5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/stringify.h>
8 #include <linux/lguest.h>
9 #include <linux/lguest_launcher.h>
10 #include <linux/wait.h>
11 #include <linux/err.h>
12 #include <asm/semaphore.h>
14 #include <asm/lguest.h>
16 void free_pagetables(void);
17 int init_pagetables(struct page **switcher_page, unsigned int pages);
25 /* We have two pages shared with guests, per cpu. */
28 /* This is the stack page mapped rw in guest */
29 char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
30 struct lguest_regs regs;
32 /* This is the host state & guest descriptor page, ro in guest */
33 struct lguest_ro_state state;
34 } __attribute__((aligned(PAGE_SIZE)));
38 #define CHANGED_GDT_TLS 4 /* Actually a subset of CHANGED_GDT */
41 /* The private info the thread maintains about the guest. */
44 /* At end of a page shared mapped over lguest_pages in guest. */
45 unsigned long regs_page;
46 struct lguest_regs *regs;
47 struct lguest_data __user *lguest_data;
48 struct task_struct *tsk;
49 struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
51 /* This provides the offset to the base of guest-physical
52 * memory in the Launcher. */
53 void __user *mem_base;
54 unsigned long kernel_address;
62 /* If a hypercall was asked for, this points to the arguments. */
63 struct hcall_args *hcall;
65 /* Do we need to stop what we're doing and return to userspace? */
67 wait_queue_head_t break_wq;
69 /* Bitmap of what has changed: see CHANGED_* above. */
71 struct lguest_pages *last_pages;
73 /* We keep a small number of these. */
75 struct pgdir pgdirs[4];
77 unsigned long noirq_start, noirq_end;
78 unsigned long pending_notify; /* pfn from LHCALL_NOTIFY */
80 unsigned int stack_pages;
86 struct lguest_arch arch;
88 /* Virtual clock device */
91 /* Pending virtual interrupts */
92 DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
95 extern struct mutex lguest_lock;
98 int lguest_address_ok(const struct lguest *lg,
99 unsigned long addr, unsigned long len);
100 void __lgread(struct lguest *, void *, unsigned long, unsigned);
101 void __lgwrite(struct lguest *, unsigned long, const void *, unsigned);
103 /*H:035 Using memory-copy operations like that is usually inconvient, so we
104 * have the following helper macros which read and write a specific type (often
107 * This reads into a variable of the given type then returns that. */
108 #define lgread(lg, addr, type) \
109 ({ type _v; __lgread((lg), &_v, (addr), sizeof(_v)); _v; })
111 /* This checks that the variable is of the given type, then writes it out. */
112 #define lgwrite(lg, addr, type, val) \
114 typecheck(type, val); \
115 __lgwrite((lg), (addr), &(val), sizeof(val)); \
117 /* (end of memory access helper routines) :*/
119 int run_guest(struct lguest *lg, unsigned long __user *user);
121 /* Helper macros to obtain the first 12 or the last 20 bits, this is only the
122 * first step in the migration to the kernel types. pte_pfn is already defined
124 #define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
125 #define pte_flags(x) (pte_val(x) & ~PAGE_MASK)
126 #define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
128 /* interrupts_and_traps.c: */
129 void maybe_do_interrupt(struct lguest *lg);
130 int deliver_trap(struct lguest *lg, unsigned int num);
131 void load_guest_idt_entry(struct lguest *lg, unsigned int i, u32 low, u32 hi);
132 void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages);
133 void pin_stack_pages(struct lguest *lg);
134 void setup_default_idt_entries(struct lguest_ro_state *state,
135 const unsigned long *def);
136 void copy_traps(const struct lguest *lg, struct desc_struct *idt,
137 const unsigned long *def);
138 void guest_set_clockevent(struct lguest *lg, unsigned long delta);
139 void init_clockdev(struct lguest *lg);
140 bool check_syscall_vector(struct lguest *lg);
141 int init_interrupts(void);
142 void free_interrupts(void);
145 void setup_default_gdt_entries(struct lguest_ro_state *state);
146 void setup_guest_gdt(struct lguest *lg);
147 void load_guest_gdt(struct lguest *lg, unsigned long table, u32 num);
148 void guest_load_tls(struct lguest *lg, unsigned long tls_array);
149 void copy_gdt(const struct lguest *lg, struct desc_struct *gdt);
150 void copy_gdt_tls(const struct lguest *lg, struct desc_struct *gdt);
153 int init_guest_pagetable(struct lguest *lg, unsigned long pgtable);
154 void free_guest_pagetable(struct lguest *lg);
155 void guest_new_pagetable(struct lguest *lg, unsigned long pgtable);
156 void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
157 void guest_pagetable_clear_all(struct lguest *lg);
158 void guest_pagetable_flush_user(struct lguest *lg);
159 void guest_set_pte(struct lguest *lg, unsigned long gpgdir,
160 unsigned long vaddr, pte_t val);
161 void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages);
162 int demand_page(struct lguest *info, unsigned long cr2, int errcode);
163 void pin_page(struct lguest *lg, unsigned long vaddr);
164 unsigned long guest_pa(struct lguest *lg, unsigned long vaddr);
165 void page_table_guest_data_init(struct lguest *lg);
168 void lguest_arch_host_init(void);
169 void lguest_arch_host_fini(void);
170 void lguest_arch_run_guest(struct lguest *lg);
171 void lguest_arch_handle_trap(struct lguest *lg);
172 int lguest_arch_init_hypercalls(struct lguest *lg);
173 int lguest_arch_do_hcall(struct lguest *lg, struct hcall_args *args);
174 void lguest_arch_setup_regs(struct lguest *lg, unsigned long start);
176 /* <arch>/switcher.S: */
177 extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
180 int lguest_device_init(void);
181 void lguest_device_remove(void);
184 void do_hypercalls(struct lguest *lg);
185 void write_timestamp(struct lguest *lg);
188 * Let's step aside for the moment, to study one important routine that's used
189 * widely in the Host code.
191 * There are many cases where the Guest can do something invalid, like pass crap
192 * to a hypercall. Since only the Guest kernel can make hypercalls, it's quite
193 * acceptable to simply terminate the Guest and give the Launcher a nicely
194 * formatted reason. It's also simpler for the Guest itself, which doesn't
195 * need to check most hypercalls for "success"; if you're still running, it
198 * Once this is called, the Guest will never run again, so most Host code can
199 * call this then continue as if nothing had happened. This means many
200 * functions don't have to explicitly return an error code, which keeps the
203 * It also means that this can be called more than once: only the first one is
204 * remembered. The only trick is that we still need to kill the Guest even if
205 * we can't allocate memory to store the reason. Linux has a neat way of
206 * packing error codes into invalid pointers, so we use that here.
208 * Like any macro which uses an "if", it is safely wrapped in a run-once "do {
211 #define kill_guest(lg, fmt...) \
214 (lg)->dead = kasprintf(GFP_ATOMIC, fmt); \
216 (lg)->dead = ERR_PTR(-ENOMEM); \
219 /* (End of aside) :*/
221 #endif /* __ASSEMBLY__ */
222 #endif /* _LGUEST_H */