2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include "firmware_exports.h"
38 * t3_wait_op_done_val - wait until an operation is completed
39 * @adapter: the adapter performing the operation
40 * @reg: the register to check for completion
41 * @mask: a single-bit field within @reg that indicates completion
42 * @polarity: the value of the field when the operation is completed
43 * @attempts: number of check iterations
44 * @delay: delay in usecs between iterations
45 * @valp: where to store the value of the register at completion time
47 * Wait until an operation is completed by checking a bit in a register
48 * up to @attempts times. If @valp is not NULL the value of the register
49 * at the time it indicated completion is stored there. Returns 0 if the
50 * operation completes and -EAGAIN otherwise.
53 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
54 int polarity, int attempts, int delay, u32 *valp)
57 u32 val = t3_read_reg(adapter, reg);
59 if (!!(val & mask) == polarity) {
72 * t3_write_regs - write a bunch of registers
73 * @adapter: the adapter to program
74 * @p: an array of register address/register value pairs
75 * @n: the number of address/value pairs
76 * @offset: register address offset
78 * Takes an array of register address/register value pairs and writes each
79 * value to the corresponding register. Register addresses are adjusted
80 * by the supplied offset.
82 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
83 int n, unsigned int offset)
86 t3_write_reg(adapter, p->reg_addr + offset, p->val);
92 * t3_set_reg_field - set a register field to a value
93 * @adapter: the adapter to program
94 * @addr: the register address
95 * @mask: specifies the portion of the register to modify
96 * @val: the new value for the register field
98 * Sets a register field specified by the supplied mask to the
101 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
104 u32 v = t3_read_reg(adapter, addr) & ~mask;
106 t3_write_reg(adapter, addr, v | val);
107 t3_read_reg(adapter, addr); /* flush */
111 * t3_read_indirect - read indirectly addressed registers
113 * @addr_reg: register holding the indirect address
114 * @data_reg: register holding the value of the indirect register
115 * @vals: where the read register values are stored
116 * @start_idx: index of first indirect register to read
117 * @nregs: how many indirect registers to read
119 * Reads registers that are accessed indirectly through an address/data
122 static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
123 unsigned int data_reg, u32 *vals,
124 unsigned int nregs, unsigned int start_idx)
127 t3_write_reg(adap, addr_reg, start_idx);
128 *vals++ = t3_read_reg(adap, data_reg);
134 * t3_mc7_bd_read - read from MC7 through backdoor accesses
135 * @mc7: identifies MC7 to read from
136 * @start: index of first 64-bit word to read
137 * @n: number of 64-bit words to read
138 * @buf: where to store the read result
140 * Read n 64-bit words from MC7 starting at word start, using backdoor
143 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
146 static const int shift[] = { 0, 0, 16, 24 };
147 static const int step[] = { 0, 32, 16, 8 };
149 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
150 struct adapter *adap = mc7->adapter;
152 if (start >= size64 || start + n > size64)
155 start *= (8 << mc7->width);
160 for (i = (1 << mc7->width) - 1; i >= 0; --i) {
164 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
165 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
166 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
167 while ((val & F_BUSY) && attempts--)
168 val = t3_read_reg(adap,
169 mc7->offset + A_MC7_BD_OP);
173 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
174 if (mc7->width == 0) {
175 val64 = t3_read_reg(adap,
178 val64 |= (u64) val << 32;
181 val >>= shift[mc7->width];
182 val64 |= (u64) val << (step[mc7->width] * i);
194 static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
196 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
197 u32 val = F_PREEN | V_CLKDIV(clkdiv);
199 t3_write_reg(adap, A_MI1_CFG, val);
202 #define MDIO_ATTEMPTS 20
205 * MI1 read/write operations for clause 22 PHYs.
207 static int t3_mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
208 int reg_addr, unsigned int *valp)
211 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
216 mutex_lock(&adapter->mdio_lock);
217 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
218 t3_write_reg(adapter, A_MI1_ADDR, addr);
219 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
220 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
222 *valp = t3_read_reg(adapter, A_MI1_DATA);
223 mutex_unlock(&adapter->mdio_lock);
227 static int t3_mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
228 int reg_addr, unsigned int val)
231 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
236 mutex_lock(&adapter->mdio_lock);
237 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
238 t3_write_reg(adapter, A_MI1_ADDR, addr);
239 t3_write_reg(adapter, A_MI1_DATA, val);
240 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
241 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
242 mutex_unlock(&adapter->mdio_lock);
246 static const struct mdio_ops mi1_mdio_ops = {
252 * Performs the address cycle for clause 45 PHYs.
