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1496                                               right_el);
1497
1498                 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1499                 if (ret)
1500                         mlog_errno(ret);
1501
1502                 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1503                 if (ret)
1504                         mlog_errno(ret);
1505
1506                 /*
1507                  * Setup our list pointers now so that the current
1508                  * parents become children in the next iteration.
1509                  */
1510                 left_el = left_path->p_node[i].el;
1511                 right_el = right_path->p_node[i].el;
1512         }
1513
1514         /*
1515          * At the root node, adjust the two adjacent records which
1516          * begin our path to the leaves.
1517          */
1518
1519         el = left_path->p_node[subtree_index].el;
1520         left_el = left_path->p_node[subtree_index + 1].el;
1521         right_el = right_path->p_node[subtree_index + 1].el;
1522
1523         ocfs2_adjust_root_records(el, left_el, right_el,
1524                                   left_path->p_node[subtree_index + 1].bh->b_blocknr);
1525
1526         root_bh = left_path->p_node[subtree_index].bh;
1527
1528         ret = ocfs2_journal_dirty(handle, root_bh);
1529         if (ret)
1530                 mlog_errno(ret);
1531 }
1532
1533 static int ocfs2_rotate_subtree_right(struct inode *inode,
1534                                       handle_t *handle,
1535                                       struct ocfs2_path *left_path,
1536                                       struct ocfs2_path *right_path,
1537                                       int subtree_index)
1538 {
1539         int ret, i;
1540         struct buffer_head *right_leaf_bh;
1541         struct buffer_head *left_leaf_bh = NULL;
1542         struct buffer_head *root_bh;
1543         struct ocfs2_extent_list *right_el, *left_el;
1544         struct ocfs2_extent_rec move_rec;
1545
1546         left_leaf_bh = path_leaf_bh(left_path);
1547         left_el = path_leaf_el(left_path);
1548
1549         if (left_el->l_next_free_rec != left_el->l_count) {
1550                 ocfs2_error(inode->i_sb,
1551                             "Inode %llu has non-full interior leaf node %llu"
1552                             "(next free = %u)",
1553                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1554                             (unsigned long long)left_leaf_bh->b_blocknr,
1555                             le16_to_cpu(left_el->l_next_free_rec));
1556                 return -EROFS;
1557         }
1558
1559         /*
1560          * This extent block may already have an empty record, so we
1561          * return early if so.
1562          */
1563         if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1564                 return 0;
1565
1566         root_bh = left_path->p_node[subtree_index].bh;
1567         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1568
1569         ret = ocfs2_journal_access(handle, inode, root_bh,
1570                                    OCFS2_JOURNAL_ACCESS_WRITE);
1571         if (ret) {
1572                 mlog_errno(ret);
1573                 goto out;
1574         }
1575
1576         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1577                 ret = ocfs2_journal_access(handle, inode,
1578                                            right_path->p_node[i].bh,
1579                                            OCFS2_JOURNAL_ACCESS_WRITE);
1580                 if (ret) {
1581                         mlog_errno(ret);
1582                         goto out;
1583                 }
1584
1585                 ret = ocfs2_journal_access(handle, inode,
1586                                            left_path->p_node[i].bh,
1587                                            OCFS2_JOURNAL_ACCESS_WRITE);
1588                 if (ret) {
1589                         mlog_errno(ret);
1590                         goto out;
1591                 }
1592         }
1593
1594         right_leaf_bh = path_leaf_bh(right_path);
1595         right_el = path_leaf_el(right_path);
1596
1597         /* This is a code error, not a disk corruption. */
1598         mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1599                         "because rightmost leaf block %llu is empty\n",
1600                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1601                         (unsigned long long)right_leaf_bh->b_blocknr);
1602
1603         ocfs2_create_empty_extent(right_el);
1604
1605         ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1606         if (ret) {
1607                 mlog_errno(ret);
1608                 goto out;
1609         }
1610
1611         /* Do the copy now. */
1612         i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1613         move_rec = left_el->l_recs[i];
1614         right_el->l_recs[0] = move_rec;
1615
1616         /*
1617          * Clear out the record we just copied and shift everything
1618          * over, leaving an empty extent in the left leaf.
1619          *
1620          * We temporarily subtract from next_free_rec so that the
1621          * shift will lose the tail record (which is now defunct).
1622          */
1623         le16_add_cpu(&left_el->l_next_free_rec, -1);
1624         ocfs2_shift_records_right(left_el);
1625         memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1626         le16_add_cpu(&left_el->l_next_free_rec, 1);
1627
1628         ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1629         if (ret) {
1630                 mlog_errno(ret);
1631                 goto out;
1632         }
1633
1634         ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1635                                 subtree_index);
1636
1637 out:
1638         return ret;
1639 }
1640
1641 /*
1642  * Given a full path, determine what cpos value would return us a path
1643  * containing the leaf immediately to the left of the current one.
1644  *
1645  * Will return zero if the path passed in is already the leftmost path.
1646  */
1647 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1648                                          struct ocfs2_path *path, u32 *cpos)
1649 {
1650         int i, j, ret = 0;
1651         u64 blkno;
1652         struct ocfs2_extent_list *el;
1653
1654         BUG_ON(path->p_tree_depth == 0);
1655
1656         *cpos = 0;
1657
1658         blkno = path_leaf_bh(path)->b_blocknr;
1659
1660         /* Start at the tree node just above the leaf and work our way up. */
1661         i = path->p_tree_depth - 1;
1662         while (i >= 0) {
1663                 el = path->p_node[i].el;
1664
1665                 /*
1666                  * Find the extent record just before the one in our
1667                  * path.
1668                  */
1669                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1670                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1671                                 if (j == 0) {
1672                                         if (i == 0) {
1673                                                 /*
1674                                                  * We've determined that the
1675                                                  * path specified is already
1676                                                  * the leftmost one - return a
1677                                                  * cpos of zero.
1678                                                  */
1679                                                 goto out;
1680                                         }
1681                                         /*
1682                                          * The leftmost record points to our
1683                                          * leaf - we need to travel up the
1684                                          * tree one level.
1685                                          */
1686                                         goto next_node;
1687                                 }
1688
1689                                 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1690                                 *cpos = *cpos + ocfs2_rec_clusters(el,
1691                                                            &el->l_recs[j - 1]);
1692                                 *cpos = *cpos - 1;
1693                                 goto out;
1694                         }
1695                 }
1696
1697                 /*
1698                  * If we got here, we never found a valid node where
1699                  * the tree indicated one should be.
1700                  */
1701                 ocfs2_error(sb,
1702                             "Invalid extent tree at extent block %llu\n",
1703                             (unsigned long long)blkno);
1704                 ret = -EROFS;
1705                 goto out;
1706
1707 next_node:
1708                 blkno = path->p_node[i].bh->b_blocknr;
1709                 i--;
1710         }
1711
1712 out:
1713         return ret;
1714 }
1715
1716 /*
1717  * Extend the transaction by enough credits to complete the rotation,
1718  * and still leave at least the original number of credits allocated
1719  * to this transaction.
1720  */
1721 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1722                                            int op_credits,
1723                                            struct ocfs2_path *path)
1724 {
1725         int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1726
1727         if (handle->h_buffer_credits < credits)
1728                 return ocfs2_extend_trans(handle, credits);
1729
1730         return 0;
1731 }
1732
1733 /*
1734  * Trap the case where we're inserting into the theoretical range past
1735  * the _actual_ left leaf range. Otherwise, we'll rotate a record
1736  * whose cpos is less than ours into the right leaf.
1737  *
1738  * It's only necessary to look at the rightmost record of the left
1739  * leaf because the logic that calls us should ensure that the
1740  * theoretical ranges in the path components above the leaves are
1741  * correct.
1742  */
1743 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1744                                                  u32 insert_cpos)
1745 {
1746         struct ocfs2_extent_list *left_el;
1747         struct ocfs2_extent_rec *rec;
1748         int next_free;
1749
1750         left_el = path_leaf_el(left_path);
1751         next_free = le16_to_cpu(left_el->l_next_free_rec);
1752         rec = &left_el->l_recs[next_free - 1];
1753
1754         if (insert_cpos > le32_to_cpu(rec->e_cpos))
1755                 return 1;
1756         return 0;
1757 }
1758
1759 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1760 {
1761         int next_free = le16_to_cpu(el->l_next_free_rec);
1762         unsigned int range;
1763         struct ocfs2_extent_rec *rec;
1764
1765         if (next_free == 0)
1766                 return 0;
1767
1768         rec = &el->l_recs[0];
1769         if (ocfs2_is_empty_extent(rec)) {
1770                 /* Empty list. */
1771                 if (next_free == 1)
1772                         return 0;
1773                 rec = &el->l_recs[1];
1774         }
1775
1776         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1777         if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1778                 return 1;
1779         return 0;
1780 }
1781
1782 /*
1783  * Rotate all the records in a btree right one record, starting at insert_cpos.
1784  *
1785  * The path to the rightmost leaf should be passed in.
1786  *
1787  * The array is assumed to be large enough to hold an entire path (tree depth).
1788  *
1789  * Upon succesful return from this function:
1790  *
1791  * - The 'right_path' array will contain a path to the leaf block
1792  *   whose range contains e_cpos.
1793  * - That leaf block will have a single empty extent in list index 0.
1794  * - In the case that the rotation requires a post-insert update,
1795  *   *ret_left_path will contain a valid path which can be passed to
1796  *   ocfs2_insert_path().
1797  */
1798 static int ocfs2_rotate_tree_right(struct inode *inode,
1799                                    handle_t *handle,
1800                                    enum ocfs2_split_type split,
1801                                    u32 insert_cpos,
1802                                    struct ocfs2_path *right_path,
1803                                    struct ocfs2_path **ret_left_path)
1804 {
1805         int ret, start, orig_credits = handle->h_buffer_credits;
1806         u32 cpos;
1807         struct ocfs2_path *left_path = NULL;
1808
1809         *ret_left_path = NULL;
1810
1811         left_path = ocfs2_new_path(path_root_bh(right_path),
1812                                    path_root_el(right_path));
1813         if (!left_path) {
1814                 ret = -ENOMEM;
1815                 mlog_errno(ret);
1816                 goto out;
1817         }
1818
1819         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1820         if (ret) {
1821                 mlog_errno(ret);
1822                 goto out;
1823         }
1824
1825         mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1826
1827         /*
1828          * What we want to do here is:
1829          *
1830          * 1) Start with the rightmost path.
1831          *
1832          * 2) Determine a path to the leaf block directly to the left
1833          *    of that leaf.
1834          *
1835          * 3) Determine the 'subtree root' - the lowest level tree node
1836          *    which contains a path to both leaves.
1837          *
1838          * 4) Rotate the subtree.
1839          *
1840          * 5) Find the next subtree by considering the left path to be
1841          *    the new right path.
1842          *
1843          * The check at the top of this while loop also accepts
1844          * insert_cpos == cpos because cpos is only a _theoretical_
1845          * value to get us the left path - insert_cpos might very well
1846          * be filling that hole.
1847          *
1848          * Stop at a cpos of '0' because we either started at the
1849          * leftmost branch (i.e., a tree with one branch and a
1850          * rotation inside of it), or we've gone as far as we can in
1851          * rotating subtrees.
1852          */
1853         while (cpos && insert_cpos <= cpos) {
1854                 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1855                      insert_cpos, cpos);
1856
1857                 ret = ocfs2_find_path(inode, left_path, cpos);
1858                 if (ret) {
1859                         mlog_errno(ret);
1860                         goto out;
1861                 }
1862
1863                 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1864                                 path_leaf_bh(right_path),
1865                                 "Inode %lu: error during insert of %u "
1866                                 "(left path cpos %u) results in two identical "
1867                                 "paths ending at %llu\n",
1868                                 inode->i_ino, insert_cpos, cpos,
1869                                 (unsigned long long)
1870                                 path_leaf_bh(left_path)->b_blocknr);
1871
1872                 if (split == SPLIT_NONE &&
1873                     ocfs2_rotate_requires_path_adjustment(left_path,
1874                                                           insert_cpos)) {
1875
1876                         /*
1877                          * We've rotated the tree as much as we
1878                          * should. The rest is up to
1879                          * ocfs2_insert_path() to complete, after the
1880                          * record insertion. We indicate this
1881                          * situation by returning the left path.
1882                          *
1883                          * The reason we don't adjust the records here
1884                          * before the record insert is that an error
1885                          * later might break the rule where a parent
1886                          * record e_cpos will reflect the actual
1887                          * e_cpos of the 1st nonempty record of the
1888                          * child list.
1889                          */
1890                         *ret_left_path = left_path;
1891                         goto out_ret_path;
1892                 }
1893
1894                 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1895
1896                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1897                      start,
1898                      (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1899                      right_path->p_tree_depth);
1900
1901                 ret = ocfs2_extend_rotate_transaction(handle, start,
1902                                                       orig_credits, right_path);
1903                 if (ret) {
1904                         mlog_errno(ret);
1905                         goto out;
1906                 }
1907
1908                 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1909                                                  right_path, start);
1910                 if (ret) {
1911                         mlog_errno(ret);
1912                         goto out;
1913                 }
1914
1915                 if (split != SPLIT_NONE &&
1916                     ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1917                                                 insert_cpos)) {
1918                         /*
1919                          * A rotate moves the rightmost left leaf
1920                          * record over to the leftmost right leaf
1921                          * slot. If we're doing an extent split
1922                          * instead of a real insert, then we have to
1923                          * check that the extent to be split wasn't
1924                          * just moved over. If it was, then we can
1925                          * exit here, passing left_path back -
1926                          * ocfs2_split_extent() is smart enough to
1927                          * search both leaves.
1928                          */
1929                         *ret_left_path = left_path;
1930                         goto out_ret_path;
1931                 }
1932
1933                 /*
1934                  * There is no need to re-read the next right path
1935                  * as we know that it'll be our current left
1936                  * path. Optimize by copying values instead.
1937                  */
1938                 ocfs2_mv_path(right_path, left_path);
1939
1940                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1941                                                     &cpos);
1942                 if (ret) {
1943                         mlog_errno(ret);
1944                         goto out;
1945                 }
1946         }
1947
1948 out:
1949         ocfs2_free_path(left_path);
1950
1951 out_ret_path:
1952         return ret;
1953 }
1954
1955 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1956                                       struct ocfs2_path *path)
1957 {
1958         int i, idx;
1959         struct ocfs2_extent_rec *rec;
1960         struct ocfs2_extent_list *el;
1961         struct ocfs2_extent_block *eb;
1962         u32 range;
1963
1964         /* Path should always be rightmost. */
1965         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1966         BUG_ON(eb->h_next_leaf_blk != 0ULL);
1967
1968         el = &eb->h_list;
1969         BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1970         idx = le16_to_cpu(el->l_next_free_rec) - 1;
1971         rec = &el->l_recs[idx];
1972         range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1973
1974         for (i = 0; i < path->p_tree_depth; i++) {
1975                 el = path->p_node[i].el;
1976                 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1977                 rec = &el->l_recs[idx];
1978
1979                 rec->e_int_clusters = cpu_to_le32(range);
1980                 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1981
1982                 ocfs2_journal_dirty(handle, path->p_node[i].bh);
1983         }
1984 }
1985
1986 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1987                               struct ocfs2_cached_dealloc_ctxt *dealloc,
1988                               struct ocfs2_path *path, int unlink_start)
1989 {
1990         int ret, i;
1991         struct ocfs2_extent_block *eb;
1992         struct ocfs2_extent_list *el;
1993         struct buffer_head *bh;
1994
1995         for(i = unlink_start; i < path_num_items(path); i++) {
1996                 bh = path->p_node[i].bh;
1997
1998                 eb = (struct ocfs2_extent_block *)bh->b_data;
1999                 /*
2000                  * Not all nodes might have had their final count
2001                  * decremented by the caller - handle this here.
2002                  */
2003                 el = &eb->h_list;
2004                 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2005                         mlog(ML_ERROR,
2006                              "Inode %llu, attempted to remove extent block "
2007                              "%llu with %u records\n",
2008                              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2009                              (unsigned long long)le64_to_cpu(eb->h_blkno),
2010                              le16_to_cpu(el->l_next_free_rec));
2011
2012                         ocfs2_journal_dirty(handle, bh);
2013                         ocfs2_remove_from_cache(inode, bh);
2014                         continue;
2015                 }
2016
2017                 el->l_next_free_rec = 0;
2018                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2019
2020                 ocfs2_journal_dirty(handle, bh);
2021
2022                 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2023                 if (ret)
2024                         mlog_errno(ret);
2025
2026                 ocfs2_remove_from_cache(inode, bh);
2027         }
2028 }
2029
2030 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2031                                  struct ocfs2_path *left_path,
2032                                  struct ocfs2_path *right_path,
2033                                  int subtree_index,
2034                                  struct ocfs2_cached_dealloc_ctxt *dealloc)
2035 {
2036         int i;
2037         struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2038         struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2039         struct ocfs2_extent_list *el;
2040         struct ocfs2_extent_block *eb;
2041
2042         el = path_leaf_el(left_path);
2043
2044         eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2045
2046         for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2047                 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2048                         break;
2049
2050         BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2051
2052         memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2053         le16_add_cpu(&root_el->l_next_free_rec, -1);
2054
2055         eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2056         eb->h_next_leaf_blk = 0;
2057
2058         ocfs2_journal_dirty(handle, root_bh);
2059         ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2060
2061         ocfs2_unlink_path(inode, handle, dealloc, right_path,
2062                           subtree_index + 1);
2063 }
2064
2065 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2066                                      struct ocfs2_path *left_path,
2067                                      struct ocfs2_path *right_path,
2068                                      int subtree_index,
2069                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
2070                                      int *deleted)
2071 {
2072         int ret, i, del_right_subtree = 0, right_has_empty = 0;
2073         struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2074         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2075         struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2076         struct ocfs2_extent_block *eb;
2077
2078         *deleted = 0;
2079
2080         right_leaf_el = path_leaf_el(right_path);
2081         left_leaf_el = path_leaf_el(left_path);
2082         root_bh = left_path->p_node[subtree_index].bh;
2083         BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2084
2085         if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2086                 return 0;
2087
2088         eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2089         if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2090                 /*
2091                  * It's legal for us to proceed if the right leaf is
2092                  * the rightmost one and it has an empty extent. There
2093                  * are two cases to handle - whether the leaf will be
2094                  * empty after removal or not. If the leaf isn't empty
2095                  * then just remove the empty extent up front. The
2096                  * next block will handle empty leaves by flagging
2097                  * them for unlink.
2098                  *
2099                  * Non rightmost leaves will throw -EAGAIN and the
2100                  * caller can manually move the subtree and retry.
2101                  */
2102
2103                 if (eb->h_next_leaf_blk != 0ULL)
2104                         return -EAGAIN;
2105
2106                 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2107                         ret = ocfs2_journal_access(handle, inode,
2108                                                    path_leaf_bh(right_path),
2109                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2110                         if (ret) {
2111                                 mlog_errno(ret);
2112                                 goto out;
2113                         }
2114
2115                         ocfs2_remove_empty_extent(right_leaf_el);
2116                 } else
2117                         right_has_empty = 1;
2118         }
2119
2120         if (eb->h_next_leaf_blk == 0ULL &&
2121             le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2122                 /*
2123                  * We have to update i_last_eb_blk during the meta
2124                  * data delete.
2125                  */
2126                 ret = ocfs2_journal_access(handle, inode, di_bh,
2127                                            OCFS2_JOURNAL_ACCESS_WRITE);
2128                 if (ret) {
2129                         mlog_errno(ret);
2130                         goto out;
2131                 }
2132
2133                 del_right_subtree = 1;
2134         }
2135
2136         /*
2137          * Getting here with an empty extent in the right path implies
2138          * that it's the rightmost path and will be deleted.