253 * Must be called with the MDIO_LOCK held.
255 static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
258 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
260 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
261 t3_write_reg(adapter, A_MI1_ADDR, addr);
262 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
263 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
264 return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
269 * MI1 read/write operations for indirect-addressed PHYs.
271 static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
272 int reg_addr, unsigned int *valp)
276 mutex_lock(&adapter->mdio_lock);
277 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
279 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
280 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
283 *valp = t3_read_reg(adapter, A_MI1_DATA);
285 mutex_unlock(&adapter->mdio_lock);
289 static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
290 int reg_addr, unsigned int val)
294 mutex_lock(&adapter->mdio_lock);
295 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
297 t3_write_reg(adapter, A_MI1_DATA, val);
298 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
299 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
302 mutex_unlock(&adapter->mdio_lock);
306 static const struct mdio_ops mi1_mdio_ext_ops = {
312 * t3_mdio_change_bits - modify the value of a PHY register
313 * @phy: the PHY to operate on
314 * @mmd: the device address
315 * @reg: the register address
316 * @clear: what part of the register value to mask off
317 * @set: what part of the register value to set
319 * Changes the value of a PHY register by applying a mask to its current
320 * value and ORing the result with a new value.
322 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
328 ret = mdio_read(phy, mmd, reg, &val);
331 ret = mdio_write(phy, mmd, reg, val | set);
337 * t3_phy_reset - reset a PHY block
338 * @phy: the PHY to operate on
339 * @mmd: the device address of the PHY block to reset
340 * @wait: how long to wait for the reset to complete in 1ms increments
342 * Resets a PHY block and optionally waits for the reset to complete.
343 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
346 int t3_phy_reset(struct cphy *phy, int mmd, int wait)
351 err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
356 err = mdio_read(phy, mmd, MII_BMCR, &ctl);
362 } while (ctl && --wait);
368 * t3_phy_advertise - set the PHY advertisement registers for autoneg
369 * @phy: the PHY to operate on
370 * @advert: bitmap of capabilities the PHY should advertise
372 * Sets a 10/100/1000 PHY's advertisement registers to advertise the
373 * requested capabilities.
375 int t3_phy_advertise(struct cphy *phy, unsigned int advert)
378 unsigned int val = 0;
380 err = mdio_read(phy, 0, MII_CTRL1000, &val);
384 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
385 if (advert & ADVERTISED_1000baseT_Half)
386 val |= ADVERTISE_1000HALF;
387 if (advert & ADVERTISED_1000baseT_Full)
388 val |= ADVERTISE_1000FULL;
390 err = mdio_write(phy, 0, MII_CTRL1000, val);
395 if (advert & ADVERTISED_10baseT_Half)
396 val |= ADVERTISE_10HALF;
397 if (advert & ADVERTISED_10baseT_Full)
398 val |= ADVERTISE_10FULL;
399 if (advert & ADVERTISED_100baseT_Half)
400 val |= ADVERTISE_100HALF;
401 if (advert & ADVERTISED_100baseT_Full)
402 val |= ADVERTISE_100FULL;
403 if (advert & ADVERTISED_Pause)
404 val |= ADVERTISE_PAUSE_CAP;
405 if (advert & ADVERTISED_Asym_Pause)
406 val |= ADVERTISE_PAUSE_ASYM;
407 return mdio_write(phy, 0, MII_ADVERTISE, val);
411 * t3_phy_advertise_fiber - set fiber PHY advertisement register
412 * @phy: the PHY to operate on
413 * @advert: bitmap of capabilities the PHY should advertise
415 * Sets a fiber PHY's advertisement register to advertise the
416 * requested capabilities.
418 int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
420 unsigned int val = 0;
422 if (advert & ADVERTISED_1000baseT_Half)
423 val |= ADVERTISE_1000XHALF;
424 if (advert & ADVERTISED_1000baseT_Full)
425 val |= ADVERTISE_1000XFULL;
426 if (advert & ADVERTISED_Pause)
427 val |= ADVERTISE_1000XPAUSE;
428 if (advert & ADVERTISED_Asym_Pause)
429 val |= ADVERTISE_1000XPSE_ASYM;
430 return mdio_write(phy, 0, MII_ADVERTISE, val);
434 * t3_set_phy_speed_duplex - force PHY speed and duplex
435 * @phy: the PHY to operate on
436 * @speed: requested PHY speed
437 * @duplex: requested PHY duplex
439 * Force a 10/100/1000 PHY's speed and duplex. This also disables
440 * auto-negotiation except for GigE, where auto-negotiation is mandatory.
442 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
447 err = mdio_read(phy, 0, MII_BMCR, &ctl);
452 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
453 if (speed == SPEED_100)
454 ctl |= BMCR_SPEED100;
455 else if (speed == SPEED_1000)
456 ctl |= BMCR_SPEED1000;
459 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
460 if (duplex == DUPLEX_FULL)
461 ctl |= BMCR_FULLDPLX;
463 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
464 ctl |= BMCR_ANENABLE;
465 return mdio_write(phy, 0, MII_BMCR, ctl);
468 int t3_phy_lasi_intr_enable(struct cphy *phy)
470 return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 1);
473 int t3_phy_lasi_intr_disable(struct cphy *phy)
475 return mdio_write(phy, MDIO_DEV_PMA_PMD, LASI_CTRL, 0);
478 int t3_phy_lasi_intr_clear(struct cphy *phy)
482 return mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &val);
485 int t3_phy_lasi_intr_handler(struct cphy *phy)
488 int err = mdio_read(phy, MDIO_DEV_PMA_PMD, LASI_STAT, &status);
492 return (status & 1) ? cphy_cause_link_change : 0;
495 static const struct adapter_info t3_adap_info[] = {
497 F_GPIO2_OEN | F_GPIO4_OEN |
498 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
499 &mi1_mdio_ops, "Chelsio PE9000"},
501 F_GPIO2_OEN | F_GPIO4_OEN |
502 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
503 &mi1_mdio_ops, "Chelsio T302"},
505 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
506 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
507 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
508 &mi1_mdio_ext_ops, "Chelsio T310"},
510 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
511 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
512 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
513 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
514 &mi1_mdio_ext_ops, "Chelsio T320"},
518 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
519 F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
520 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
521 &mi1_mdio_ext_ops, "Chelsio T310" },
525 * Return the adapter_info structure with a given index. Out-of-range indices
528 const struct adapter_info *t3_get_adapter_info(unsigned int id)
530 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
533 struct port_type_info {
534 int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
535 int phy_addr, const struct mdio_ops *ops);
538 static const struct port_type_info port_types[] = {
540 { t3_ael1002_phy_prep },
541 { t3_vsc8211_phy_prep },
543 { t3_xaui_direct_phy_prep },
544 { t3_ael2005_phy_prep },
545 { t3_qt2045_phy_prep },
546 { t3_ael1006_phy_prep },
550 #define VPD_ENTRY(name, len) \
551 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
554 * Partial EEPROM Vital Product Data structure. Includes only the ID and
563 VPD_ENTRY(pn, 16); /* part number */
564 VPD_ENTRY(ec, 16); /* EC level */
565 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
566 VPD_ENTRY(na, 12); /* MAC address base */
567 VPD_ENTRY(cclk, 6); /* core clock */
568 VPD_ENTRY(mclk, 6); /* mem clock */
569 VPD_ENTRY(uclk, 6); /* uP clk */
570 VPD_ENTRY(mdc, 6); /* MDIO clk */
571 VPD_ENTRY(mt, 2); /* mem timing */
572 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
573 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
574 VPD_ENTRY(port0, 2); /* PHY0 complex */
575 VPD_ENTRY(port1, 2); /* PHY1 complex */
576 VPD_ENTRY(port2, 2); /* PHY2 complex */
577 VPD_ENTRY(port3, 2); /* PHY3 complex */
578 VPD_ENTRY(rv, 1); /* csum */
579 u32 pad; /* for multiple-of-4 sizing and alignment */
582 #define EEPROM_MAX_POLL 40
583 #define EEPROM_STAT_ADDR 0x4000
584 #define VPD_BASE 0xc00
587 * t3_seeprom_read - read a VPD EEPROM location
588 * @adapter: adapter to read
589 * @addr: EEPROM address
590 * @data: where to store the read data
592 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
593 * VPD ROM capability. A zero is written to the flag bit when the
594 * addres is written to the control register. The hardware device will
595 * set the flag to 1 when 4 bytes have been read into the data register.