2139          */
2140         BUG_ON(right_has_empty && !del_right_subtree);
2141
2142         ret = ocfs2_journal_access(handle, inode, root_bh,
2143                                    OCFS2_JOURNAL_ACCESS_WRITE);
2144         if (ret) {
2145                 mlog_errno(ret);
2146                 goto out;
2147         }
2148
2149         for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2150                 ret = ocfs2_journal_access(handle, inode,
2151                                            right_path->p_node[i].bh,
2152                                            OCFS2_JOURNAL_ACCESS_WRITE);
2153                 if (ret) {
2154                         mlog_errno(ret);
2155                         goto out;
2156                 }
2157
2158                 ret = ocfs2_journal_access(handle, inode,
2159                                            left_path->p_node[i].bh,
2160                                            OCFS2_JOURNAL_ACCESS_WRITE);
2161                 if (ret) {
2162                         mlog_errno(ret);
2163                         goto out;
2164                 }
2165         }
2166
2167         if (!right_has_empty) {
2168                 /*
2169                  * Only do this if we're moving a real
2170                  * record. Otherwise, the action is delayed until
2171                  * after removal of the right path in which case we
2172                  * can do a simple shift to remove the empty extent.
2173                  */
2174                 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2175                 memset(&right_leaf_el->l_recs[0], 0,
2176                        sizeof(struct ocfs2_extent_rec));
2177         }
2178         if (eb->h_next_leaf_blk == 0ULL) {
2179                 /*
2180                  * Move recs over to get rid of empty extent, decrease
2181                  * next_free. This is allowed to remove the last
2182                  * extent in our leaf (setting l_next_free_rec to
2183                  * zero) - the delete code below won't care.
2184                  */
2185                 ocfs2_remove_empty_extent(right_leaf_el);
2186         }
2187
2188         ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2189         if (ret)
2190                 mlog_errno(ret);
2191         ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2192         if (ret)
2193                 mlog_errno(ret);
2194
2195         if (del_right_subtree) {
2196                 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2197                                      subtree_index, dealloc);
2198                 ocfs2_update_edge_lengths(inode, handle, left_path);
2199
2200                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2201                 di->i_last_eb_blk = eb->h_blkno;
2202
2203                 /*
2204                  * Removal of the extent in the left leaf was skipped
2205                  * above so we could delete the right path
2206                  * 1st.
2207                  */
2208                 if (right_has_empty)
2209                         ocfs2_remove_empty_extent(left_leaf_el);
2210
2211                 ret = ocfs2_journal_dirty(handle, di_bh);
2212                 if (ret)
2213                         mlog_errno(ret);
2214
2215                 *deleted = 1;
2216         } else
2217                 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2218                                            subtree_index);
2219
2220 out:
2221         return ret;
2222 }
2223
2224 /*
2225  * Given a full path, determine what cpos value would return us a path
2226  * containing the leaf immediately to the right of the current one.
2227  *
2228  * Will return zero if the path passed in is already the rightmost path.
2229  *
2230  * This looks similar, but is subtly different to
2231  * ocfs2_find_cpos_for_left_leaf().
2232  */
2233 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2234                                           struct ocfs2_path *path, u32 *cpos)
2235 {
2236         int i, j, ret = 0;
2237         u64 blkno;
2238         struct ocfs2_extent_list *el;
2239
2240         *cpos = 0;
2241
2242         if (path->p_tree_depth == 0)
2243                 return 0;
2244
2245         blkno = path_leaf_bh(path)->b_blocknr;
2246
2247         /* Start at the tree node just above the leaf and work our way up. */
2248         i = path->p_tree_depth - 1;
2249         while (i >= 0) {
2250                 int next_free;
2251
2252                 el = path->p_node[i].el;
2253
2254                 /*
2255                  * Find the extent record just after the one in our
2256                  * path.
2257                  */
2258                 next_free = le16_to_cpu(el->l_next_free_rec);
2259                 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2260                         if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2261                                 if (j == (next_free - 1)) {
2262                                         if (i == 0) {
2263                                                 /*
2264                                                  * We've determined that the
2265                                                  * path specified is already
2266                                                  * the rightmost one - return a
2267                                                  * cpos of zero.
2268                                                  */
2269                                                 goto out;
2270                                         }
2271                                         /*
2272                                          * The rightmost record points to our
2273                                          * leaf - we need to travel up the
2274                                          * tree one level.
2275                                          */
2276                                         goto next_node;
2277                                 }
2278
2279                                 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2280                                 goto out;
2281                         }
2282                 }
2283
2284                 /*
2285                  * If we got here, we never found a valid node where
2286                  * the tree indicated one should be.
2287                  */
2288                 ocfs2_error(sb,
2289                             "Invalid extent tree at extent block %llu\n",
2290                             (unsigned long long)blkno);
2291                 ret = -EROFS;
2292                 goto out;
2293
2294 next_node:
2295                 blkno = path->p_node[i].bh->b_blocknr;
2296                 i--;
2297         }
2298
2299 out:
2300         return ret;
2301 }
2302
2303 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2304                                             handle_t *handle,
2305                                             struct buffer_head *bh,
2306                                             struct ocfs2_extent_list *el)
2307 {
2308         int ret;
2309
2310         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2311                 return 0;
2312
2313         ret = ocfs2_journal_access(handle, inode, bh,
2314                                    OCFS2_JOURNAL_ACCESS_WRITE);
2315         if (ret) {
2316                 mlog_errno(ret);
2317                 goto out;
2318         }
2319
2320         ocfs2_remove_empty_extent(el);
2321
2322         ret = ocfs2_journal_dirty(handle, bh);
2323         if (ret)
2324                 mlog_errno(ret);
2325
2326 out:
2327         return ret;
2328 }
2329
2330 static int __ocfs2_rotate_tree_left(struct inode *inode,
2331                                     handle_t *handle, int orig_credits,
2332                                     struct ocfs2_path *path,
2333                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
2334                                     struct ocfs2_path **empty_extent_path)
2335 {
2336         int ret, subtree_root, deleted;
2337         u32 right_cpos;
2338         struct ocfs2_path *left_path = NULL;
2339         struct ocfs2_path *right_path = NULL;
2340
2341         BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2342
2343         *empty_extent_path = NULL;
2344
2345         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2346                                              &right_cpos);
2347         if (ret) {
2348                 mlog_errno(ret);
2349                 goto out;
2350         }
2351
2352         left_path = ocfs2_new_path(path_root_bh(path),
2353                                    path_root_el(path));
2354         if (!left_path) {
2355                 ret = -ENOMEM;
2356                 mlog_errno(ret);
2357                 goto out;
2358         }
2359
2360         ocfs2_cp_path(left_path, path);
2361
2362         right_path = ocfs2_new_path(path_root_bh(path),
2363                                     path_root_el(path));
2364         if (!right_path) {
2365                 ret = -ENOMEM;
2366                 mlog_errno(ret);
2367                 goto out;
2368         }
2369
2370         while (right_cpos) {
2371                 ret = ocfs2_find_path(inode, right_path, right_cpos);
2372                 if (ret) {
2373                         mlog_errno(ret);
2374                         goto out;
2375                 }
2376
2377                 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2378                                                        right_path);
2379
2380                 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2381                      subtree_root,
2382                      (unsigned long long)
2383                      right_path->p_node[subtree_root].bh->b_blocknr,
2384                      right_path->p_tree_depth);
2385
2386                 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2387                                                       orig_credits, left_path);
2388                 if (ret) {
2389                         mlog_errno(ret);
2390                         goto out;
2391                 }
2392
2393                 /*
2394                  * Caller might still want to make changes to the
2395                  * tree root, so re-add it to the journal here.
2396                  */
2397                 ret = ocfs2_journal_access(handle, inode,
2398                                            path_root_bh(left_path),
2399                                            OCFS2_JOURNAL_ACCESS_WRITE);
2400                 if (ret) {
2401                         mlog_errno(ret);
2402                         goto out;
2403                 }
2404
2405                 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2406                                                 right_path, subtree_root,
2407                                                 dealloc, &deleted);
2408                 if (ret == -EAGAIN) {
2409                         /*
2410                          * The rotation has to temporarily stop due to
2411                          * the right subtree having an empty
2412                          * extent. Pass it back to the caller for a
2413                          * fixup.
2414                          */
2415                         *empty_extent_path = right_path;
2416                         right_path = NULL;
2417                         goto out;
2418                 }
2419                 if (ret) {
2420                         mlog_errno(ret);
2421                         goto out;
2422                 }
2423
2424                 /*
2425                  * The subtree rotate might have removed records on
2426                  * the rightmost edge. If so, then rotation is
2427                  * complete.
2428                  */
2429                 if (deleted)
2430                         break;
2431
2432                 ocfs2_mv_path(left_path, right_path);
2433
2434                 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2435                                                      &right_cpos);
2436                 if (ret) {
2437                         mlog_errno(ret);
2438                         goto out;
2439                 }
2440         }
2441
2442 out:
2443         ocfs2_free_path(right_path);
2444         ocfs2_free_path(left_path);
2445
2446         return ret;
2447 }
2448
2449 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2450                                        struct ocfs2_path *path,
2451                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
2452 {
2453         int ret, subtree_index;
2454         u32 cpos;
2455         struct ocfs2_path *left_path = NULL;
2456         struct ocfs2_dinode *di;
2457         struct ocfs2_extent_block *eb;
2458         struct ocfs2_extent_list *el;
2459
2460         /*
2461          * XXX: This code assumes that the root is an inode, which is
2462          * true for now but may change as tree code gets generic.
2463          */
2464         di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2465         if (!OCFS2_IS_VALID_DINODE(di)) {
2466                 ret = -EIO;
2467                 ocfs2_error(inode->i_sb,
2468                             "Inode %llu has invalid path root",
2469                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
2470                 goto out;
2471         }
2472
2473         /*
2474          * There's two ways we handle this depending on
2475          * whether path is the only existing one.
2476          */
2477         ret = ocfs2_extend_rotate_transaction(handle, 0,
2478                                               handle->h_buffer_credits,
2479                                               path);
2480         if (ret) {
2481                 mlog_errno(ret);
2482                 goto out;
2483         }
2484
2485         ret = ocfs2_journal_access_path(inode, handle, path);
2486         if (ret) {
2487                 mlog_errno(ret);
2488                 goto out;
2489         }
2490
2491         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2492         if (ret) {
2493                 mlog_errno(ret);
2494                 goto out;
2495         }
2496
2497         if (cpos) {
2498                 /*
2499                  * We have a path to the left of this one - it needs
2500                  * an update too.
2501                  */
2502                 left_path = ocfs2_new_path(path_root_bh(path),
2503                                            path_root_el(path));
2504                 if (!left_path) {
2505                         ret = -ENOMEM;
2506                         mlog_errno(ret);
2507                         goto out;
2508                 }
2509
2510                 ret = ocfs2_find_path(inode, left_path, cpos);
2511                 if (ret) {
2512                         mlog_errno(ret);
2513                         goto out;
2514                 }
2515
2516                 ret = ocfs2_journal_access_path(inode, handle, left_path);
2517                 if (ret) {
2518                         mlog_errno(ret);
2519                         goto out;
2520                 }
2521
2522                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2523
2524                 ocfs2_unlink_subtree(inode, handle, left_path, path,
2525                                      subtree_index, dealloc);
2526                 ocfs2_update_edge_lengths(inode, handle, left_path);
2527
2528                 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2529                 di->i_last_eb_blk = eb->h_blkno;
2530         } else {
2531                 /*
2532                  * 'path' is also the leftmost path which
2533                  * means it must be the only one. This gets
2534                  * handled differently because we want to
2535                  * revert the inode back to having extents
2536                  * in-line.
2537                  */
2538                 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2539
2540                 el = &di->id2.i_list;
2541                 el->l_tree_depth = 0;
2542                 el->l_next_free_rec = 0;
2543                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2544
2545                 di->i_last_eb_blk = 0;
2546         }
2547
2548         ocfs2_journal_dirty(handle, path_root_bh(path));
2549
2550 out:
2551         ocfs2_free_path(left_path);
2552         return ret;
2553 }
2554
2555 /*
2556  * Left rotation of btree records.
2557  *
2558  * In many ways, this is (unsurprisingly) the opposite of right
2559  * rotation. We start at some non-rightmost path containing an empty
2560  * extent in the leaf block. The code works its way to the rightmost
2561  * path by rotating records to the left in every subtree.
2562  *
2563  * This is used by any code which reduces the number of extent records
2564  * in a leaf. After removal, an empty record should be placed in the
2565  * leftmost list position.
2566  *
2567  * This won't handle a length update of the rightmost path records if
2568  * the rightmost tree leaf record is removed so the caller is
2569  * responsible for detecting and correcting that.
2570  */
2571 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2572                                   struct ocfs2_path *path,
2573                                   struct ocfs2_cached_dealloc_ctxt *dealloc)
2574 {
2575         int ret, orig_credits = handle->h_buffer_credits;
2576         struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2577         struct ocfs2_extent_block *eb;
2578         struct ocfs2_extent_list *el;
2579
2580         el = path_leaf_el(path);
2581         if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2582                 return 0;
2583
2584         if (path->p_tree_depth == 0) {
2585 rightmost_no_delete:
2586                 /*
2587                  * In-inode extents. This is trivially handled, so do
2588                  * it up front.
2589                  */
2590                 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2591                                                        path_leaf_bh(path),
2592                                                        path_leaf_el(path));
2593                 if (ret)
2594                         mlog_errno(ret);
2595                 goto out;
2596         }
2597
2598         /*
2599          * Handle rightmost branch now. There's several cases:
2600          *  1) simple rotation leaving records in there. That's trivial.
2601          *  2) rotation requiring a branch delete - there's no more
2602          *     records left. Two cases of this:
2603          *     a) There are branches to the left.
2604          *     b) This is also the leftmost (the only) branch.
2605          *
2606          *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2607          *  2a) we need the left branch so that we can update it with the unlink
2608          *  2b) we need to bring the inode back to inline extents.
2609          */
2610
2611         eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2612         el = &eb->h_list;
2613         if (eb->h_next_leaf_blk == 0) {
2614                 /*
2615                  * This gets a bit tricky if we're going to delete the
2616                  * rightmost path. Get the other cases out of the way
2617                  * 1st.
2618                  */
2619                 if (le16_to_cpu(el->l_next_free_rec) > 1)
2620                         goto rightmost_no_delete;
2621
2622                 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2623                         ret = -EIO;
2624                         ocfs2_error(inode->i_sb,
2625                                     "Inode %llu has empty extent block at %llu",
2626                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2627                                     (unsigned long long)le64_to_cpu(eb->h_blkno));
2628                         goto out;
2629                 }
2630
2631                 /*
2632                  * XXX: The caller can not trust "path" any more after
2633                  * this as it will have been deleted. What do we do?
2634                  *
2635                  * In theory the rotate-for-merge code will never get
2636                  * here because it'll always ask for a rotate in a
2637                  * nonempty list.
2638                  */
2639
2640                 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2641                                                   dealloc);
2642                 if (ret)
2643                         mlog_errno(ret);
2644                 goto out;
2645         }
2646
2647         /*
2648          * Now we can loop, remembering the path we get from -EAGAIN
2649          * and restarting from there.
2650          */
2651 try_rotate:
2652         ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2653                                        dealloc, &restart_path);
2654         if (ret && ret != -EAGAIN) {
2655                 mlog_errno(ret);
2656                 goto out;
2657         }
2658
2659         while (ret == -EAGAIN) {
2660                 tmp_path = restart_path;
2661                 restart_path = NULL;
2662
2663                 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2664                                                tmp_path, dealloc,
2665                                                &restart_path);
2666                 if (ret && ret != -EAGAIN) {
2667                         mlog_errno(ret);
2668                         goto out;
2669                 }
2670
2671                 ocfs2_free_path(tmp_path);
2672                 tmp_path = NULL;
2673
2674                 if (ret == 0)
2675                         goto try_rotate;
2676         }
2677
2678 out:
2679         ocfs2_free_path(tmp_path);
2680         ocfs2_free_path(restart_path);
2681         return ret;
2682 }
2683
2684 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2685                                 int index)
2686 {
2687         struct ocfs2_extent_rec *rec = &el->l_recs[index];
2688         unsigned int size;
2689
2690         if (rec->e_leaf_clusters == 0) {
2691                 /*
2692                  * We consumed all of the merged-from record. An empty
2693                  * extent cannot exist anywhere but the 1st array
2694                  * position, so move things over if the merged-from
2695                  * record doesn't occupy that position.
2696                  *
2697                  * This creates a new empty extent so the caller
2698                  * should be smart enough to have removed any existing
2699                  * ones.
2700                  */
2701                 if (index > 0) {
2702                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2703                         size = index * sizeof(struct ocfs2_extent_rec);
2704                         memmove(&el->l_recs[1], &el->l_recs[0], size);
2705                 }
2706
2707                 /*
2708                  * Always memset - the caller doesn't check whether it
2709                  * created an empty extent, so there could be junk in
2710                  * the other fields.
2711                  */
2712                 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2713         }
2714 }
2715
2716 static int ocfs2_get_right_path(struct inode *inode,
2717                                 struct ocfs2_path *left_path,
2718                                 struct ocfs2_path **ret_right_path)
2719 {
2720         int ret;
2721         u32 right_cpos;
2722         struct ocfs2_path *right_path = NULL;
2723         struct ocfs2_extent_list *left_el;
2724
2725         *ret_right_path = NULL;
2726
2727         /* This function shouldn't be called for non-trees. */
2728         BUG_ON(left_path->p_tree_depth == 0);
2729
2730         left_el = path_leaf_el(left_path);
2731         BUG_ON(left_el->l_next_free_rec != left_el->l_count);
2732
2733         ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2734                                              &right_cpos);
2735         if (ret) {
2736                 mlog_errno(ret);
2737                 goto out;
2738         }
2739
2740         /* This function shouldn't be called for the rightmost leaf. */
2741         BUG_ON(right_cpos == 0);
2742
2743         right_path = ocfs2_new_path(path_root_bh(left_path),
2744                                     path_root_el(left_path));
2745         if (!right_path) {
2746                 ret = -ENOMEM;
2747                 mlog_errno(ret);
2748                 goto out;
2749         }
2750
2751         ret = ocfs2_find_path(inode, right_path, right_cpos);
2752         if (ret) {
2753                 mlog_errno(ret);
2754                 goto out;
2755         }
2756
2757         *ret_right_path = right_path;
2758 out:
2759         if (ret)
2760                 ocfs2_free_path(right_path);
2761         return ret;
2762 }
2763
2764 /*
2765  * Remove split_rec clusters from the record at index and merge them
2766  * onto the beginning of the record "next" to it.
2767  * For index < l_count - 1, the next means the extent rec at index + 1.
2768  * For index == l_count - 1, the "next" means the 1st extent rec of the
2769  * next extent block.