597 int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
600 int attempts = EEPROM_MAX_POLL;
602 unsigned int base = adapter->params.pci.vpd_cap_addr;
604 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
607 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
610 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
611 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
613 if (!(val & PCI_VPD_ADDR_F)) {
614 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
617 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
618 *data = cpu_to_le32(v);
623 * t3_seeprom_write - write a VPD EEPROM location
624 * @adapter: adapter to write
625 * @addr: EEPROM address
626 * @data: value to write
628 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
629 * VPD ROM capability.
631 int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
634 int attempts = EEPROM_MAX_POLL;
635 unsigned int base = adapter->params.pci.vpd_cap_addr;
637 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
640 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
642 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
643 addr | PCI_VPD_ADDR_F);
646 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
647 } while ((val & PCI_VPD_ADDR_F) && --attempts);
649 if (val & PCI_VPD_ADDR_F) {
650 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
657 * t3_seeprom_wp - enable/disable EEPROM write protection
658 * @adapter: the adapter
659 * @enable: 1 to enable write protection, 0 to disable it
661 * Enables or disables write protection on the serial EEPROM.
663 int t3_seeprom_wp(struct adapter *adapter, int enable)
665 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
669 * Convert a character holding a hex digit to a number.
671 static unsigned int hex2int(unsigned char c)
673 return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
677 * get_vpd_params - read VPD parameters from VPD EEPROM
678 * @adapter: adapter to read
679 * @p: where to store the parameters
681 * Reads card parameters stored in VPD EEPROM.
683 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
689 * Card information is normally at VPD_BASE but some early cards had
692 ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
695 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
697 for (i = 0; i < sizeof(vpd); i += 4) {
698 ret = t3_seeprom_read(adapter, addr + i,
699 (__le32 *)((u8 *)&vpd + i));
704 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
705 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
706 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
707 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
708 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
709 memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
711 /* Old eeproms didn't have port information */
712 if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
713 p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
714 p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
716 p->port_type[0] = hex2int(vpd.port0_data[0]);
717 p->port_type[1] = hex2int(vpd.port1_data[0]);
718 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
719 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
722 for (i = 0; i < 6; i++)
723 p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
724 hex2int(vpd.na_data[2 * i + 1]);
728 /* serial flash and firmware constants */
730 SF_ATTEMPTS = 5, /* max retries for SF1 operations */
731 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
732 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
734 /* flash command opcodes */
735 SF_PROG_PAGE = 2, /* program page */
736 SF_WR_DISABLE = 4, /* disable writes */
737 SF_RD_STATUS = 5, /* read status register */
738 SF_WR_ENABLE = 6, /* enable writes */
739 SF_RD_DATA_FAST = 0xb, /* read flash */
740 SF_ERASE_SECTOR = 0xd8, /* erase sector */
742 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
743 FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
744 FW_MIN_SIZE = 8 /* at least version and csum */
748 * sf1_read - read data from the serial flash
749 * @adapter: the adapter
750 * @byte_cnt: number of bytes to read
751 * @cont: whether another operation will be chained
752 * @valp: where to store the read data
754 * Reads up to 4 bytes of data from the serial flash. The location of
755 * the read needs to be specified prior to calling this by issuing the
756 * appropriate commands to the serial flash.
758 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
763 if (!byte_cnt || byte_cnt > 4)
765 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
767 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
768 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
770 *valp = t3_read_reg(adapter, A_SF_DATA);
775 * sf1_write - write data to the serial flash
776 * @adapter: the adapter
777 * @byte_cnt: number of bytes to write
778 * @cont: whether another operation will be chained
779 * @val: value to write
781 * Writes up to 4 bytes of data to the serial flash. The location of
782 * the write needs to be specified prior to calling this by issuing the
783 * appropriate commands to the serial flash.
785 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
788 if (!byte_cnt || byte_cnt > 4)
790 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
792 t3_write_reg(adapter, A_SF_DATA, val);
793 t3_write_reg(adapter, A_SF_OP,
794 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
795 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
799 * flash_wait_op - wait for a flash operation to complete
800 * @adapter: the adapter
801 * @attempts: max number of polls of the status register
802 * @delay: delay between polls in ms
804 * Wait for a flash operation to complete by polling the status register.