2770  */
2771 static int ocfs2_merge_rec_right(struct inode *inode,
2772                                  struct ocfs2_path *left_path,
2773                                  handle_t *handle,
2774                                  struct ocfs2_extent_rec *split_rec,
2775                                  int index)
2776 {
2777         int ret, next_free, i;
2778         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2779         struct ocfs2_extent_rec *left_rec;
2780         struct ocfs2_extent_rec *right_rec;
2781         struct ocfs2_extent_list *right_el;
2782         struct ocfs2_path *right_path = NULL;
2783         int subtree_index = 0;
2784         struct ocfs2_extent_list *el = path_leaf_el(left_path);
2785         struct buffer_head *bh = path_leaf_bh(left_path);
2786         struct buffer_head *root_bh = NULL;
2787
2788         BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2789         left_rec = &el->l_recs[index];
2790
2791         if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
2792             le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
2793                 /* we meet with a cross extent block merge. */
2794                 ret = ocfs2_get_right_path(inode, left_path, &right_path);
2795                 if (ret) {
2796                         mlog_errno(ret);
2797                         goto out;
2798                 }
2799
2800                 right_el = path_leaf_el(right_path);
2801                 next_free = le16_to_cpu(right_el->l_next_free_rec);
2802                 BUG_ON(next_free <= 0);
2803                 right_rec = &right_el->l_recs[0];
2804                 if (ocfs2_is_empty_extent(right_rec)) {
2805                         BUG_ON(next_free <= 1);
2806                         right_rec = &right_el->l_recs[1];
2807                 }
2808
2809                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2810                        le16_to_cpu(left_rec->e_leaf_clusters) !=
2811                        le32_to_cpu(right_rec->e_cpos));
2812
2813                 subtree_index = ocfs2_find_subtree_root(inode,
2814                                                         left_path, right_path);
2815
2816                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2817                                                       handle->h_buffer_credits,
2818                                                       right_path);
2819                 if (ret) {
2820                         mlog_errno(ret);
2821                         goto out;
2822                 }
2823
2824                 root_bh = left_path->p_node[subtree_index].bh;
2825                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2826
2827                 ret = ocfs2_journal_access(handle, inode, root_bh,
2828                                            OCFS2_JOURNAL_ACCESS_WRITE);
2829                 if (ret) {
2830                         mlog_errno(ret);
2831                         goto out;
2832                 }
2833
2834                 for (i = subtree_index + 1;
2835                      i < path_num_items(right_path); i++) {
2836                         ret = ocfs2_journal_access(handle, inode,
2837                                                    right_path->p_node[i].bh,
2838                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2839                         if (ret) {
2840                                 mlog_errno(ret);
2841                                 goto out;
2842                         }
2843
2844                         ret = ocfs2_journal_access(handle, inode,
2845                                                    left_path->p_node[i].bh,
2846                                                    OCFS2_JOURNAL_ACCESS_WRITE);
2847                         if (ret) {
2848                                 mlog_errno(ret);
2849                                 goto out;
2850                         }
2851                 }
2852
2853         } else {
2854                 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
2855                 right_rec = &el->l_recs[index + 1];
2856         }
2857
2858         ret = ocfs2_journal_access(handle, inode, bh,
2859                                    OCFS2_JOURNAL_ACCESS_WRITE);
2860         if (ret) {
2861                 mlog_errno(ret);
2862                 goto out;
2863         }
2864
2865         le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2866
2867         le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2868         le64_add_cpu(&right_rec->e_blkno,
2869                      -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2870         le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2871
2872         ocfs2_cleanup_merge(el, index);
2873
2874         ret = ocfs2_journal_dirty(handle, bh);
2875         if (ret)
2876                 mlog_errno(ret);
2877
2878         if (right_path) {
2879                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2880                 if (ret)
2881                         mlog_errno(ret);
2882
2883                 ocfs2_complete_edge_insert(inode, handle, left_path,
2884                                            right_path, subtree_index);
2885         }
2886 out:
2887         if (right_path)
2888                 ocfs2_free_path(right_path);
2889         return ret;
2890 }
2891
2892 static int ocfs2_get_left_path(struct inode *inode,
2893                                struct ocfs2_path *right_path,
2894                                struct ocfs2_path **ret_left_path)
2895 {
2896         int ret;
2897         u32 left_cpos;
2898         struct ocfs2_path *left_path = NULL;
2899
2900         *ret_left_path = NULL;
2901
2902         /* This function shouldn't be called for non-trees. */
2903         BUG_ON(right_path->p_tree_depth == 0);
2904
2905         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
2906                                             right_path, &left_cpos);
2907         if (ret) {
2908                 mlog_errno(ret);
2909                 goto out;
2910         }
2911
2912         /* This function shouldn't be called for the leftmost leaf. */
2913         BUG_ON(left_cpos == 0);
2914
2915         left_path = ocfs2_new_path(path_root_bh(right_path),
2916                                    path_root_el(right_path));
2917         if (!left_path) {
2918                 ret = -ENOMEM;
2919                 mlog_errno(ret);
2920                 goto out;
2921         }
2922
2923         ret = ocfs2_find_path(inode, left_path, left_cpos);
2924         if (ret) {
2925                 mlog_errno(ret);
2926                 goto out;
2927         }
2928
2929         *ret_left_path = left_path;
2930 out:
2931         if (ret)
2932                 ocfs2_free_path(left_path);
2933         return ret;
2934 }
2935
2936 /*
2937  * Remove split_rec clusters from the record at index and merge them
2938  * onto the tail of the record "before" it.
2939  * For index > 0, the "before" means the extent rec at index - 1.
2940  *
2941  * For index == 0, the "before" means the last record of the previous
2942  * extent block. And there is also a situation that we may need to
2943  * remove the rightmost leaf extent block in the right_path and change
2944  * the right path to indicate the new rightmost path.
2945  */
2946 static int ocfs2_merge_rec_left(struct inode *inode,
2947                                 struct ocfs2_path *right_path,
2948                                 handle_t *handle,
2949                                 struct ocfs2_extent_rec *split_rec,
2950                                 struct ocfs2_cached_dealloc_ctxt *dealloc,
2951                                 int index)
2952 {
2953         int ret, i, subtree_index = 0, has_empty_extent = 0;
2954         unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2955         struct ocfs2_extent_rec *left_rec;
2956         struct ocfs2_extent_rec *right_rec;
2957         struct ocfs2_extent_list *el = path_leaf_el(right_path);
2958         struct buffer_head *bh = path_leaf_bh(right_path);
2959         struct buffer_head *root_bh = NULL;
2960         struct ocfs2_path *left_path = NULL;
2961         struct ocfs2_extent_list *left_el;
2962
2963         BUG_ON(index < 0);
2964
2965         right_rec = &el->l_recs[index];
2966         if (index == 0) {
2967                 /* we meet with a cross extent block merge. */
2968                 ret = ocfs2_get_left_path(inode, right_path, &left_path);
2969                 if (ret) {
2970                         mlog_errno(ret);
2971                         goto out;
2972                 }
2973
2974                 left_el = path_leaf_el(left_path);
2975                 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
2976                        le16_to_cpu(left_el->l_count));
2977
2978                 left_rec = &left_el->l_recs[
2979                                 le16_to_cpu(left_el->l_next_free_rec) - 1];
2980                 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2981                        le16_to_cpu(left_rec->e_leaf_clusters) !=
2982                        le32_to_cpu(split_rec->e_cpos));
2983
2984                 subtree_index = ocfs2_find_subtree_root(inode,
2985                                                         left_path, right_path);
2986
2987                 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2988                                                       handle->h_buffer_credits,
2989                                                       left_path);
2990                 if (ret) {
2991                         mlog_errno(ret);
2992                         goto out;
2993                 }
2994
2995                 root_bh = left_path->p_node[subtree_index].bh;
2996                 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2997
2998                 ret = ocfs2_journal_access(handle, inode, root_bh,
2999                                            OCFS2_JOURNAL_ACCESS_WRITE);
3000                 if (ret) {
3001                         mlog_errno(ret);
3002                         goto out;
3003                 }
3004
3005                 for (i = subtree_index + 1;
3006                      i < path_num_items(right_path); i++) {
3007                         ret = ocfs2_journal_access(handle, inode,
3008                                                    right_path->p_node[i].bh,
3009                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3010                         if (ret) {
3011                                 mlog_errno(ret);
3012                                 goto out;
3013                         }
3014
3015                         ret = ocfs2_journal_access(handle, inode,
3016                                                    left_path->p_node[i].bh,
3017                                                    OCFS2_JOURNAL_ACCESS_WRITE);
3018                         if (ret) {
3019                                 mlog_errno(ret);
3020                                 goto out;
3021                         }
3022                 }
3023         } else {
3024                 left_rec = &el->l_recs[index - 1];
3025                 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3026                         has_empty_extent = 1;
3027         }
3028
3029         ret = ocfs2_journal_access(handle, inode, bh,
3030                                    OCFS2_JOURNAL_ACCESS_WRITE);
3031         if (ret) {
3032                 mlog_errno(ret);
3033                 goto out;
3034         }
3035
3036         if (has_empty_extent && index == 1) {
3037                 /*
3038                  * The easy case - we can just plop the record right in.
3039                  */
3040                 *left_rec = *split_rec;
3041
3042                 has_empty_extent = 0;
3043         } else
3044                 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3045
3046         le32_add_cpu(&right_rec->e_cpos, split_clusters);
3047         le64_add_cpu(&right_rec->e_blkno,
3048                      ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3049         le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3050
3051         ocfs2_cleanup_merge(el, index);
3052
3053         ret = ocfs2_journal_dirty(handle, bh);
3054         if (ret)
3055                 mlog_errno(ret);
3056
3057         if (left_path) {
3058                 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3059                 if (ret)
3060                         mlog_errno(ret);
3061
3062                 /*
3063                  * In the situation that the right_rec is empty and the extent
3064                  * block is empty also,  ocfs2_complete_edge_insert can't handle
3065                  * it and we need to delete the right extent block.
3066                  */
3067                 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3068                     le16_to_cpu(el->l_next_free_rec) == 1) {
3069
3070                         ret = ocfs2_remove_rightmost_path(inode, handle,
3071                                                           right_path, dealloc);
3072                         if (ret) {
3073                                 mlog_errno(ret);
3074                                 goto out;
3075                         }
3076
3077                         /* Now the rightmost extent block has been deleted.
3078                          * So we use the new rightmost path.
3079                          */
3080                         ocfs2_mv_path(right_path, left_path);
3081                         left_path = NULL;
3082                 } else
3083                         ocfs2_complete_edge_insert(inode, handle, left_path,
3084                                                    right_path, subtree_index);
3085         }
3086 out:
3087         if (left_path)
3088                 ocfs2_free_path(left_path);
3089         return ret;
3090 }
3091
3092 static int ocfs2_try_to_merge_extent(struct inode *inode,
3093                                      handle_t *handle,
3094                                      struct ocfs2_path *path,
3095                                      int split_index,
3096                                      struct ocfs2_extent_rec *split_rec,
3097                                      struct ocfs2_cached_dealloc_ctxt *dealloc,
3098                                      struct ocfs2_merge_ctxt *ctxt)
3099
3100 {
3101         int ret = 0;
3102         struct ocfs2_extent_list *el = path_leaf_el(path);
3103         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3104
3105         BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3106
3107         if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3108                 /*
3109                  * The merge code will need to create an empty
3110                  * extent to take the place of the newly
3111                  * emptied slot. Remove any pre-existing empty
3112                  * extents - having more than one in a leaf is
3113                  * illegal.
3114                  */
3115                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3116                                              dealloc);
3117                 if (ret) {
3118                         mlog_errno(ret);
3119                         goto out;
3120                 }
3121                 split_index--;
3122                 rec = &el->l_recs[split_index];
3123         }
3124
3125         if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3126                 /*
3127                  * Left-right contig implies this.
3128                  */
3129                 BUG_ON(!ctxt->c_split_covers_rec);
3130
3131                 /*
3132                  * Since the leftright insert always covers the entire
3133                  * extent, this call will delete the insert record
3134                  * entirely, resulting in an empty extent record added to
3135                  * the extent block.
3136                  *
3137                  * Since the adding of an empty extent shifts
3138                  * everything back to the right, there's no need to
3139                  * update split_index here.
3140                  *
3141                  * When the split_index is zero, we need to merge it to the
3142                  * prevoius extent block. It is more efficient and easier
3143                  * if we do merge_right first and merge_left later.
3144                  */
3145                 ret = ocfs2_merge_rec_right(inode, path,
3146                                             handle, split_rec,
3147                                             split_index);
3148                 if (ret) {
3149                         mlog_errno(ret);
3150                         goto out;
3151                 }
3152
3153                 /*
3154                  * We can only get this from logic error above.
3155                  */
3156                 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3157
3158                 /* The merge left us with an empty extent, remove it. */
3159                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
3160                 if (ret) {
3161                         mlog_errno(ret);
3162                         goto out;
3163                 }
3164
3165                 rec = &el->l_recs[split_index];
3166
3167                 /*
3168                  * Note that we don't pass split_rec here on purpose -
3169                  * we've merged it into the rec already.
3170                  */
3171                 ret = ocfs2_merge_rec_left(inode, path,
3172                                            handle, rec,
3173                                            dealloc,
3174                                            split_index);
3175
3176                 if (ret) {
3177                         mlog_errno(ret);
3178                         goto out;
3179                 }
3180
3181                 ret = ocfs2_rotate_tree_left(inode, handle, path,
3182                                              dealloc);
3183                 /*
3184                  * Error from this last rotate is not critical, so
3185                  * print but don't bubble it up.
3186                  */
3187                 if (ret)
3188                         mlog_errno(ret);
3189                 ret = 0;
3190         } else {
3191                 /*
3192                  * Merge a record to the left or right.
3193                  *
3194                  * 'contig_type' is relative to the existing record,
3195                  * so for example, if we're "right contig", it's to
3196                  * the record on the left (hence the left merge).
3197                  */
3198                 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3199                         ret = ocfs2_merge_rec_left(inode,
3200                                                    path,
3201                                                    handle, split_rec,
3202                                                    dealloc,
3203                                                    split_index);
3204                         if (ret) {
3205                                 mlog_errno(ret);
3206                                 goto out;
3207                         }
3208                 } else {
3209                         ret = ocfs2_merge_rec_right(inode,
3210                                                     path,
3211                                                     handle, split_rec,
3212                                                     split_index);
3213                         if (ret) {
3214                                 mlog_errno(ret);
3215                                 goto out;
3216                         }
3217                 }
3218
3219                 if (ctxt->c_split_covers_rec) {
3220                         /*
3221                          * The merge may have left an empty extent in
3222                          * our leaf. Try to rotate it away.
3223                          */
3224                         ret = ocfs2_rotate_tree_left(inode, handle, path,
3225                                                      dealloc);
3226                         if (ret)
3227                                 mlog_errno(ret);
3228                         ret = 0;
3229                 }
3230         }
3231
3232 out:
3233         return ret;
3234 }
3235
3236 static void ocfs2_subtract_from_rec(struct super_block *sb,
3237                                     enum ocfs2_split_type split,
3238                                     struct ocfs2_extent_rec *rec,
3239                                     struct ocfs2_extent_rec *split_rec)
3240 {
3241         u64 len_blocks;
3242
3243         len_blocks = ocfs2_clusters_to_blocks(sb,
3244                                 le16_to_cpu(split_rec->e_leaf_clusters));
3245
3246         if (split == SPLIT_LEFT) {
3247                 /*
3248                  * Region is on the left edge of the existing
3249                  * record.
3250                  */
3251                 le32_add_cpu(&rec->e_cpos,
3252                              le16_to_cpu(split_rec->e_leaf_clusters));
3253                 le64_add_cpu(&rec->e_blkno, len_blocks);
3254                 le16_add_cpu(&rec->e_leaf_clusters,
3255                              -le16_to_cpu(split_rec->e_leaf_clusters));
3256         } else {
3257                 /*
3258                  * Region is on the right edge of the existing
3259                  * record.
3260                  */
3261                 le16_add_cpu(&rec->e_leaf_clusters,
3262                              -le16_to_cpu(split_rec->e_leaf_clusters));
3263         }
3264 }
3265
3266 /*
3267  * Do the final bits of extent record insertion at the target leaf
3268  * list. If this leaf is part of an allocation tree, it is assumed
3269  * that the tree above has been prepared.
3270  */
3271 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3272                                  struct ocfs2_extent_list *el,
3273                                  struct ocfs2_insert_type *insert,
3274                                  struct inode *inode)
3275 {
3276         int i = insert->ins_contig_index;
3277         unsigned int range;
3278         struct ocfs2_extent_rec *rec;
3279
3280         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3281
3282         if (insert->ins_split != SPLIT_NONE) {
3283                 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3284                 BUG_ON(i == -1);
3285                 rec = &el->l_recs[i];
3286                 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3287                                         insert_rec);
3288                 goto rotate;
3289         }
3290
3291         /*
3292          * Contiguous insert - either left or right.
3293          */
3294         if (insert->ins_contig != CONTIG_NONE) {
3295                 rec = &el->l_recs[i];
3296                 if (insert->ins_contig == CONTIG_LEFT) {
3297                         rec->e_blkno = insert_rec->e_blkno;
3298                         rec->e_cpos = insert_rec->e_cpos;
3299                 }
3300                 le16_add_cpu(&rec->e_leaf_clusters,
3301                              le16_to_cpu(insert_rec->e_leaf_clusters));
3302                 return;
3303         }
3304
3305         /*
3306          * Handle insert into an empty leaf.
3307          */
3308         if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3309             ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3310              ocfs2_is_empty_extent(&el->l_recs[0]))) {
3311                 el->l_recs[0] = *insert_rec;
3312                 el->l_next_free_rec = cpu_to_le16(1);
3313                 return;
3314         }
3315
3316         /*
3317          * Appending insert.
3318          */
3319         if (insert->ins_appending == APPEND_TAIL) {
3320                 i = le16_to_cpu(el->l_next_free_rec) - 1;
3321                 rec = &el->l_recs[i];
3322                 range = le32_to_cpu(rec->e_cpos)
3323                         + le16_to_cpu(rec->e_leaf_clusters);
3324                 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3325
3326                 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3327                                 le16_to_cpu(el->l_count),
3328                                 "inode %lu, depth %u, count %u, next free %u, "
3329                                 "rec.cpos %u, rec.clusters %u, "
3330                                 "insert.cpos %u, insert.clusters %u\n",
3331                                 inode->i_ino,
3332                                 le16_to_cpu(el->l_tree_depth),
3333                                 le16_to_cpu(el->l_count),
3334                                 le16_to_cpu(el->l_next_free_rec),
3335                                 le32_to_cpu(el->l_recs[i].e_cpos),
3336                                 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3337                                 le32_to_cpu(insert_rec->e_cpos),
3338                                 le16_to_cpu(insert_rec->e_leaf_clusters));
3339                 i++;
3340                 el->l_recs[i] = *insert_rec;
3341                 le16_add_cpu(&el->l_next_free_rec, 1);
3342                 return;
3343         }
3344
3345 rotate:
3346         /*
3347          * Ok, we have to rotate.
3348          *
3349          * At this point, it is safe to assume that inserting into an
3350          * empty leaf and appending to a leaf have both been handled
3351          * above.
3352          *
3353          * This leaf needs to have space, either by the empty 1st
3354          * extent record, or by virtue of an l_next_rec < l_count.
3355          */
3356         ocfs2_rotate_leaf(el, insert_rec);
3357 }
3358
3359 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3360                                                 struct ocfs2_dinode *di,
3361                                                 u32 clusters)
3362 {
3363         le32_add_cpu(&di->i_clusters, clusters);
3364         spin_lock(&OCFS2_I(inode)->ip_lock);
3365         OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3366         spin_unlock(&OCFS2_I(inode)->ip_lock);
3367 }
3368
3369 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3370                                            handle_t *handle,
3371                                            struct ocfs2_path *path,
3372                                            struct ocfs2_extent_rec *insert_rec)
3373 {
3374         int ret, i, next_free;
3375         struct buffer_head *bh;
3376         struct ocfs2_extent_list *el;
3377         struct ocfs2_extent_rec *rec;
3378
3379         /*
3380          * Update everything except the leaf block.
3381          */
3382         for (i = 0; i < path->p_tree_depth; i++) {
3383                 bh = path->p_node[i].bh;
3384                 el = path->p_node[i].el;
3385
3386                 next_free = le16_to_cpu(el->l_next_free_rec);
3387                 if (next_free == 0) {
3388                         ocfs2_error(inode->i_sb,
3389                                     "Dinode %llu has a bad extent list",
3390                                     (unsigned long long)OCFS2_I(inode)->ip_blkno);
3391                         ret = -EIO;
3392                         return;
3393                 }
3394
3395                 rec = &el->l_recs[next_free - 1];
3396
3397                 rec->e_int_clusters = insert_rec->e_cpos;
3398                 le32_add_cpu(&rec->e_int_clusters,
3399                              le16_to_cpu(insert_rec->e_leaf_clusters));
3400                 le32_add_cpu(&rec->e_int_clusters,
3401                              -le32_to_cpu(rec->e_cpos));
3402
3403                 ret = ocfs2_journal_dirty(handle, bh);
3404                 if (ret)
3405                         mlog_errno(ret);
3406
3407         }
3408 }
3409
3410 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3411                                     struct ocfs2_extent_rec *insert_rec,
3412                                     struct ocfs2_path *right_path,
3413                                     struct ocfs2_path **ret_left_path)
3414 {
3415         int ret, next_free;
3416         struct ocfs2_extent_list *el;
3417         struct ocfs2_path *left_path = NULL;
3418
3419         *ret_left_path = NULL;
3420
3421         /*
3422          * This shouldn't happen for non-trees. The extent rec cluster
3423          * count manipulation below only works for interior nodes.
3424          */
3425         BUG_ON(right_path->p_tree_depth == 0);
3426
3427         /*
3428          * If our appending insert is at the leftmost edge of a leaf,
3429          * then we might need to update the rightmost records of the
3430          * neighboring path.
3431          */
3432         el = path_leaf_el(right_path);
3433         next_free = le16_to_cpu(el->l_next_free_rec);
3434         if (next_free == 0 ||
3435             (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3436                 u32 left_cpos;
3437
3438                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3439                                                     &left_cpos);
3440                 if (ret) {
3441                         mlog_errno(ret);
3442                         goto out;
3443                 }
3444
3445                 mlog(0, "Append may need a left path update. cpos: %u, "
3446                      "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3447                      left_cpos);
3448
3449                 /*
3450                  * No need to worry if the append is already in the
3451                  * leftmost leaf.
3452                  */
3453                 if (left_cpos) {
3454                         left_path = ocfs2_new_path(path_root_bh(right_path),
3455                                                    path_root_el(right_path));
3456                         if (!left_path) {
3457                                 ret = -ENOMEM;
3458                                 mlog_errno(ret);
3459                                 goto out;
3460                         }
3461
3462                         ret = ocfs2_find_path(inode, left_path, left_cpos);
3463                         if (ret) {
3464                                 mlog_errno(ret);
3465                                 goto out;
3466                         }
3467
3468                         /*
3469                          * ocfs2_insert_path() will pass the left_path to the
3470                          * journal for us.
3471                          */
3472                 }
3473         }
3474
3475         ret = ocfs2_journal_access_path(inode, handle, right_path);
3476         if (ret) {
3477                 mlog_errno(ret);
3478                 goto out;
3479         }
3480
3481         ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3482
3483         *ret_left_path = left_path;
3484         ret = 0;
3485 out:
3486         if (ret != 0)
3487                 ocfs2_free_path(left_path);
3488
3489         return ret;
3490 }
3491
3492 static void ocfs2_split_record(struct inode *inode,
3493                                struct ocfs2_path *left_path,
3494                                struct ocfs2_path *right_path,
3495                                struct ocfs2_extent_rec *split_rec,
3496                                enum ocfs2_split_type split)
3497 {
3498         int index;
3499         u32 cpos = le32_to_cpu(split_rec->e_cpos);
3500         struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3501         struct ocfs2_extent_rec *rec, *tmprec;
3502
3503         right_el = path_leaf_el(right_path);;
3504         if (left_path)
3505                 left_el = path_leaf_el(left_path);
3506
3507         el = right_el;
3508         insert_el = right_el;
3509         index = ocfs2_search_extent_list(el, cpos);
3510         if (index != -1) {
3511                 if (index == 0 && left_path) {
3512                         BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3513
3514                         /*
3515                          * This typically means that the record
3516                          * started in the left path but moved to the
3517                          * right as a result of rotation. We either
3518                          * move the existing record to the left, or we
3519                          * do the later insert there.
3520                          *
3521                          * In this case, the left path should always
3522                          * exist as the rotate code will have passed
3523                          * it back for a post-insert update.
3524                          */
3525
3526                         if (split == SPLIT_LEFT) {
3527                                 /*
3528                                  * It's a left split. Since we know
3529                                  * that the rotate code gave us an
3530                                  * empty extent in the left path, we
3531                                  * can just do the insert there.
3532                                  */
3533                                 insert_el = left_el;
3534                         } else {
3535                                 /*
3536                                  * Right split - we have to move the
3537                                  * existing record over to the left
3538                                  * leaf. The insert will be into the
3539                                  * newly created empty extent in the
3540                                  * right leaf.
3541                                  */
3542                                 tmprec = &right_el->l_recs[index];
3543                                 ocfs2_rotate_leaf(left_el, tmprec);
3544                                 el = left_el;
3545
3546                                 memset(tmprec, 0, sizeof(*tmprec));
3547                                 index = ocfs2_search_extent_list(left_el, cpos);
3548                                 BUG_ON(index == -1);
3549                         }
3550                 }
3551         } else {
3552                 BUG_ON(!left_path);
3553                 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3554                 /*
3555                  * Left path is easy - we can just allow the insert to
3556                  * happen.
3557                  */
3558                 el = left_el;
3559                 insert_el = left_el;
3560                 index = ocfs2_search_extent_list(el, cpos);
3561                 BUG_ON(index == -1);
3562         }
3563
3564         rec = &el->l_recs[index];
3565         ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3566         ocfs2_rotate_leaf(insert_el, split_rec);
3567 }
3568
3569 /*
3570  * This function only does inserts on an allocation b-tree. For dinode
3571  * lists, ocfs2_insert_at_leaf() is called directly.
3572  *
3573  * right_path is the path we want to do the actual insert
3574  * in. left_path should only be passed in if we need to update that
3575  * portion of the tree after an edge insert.
3576  */
3577 static int ocfs2_insert_path(struct inode *inode,
3578                              handle_t *handle,
3579                              struct ocfs2_path *left_path,
3580                              struct ocfs2_path *right_path,
3581                              struct ocfs2_extent_rec *insert_rec,
3582                              struct ocfs2_insert_type *insert)
3583 {
3584         int ret, subtree_index;
3585         struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3586
3587         if (left_path) {
3588                 int credits = handle->h_buffer_credits;
3589
3590                 /*
3591                  * There's a chance that left_path got passed back to
3592                  * us without being accounted for in the
3593                  * journal. Extend our transaction here to be sure we
3594                  * can change those blocks.
3595                  */
3596                 credits += left_path->p_tree_depth;
3597
3598                 ret = ocfs2_extend_trans(handle, credits);
3599                 if (ret < 0) {
3600                         mlog_errno(ret);
3601                         goto out;
3602                 }
3603
3604                 ret = ocfs2_journal_access_path(inode, handle, left_path);
3605                 if (ret < 0) {
3606                         mlog_errno(ret);
3607                         goto out;
3608                 }
3609         }
3610
3611         /*
3612          * Pass both paths to the journal. The majority of inserts
3613          * will be touching all components anyway.
3614          */
3615         ret = ocfs2_journal_access_path(inode, handle, right_path);
3616         if (ret < 0) {
3617                 mlog_errno(ret);
3618                 goto out;
3619         }
3620
3621         if (insert->ins_split != SPLIT_NONE) {
3622                 /*
3623                  * We could call ocfs2_insert_at_leaf() for some types
3624                  * of splits, but it's easier to just let one separate
3625                  * function sort it all out.
3626                  */
3627                 ocfs2_split_record(inode, left_path, right_path,
3628                                    insert_rec, insert->ins_split);
3629
3630                 /*
3631                  * Split might have modified either leaf and we don't
3632                  * have a guarantee that the later edge insert will
3633                  * dirty this for us.
3634                  */
3635                 if (left_path)
3636                         ret = ocfs2_journal_dirty(handle,
3637                                                   path_leaf_bh(left_path));
3638                         if (ret)
3639                                 mlog_errno(ret);
3640         } else
3641                 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3642                                      insert, inode);
3643
3644         ret = ocfs2_journal_dirty(handle, leaf_bh);
3645         if (ret)
3646                 mlog_errno(ret);
3647
3648         if (left_path) {
3649                 /*
3650                  * The rotate code has indicated that we need to fix
3651                  * up portions of the tree after the insert.
3652                  *
3653                  * XXX: Should we extend the transaction here?
3654                  */
3655                 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3656                                                         right_path);
3657                 ocfs2_complete_edge_insert(inode, handle, left_path,
3658                                            right_path, subtree_index);
3659         }
3660
3661         ret = 0;
3662 out:
3663         return ret;
3664 }
3665
3666 static int ocfs2_do_insert_extent(struct inode *inode,
3667                                   handle_t *handle,
3668                                   struct buffer_head *di_bh,
3669                                   struct ocfs2_extent_rec *insert_rec,
3670                                   struct ocfs2_insert_type *type)
3671 {
3672         int ret, rotate = 0;
3673         u32 cpos;
3674         struct ocfs2_path *right_path = NULL;
3675         struct ocfs2_path *left_path = NULL;
3676         struct ocfs2_dinode *di;
3677         struct ocfs2_extent_list *el;
3678
3679         di = (struct ocfs2_dinode *) di_bh->b_data;
3680         el = &di->id2.i_list;
3681
3682         ret = ocfs2_journal_access(handle, inode, di_bh,
3683                                    OCFS2_JOURNAL_ACCESS_WRITE);
3684         if (ret) {
3685                 mlog_errno(ret);
3686                 goto out;
3687         }
3688
3689         if (le16_to_cpu(el->l_tree_depth) == 0) {
3690                 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3691                 goto out_update_clusters;
3692         }
3693
3694         right_path = ocfs2_new_inode_path(di_bh);
3695         if (!right_path) {
3696                 ret = -ENOMEM;
3697                 mlog_errno(ret);
3698                 goto out;
3699         }
3700
3701         /*
3702          * Determine the path to start with. Rotations need the
3703          * rightmost path, everything else can go directly to the
3704          * target leaf.
3705          */
3706         cpos = le32_to_cpu(insert_rec->e_cpos);
3707         if (type->ins_appending == APPEND_NONE &&
3708             type->ins_contig == CONTIG_NONE) {
3709                 rotate = 1;
3710                 cpos = UINT_MAX;
3711         }
3712
3713         ret = ocfs2_find_path(inode, right_path, cpos);
3714         if (ret) {
3715                 mlog_errno(ret);
3716                 goto out;
3717         }
3718
3719         /*
3720          * Rotations and appends need special treatment - they modify
3721          * parts of the tree's above them.
3722          *
3723          * Both might pass back a path immediate to the left of the
3724          * one being inserted to. This will be cause
3725          * ocfs2_insert_path() to modify the rightmost records of
3726          * left_path to account for an edge insert.
3727          *
3728          * XXX: When modifying this code, keep in mind that an insert
3729          * can wind up skipping both of these two special cases...
3730          */
3731         if (rotate) {
3732                 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3733                                               le32_to_cpu(insert_rec->e_cpos),
3734                                               right_path, &left_path);
3735                 if (ret) {
3736                         mlog_errno(ret);
3737                         goto out;
3738                 }
3739
3740                 /*
3741                  * ocfs2_rotate_tree_right() might have extended the
3742                  * transaction without re-journaling our tree root.
3743                  */
3744                 ret = ocfs2_journal_access(handle, inode, di_bh,
3745                                            OCFS2_JOURNAL_ACCESS_WRITE);
3746                 if (ret) {
3747                         mlog_errno(ret);
3748                         goto out;
3749                 }
3750         } else if (type->ins_appending == APPEND_TAIL
3751                    && type->ins_contig != CONTIG_LEFT) {
3752                 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3753                                                right_path, &left_path);
3754                 if (ret) {
3755                         mlog_errno(ret);
3756                         goto out;
3757                 }
3758         }
3759
3760         ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3761                                 insert_rec, type);
3762         if (ret) {
3763                 mlog_errno(ret);
3764                 goto out;
3765         }
3766
3767 out_update_clusters:
3768         if (type->ins_split == SPLIT_NONE)
3769                 ocfs2_update_dinode_clusters(inode, di,
3770                                              le16_to_cpu(insert_rec->e_leaf_clusters));
3771
3772         ret = ocfs2_journal_dirty(handle, di_bh);
3773         if (ret)
3774                 mlog_errno(ret);
3775
3776 out:
3777         ocfs2_free_path(left_path);
3778         ocfs2_free_path(right_path);
3779
3780         return ret;
3781 }
3782
3783 static enum ocfs2_contig_type
3784 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
3785                                struct ocfs2_extent_list *el, int index,
3786                                struct ocfs2_extent_rec *split_rec)
3787 {
3788         int status;
3789         enum ocfs2_contig_type ret = CONTIG_NONE;
3790         u32 left_cpos, right_cpos;
3791         struct ocfs2_extent_rec *rec = NULL;
3792         struct ocfs2_extent_list *new_el;
3793         struct ocfs2_path *left_path = NULL, *right_path = NULL;
3794         struct buffer_head *bh;
3795         struct ocfs2_extent_block *eb;
3796
3797         if (index > 0) {
3798                 rec = &el->l_recs[index - 1];
3799         } else if (path->p_tree_depth > 0) {
3800                 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3801                                                        path, &left_cpos);
3802                 if (status)
3803                         goto out;
3804
3805                 if (left_cpos != 0) {
3806                         left_path = ocfs2_new_path(path_root_bh(path),
3807                                                    path_root_el(path));
3808                         if (!left_path)
3809                                 goto out;
3810
3811                         status = ocfs2_find_path(inode, left_path, left_cpos);
3812                         if (status)
3813                                 goto out;
3814
3815                         new_el = path_leaf_el(left_path);
3816
3817                         if (le16_to_cpu(new_el->l_next_free_rec) !=
3818                             le16_to_cpu(new_el->l_count)) {
3819                                 bh = path_leaf_bh(left_path);
3820                                 eb = (struct ocfs2_extent_block *)bh->b_data;
3821                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3822                                                                  eb);
3823                                 goto out;
3824                         }
3825                         rec = &new_el->l_recs[
3826                                 le16_to_cpu(new_el->l_next_free_rec) - 1];
3827                 }
3828         }
3829
3830         /*
3831          * We're careful to check for an empty extent record here -
3832          * the merge code will know what to do if it sees one.
3833          */
3834         if (rec) {
3835                 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3836                         if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3837                                 ret = CONTIG_RIGHT;
3838                 } else {
3839                         ret = ocfs2_extent_contig(inode, rec, split_rec);
3840                 }
3841         }
3842
3843         rec = NULL;
3844         if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
3845                 rec = &el->l_recs[index + 1];
3846         else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
3847                  path->p_tree_depth > 0) {
3848                 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
3849                                                         path, &right_cpos);
3850                 if (status)
3851                         goto out;
3852
3853                 if (right_cpos == 0)
3854                         goto out;
3855
3856                 right_path = ocfs2_new_path(path_root_bh(path),
3857                                             path_root_el(path));
3858                 if (!right_path)
3859                         goto out;
3860
3861                 status = ocfs2_find_path(inode, right_path, right_cpos);
3862                 if (status)
3863                         goto out;
3864
3865                 new_el = path_leaf_el(right_path);
3866                 rec = &new_el->l_recs[0];
3867                 if (ocfs2_is_empty_extent(rec)) {
3868                         if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
3869                                 bh = path_leaf_bh(right_path);
3870                                 eb = (struct ocfs2_extent_block *)bh->b_data;
3871                                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3872                                                                  eb);
3873                                 goto out;
3874                         }
3875                         rec = &new_el->l_recs[1];
3876                 }
3877         }
3878
3879         if (rec) {
3880                 enum ocfs2_contig_type contig_type;
3881
3882                 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3883
3884                 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3885                         ret = CONTIG_LEFTRIGHT;
3886                 else if (ret == CONTIG_NONE)
3887                         ret = contig_type;
3888         }
3889
3890 out:
3891         if (left_path)
3892                 ocfs2_free_path(left_path);
3893         if (right_path)
3894                 ocfs2_free_path(right_path);
3895
3896         return ret;
3897 }
3898
3899 static void ocfs2_figure_contig_type(struct inode *inode,
3900                                      struct ocfs2_insert_type *insert,
3901                                      struct ocfs2_extent_list *el,
3902                                      struct ocfs2_extent_rec *insert_rec)
3903 {
3904         int i;
3905         enum ocfs2_contig_type contig_type = CONTIG_NONE;
3906
3907         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3908
3909         for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3910                 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3911                                                   insert_rec);
3912                 if (contig_type != CONTIG_NONE) {
3913                         insert->ins_contig_index = i;
3914                         break;
3915                 }
3916         }
3917         insert->ins_contig = contig_type;
3918 }
3919
3920 /*
3921  * This should only be called against the righmost leaf extent list.
3922  *
3923  * ocfs2_figure_appending_type() will figure out whether we'll have to
3924  * insert at the tail of the rightmost leaf.
3925  *
3926  * This should also work against the dinode list for tree's with 0
3927  * depth. If we consider the dinode list to be the rightmost leaf node
3928  * then the logic here makes sense.
3929  */
3930 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3931                                         struct ocfs2_extent_list *el,
3932                                         struct ocfs2_extent_rec *insert_rec)
3933 {
3934         int i;
3935         u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3936         struct ocfs2_extent_rec *rec;
3937
3938         insert->ins_appending = APPEND_NONE;
3939
3940         BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3941
3942         if (!el->l_next_free_rec)
3943                 goto set_tail_append;
3944
3945         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3946                 /* Were all records empty? */
3947                 if (le16_to_cpu(el->l_next_free_rec) == 1)
3948                         goto set_tail_append;
3949         }
3950
3951         i = le16_to_cpu(el->l_next_free_rec) - 1;
3952         rec = &el->l_recs[i];
3953
3954         if (cpos >=
3955             (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3956                 goto set_tail_append;
3957
3958         return;
3959
3960 set_tail_append:
3961         insert->ins_appending = APPEND_TAIL;
3962 }
3963
3964 /*
3965  * Helper function called at the begining of an insert.
3966  *
3967  * This computes a few things that are commonly used in the process of
3968  * inserting into the btree:
3969  *   - Whether the new extent is contiguous with an existing one.
3970  *   - The current tree depth.
3971  *   - Whether the insert is an appending one.
3972  *   - The total # of free records in the tree.
3973  *
3974  * All of the information is stored on the ocfs2_insert_type
3975  * structure.
3976  */
3977 static int ocfs2_figure_insert_type(struct inode *inode,
3978                                     struct buffer_head *di_bh,
3979                                     struct buffer_head **last_eb_bh,
3980                                     struct ocfs2_extent_rec *insert_rec,
3981                                     int *free_records,
3982                                     struct ocfs2_insert_type *insert)
3983 {
3984         int ret;
3985         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3986         struct ocfs2_extent_block *eb;
3987         struct ocfs2_extent_list *el;
3988         struct ocfs2_path *path = NULL;
3989         struct buffer_head *bh = NULL;
3990
3991         insert->ins_split = SPLIT_NONE;
3992
3993         el = &di->id2.i_list;
3994         insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3995
3996         if (el->l_tree_depth) {
3997                 /*
3998                  * If we have tree depth, we read in the
3999                  * rightmost extent block ahead of time as
4000                  * ocfs2_figure_insert_type() and ocfs2_add_branch()
4001                  * may want it later.
4002                  */
4003                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4004                                        le64_to_cpu(di->i_last_eb_blk), &bh,
4005                                        OCFS2_BH_CACHED, inode);
4006                 if (ret) {
4007                         mlog_exit(ret);
4008                         goto out;
4009                 }
4010                 eb = (struct ocfs2_extent_block *) bh->b_data;
4011                 el = &eb->h_list;
4012         }
4013
4014         /*
4015          * Unless we have a contiguous insert, we'll need to know if
4016          * there is room left in our allocation tree for another
4017          * extent record.
4018          *
4019          * XXX: This test is simplistic, we can search for empty
4020          * extent records too.
4021          */
4022         *free_records = le16_to_cpu(el->l_count) -
4023                 le16_to_cpu(el->l_next_free_rec);
4024
4025         if (!insert->ins_tree_depth) {
4026                 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4027                 ocfs2_figure_appending_type(insert, el, insert_rec);
4028                 return 0;
4029         }
4030
4031         path = ocfs2_new_inode_path(di_bh);
4032         if (!path) {
4033                 ret = -ENOMEM;
4034                 mlog_errno(ret);
4035                 goto out;
4036         }
4037
4038         /*
4039          * In the case that we're inserting past what the tree
4040          * currently accounts for, ocfs2_find_path() will return for
4041          * us the rightmost tree path. This is accounted for below in
4042          * the appending code.