806 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
812 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
813 (ret = sf1_read(adapter, 1, 0, &status)) != 0)
825 * t3_read_flash - read words from serial flash
826 * @adapter: the adapter
827 * @addr: the start address for the read
828 * @nwords: how many 32-bit words to read
829 * @data: where to store the read data
830 * @byte_oriented: whether to store data as bytes or as words
832 * Read the specified number of 32-bit words from the serial flash.
833 * If @byte_oriented is set the read data is stored as a byte array
834 * (i.e., big-endian), otherwise as 32-bit words in the platform's
837 int t3_read_flash(struct adapter *adapter, unsigned int addr,
838 unsigned int nwords, u32 *data, int byte_oriented)
842 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
845 addr = swab32(addr) | SF_RD_DATA_FAST;
847 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
848 (ret = sf1_read(adapter, 1, 1, data)) != 0)
851 for (; nwords; nwords--, data++) {
852 ret = sf1_read(adapter, 4, nwords > 1, data);
856 *data = htonl(*data);
862 * t3_write_flash - write up to a page of data to the serial flash
863 * @adapter: the adapter
864 * @addr: the start address to write
865 * @n: length of data to write
866 * @data: the data to write
868 * Writes up to a page of data (256 bytes) to the serial flash starting
869 * at the given address.
871 static int t3_write_flash(struct adapter *adapter, unsigned int addr,
872 unsigned int n, const u8 *data)
876 unsigned int i, c, left, val, offset = addr & 0xff;
878 if (addr + n > SF_SIZE || offset + n > 256)
881 val = swab32(addr) | SF_PROG_PAGE;
883 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
884 (ret = sf1_write(adapter, 4, 1, val)) != 0)
887 for (left = n; left; left -= c) {
889 for (val = 0, i = 0; i < c; ++i)
890 val = (val << 8) + *data++;
892 ret = sf1_write(adapter, c, c != left, val);
896 if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
899 /* Read the page to verify the write succeeded */
900 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
904 if (memcmp(data - n, (u8 *) buf + offset, n))
910 * t3_get_tp_version - read the tp sram version
911 * @adapter: the adapter
912 * @vers: where to place the version
914 * Reads the protocol sram version from sram.
916 int t3_get_tp_version(struct adapter *adapter, u32 *vers)
920 /* Get version loaded in SRAM */
921 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
922 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
927 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
933 * t3_check_tpsram_version - read the tp sram version
934 * @adapter: the adapter
936 * Reads the protocol sram version from flash.
938 int t3_check_tpsram_version(struct adapter *adapter)
942 unsigned int major, minor;
944 if (adapter->params.rev == T3_REV_A)
948 ret = t3_get_tp_version(adapter, &vers);
952 major = G_TP_VERSION_MAJOR(vers);
953 minor = G_TP_VERSION_MINOR(vers);
955 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
958 CH_ERR(adapter, "found wrong TP version (%u.%u), "
959 "driver compiled for version %d.%d\n", major, minor,
960 TP_VERSION_MAJOR, TP_VERSION_MINOR);
966 * t3_check_tpsram - check if provided protocol SRAM
967 * is compatible with this driver
968 * @adapter: the adapter
969 * @tp_sram: the firmware image to write
972 * Checks if an adapter's tp sram is compatible with the driver.
973 * Returns 0 if the versions are compatible, a negative error otherwise.
975 int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
980 const __be32 *p = (const __be32 *)tp_sram;
982 /* Verify checksum */
983 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
985 if (csum != 0xffffffff) {
986 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
994 enum fw_version_type {
1000 * t3_get_fw_version - read the firmware version
1001 * @adapter: the adapter
1002 * @vers: where to place the version
1004 * Reads the FW version from flash.
1006 int t3_get_fw_version(struct adapter *adapter, u32 *vers)
1008 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
1012 * t3_check_fw_version - check if the FW is compatible with this driver
1013 * @adapter: the adapter
1015 * Checks if an adapter's FW is compatible with the driver. Returns 0
1016 * if the versions are compatible, a negative error otherwise.