4043          */
4044         ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4045         if (ret) {
4046                 mlog_errno(ret);
4047                 goto out;
4048         }
4049
4050         el = path_leaf_el(path);
4051
4052         /*
4053          * Now that we have the path, there's two things we want to determine:
4054          * 1) Contiguousness (also set contig_index if this is so)
4055          *
4056          * 2) Are we doing an append? We can trivially break this up
4057          *     into two types of appends: simple record append, or a
4058          *     rotate inside the tail leaf.
4059          */
4060         ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4061
4062         /*
4063          * The insert code isn't quite ready to deal with all cases of
4064          * left contiguousness. Specifically, if it's an insert into
4065          * the 1st record in a leaf, it will require the adjustment of
4066          * cluster count on the last record of the path directly to it's
4067          * left. For now, just catch that case and fool the layers
4068          * above us. This works just fine for tree_depth == 0, which
4069          * is why we allow that above.
4070          */
4071         if (insert->ins_contig == CONTIG_LEFT &&
4072             insert->ins_contig_index == 0)
4073                 insert->ins_contig = CONTIG_NONE;
4074
4075         /*
4076          * Ok, so we can simply compare against last_eb to figure out
4077          * whether the path doesn't exist. This will only happen in
4078          * the case that we're doing a tail append, so maybe we can
4079          * take advantage of that information somehow.
4080          */
4081         if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
4082                 /*
4083                  * Ok, ocfs2_find_path() returned us the rightmost
4084                  * tree path. This might be an appending insert. There are
4085                  * two cases:
4086                  *    1) We're doing a true append at the tail:
4087                  *      -This might even be off the end of the leaf
4088                  *    2) We're "appending" by rotating in the tail
4089                  */
4090                 ocfs2_figure_appending_type(insert, el, insert_rec);
4091         }
4092
4093 out:
4094         ocfs2_free_path(path);
4095
4096         if (ret == 0)
4097                 *last_eb_bh = bh;
4098         else
4099                 brelse(bh);
4100         return ret;
4101 }
4102
4103 /*
4104  * Insert an extent into an inode btree.
4105  *
4106  * The caller needs to update fe->i_clusters
4107  */
4108 int ocfs2_insert_extent(struct ocfs2_super *osb,
4109                         handle_t *handle,
4110                         struct inode *inode,
4111                         struct buffer_head *fe_bh,
4112                         u32 cpos,
4113                         u64 start_blk,
4114                         u32 new_clusters,
4115                         u8 flags,
4116                         struct ocfs2_alloc_context *meta_ac)
4117 {
4118         int status;
4119         int uninitialized_var(free_records);
4120         struct buffer_head *last_eb_bh = NULL;
4121         struct ocfs2_insert_type insert = {0, };
4122         struct ocfs2_extent_rec rec;
4123
4124         BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
4125
4126         mlog(0, "add %u clusters at position %u to inode %llu\n",
4127              new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4128
4129         mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
4130                         (OCFS2_I(inode)->ip_clusters != cpos),
4131                         "Device %s, asking for sparse allocation: inode %llu, "
4132                         "cpos %u, clusters %u\n",
4133                         osb->dev_str,
4134                         (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
4135                         OCFS2_I(inode)->ip_clusters);
4136
4137         memset(&rec, 0, sizeof(rec));
4138         rec.e_cpos = cpu_to_le32(cpos);
4139         rec.e_blkno = cpu_to_le64(start_blk);
4140         rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4141         rec.e_flags = flags;
4142
4143         status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
4144                                           &free_records, &insert);
4145         if (status < 0) {
4146                 mlog_errno(status);
4147                 goto bail;
4148         }
4149
4150         mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4151              "Insert.contig_index: %d, Insert.free_records: %d, "
4152              "Insert.tree_depth: %d\n",
4153              insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4154              free_records, insert.ins_tree_depth);
4155
4156         if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4157                 status = ocfs2_grow_tree(inode, handle, fe_bh,
4158                                          &insert.ins_tree_depth, &last_eb_bh,
4159                                          meta_ac);
4160                 if (status) {
4161                         mlog_errno(status);
4162                         goto bail;
4163                 }
4164         }
4165
4166         /* Finally, we can add clusters. This might rotate the tree for us. */
4167         status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
4168         if (status < 0)
4169                 mlog_errno(status);
4170         else
4171                 ocfs2_extent_map_insert_rec(inode, &rec);
4172
4173 bail:
4174         if (last_eb_bh)
4175                 brelse(last_eb_bh);
4176
4177         mlog_exit(status);
4178         return status;
4179 }
4180
4181 static void ocfs2_make_right_split_rec(struct super_block *sb,
4182                                        struct ocfs2_extent_rec *split_rec,
4183                                        u32 cpos,
4184                                        struct ocfs2_extent_rec *rec)
4185 {
4186         u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4187         u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4188
4189         memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4190
4191         split_rec->e_cpos = cpu_to_le32(cpos);
4192         split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4193
4194         split_rec->e_blkno = rec->e_blkno;
4195         le64_add_cpu(&split_rec->e_blkno,
4196                      ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4197
4198         split_rec->e_flags = rec->e_flags;
4199 }
4200
4201 static int ocfs2_split_and_insert(struct inode *inode,
4202                                   handle_t *handle,
4203                                   struct ocfs2_path *path,
4204                                   struct buffer_head *di_bh,
4205                                   struct buffer_head **last_eb_bh,
4206                                   int split_index,
4207                                   struct ocfs2_extent_rec *orig_split_rec,
4208                                   struct ocfs2_alloc_context *meta_ac)
4209 {
4210         int ret = 0, depth;
4211         unsigned int insert_range, rec_range, do_leftright = 0;
4212         struct ocfs2_extent_rec tmprec;
4213         struct ocfs2_extent_list *rightmost_el;
4214         struct ocfs2_extent_rec rec;
4215         struct ocfs2_extent_rec split_rec = *orig_split_rec;
4216         struct ocfs2_insert_type insert;
4217         struct ocfs2_extent_block *eb;
4218         struct ocfs2_dinode *di;
4219
4220 leftright:
4221         /*
4222          * Store a copy of the record on the stack - it might move
4223          * around as the tree is manipulated below.
4224          */
4225         rec = path_leaf_el(path)->l_recs[split_index];
4226
4227         di = (struct ocfs2_dinode *)di_bh->b_data;
4228         rightmost_el = &di->id2.i_list;
4229
4230         depth = le16_to_cpu(rightmost_el->l_tree_depth);
4231         if (depth) {
4232                 BUG_ON(!(*last_eb_bh));
4233                 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4234                 rightmost_el = &eb->h_list;
4235         }
4236
4237         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4238             le16_to_cpu(rightmost_el->l_count)) {
4239                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
4240                                       meta_ac);
4241                 if (ret) {
4242                         mlog_errno(ret);
4243                         goto out;
4244                 }
4245         }
4246
4247         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4248         insert.ins_appending = APPEND_NONE;
4249         insert.ins_contig = CONTIG_NONE;
4250         insert.ins_tree_depth = depth;
4251
4252         insert_range = le32_to_cpu(split_rec.e_cpos) +
4253                 le16_to_cpu(split_rec.e_leaf_clusters);
4254         rec_range = le32_to_cpu(rec.e_cpos) +
4255                 le16_to_cpu(rec.e_leaf_clusters);
4256
4257         if (split_rec.e_cpos == rec.e_cpos) {
4258                 insert.ins_split = SPLIT_LEFT;
4259         } else if (insert_range == rec_range) {
4260                 insert.ins_split = SPLIT_RIGHT;
4261         } else {
4262                 /*
4263                  * Left/right split. We fake this as a right split
4264                  * first and then make a second pass as a left split.
4265                  */
4266                 insert.ins_split = SPLIT_RIGHT;
4267
4268                 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4269                                            &rec);
4270
4271                 split_rec = tmprec;
4272
4273                 BUG_ON(do_leftright);
4274                 do_leftright = 1;
4275         }
4276
4277         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
4278                                      &insert);
4279         if (ret) {
4280                 mlog_errno(ret);
4281                 goto out;
4282         }
4283
4284         if (do_leftright == 1) {
4285                 u32 cpos;
4286                 struct ocfs2_extent_list *el;
4287
4288                 do_leftright++;
4289                 split_rec = *orig_split_rec;
4290
4291                 ocfs2_reinit_path(path, 1);
4292
4293                 cpos = le32_to_cpu(split_rec.e_cpos);
4294                 ret = ocfs2_find_path(inode, path, cpos);
4295                 if (ret) {
4296                         mlog_errno(ret);
4297                         goto out;
4298                 }
4299
4300                 el = path_leaf_el(path);
4301                 split_index = ocfs2_search_extent_list(el, cpos);
4302                 goto leftright;
4303         }
4304 out:
4305
4306         return ret;
4307 }
4308
4309 /*
4310  * Mark part or all of the extent record at split_index in the leaf
4311  * pointed to by path as written. This removes the unwritten
4312  * extent flag.
4313  *
4314  * Care is taken to handle contiguousness so as to not grow the tree.
4315  *
4316  * meta_ac is not strictly necessary - we only truly need it if growth
4317  * of the tree is required. All other cases will degrade into a less
4318  * optimal tree layout.
4319  *
4320  * last_eb_bh should be the rightmost leaf block for any inode with a
4321  * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
4322  *
4323  * This code is optimized for readability - several passes might be
4324  * made over certain portions of the tree. All of those blocks will
4325  * have been brought into cache (and pinned via the journal), so the
4326  * extra overhead is not expressed in terms of disk reads.
4327  */
4328 static int __ocfs2_mark_extent_written(struct inode *inode,
4329                                        struct buffer_head *di_bh,
4330                                        handle_t *handle,
4331                                        struct ocfs2_path *path,
4332                                        int split_index,
4333                                        struct ocfs2_extent_rec *split_rec,
4334                                        struct ocfs2_alloc_context *meta_ac,
4335                                        struct ocfs2_cached_dealloc_ctxt *dealloc)
4336 {
4337         int ret = 0;
4338         struct ocfs2_extent_list *el = path_leaf_el(path);
4339         struct buffer_head *last_eb_bh = NULL;
4340         struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4341         struct ocfs2_merge_ctxt ctxt;
4342         struct ocfs2_extent_list *rightmost_el;
4343
4344         if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4345                 ret = -EIO;
4346                 mlog_errno(ret);
4347                 goto out;
4348         }
4349
4350         if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4351             ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4352              (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4353                 ret = -EIO;
4354                 mlog_errno(ret);
4355                 goto out;
4356         }
4357
4358         ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4359                                                             split_index,
4360                                                             split_rec);
4361
4362         /*
4363          * The core merge / split code wants to know how much room is
4364          * left in this inodes allocation tree, so we pass the
4365          * rightmost extent list.
4366          */
4367         if (path->p_tree_depth) {
4368                 struct ocfs2_extent_block *eb;
4369                 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4370
4371                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4372                                        le64_to_cpu(di->i_last_eb_blk),
4373                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4374                 if (ret) {
4375                         mlog_exit(ret);
4376                         goto out;
4377                 }
4378
4379                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4380                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4381                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4382                         ret = -EROFS;
4383                         goto out;
4384                 }
4385
4386                 rightmost_el = &eb->h_list;
4387         } else
4388                 rightmost_el = path_root_el(path);
4389
4390         if (rec->e_cpos == split_rec->e_cpos &&
4391             rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4392                 ctxt.c_split_covers_rec = 1;
4393         else
4394                 ctxt.c_split_covers_rec = 0;
4395
4396         ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4397
4398         mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4399              split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4400              ctxt.c_split_covers_rec);
4401
4402         if (ctxt.c_contig_type == CONTIG_NONE) {
4403                 if (ctxt.c_split_covers_rec)
4404                         el->l_recs[split_index] = *split_rec;
4405                 else
4406                         ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4407                                                      &last_eb_bh, split_index,
4408                                                      split_rec, meta_ac);
4409                 if (ret)
4410                         mlog_errno(ret);
4411         } else {
4412                 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4413                                                 split_index, split_rec,
4414                                                 dealloc, &ctxt);
4415                 if (ret)
4416                         mlog_errno(ret);
4417         }
4418
4419 out:
4420         brelse(last_eb_bh);
4421         return ret;
4422 }
4423
4424 /*
4425  * Mark the already-existing extent at cpos as written for len clusters.
4426  *
4427  * If the existing extent is larger than the request, initiate a
4428  * split. An attempt will be made at merging with adjacent extents.
4429  *
4430  * The caller is responsible for passing down meta_ac if we'll need it.
4431  */
4432 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4433                               handle_t *handle, u32 cpos, u32 len, u32 phys,
4434                               struct ocfs2_alloc_context *meta_ac,
4435                               struct ocfs2_cached_dealloc_ctxt *dealloc)
4436 {
4437         int ret, index;
4438         u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4439         struct ocfs2_extent_rec split_rec;
4440         struct ocfs2_path *left_path = NULL;
4441         struct ocfs2_extent_list *el;
4442
4443         mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4444              inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4445
4446         if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4447                 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4448                             "that are being written to, but the feature bit "
4449                             "is not set in the super block.",
4450                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
4451                 ret = -EROFS;
4452                 goto out;
4453         }
4454
4455         /*
4456          * XXX: This should be fixed up so that we just re-insert the
4457          * next extent records.
4458          */
4459         ocfs2_extent_map_trunc(inode, 0);
4460
4461         left_path = ocfs2_new_inode_path(di_bh);
4462         if (!left_path) {
4463                 ret = -ENOMEM;
4464                 mlog_errno(ret);
4465                 goto out;
4466         }
4467
4468         ret = ocfs2_find_path(inode, left_path, cpos);
4469         if (ret) {
4470                 mlog_errno(ret);
4471                 goto out;
4472         }
4473         el = path_leaf_el(left_path);
4474
4475         index = ocfs2_search_extent_list(el, cpos);
4476         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4477                 ocfs2_error(inode->i_sb,
4478                             "Inode %llu has an extent at cpos %u which can no "
4479                             "longer be found.\n",
4480                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4481                 ret = -EROFS;
4482                 goto out;
4483         }
4484
4485         memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4486         split_rec.e_cpos = cpu_to_le32(cpos);
4487         split_rec.e_leaf_clusters = cpu_to_le16(len);
4488         split_rec.e_blkno = cpu_to_le64(start_blkno);
4489         split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4490         split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4491
4492         ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4493                                           index, &split_rec, meta_ac, dealloc);
4494         if (ret)
4495                 mlog_errno(ret);
4496
4497 out:
4498         ocfs2_free_path(left_path);
4499         return ret;
4500 }
4501
4502 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4503                             handle_t *handle, struct ocfs2_path *path,
4504                             int index, u32 new_range,
4505                             struct ocfs2_alloc_context *meta_ac)
4506 {
4507         int ret, depth, credits = handle->h_buffer_credits;
4508         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4509         struct buffer_head *last_eb_bh = NULL;
4510         struct ocfs2_extent_block *eb;
4511         struct ocfs2_extent_list *rightmost_el, *el;
4512         struct ocfs2_extent_rec split_rec;
4513         struct ocfs2_extent_rec *rec;
4514         struct ocfs2_insert_type insert;
4515
4516         /*
4517          * Setup the record to split before we grow the tree.
4518          */
4519         el = path_leaf_el(path);
4520         rec = &el->l_recs[index];
4521         ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4522
4523         depth = path->p_tree_depth;
4524         if (depth > 0) {
4525                 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4526                                        le64_to_cpu(di->i_last_eb_blk),
4527                                        &last_eb_bh, OCFS2_BH_CACHED, inode);
4528                 if (ret < 0) {
4529                         mlog_errno(ret);
4530                         goto out;
4531                 }
4532
4533                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4534                 rightmost_el = &eb->h_list;
4535         } else
4536                 rightmost_el = path_leaf_el(path);
4537
4538         credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
4539         ret = ocfs2_extend_trans(handle, credits);
4540         if (ret) {
4541                 mlog_errno(ret);
4542                 goto out;
4543         }
4544
4545         if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4546             le16_to_cpu(rightmost_el->l_count)) {
4547                 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4548                                       meta_ac);
4549                 if (ret) {
4550                         mlog_errno(ret);
4551                         goto out;
4552                 }
4553         }
4554
4555         memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4556         insert.ins_appending = APPEND_NONE;
4557         insert.ins_contig = CONTIG_NONE;
4558         insert.ins_split = SPLIT_RIGHT;
4559         insert.ins_tree_depth = depth;
4560
4561         ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4562         if (ret)
4563                 mlog_errno(ret);
4564
4565 out:
4566         brelse(last_eb_bh);
4567         return ret;
4568 }
4569
4570 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4571                               struct ocfs2_path *path, int index,
4572                               struct ocfs2_cached_dealloc_ctxt *dealloc,
4573                               u32 cpos, u32 len)
4574 {
4575         int ret;
4576         u32 left_cpos, rec_range, trunc_range;
4577         int wants_rotate = 0, is_rightmost_tree_rec = 0;
4578         struct super_block *sb = inode->i_sb;
4579         struct ocfs2_path *left_path = NULL;
4580         struct ocfs2_extent_list *el = path_leaf_el(path);
4581         struct ocfs2_extent_rec *rec;
4582         struct ocfs2_extent_block *eb;
4583
4584         if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4585                 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4586                 if (ret) {
4587                         mlog_errno(ret);
4588                         goto out;
4589                 }
4590
4591                 index--;
4592         }
4593
4594         if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4595             path->p_tree_depth) {
4596                 /*
4597                  * Check whether this is the rightmost tree record. If
4598                  * we remove all of this record or part of its right
4599                  * edge then an update of the record lengths above it
4600                  * will be required.
4601                  */
4602                 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4603                 if (eb->h_next_leaf_blk == 0)
4604                         is_rightmost_tree_rec = 1;
4605         }
4606
4607         rec = &el->l_recs[index];
4608         if (index == 0 && path->p_tree_depth &&
4609             le32_to_cpu(rec->e_cpos) == cpos) {
4610                 /*
4611                  * Changing the leftmost offset (via partial or whole
4612                  * record truncate) of an interior (or rightmost) path
4613                  * means we have to update the subtree that is formed
4614                  * by this leaf and the one to it's left.
4615                  *
4616                  * There are two cases we can skip:
4617                  *   1) Path is the leftmost one in our inode tree.
4618                  *   2) The leaf is rightmost and will be empty after
4619                  *      we remove the extent record - the rotate code
4620                  *      knows how to update the newly formed edge.
4621                  */
4622
4623                 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4624                                                     &left_cpos);
4625                 if (ret) {
4626                         mlog_errno(ret);
4627                         goto out;
4628                 }
4629
4630                 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4631                         left_path = ocfs2_new_path(path_root_bh(path),
4632                                                    path_root_el(path));
4633                         if (!left_path) {
4634                                 ret = -ENOMEM;
4635                                 mlog_errno(ret);
4636                                 goto out;
4637                         }
4638
4639                         ret = ocfs2_find_path(inode, left_path, left_cpos);
4640                         if (ret) {
4641                                 mlog_errno(ret);
4642                                 goto out;
4643                         }
4644                 }
4645         }
4646
4647         ret = ocfs2_extend_rotate_transaction(handle, 0,
4648                                               handle->h_buffer_credits,
4649                                               path);
4650         if (ret) {
4651                 mlog_errno(ret);
4652                 goto out;
4653         }
4654
4655         ret = ocfs2_journal_access_path(inode, handle, path);
4656         if (ret) {
4657                 mlog_errno(ret);
4658                 goto out;
4659         }
4660
4661         ret = ocfs2_journal_access_path(inode, handle, left_path);
4662         if (ret) {
4663                 mlog_errno(ret);
4664                 goto out;
4665         }
4666
4667         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4668         trunc_range = cpos + len;
4669
4670         if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4671                 int next_free;
4672
4673                 memset(rec, 0, sizeof(*rec));
4674                 ocfs2_cleanup_merge(el, index);
4675                 wants_rotate = 1;
4676
4677                 next_free = le16_to_cpu(el->l_next_free_rec);
4678                 if (is_rightmost_tree_rec && next_free > 1) {
4679                         /*
4680                          * We skip the edge update if this path will
4681                          * be deleted by the rotate code.
4682                          */
4683                         rec = &el->l_recs[next_free - 1];
4684                         ocfs2_adjust_rightmost_records(inode, handle, path,
4685                                                        rec);
4686                 }
4687         } else if (le32_to_cpu(rec->e_cpos) == cpos) {
4688                 /* Remove leftmost portion of the record. */
4689                 le32_add_cpu(&rec->e_cpos, len);
4690                 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4691                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4692         } else if (rec_range == trunc_range) {
4693                 /* Remove rightmost portion of the record */
4694                 le16_add_cpu(&rec->e_leaf_clusters, -len);
4695                 if (is_rightmost_tree_rec)
4696                         ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4697         } else {
4698                 /* Caller should have trapped this. */
4699                 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4700                      "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4701                      le32_to_cpu(rec->e_cpos),
4702                      le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4703                 BUG();
4704         }
4705
4706         if (left_path) {
4707                 int subtree_index;
4708
4709                 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4710                 ocfs2_complete_edge_insert(inode, handle, left_path, path,
4711                                            subtree_index);
4712         }
4713
4714         ocfs2_journal_dirty(handle, path_leaf_bh(path));
4715
4716         ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4717         if (ret) {
4718                 mlog_errno(ret);
4719                 goto out;
4720         }
4721
4722 out:
4723         ocfs2_free_path(left_path);
4724         return ret;
4725 }
4726
4727 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4728                         u32 cpos, u32 len, handle_t *handle,
4729                         struct ocfs2_alloc_context *meta_ac,
4730                         struct ocfs2_cached_dealloc_ctxt *dealloc)
4731 {
4732         int ret, index;
4733         u32 rec_range, trunc_range;
4734         struct ocfs2_extent_rec *rec;
4735         struct ocfs2_extent_list *el;
4736         struct ocfs2_path *path;
4737
4738         ocfs2_extent_map_trunc(inode, 0);
4739
4740         path = ocfs2_new_inode_path(di_bh);
4741         if (!path) {
4742                 ret = -ENOMEM;
4743                 mlog_errno(ret);
4744                 goto out;
4745         }
4746
4747         ret = ocfs2_find_path(inode, path, cpos);
4748         if (ret) {
4749                 mlog_errno(ret);
4750                 goto out;
4751         }
4752
4753         el = path_leaf_el(path);
4754         index = ocfs2_search_extent_list(el, cpos);
4755         if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4756                 ocfs2_error(inode->i_sb,
4757                             "Inode %llu has an extent at cpos %u which can no "
4758                             "longer be found.\n",
4759                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4760                 ret = -EROFS;
4761                 goto out;
4762         }
4763
4764         /*
4765          * We have 3 cases of extent removal:
4766          *   1) Range covers the entire extent rec
4767          *   2) Range begins or ends on one edge of the extent rec
4768          *   3) Range is in the middle of the extent rec (no shared edges)
4769          *
4770          * For case 1 we remove the extent rec and left rotate to
4771          * fill the hole.
4772          *
4773          * For case 2 we just shrink the existing extent rec, with a
4774          * tree update if the shrinking edge is also the edge of an
4775          * extent block.
4776          *
4777          * For case 3 we do a right split to turn the extent rec into
4778          * something case 2 can handle.
4779          */
4780         rec = &el->l_recs[index];
4781         rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4782         trunc_range = cpos + len;
4783
4784         BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4785
4786         mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4787              "(cpos %u, len %u)\n",
4788              (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4789              le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4790
4791         if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4792                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4793                                          cpos, len);
4794                 if (ret) {
4795                         mlog_errno(ret);
4796                         goto out;
4797                 }
4798         } else {
4799                 ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4800                                        trunc_range, meta_ac);
4801                 if (ret) {
4802                         mlog_errno(ret);
4803                         goto out;
4804                 }
4805
4806                 /*
4807                  * The split could have manipulated the tree enough to
4808                  * move the record location, so we have to look for it again.
4809                  */
4810                 ocfs2_reinit_path(path, 1);
4811
4812                 ret = ocfs2_find_path(inode, path, cpos);
4813                 if (ret) {
4814                         mlog_errno(ret);
4815                         goto out;
4816                 }
4817
4818                 el = path_leaf_el(path);
4819                 index = ocfs2_search_extent_list(el, cpos);
4820                 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4821                         ocfs2_error(inode->i_sb,
4822                                     "Inode %llu: split at cpos %u lost record.",
4823                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4824                                     cpos);
4825                         ret = -EROFS;
4826                         goto out;
4827                 }
4828
4829                 /*
4830                  * Double check our values here. If anything is fishy,
4831                  * it's easier to catch it at the top level.
4832                  */
4833                 rec = &el->l_recs[index];
4834                 rec_range = le32_to_cpu(rec->e_cpos) +
4835                         ocfs2_rec_clusters(el, rec);
4836                 if (rec_range != trunc_range) {
4837                         ocfs2_error(inode->i_sb,
4838                                     "Inode %llu: error after split at cpos %u"
4839                                     "trunc len %u, existing record is (%u,%u)",
4840                                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
4841                                     cpos, len, le32_to_cpu(rec->e_cpos),
4842                                     ocfs2_rec_clusters(el, rec));
4843                         ret = -EROFS;
4844                         goto out;
4845                 }
4846
4847                 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4848                                          cpos, len);
4849                 if (ret) {
4850                         mlog_errno(ret);
4851                         goto out;
4852                 }
4853         }
4854
4855 out:
4856         ocfs2_free_path(path);
4857         return ret;
4858 }
4859
4860 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4861 {
4862         struct buffer_head *tl_bh = osb->osb_tl_bh;
4863         struct ocfs2_dinode *di;
4864         struct ocfs2_truncate_log *tl;
4865
4866         di = (struct ocfs2_dinode *) tl_bh->b_data;
4867         tl = &di->id2.i_dealloc;
4868
4869         mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4870                         "slot %d, invalid truncate log parameters: used = "
4871                         "%u, count = %u\n", osb->slot_num,
4872                         le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4873         return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4874 }
4875
4876 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4877                                            unsigned int new_start)
4878 {
4879         unsigned int tail_index;
4880         unsigned int current_tail;
4881
4882         /* No records, nothing to coalesce */
4883         if (!le16_to_cpu(tl->tl_used))
4884                 return 0;
4885
4886         tail_index = le16_to_cpu(tl->tl_used) - 1;
4887         current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4888         current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4889
4890         return current_tail == new_start;
4891 }
4892
4893 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4894                               handle_t *handle,
4895                               u64 start_blk,
4896                               unsigned int num_clusters)
4897 {
4898         int status, index;
4899         unsigned int start_cluster, tl_count;
4900         struct inode *tl_inode = osb->osb_tl_inode;
4901         struct buffer_head *tl_bh = osb->osb_tl_bh;
4902         struct ocfs2_dinode *di;
4903         struct ocfs2_truncate_log *tl;
4904
4905         mlog_entry("start_blk = %llu, num_clusters = %u\n",
4906                    (unsigned long long)start_blk, num_clusters);
4907
4908         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4909
4910         start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4911
4912         di = (struct ocfs2_dinode *) tl_bh->b_data;
4913         tl = &di->id2.i_dealloc;
4914         if (!OCFS2_IS_VALID_DINODE(di)) {
4915                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4916                 status = -EIO;
4917                 goto bail;
4918         }
4919
4920         tl_count = le16_to_cpu(tl->tl_count);
4921         mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4922                         tl_count == 0,
4923                         "Truncate record count on #%llu invalid "
4924                         "wanted %u, actual %u\n",
4925                         (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4926                         ocfs2_truncate_recs_per_inode(osb->sb),
4927                         le16_to_cpu(tl->tl_count));
4928
4929         /* Caller should have known to flush before calling us. */
4930         index = le16_to_cpu(tl->tl_used);
4931         if (index >= tl_count) {
4932                 status = -ENOSPC;
4933                 mlog_errno(status);
4934                 goto bail;
4935         }
4936
4937         status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4938                                       OCFS2_JOURNAL_ACCESS_WRITE);
4939         if (status < 0) {
4940                 mlog_errno(status);
4941                 goto bail;
4942         }
4943
4944         mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4945              "%llu (index = %d)\n", num_clusters, start_cluster,
4946              (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4947
4948         if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4949                 /*
4950                  * Move index back to the record we are coalescing with.
4951                  * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4952                  */
4953                 index--;
4954
4955                 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4956                 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4957                      index, le32_to_cpu(tl->tl_recs[index].t_start),
4958                      num_clusters);
4959         } else {
4960                 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4961                 tl->tl_used = cpu_to_le16(index + 1);
4962         }
4963         tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4964
4965         status = ocfs2_journal_dirty(handle, tl_bh);
4966         if (status < 0) {
4967                 mlog_errno(status);
4968                 goto bail;
4969         }
4970
4971 bail:
4972         mlog_exit(status);
4973         return status;
4974 }
4975
4976 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4977                                          handle_t *handle,
4978                                          struct inode *data_alloc_inode,
4979                                          struct buffer_head *data_alloc_bh)
4980 {
4981         int status = 0;
4982         int i;
4983         unsigned int num_clusters;
4984         u64 start_blk;
4985         struct ocfs2_truncate_rec rec;
4986         struct ocfs2_dinode *di;
4987         struct ocfs2_truncate_log *tl;
4988         struct inode *tl_inode = osb->osb_tl_inode;
4989         struct buffer_head *tl_bh = osb->osb_tl_bh;
4990
4991         mlog_entry_void();
4992
4993         di = (struct ocfs2_dinode *) tl_bh->b_data;
4994         tl = &di->id2.i_dealloc;
4995         i = le16_to_cpu(tl->tl_used) - 1;
4996         while (i >= 0) {
4997                 /* Caller has given us at least enough credits to
4998                  * update the truncate log dinode */
4999                 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5000                                               OCFS2_JOURNAL_ACCESS_WRITE);
5001                 if (status < 0) {
5002                         mlog_errno(status);
5003                         goto bail;
5004                 }
5005
5006                 tl->tl_used = cpu_to_le16(i);
5007
5008                 status = ocfs2_journal_dirty(handle, tl_bh);
5009                 if (status < 0) {
5010                         mlog_errno(status);
5011                         goto bail;
5012                 }
5013
5014                 /* TODO: Perhaps we can calculate the bulk of the
5015                  * credits up front rather than extending like
5016                  * this. */
5017                 status = ocfs2_extend_trans(handle,
5018                                             OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5019                 if (status < 0) {
5020                         mlog_errno(status);
5021                         goto bail;
5022                 }
5023
5024                 rec = tl->tl_recs[i];
5025                 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5026                                                     le32_to_cpu(rec.t_start));
5027                 num_clusters = le32_to_cpu(rec.t_clusters);
5028
5029                 /* if start_blk is not set, we ignore the record as
5030                  * invalid. */
5031                 if (start_blk) {
5032                         mlog(0, "free record %d, start = %u, clusters = %u\n",
5033                              i, le32_to_cpu(rec.t_start), num_clusters);
5034
5035                         status = ocfs2_free_clusters(handle, data_alloc_inode,
5036                                                      data_alloc_bh, start_blk,
5037                                                      num_clusters);
5038                         if (status < 0) {
5039                                 mlog_errno(status);
5040                                 goto bail;
5041                         }
5042                 }
5043                 i--;
5044         }
5045
5046 bail:
5047         mlog_exit(status);
5048         return status;
5049 }
5050
5051 /* Expects you to already be holding tl_inode->i_mutex */
5052 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5053 {
5054         int status;
5055         unsigned int num_to_flush;
5056         handle_t *handle;
5057         struct inode *tl_inode = osb->osb_tl_inode;
5058         struct inode *data_alloc_inode = NULL;
5059         struct buffer_head *tl_bh = osb->osb_tl_bh;
5060         struct buffer_head *data_alloc_bh = NULL;
5061         struct ocfs2_dinode *di;
5062         struct ocfs2_truncate_log *tl;
5063
5064         mlog_entry_void();
5065
5066         BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5067
5068         di = (struct ocfs2_dinode *) tl_bh->b_data;
5069         tl = &di->id2.i_dealloc;
5070         if (!OCFS2_IS_VALID_DINODE(di)) {
5071                 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5072                 status = -EIO;
5073                 goto out;
5074         }
5075
5076         num_to_flush = le16_to_cpu(tl->tl_used);
5077         mlog(0, "Flush %u records from truncate log #%llu\n",
5078              num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5079         if (!num_to_flush) {
5080                 status = 0;
5081                 goto out;
5082         }
5083
5084         data_alloc_inode = ocfs2_get_system_file_inode(osb,
5085                                                        GLOBAL_BITMAP_SYSTEM_INODE,
5086                                                        OCFS2_INVALID_SLOT);
5087         if (!data_alloc_inode) {
5088                 status = -EINVAL;
5089                 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5090                 goto out;
5091         }
5092
5093         mutex_lock(&data_alloc_inode->i_mutex);
5094
5095         status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5096         if (status < 0) {
5097                 mlog_errno(status);
5098                 goto out_mutex;
5099         }
5100
5101         handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5102         if (IS_ERR(handle)) {
5103                 status = PTR_ERR(handle);
5104                 mlog_errno(status);
5105                 goto out_unlock;
5106         }
5107
5108         status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5109                                                data_alloc_bh);
5110         if (status < 0)
5111                 mlog_errno(status);
5112
5113         ocfs2_commit_trans(osb, handle);
5114
5115 out_unlock:
5116         brelse(data_alloc_bh);
5117         ocfs2_inode_unlock(data_alloc_inode, 1);
5118
5119 out_mutex:
5120         mutex_unlock(&data_alloc_inode->i_mutex);
5121         iput(data_alloc_inode);
5122
5123 out:
5124         mlog_exit(status);
5125         return status;
5126 }
5127
5128 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5129 {
5130         int status;
5131         struct inode *tl_inode = osb->osb_tl_inode;
5132
5133         mutex_lock(&tl_inode->i_mutex);
5134         status = __ocfs2_flush_truncate_log(osb);
5135         mutex_unlock(&tl_inode->i_mutex);
5136
5137         return status;
5138 }
5139
5140 static void ocfs2_truncate_log_worker(struct work_struct *work)
5141 {
5142         int status;
5143         struct ocfs2_super *osb =
5144                 container_of(work, struct ocfs2_super,
5145                              osb_truncate_log_wq.work);
5146
5147         mlog_entry_void();
5148
5149         status = ocfs2_flush_truncate_log(osb);
5150         if (status < 0)
5151                 mlog_errno(status);
5152         else
5153                 ocfs2_init_inode_steal_slot(osb);
5154
5155         mlog_exit(status);
5156 }
5157
5158 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5159 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5160                                        int cancel)
5161 {
5162         if (osb->osb_tl_inode) {
5163                 /* We want to push off log flushes while truncates are
5164                  * still running. */
5165                 if (cancel)
5166                         cancel_delayed_work(&osb->osb_truncate_log_wq);
5167
5168                 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5169                                    OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5170         }
5171 }
5172
5173 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5174                                        int slot_num,
5175                                        struct inode **tl_inode,
5176                                        struct buffer_head **tl_bh)
5177 {
5178         int status;
5179         struct inode *inode = NULL;
5180         struct buffer_head *bh = NULL;
5181
5182         inode = ocfs2_get_system_file_inode(osb,
5183                                            TRUNCATE_LOG_SYSTEM_INODE,
5184                                            slot_num);
5185         if (!inode) {
5186                 status = -EINVAL;
5187                 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5188                 goto bail;
5189         }
5190
5191         status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5192                                   OCFS2_BH_CACHED, inode);
5193         if (status < 0) {
5194                 iput(inode);
5195                 mlog_errno(status);
5196                 goto bail;
5197         }
5198
5199         *tl_inode = inode;
5200         *tl_bh    = bh;
5201 bail:
5202         mlog_exit(status);
5203         return status;
5204 }
5205
5206 /* called during the 1st stage of node recovery. we stamp a clean
5207  * truncate log and pass back a copy for processing later. if the
5208  * truncate log does not require processing, a *tl_copy is set to
5209  * NULL. */
5210 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5211                                       int slot_num,
5212                                       struct ocfs2_dinode **tl_copy)
5213 {
5214         int status;
5215         struct inode *tl_inode = NULL;
5216         struct buffer_head *tl_bh = NULL;
5217         struct ocfs2_dinode *di;
5218         struct ocfs2_truncate_log *tl;
5219
5220         *tl_copy = NULL;
5221
5222         mlog(0, "recover truncate log from slot %d\n", slot_num);
5223
5224         status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5225         if (status < 0) {
5226                 mlog_errno(status);
5227                 goto bail;
5228         }
5229
5230         di = (struct ocfs2_dinode *) tl_bh->b_data;
5231         tl = &di->id2.i_dealloc;
5232         if (!OCFS2_IS_VALID_DINODE(di)) {
5233                 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5234                 status = -EIO;
5235                 goto bail;
5236         }
5237
5238         if (le16_to_cpu(tl->tl_used)) {
5239                 mlog(0, "We'll have %u logs to recover\n",
5240                      le16_to_cpu(tl->tl_used));
5241
5242                 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5243                 if (!(*tl_copy)) {
5244                         status = -ENOMEM;
5245                         mlog_errno(status);
5246                         goto bail;
5247                 }
5248
5249                 /* Assuming the write-out below goes well, this copy
5250                  * will be passed back to recovery for processing. */
5251                 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5252
5253                 /* All we need to do to clear the truncate log is set
5254                  * tl_used. */
5255                 tl->tl_used = 0;
5256
5257                 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5258                 if (status < 0) {
5259                         mlog_errno(status);
5260                         goto bail;
5261                 }
5262         }
5263
5264 bail:
5265         if (tl_inode)
5266                 iput(tl_inode);
5267         if (tl_bh)
5268                 brelse(tl_bh);
5269
5270         if (status < 0 && (*tl_copy)) {
5271                 kfree(*tl_copy);
5272                 *tl_copy = NULL;
5273         }
5274
5275         mlog_exit(status);
5276         return status;
5277 }
5278
5279 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5280                                          struct ocfs2_dinode *tl_copy)
5281 {
5282         int status = 0;
5283         int i;
5284         unsigned int clusters, num_recs, start_cluster;
5285         u64 start_blk;
5286         handle_t *handle;
5287         struct inode *tl_inode = osb->osb_tl_inode;
5288         struct ocfs2_truncate_log *tl;
5289
5290         mlog_entry_void();
5291
5292         if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5293                 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5294                 return -EINVAL;
5295         }
5296
5297         tl = &tl_copy->id2.i_dealloc;
5298         num_recs = le16_to_cpu(tl->tl_used);
5299         mlog(0, "cleanup %u records from %llu\n", num_recs,
5300              (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5301
5302         mutex_lock(&tl_inode->i_mutex);
5303         for(i = 0; i < num_recs; i++) {
5304                 if (ocfs2_truncate_log_needs_flush(osb)) {
5305                         status = __ocfs2_flush_truncate_log(osb);
5306                         if (status < 0) {
5307                                 mlog_errno(status);
5308                                 goto bail_up;
5309                         }
5310                 }
5311
5312                 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5313                 if (IS_ERR(handle)) {
5314                         status = PTR_ERR(handle);
5315                         mlog_errno(status);
5316                         goto bail_up;
5317                 }
5318
5319                 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5320                 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5321                 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5322
5323                 status = ocfs2_truncate_log_append(osb, handle,
5324                                                    start_blk, clusters);
5325                 ocfs2_commit_trans(osb, handle);
5326                 if (status < 0) {
5327                         mlog_errno(status);
5328                         goto bail_up;
5329                 }
5330         }
5331
5332 bail_up:
5333         mutex_unlock(&tl_inode->i_mutex);
5334
5335         mlog_exit(status);
5336         return status;
5337 }
5338
5339 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5340 {
5341         int status;
5342         struct inode *tl_inode = osb->osb_tl_inode;
5343
5344         mlog_entry_void();
5345
5346         if (tl_inode) {
5347                 cancel_delayed_work(&osb->osb_truncate_log_wq);
5348                 flush_workqueue(ocfs2_wq);
5349
5350                 status = ocfs2_flush_truncate_log(osb);
5351                 if (status < 0)
5352                         mlog_errno(status);
5353
5354                 brelse(osb->osb_tl_bh);
5355                 iput(osb->osb_tl_inode);
5356         }
5357
5358         mlog_exit_void();
5359 }
5360
5361 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5362 {
5363         int status;
5364         struct inode *tl_inode = NULL;
5365         struct buffer_head *tl_bh = NULL;
5366
5367         mlog_entry_void();
5368
5369         status = ocfs2_get_truncate_log_info(osb,
5370                                              osb->slot_num,
5371                                              &tl_inode,
5372                                              &tl_bh);
5373         if (status < 0)
5374                 mlog_errno(status);
5375
5376         /* ocfs2_truncate_log_shutdown keys on the existence of
5377          * osb->osb_tl_inode so we don't set any of the osb variables
5378          * until we're sure all is well. */
5379         INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5380                           ocfs2_truncate_log_worker);
5381         osb->osb_tl_bh    = tl_bh;
5382         osb->osb_tl_inode = tl_inode;
5383
5384         mlog_exit(status);
5385         return status;
5386 }
5387
5388 /*
5389  * Delayed de-allocation of suballocator blocks.
5390  *
5391  * Some sets of block de-allocations might involve multiple suballocator inodes.
5392  *
5393  * The locking for this can get extremely complicated, especially when
5394  * the suballocator inodes to delete from aren't known until deep
5395  * within an unrelated codepath.
5396  *
5397  * ocfs2_extent_block structures are a good example of this - an inode
5398  * btree could have been grown by any number of nodes each allocating
5399  * out of their own suballoc inode.
5400  *
5401  * These structures allow the delay of block de-allocation until a
5402  * later time, when locking of multiple cluster inodes won't cause
5403  * deadlock.
5404  */
5405
5406 /*
5407  * Describes a single block free from a suballocator
5408  */
5409 struct ocfs2_cached_block_free {
5410         struct ocfs2_cached_block_free          *free_next;
5411         u64                                     free_blk;
5412         unsigned int                            free_bit;
5413 };
5414
5415 struct ocfs2_per_slot_free_list {
5416         struct ocfs2_per_slot_free_list         *f_next_suballocator;
5417         int                                     f_inode_type;
5418         int                                     f_slot;
5419         struct ocfs2_cached_block_free          *f_first;
5420 };
5421
5422 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5423                                    int sysfile_type,
5424                                    int slot,
5425                                    struct ocfs2_cached_block_free *head)
5426 {
5427         int ret;
5428         u64 bg_blkno;
5429         handle_t *handle;
5430         struct inode *inode;
5431         struct buffer_head *di_bh = NULL;
5432         struct ocfs2_cached_block_free *tmp;
5433
5434         inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5435         if (!inode) {
5436                 ret = -EINVAL;
5437                 mlog_errno(ret);
5438                 goto out;
5439         }
5440
5441         mutex_lock(&inode->i_mutex);
5442
5443         ret = ocfs2_inode_lock(inode, &di_bh, 1);
5444         if (ret) {
5445                 mlog_errno(ret);
5446                 goto out_mutex;
5447         }
5448
5449         handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5450         if (IS_ERR(handle)) {
5451                 ret = PTR_ERR(handle);
5452                 mlog_errno(ret);
5453                 goto out_unlock;
5454         }
5455
5456         while (head) {
5457                 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5458                                                       head->free_bit);
5459                 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5460                      head->free_bit, (unsigned long long)head->free_blk);
5461
5462                 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5463                                                head->free_bit, bg_blkno, 1);
5464                 if (ret) {
5465                         mlog_errno(ret);
5466                         goto out_journal;
5467                 }
5468
5469                 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5470                 if (ret) {
5471                         mlog_errno(ret);
5472                         goto out_journal;
5473                 }
5474
5475                 tmp = head;
5476                 head = head->free_next;
5477                 kfree(tmp);
5478         }
5479
5480 out_journal:
5481         ocfs2_commit_trans(osb, handle);
5482
5483 out_unlock:
5484         ocfs2_inode_unlock(inode, 1);
5485         brelse(di_bh);
5486 out_mutex:
5487         mutex_unlock(&inode->i_mutex);
5488         iput(inode);
5489 out:
5490         while(head) {
5491                 /* Premature exit may have left some dangling items. */
5492                 tmp = head;
5493                 head = head->free_next;
5494                 kfree(tmp);
5495         }
5496
5497         return ret;
5498 }
5499
5500 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5501                        struct ocfs2_cached_dealloc_ctxt *ctxt)
5502 {
5503         int ret = 0, ret2;
5504         struct ocfs2_per_slot_free_list *fl;
5505
5506         if (!ctxt)
5507                 return 0;
5508
5509         while (ctxt->c_first_suballocator) {
5510                 fl = ctxt->c_first_suballocator;
5511
5512                 if (fl->f_first) {
5513                         mlog(0, "Free items: (type %u, slot %d)\n",
5514                              fl->f_inode_type, fl->f_slot);
5515                         ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5516                                                        fl->f_slot, fl->f_first);
5517                         if (ret2)
5518                                 mlog_errno(ret2);
5519                         if (!ret)
5520                                 ret = ret2;
5521                 }
5522
5523                 ctxt->c_first_suballocator = fl->f_next_suballocator;
5524                 kfree(fl);
5525         }
5526
5527         return ret;
5528 }
5529
5530 static struct ocfs2_per_slot_free_list *
5531 ocfs2_find_per_slot_free_list(int type,
5532                               int slot,
5533                               struct ocfs2_cached_dealloc_ctxt *ctxt)
5534 {
5535         struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5536
5537         while (fl) {
5538                 if (fl->f_inode_type == type && fl->f_slot == slot)
5539                         return fl;
5540
5541                 fl = fl->f_next_suballocator;
5542         }
5543
5544         fl = kmalloc(sizeof(*fl), GFP_NOFS);
5545         if (fl) {
5546                 fl->f_inode_type = type;
5547                 fl->f_slot = slot;
5548                 fl->f_first = NULL;
5549                 fl->f_next_suballocator = ctxt->c_first_suballocator;
5550
5551                 ctxt->c_first_suballocator = fl;
5552         }
5553         return fl;
5554 }
5555
5556 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5557                                      int type, int slot, u64 blkno,
5558                                      unsigned int bit)
5559 {
5560         int ret;
5561         struct ocfs2_per_slot_free_list *fl;
5562         struct ocfs2_cached_block_free *item;
5563
5564         fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5565         if (fl == NULL) {
5566                 ret = -ENOMEM;
5567                 mlog_errno(ret);
5568                 goto out;
5569         }
5570
5571         item = kmalloc(sizeof(*item), GFP_NOFS);
5572         if (item == NULL) {
5573                 ret = -ENOMEM;
5574                 mlog_errno(ret);
5575                 goto out;
5576         }
5577
5578         mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5579              type, slot, bit, (unsigned long long)blkno);
5580
5581         item->free_blk = blkno;
5582         item->free_bit = bit;
5583         item->free_next = fl->f_first;
5584
5585         fl->f_first = item;
5586
5587         ret = 0;
5588 out:
5589         return ret;
5590 }
5591
5592 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5593                                          struct ocfs2_extent_block *eb)
5594 {
5595         return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5596                                          le16_to_cpu(eb->h_suballoc_slot),
5597                                          le64_to_cpu(eb->h_blkno),
5598                                          le16_to_cpu(eb->h_suballoc_bit));
5599 }
5600
5601 /* This function will figure out whether the currently last extent
5602  * block will be deleted, and if it will, what the new last extent
5603  * block will be so we can update his h_next_leaf_blk field, as well
5604  * as the dinodes i_last_eb_blk */
5605 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5606                                        unsigned int clusters_to_del,
5607                                        struct ocfs2_path *path,
5608                                        struct buffer_head **new_last_eb)
5609 {
5610         int next_free, ret = 0;
5611         u32 cpos;
5612         struct ocfs2_extent_rec *rec;
5613         struct ocfs2_extent_block *eb;
5614         struct ocfs2_extent_list *el;
5615         struct buffer_head *bh = NULL;
5616
5617         *new_last_eb = NULL;
5618
5619         /* we have no tree, so of course, no last_eb. */
5620         if (!path->p_tree_depth)
5621                 goto out;
5622
5623         /* trunc to zero special case - this makes tree_depth = 0
5624          * regardless of what it is.  */
5625         if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5626                 goto out;
5627
5628         el = path_leaf_el(path);
5629         BUG_ON(!el->l_next_free_rec);
5630
5631         /*
5632          * Make sure that this extent list will actually be empty
5633          * after we clear away the data. We can shortcut out if
5634          * there's more than one non-empty extent in the
5635          * list. Otherwise, a check of the remaining extent is
5636          * necessary.
5637          */
5638         next_free = le16_to_cpu(el->l_next_free_rec);
5639         rec = NULL;
5640         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5641                 if (next_free > 2)
5642                         goto out;
5643
5644                 /* We may have a valid extent in index 1, check it. */
5645                 if (next_free == 2)
5646                         rec = &el->l_recs[1];
5647
5648                 /*
5649                  * Fall through - no more nonempty extents, so we want
5650                  * to delete this leaf.
5651                  */
5652         } else {
5653                 if (next_free > 1)
5654                         goto out;
5655
5656                 rec = &el->l_recs[0];
5657         }
5658
5659         if (rec) {
5660                 /*
5661                  * Check it we'll only be trimming off the end of this
5662                  * cluster.
5663                  */
5664                 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5665                         goto out;
5666         }
5667
5668         ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5669         if (ret) {
5670                 mlog_errno(ret);
5671                 goto out;
5672         }
5673
5674         ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5675         if (ret) {
5676                 mlog_errno(ret);
5677                 goto out;
5678         }
5679
5680         eb = (struct ocfs2_extent_block *) bh->b_data;
5681         el = &eb->h_list;
5682         if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5683                 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5684                 ret = -EROFS;
5685                 goto out;
5686         }
5687
5688         *new_last_eb = bh;
5689         get_bh(*new_last_eb);
5690         mlog(0, "returning block %llu, (cpos: %u)\n",
5691              (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5692 out:
5693         brelse(bh);
5694
5695         return ret;
5696 }
5697
5698 /*
5699  * Trim some clusters off the rightmost edge of a tree. Only called
5700  * during truncate.
5701  *
5702  * The caller needs to:
5703  *   - start journaling of each path component.
5704  *   - compute and fully set up any new last ext block
5705  */
5706 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5707                            handle_t *handle, struct ocfs2_truncate_context *tc,
5708                            u32 clusters_to_del, u64 *delete_start)
5709 {
5710         int ret, i, index = path->p_tree_depth;
5711         u32 new_edge = 0;
5712         u64 deleted_eb = 0;
5713         struct buffer_head *bh;
5714         struct ocfs2_extent_list *el;
5715         struct ocfs2_extent_rec *rec;
5716
5717         *delete_start = 0;
5718
5719         while (index >= 0) {
5720                 bh = path->p_node[index].bh;
5721                 el = path->p_node[index].el;
5722
5723                 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5724                      index,  (unsigned long long)bh->b_blocknr);
5725
5726                 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5727
5728                 if (index !=
5729                     (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5730                         ocfs2_error(inode->i_sb,
5731                                     "Inode %lu has invalid ext. block %llu",
5732                                     inode->i_ino,
5733                                     (unsigned long long)bh->b_blocknr);
5734                         ret = -EROFS;
5735                         goto out;
5736                 }
5737
5738 find_tail_record:
5739                 i = le16_to_cpu(el->l_next_free_rec) - 1;
5740                 rec = &el->l_recs[i];
5741
5742                 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5743                      "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5744                      ocfs2_rec_clusters(el, rec),
5745                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5746                      le16_to_cpu(el->l_next_free_rec));
5747
5748                 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5749
5750                 if (le16_to_cpu(el->l_tree_depth) == 0) {
5751                         /*
5752                          * If the leaf block contains a single empty
5753                          * extent and no records, we can just remove
5754                          * the block.
5755                          */
5756                         if (i == 0 && ocfs2_is_empty_extent(rec)) {
5757                                 memset(rec, 0,
5758                                        sizeof(struct ocfs2_extent_rec));
5759                                 el->l_next_free_rec = cpu_to_le16(0);
5760
5761                                 goto delete;
5762                         }
5763
5764                         /*
5765                          * Remove any empty extents by shifting things
5766                          * left. That should make life much easier on
5767                          * the code below. This condition is rare
5768                          * enough that we shouldn't see a performance
5769                          * hit.
5770                          */
5771                         if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5772                                 le16_add_cpu(&el->l_next_free_rec, -1);
5773
5774                                 for(i = 0;
5775                                     i < le16_to_cpu(el->l_next_free_rec); i++)
5776                                         el->l_recs[i] = el->l_recs[i + 1];
5777
5778                                 memset(&el->l_recs[i], 0,
5779                                        sizeof(struct ocfs2_extent_rec));
5780
5781                                 /*
5782                                  * We've modified our extent list. The
5783                                  * simplest way to handle this change
5784                                  * is to being the search from the
5785                                  * start again.
5786                                  */
5787                                 goto find_tail_record;
5788                         }
5789
5790                         le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5791
5792                         /*
5793                          * We'll use "new_edge" on our way back up the
5794                          * tree to know what our rightmost cpos is.
5795                          */
5796                         new_edge = le16_to_cpu(rec->e_leaf_clusters);
5797                         new_edge += le32_to_cpu(rec->e_cpos);
5798
5799                         /*
5800                          * The caller will use this to delete data blocks.
5801                          */
5802                         *delete_start = le64_to_cpu(rec->e_blkno)
5803                                 + ocfs2_clusters_to_blocks(inode->i_sb,
5804                                         le16_to_cpu(rec->e_leaf_clusters));
5805
5806                         /*
5807                          * If it's now empty, remove this record.
5808                          */
5809                         if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5810                                 memset(rec, 0,
5811                                        sizeof(struct ocfs2_extent_rec));
5812                                 le16_add_cpu(&el->l_next_free_rec, -1);
5813                         }
5814                 } else {
5815                         if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5816                                 memset(rec, 0,
5817                                        sizeof(struct ocfs2_extent_rec));
5818                                 le16_add_cpu(&el->l_next_free_rec, -1);
5819
5820                                 goto delete;
5821                         }
5822
5823                         /* Can this actually happen? */
5824                         if (le16_to_cpu(el->l_next_free_rec) == 0)
5825                                 goto delete;
5826
5827                         /*
5828                          * We never actually deleted any clusters
5829                          * because our leaf was empty. There's no
5830                          * reason to adjust the rightmost edge then.
5831                          */
5832                         if (new_edge == 0)
5833                                 goto delete;
5834
5835                         rec->e_int_clusters = cpu_to_le32(new_edge);
5836                         le32_add_cpu(&rec->e_int_clusters,
5837                                      -le32_to_cpu(rec->e_cpos));
5838
5839                          /*
5840                           * A deleted child record should have been
5841                           * caught above.
5842                           */
5843                          BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5844                 }
5845
5846 delete:
5847                 ret = ocfs2_journal_dirty(handle, bh);
5848                 if (ret) {
5849                         mlog_errno(ret);
5850                         goto out;
5851                 }
5852
5853                 mlog(0, "extent list container %llu, after: record %d: "
5854                      "(%u, %u, %llu), next = %u.\n",
5855                      (unsigned long long)bh->b_blocknr, i,
5856                      le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5857                      (unsigned long long)le64_to_cpu(rec->e_blkno),
5858                      le16_to_cpu(el->l_next_free_rec));
5859
5860                 /*
5861                  * We must be careful to only attempt delete of an
5862                  * extent block (and not the root inode block).
5863                  */
5864                 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5865                         struct ocfs2_extent_block *eb =
5866                                 (struct ocfs2_extent_block *)bh->b_data;
5867
5868                         /*
5869                          * Save this for use when processing the
5870                          * parent block.
5871                          */
5872                         deleted_eb = le64_to_cpu(eb->h_blkno);
5873
5874                         mlog(0, "deleting this extent block.\n");
5875
5876                         ocfs2_remove_from_cache(inode, bh);
5877
5878                         BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5879                         BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5880                         BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5881
5882                         ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5883                         /* An error here is not fatal. */
5884                         if (ret < 0)
5885                                 mlog_errno(ret);
5886                 } else {
5887                         deleted_eb = 0;
5888                 }
5889
5890                 index--;
5891         }
5892
5893         ret = 0;
5894 out:
5895         return ret;
5896 }
5897
5898 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5899                              unsigned int clusters_to_del,
5900                              struct inode *inode,
5901                              struct buffer_head *fe_bh,
5902                              handle_t *handle,
5903                              struct ocfs2_truncate_context *tc,
5904                              struct ocfs2_path *path)
5905 {
5906         int status;
5907         struct ocfs2_dinode *fe;
5908         struct ocfs2_extent_block *last_eb = NULL;
5909         struct ocfs2_extent_list *el;
5910         struct buffer_head *last_eb_bh = NULL;
5911         u64 delete_blk = 0;
5912
5913         fe = (struct ocfs2_dinode *) fe_bh->b_data;
5914
5915         status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5916                                              path, &last_eb_bh);
5917         if (status < 0) {
5918                 mlog_errno(status);
5919                 goto bail;
5920         }
5921
5922         /*
5923          * Each component will be touched, so we might as well journal
5924          * here to avoid having to handle errors later.
5925          */
5926         status = ocfs2_journal_access_path(inode, handle, path);
5927         if (status < 0) {
5928                 mlog_errno(status);
5929                 goto bail;
5930         }
5931
5932         if (last_eb_bh) {
5933                 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5934                                               OCFS2_JOURNAL_ACCESS_WRITE);
5935                 if (status < 0) {
5936                         mlog_errno(status);
5937                         goto bail;
5938                 }
5939
5940                 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5941         }
5942
5943         el = &(fe->id2.i_list);
5944
5945         /*
5946          * Lower levels depend on this never happening, but it's best
5947          * to check it up here before changing the tree.
5948          */
5949         if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5950                 ocfs2_error(inode->i_sb,
5951                             "Inode %lu has an empty extent record, depth %u\n",
5952                             inode->i_ino, le16_to_cpu(el->l_tree_depth));
5953                 status = -EROFS;
5954                 goto bail;
5955         }
5956
5957         spin_lock(&OCFS2_I(inode)->ip_lock);
5958         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5959                                       clusters_to_del;
5960         spin_unlock(&OCFS2_I(inode)->ip_lock);
5961         le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5962         inode->i_blocks = ocfs2_inode_sector_count(inode);
5963
5964         status = ocfs2_trim_tree(inode, path, handle, tc,
5965                                  clusters_to_del, &delete_blk);
5966         if (status) {
5967                 mlog_errno(status);
5968                 goto bail;
5969         }
5970
5971         if (le32_to_cpu(fe->i_clusters) == 0) {
5972                 /* trunc to zero is a special case. */
5973                 el->l_tree_depth = 0;
5974                 fe->i_last_eb_blk = 0;
5975         } else if (last_eb)
5976                 fe->i_last_eb_blk = last_eb->h_blkno;
5977
5978         status = ocfs2_journal_dirty(handle, fe_bh);
5979         if (status < 0) {
5980                 mlog_errno(status);
5981                 goto bail;
5982         }
5983
5984         if (last_eb) {
5985                 /* If there will be a new last extent block, then by
5986                  * definition, there cannot be any leaves to the right of
5987                  * him. */
5988                 last_eb->h_next_leaf_blk = 0;
5989                 status = ocfs2_journal_dirty(handle, last_eb_bh);
5990                 if (status < 0) {
5991                         mlog_errno(status);
5992                         goto bail;
5993                 }
5994         }
5995
5996         if (delete_blk) {
5997                 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5998                                                    clusters_to_del);
5999                 if (status < 0) {
6000                         mlog_errno(status);
6001                         goto bail;
6002                 }
6003         }
6004         status = 0;
6005 bail:
6006
6007         mlog_exit(status);
6008         return status;
6009 }
6010
6011 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
6012 {
6013         set_buffer_uptodate(bh);
6014         mark_buffer_dirty(bh);
6015         return 0;
6016 }
6017
6018 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
6019 {
6020         set_buffer_uptodate(bh);
6021         mark_buffer_dirty(bh);
6022         return ocfs2_journal_dirty_data(handle, bh);
6023 }
6024
6025 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6026                                      unsigned int from, unsigned int to,
6027                                      struct page *page, int zero, u64 *phys)
6028 {
6029         int ret, partial = 0;
6030
6031         ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6032         if (ret)
6033                 mlog_errno(ret);
6034
6035         if (zero)
6036                 zero_user_segment(page, from, to);
6037
6038         /*
6039          * Need to set the buffers we zero'd into uptodate
6040          * here if they aren't - ocfs2_map_page_blocks()
6041          * might've skipped some
6042          */
6043         if (ocfs2_should_order_data(inode)) {
6044                 ret = walk_page_buffers(handle,
6045                                         page_buffers(page),
6046                                         from, to, &partial,
6047                                         ocfs2_ordered_zero_func);
6048                 if (ret < 0)
6049                         mlog_errno(ret);
6050         } else {
6051                 ret = walk_page_buffers(handle, page_buffers(page),
6052                                         from, to, &partial,
6053                                         ocfs2_writeback_zero_func);
6054                 if (ret < 0)
6055                         mlog_errno(ret);
6056         }
6057
6058         if (!partial)
6059                 SetPageUptodate(page);
6060
6061         flush_dcache_page(page);
6062 }
6063
6064 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6065                                      loff_t end, struct page **pages,
6066                                      int numpages, u64 phys, handle_t *handle)
6067 {
6068         int i;
6069         struct page *page;
6070         unsigned int from, to = PAGE_CACHE_SIZE;
6071         struct super_block *sb = inode->i_sb;
6072
6073         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6074
6075         if (numpages == 0)
6076                 goto out;
6077
6078         to = PAGE_CACHE_SIZE;
6079         for(i = 0; i < numpages; i++) {
6080                 page = pages[i];
6081
6082                 from = start & (PAGE_CACHE_SIZE - 1);
6083                 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6084                         to = end & (PAGE_CACHE_SIZE - 1);
6085
6086                 BUG_ON(from > PAGE_CACHE_SIZE);
6087                 BUG_ON(to > PAGE_CACHE_SIZE);
6088
6089                 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6090                                          &phys);
6091
6092                 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6093         }
6094 out:
6095         if (pages)
6096                 ocfs2_unlock_and_free_pages(pages, numpages);
6097 }
6098
6099 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6100                                 struct page **pages, int *num)
6101 {
6102         int numpages, ret = 0;
6103         struct super_block *sb = inode->i_sb;
6104         struct address_space *mapping = inode->i_mapping;
6105         unsigned long index;
6106         loff_t last_page_bytes;
6107
6108         BUG_ON(start > end);
6109
6110         BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6111                (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6112
6113         numpages = 0;
6114         last_page_bytes = PAGE_ALIGN(end);
6115         index = start >> PAGE_CACHE_SHIFT;
6116         do {
6117                 pages[numpages] = grab_cache_page(mapping, index);
6118                 if (!pages[numpages]) {
6119                         ret = -ENOMEM;
6120                         mlog_errno(ret);
6121                         goto out;
6122                 }
6123
6124                 numpages++;
6125                 index++;
6126         } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6127
6128 out:
6129         if (ret != 0) {
6130                 if (pages)
6131                         ocfs2_unlock_and_free_pages(pages, numpages);
6132                 numpages = 0;
6133         }
6134
6135         *num = numpages;
6136
6137         return ret;
6138 }
6139
6140 /*
6141  * Zero the area past i_size but still within an allocated
6142  * cluster. This avoids exposing nonzero data on subsequent file
6143  * extends.
6144  *
6145  * We need to call this before i_size is updated on the inode because
6146  * otherwise block_write_full_page() will skip writeout of pages past
6147  * i_size. The new_i_size parameter is passed for this reason.
6148  */
6149 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6150                                   u64 range_start, u64 range_end)
6151 {
6152         int ret = 0, numpages;
6153         struct page **pages = NULL;
6154         u64 phys;
6155         unsigned int ext_flags;
6156         struct super_block *sb = inode->i_sb;
6157
6158         /*
6159          * File systems which don't support sparse files zero on every
6160          * extend.
6161          */
6162         if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6163                 return 0;
6164
6165         pages = kcalloc(ocfs2_pages_per_cluster(sb),
6166                         sizeof(struct page *), GFP_NOFS);
6167         if (pages == NULL) {
6168                 ret = -ENOMEM;
6169                 mlog_errno(ret);
6170                 goto out;
6171         }
6172
6173         if (range_start == range_end)
6174                 goto out;
6175
6176         ret = ocfs2_extent_map_get_blocks(inode,
6177                                           range_start >> sb->s_blocksize_bits,
6178                                           &phys, NULL, &ext_flags);
6179         if (ret) {
6180                 mlog_errno(ret);
6181                 goto out;
6182         }
6183
6184         /*
6185          * Tail is a hole, or is marked unwritten. In either case, we
6186          * can count on read and write to return/push zero's.
6187          */
6188         if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6189                 goto out;
6190
6191         ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6192                                    &numpages);
6193         if (ret) {
6194                 mlog_errno(ret);
6195                 goto out;
6196         }
6197
6198         ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6199                                  numpages, phys, handle);
6200
6201         /*
6202          * Initiate writeout of the pages we zero'd here. We don't
6203          * wait on them - the truncate_inode_pages() call later will
6204          * do that for us.
6205          */
6206         ret = do_sync_mapping_range(inode->i_mapping, range_start,
6207                                     range_end - 1, SYNC_FILE_RANGE_WRITE);
6208         if (ret)
6209                 mlog_errno(ret);
6210
6211 out:
6212         if (pages)
6213                 kfree(pages);
6214
6215         return ret;
6216 }
6217
6218 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
6219 {
6220         unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6221
6222         memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
6223 }
6224
6225 void ocfs2_dinode_new_extent_list(struct inode *inode,
6226                                   struct ocfs2_dinode *di)
6227 {
6228         ocfs2_zero_dinode_id2(inode, di);
6229         di->id2.i_list.l_tree_depth = 0;
6230         di->id2.i_list.l_next_free_rec = 0;
6231         di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
6232 }
6233
6234 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6235 {
6236         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6237         struct ocfs2_inline_data *idata = &di->id2.i_data;
6238
6239         spin_lock(&oi->ip_lock);
6240         oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6241         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6242         spin_unlock(&oi->ip_lock);
6243
6244         /*
6245          * We clear the entire i_data structure here so that all
6246          * fields can be properly initialized.
6247          */
6248         ocfs2_zero_dinode_id2(inode, di);
6249
6250         idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
6251 }
6252
6253 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6254                                          struct buffer_head *di_bh)
6255 {
6256         int ret, i, has_data, num_pages = 0;
6257         handle_t *handle;
6258         u64 uninitialized_var(block);
6259         struct ocfs2_inode_info *oi = OCFS2_I(inode);
6260         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6261         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6262         struct ocfs2_alloc_context *data_ac = NULL;
6263         struct page **pages = NULL;
6264         loff_t end = osb->s_clustersize;
6265
6266         has_data = i_size_read(inode) ? 1 : 0;
6267
6268         if (has_data) {
6269                 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6270                                 sizeof(struct page *), GFP_NOFS);
6271                 if (pages == NULL) {
6272                         ret = -ENOMEM;
6273                         mlog_errno(ret);
6274                         goto out;
6275                 }
6276
6277                 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6278                 if (ret) {
6279                         mlog_errno(ret);
6280                         goto out;
6281                 }
6282         }
6283
6284         handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6285         if (IS_ERR(handle)) {
6286                 ret = PTR_ERR(handle);
6287                 mlog_errno(ret);
6288                 goto out_unlock;
6289         }
6290
6291         ret = ocfs2_journal_access(handle, inode, di_bh,
6292                                    OCFS2_JOURNAL_ACCESS_WRITE);
6293         if (ret) {
6294                 mlog_errno(ret);
6295                 goto out_commit;
6296         }
6297
6298         if (has_data) {
6299                 u32 bit_off, num;
6300                 unsigned int page_end;
6301                 u64 phys;
6302
6303                 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6304                                            &num);
6305                 if (ret) {
6306                         mlog_errno(ret);
6307                         goto out_commit;
6308                 }
6309
6310                 /*
6311                  * Save two copies, one for insert, and one that can
6312                  * be changed by ocfs2_map_and_dirty_page() below.
6313                  */
6314                 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6315
6316                 /*
6317                  * Non sparse file systems zero on extend, so no need
6318                  * to do that now.
6319                  */
6320                 if (!ocfs2_sparse_alloc(osb) &&
6321                     PAGE_CACHE_SIZE < osb->s_clustersize)
6322                         end = PAGE_CACHE_SIZE;
6323
6324                 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6325                 if (ret) {
6326                         mlog_errno(ret);
6327                         goto out_commit;
6328                 }
6329
6330                 /*
6331                  * This should populate the 1st page for us and mark
6332                  * it up to date.
6333                  */
6334                 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6335                 if (ret) {
6336                         mlog_errno(ret);
6337                         goto out_commit;
6338                 }
6339
6340                 page_end = PAGE_CACHE_SIZE;
6341                 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6342                         page_end = osb->s_clustersize;
6343
6344                 for (i = 0; i < num_pages; i++)
6345                         ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6346                                                  pages[i], i > 0, &phys);
6347         }
6348
6349         spin_lock(&oi->ip_lock);
6350         oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6351         di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6352         spin_unlock(&oi->ip_lock);
6353
6354         ocfs2_dinode_new_extent_list(inode, di);
6355
6356         ocfs2_journal_dirty(handle, di_bh);
6357
6358         if (has_data) {
6359                 /*
6360                  * An error at this point should be extremely rare. If
6361                  * this proves to be false, we could always re-build
6362                  * the in-inode data from our pages.
6363                  */
6364                 ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
6365                                           0, block, 1, 0, NULL);
6366                 if (ret) {
6367                         mlog_errno(ret);
6368                         goto out_commit;
6369                 }
6370
6371                 inode->i_blocks = ocfs2_inode_sector_count(inode);
6372         }
6373
6374 out_commit:
6375         ocfs2_commit_trans(osb, handle);
6376
6377 out_unlock:
6378         if (data_ac)
6379                 ocfs2_free_alloc_context(data_ac);
6380
6381 out:
6382         if (pages) {
6383                 ocfs2_unlock_and_free_pages(pages, num_pages);
6384                 kfree(pages);
6385         }
6386
6387         return ret;
6388 }
6389
6390 /*
6391  * It is expected, that by the time you call this function,
6392  * inode->i_size and fe->i_size have been adjusted.
6393  *
6394  * WARNING: This will kfree the truncate context
6395  */
6396 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6397                           struct inode *inode,
6398                           struct buffer_head *fe_bh,
6399                           struct ocfs2_truncate_context *tc)
6400 {
6401         int status, i, credits, tl_sem = 0;
6402         u32 clusters_to_del, new_highest_cpos, range;
6403         struct ocfs2_extent_list *el;
6404         handle_t *handle = NULL;
6405         struct inode *tl_inode = osb->osb_tl_inode;
6406         struct ocfs2_path *path = NULL;
6407
6408         mlog_entry_void();
6409
6410         new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6411                                                      i_size_read(inode));
6412
6413         path = ocfs2_new_inode_path(fe_bh);
6414         if (!path) {
6415                 status = -ENOMEM;
6416                 mlog_errno(status);
6417                 goto bail;
6418         }
6419
6420         ocfs2_extent_map_trunc(inode, new_highest_cpos);
6421
6422 start:
6423         /*
6424          * Check that we still have allocation to delete.
6425          */
6426         if (OCFS2_I(inode)->ip_clusters == 0) {
6427                 status = 0;
6428                 goto bail;
6429         }
6430
6431         /*
6432          * Truncate always works against the rightmost tree branch.
6433          */
6434         status = ocfs2_find_path(inode, path, UINT_MAX);
6435         if (status) {
6436                 mlog_errno(status);
6437                 goto bail;
6438         }
6439
6440         mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6441              OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6442
6443         /*
6444          * By now, el will point to the extent list on the bottom most
6445          * portion of this tree. Only the tail record is considered in
6446          * each pass.
6447          *
6448          * We handle the following cases, in order:
6449          * - empty extent: delete the remaining branch
6450          * - remove the entire record
6451          * - remove a partial record
6452          * - no record needs to be removed (truncate has completed)
6453          */
6454         el = path_leaf_el(path);
6455         if (le16_to_cpu(el->l_next_free_rec) == 0) {
6456                 ocfs2_error(inode->i_sb,
6457                             "Inode %llu has empty extent block at %llu\n",
6458                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6459                             (unsigned long long)path_leaf_bh(path)->b_blocknr);
6460                 status = -EROFS;
6461                 goto bail;
6462         }
6463
6464         i = le16_to_cpu(el->l_next_free_rec) - 1;
6465         range = le32_to_cpu(el->l_recs[i].e_cpos) +
6466                 ocfs2_rec_clusters(el, &el->l_recs[i]);
6467         if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6468                 clusters_to_del = 0;
6469         } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6470                 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6471         } else if (range > new_highest_cpos) {
6472                 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6473                                    le32_to_cpu(el->l_recs[i].e_cpos)) -
6474                                   new_highest_cpos;
6475         } else {
6476                 status = 0;
6477                 goto bail;
6478         }
6479
6480         mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6481              clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6482
6483         mutex_lock(&tl_inode->i_mutex);
6484         tl_sem = 1;
6485         /* ocfs2_truncate_log_needs_flush guarantees us at least one
6486          * record is free for use. If there isn't any, we flush to get
6487          * an empty truncate log.  */
6488         if (ocfs2_truncate_log_needs_flush(osb)) {
6489                 status = __ocfs2_flush_truncate_log(osb);
6490                 if (status < 0) {
6491                         mlog_errno(status);
6492                         goto bail;
6493                 }
6494         }
6495
6496         credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6497                                                 (struct ocfs2_dinode *)fe_bh->b_data,
6498                                                 el);
6499         handle = ocfs2_start_trans(osb, credits);
6500         if (IS_ERR(handle)) {
6501                 status = PTR_ERR(handle);
6502                 handle = NULL;
6503                 mlog_errno(status);
6504                 goto bail;
6505         }
6506
6507         status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6508                                    tc, path);
6509         if (status < 0) {
6510                 mlog_errno(status);
6511                 goto bail;
6512         }
6513
6514         mutex_unlock(&tl_inode->i_mutex);
6515         tl_sem = 0;
6516
6517         ocfs2_commit_trans(osb, handle);
6518         handle = NULL;
6519
6520         ocfs2_reinit_path(path, 1);
6521
6522         /*
6523          * The check above will catch the case where we've truncated
6524          * away all allocation.
6525          */
6526         goto start;
6527
6528 bail:
6529
6530         ocfs2_schedule_truncate_log_flush(osb, 1);
6531
6532         if (tl_sem)
6533                 mutex_unlock(&tl_inode->i_mutex);
6534
6535         if (handle)
6536                 ocfs2_commit_trans(osb, handle);
6537
6538         ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6539
6540         ocfs2_free_path(path);
6541
6542         /* This will drop the ext_alloc cluster lock for us */
6543         ocfs2_free_truncate_context(tc);
6544
6545         mlog_exit(status);
6546         return status;
6547 }
6548
6549 /*
6550  * Expects the inode to already be locked.
6551  */
6552 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6553                            struct inode *inode,
6554                            struct buffer_head *fe_bh,
6555                            struct ocfs2_truncate_context **tc)
6556 {
6557         int status;
6558         unsigned int new_i_clusters;
6559         struct ocfs2_dinode *fe;
6560         struct ocfs2_extent_block *eb;
6561         struct buffer_head *last_eb_bh = NULL;
6562
6563         mlog_entry_void();
6564
6565         *tc = NULL;
6566
6567         new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6568                                                   i_size_read(inode));
6569         fe = (struct ocfs2_dinode *) fe_bh->b_data;
6570
6571         mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6572              "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6573              (unsigned long long)le64_to_cpu(fe->i_size));
6574
6575         *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6576         if (!(*tc)) {
6577                 status = -ENOMEM;
6578                 mlog_errno(status);
6579                 goto bail;
6580         }
6581         ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6582
6583         if (fe->id2.i_list.l_tree_depth) {
6584                 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6585                                           &last_eb_bh, OCFS2_BH_CACHED, inode);
6586                 if (status < 0) {
6587                         mlog_errno(status);
6588                         goto bail;
6589                 }
6590                 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6591                 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6592                         OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6593
6594                         brelse(last_eb_bh);
6595                         status = -EIO;
6596                         goto bail;
6597                 }
6598         }
6599
6600         (*tc)->tc_last_eb_bh = last_eb_bh;
6601
6602         status = 0;
6603 bail:
6604         if (status < 0) {
6605                 if (*tc)
6606                         ocfs2_free_truncate_context(*tc);
6607                 *tc = NULL;
6608         }
6609         mlog_exit_void();
6610         return status;
6611 }
6612
6613 /*
6614  * 'start' is inclusive, 'end' is not.
6615  */
6616 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6617                           unsigned int start, unsigned int end, int trunc)
6618 {
6619         int ret;
6620         unsigned int numbytes;
6621         handle_t *handle;
6622         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6623         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6624         struct ocfs2_inline_data *idata = &di->id2.i_data;
6625
6626         if (end > i_size_read(inode))
6627                 end = i_size_read(inode);
6628
6629         BUG_ON(start >= end);
6630
6631         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6632             !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6633             !ocfs2_supports_inline_data(osb)) {
6634                 ocfs2_error(inode->i_sb,
6635                             "Inline data flags for inode %llu don't agree! "
6636                             "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6637                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
6638                             le16_to_cpu(di->i_dyn_features),
6639                             OCFS2_I(inode)->ip_dyn_features,
6640                             osb->s_feature_incompat);
6641                 ret = -EROFS;
6642                 goto out;
6643         }
6644
6645         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6646         if (IS_ERR(handle)) {
6647                 ret = PTR_ERR(handle);
6648                 mlog_errno(ret);
6649                 goto out;
6650         }
6651
6652         ret = ocfs2_journal_access(handle, inode, di_bh,
6653                                    OCFS2_JOURNAL_ACCESS_WRITE);
6654         if (ret) {
6655                 mlog_errno(ret);
6656                 goto out_commit;
6657         }
6658
6659         numbytes = end - start;
6660         memset(idata->id_data + start, 0, numbytes);
6661
6662         /*
6663          * No need to worry about the data page here - it's been
6664          * truncated already and inline data doesn't need it for
6665          * pushing zero's to disk, so we'll let readpage pick it up
6666          * later.
6667          */
6668         if (trunc) {
6669                 i_size_write(inode, start);
6670                 di->i_size = cpu_to_le64(start);
6671         }
6672
6673         inode->i_blocks = ocfs2_inode_sector_count(inode);
6674         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6675
6676         di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6677         di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6678
6679         ocfs2_journal_dirty(handle, di_bh);
6680
6681 out_commit:
6682         ocfs2_commit_trans(osb, handle);
6683
6684 out:
6685         return ret;
6686 }
6687
6688 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6689 {
6690         /*
6691          * The caller is responsible for completing deallocation
6692          * before freeing the context.
6693          */
6694         if (tc->tc_dealloc.c_first_suballocator != NULL)
6695                 mlog(ML_NOTICE,
6696                      "Truncate completion has non-empty dealloc context\n");
6697
6698         if (tc->tc_last_eb_bh)
6699                 brelse(tc->tc_last_eb_bh);
6700
6701         kfree(tc);
6702 }