1018 int t3_check_fw_version(struct adapter *adapter)
1022 unsigned int type, major, minor;
1024 ret = t3_get_fw_version(adapter, &vers);
1028 type = G_FW_VERSION_TYPE(vers);
1029 major = G_FW_VERSION_MAJOR(vers);
1030 minor = G_FW_VERSION_MINOR(vers);
1032 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
1033 minor == FW_VERSION_MINOR)
1035 else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
1036 CH_WARN(adapter, "found old FW minor version(%u.%u), "
1037 "driver compiled for version %u.%u\n", major, minor,
1038 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1040 CH_WARN(adapter, "found newer FW version(%u.%u), "
1041 "driver compiled for version %u.%u\n", major, minor,
1042 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1049 * t3_flash_erase_sectors - erase a range of flash sectors
1050 * @adapter: the adapter
1051 * @start: the first sector to erase
1052 * @end: the last sector to erase
1054 * Erases the sectors in the given range.
1056 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
1058 while (start <= end) {
1061 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
1062 (ret = sf1_write(adapter, 4, 0,
1063 SF_ERASE_SECTOR | (start << 8))) != 0 ||
1064 (ret = flash_wait_op(adapter, 5, 500)) != 0)
1072 * t3_load_fw - download firmware
1073 * @adapter: the adapter
1074 * @fw_data: the firmware image to write
1077 * Write the supplied firmware image to the card's serial flash.
1078 * The FW image has the following sections: @size - 8 bytes of code and
1079 * data, followed by 4 bytes of FW version, followed by the 32-bit
1080 * 1's complement checksum of the whole image.
1082 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
1086 const __be32 *p = (const __be32 *)fw_data;
1087 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
1089 if ((size & 3) || size < FW_MIN_SIZE)
1091 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
1094 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1095 csum += ntohl(p[i]);
1096 if (csum != 0xffffffff) {
1097 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1102 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
1106 size -= 8; /* trim off version and checksum */
1107 for (addr = FW_FLASH_BOOT_ADDR; size;) {
1108 unsigned int chunk_size = min(size, 256U);
1110 ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
1115 fw_data += chunk_size;
1119 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
1122 CH_ERR(adapter, "firmware download failed, error %d\n", ret);
1126 #define CIM_CTL_BASE 0x2000
1129 * t3_cim_ctl_blk_read - read a block from CIM control region
1131 * @adap: the adapter
1132 * @addr: the start address within the CIM control region
1133 * @n: number of words to read
1134 * @valp: where to store the result
1136 * Reads a block of 4-byte words from the CIM control region.
1138 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
1139 unsigned int n, unsigned int *valp)
1143 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1146 for ( ; !ret && n--; addr += 4) {
1147 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
1148 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1151 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1156 static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
1157 u32 *rx_hash_high, u32 *rx_hash_low)
1159 /* stop Rx unicast traffic */
1160 t3_mac_disable_exact_filters(mac);
1162 /* stop broadcast, multicast, promiscuous mode traffic */
1163 *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
1164 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
1165 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
1168 *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
1169 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
1171 *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
1172 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
1174 /* Leave time to drain max RX fifo */
1178 static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
1179 u32 rx_hash_high, u32 rx_hash_low)
1181 t3_mac_enable_exact_filters(mac);
1182 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
1183 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
1185 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
1186 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
1190 * t3_link_changed - handle interface link changes
1191 * @adapter: the adapter
1192 * @port_id: the port index that changed link state
1194 * Called when a port's link settings change to propagate the new values
1195 * to the associated PHY and MAC. After performing the common tasks it
1196 * invokes an OS-specific handler.
1198 void t3_link_changed(struct adapter *adapter, int port_id)
1200 int link_ok, speed, duplex, fc;
1201 struct port_info *pi = adap2pinfo(adapter, port_id);
1202 struct cphy *phy = &pi->phy;
1203 struct cmac *mac = &pi->mac;
1204 struct link_config *lc = &pi->link_config;
1205 int force_link_down = 0;
1207 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1209 if (!lc->link_ok && link_ok) {
1210 u32 rx_cfg, rx_hash_high, rx_hash_low;
1213 t3_xgm_intr_enable(adapter, port_id);
1214 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
1215 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
1216 t3_mac_enable(mac, MAC_DIRECTION_RX);
1218 status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
1219 if (status & F_LINKFAULTCHANGE) {
1220 mac->stats.link_faults++;
1221 force_link_down = 1;
1223 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
1225 if (force_link_down) {
1226 t3_os_link_fault_handler(adapter, port_id);
1231 if (lc->requested_fc & PAUSE_AUTONEG)
1232 fc &= lc->requested_fc;
1234 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1236 if (link_ok == lc->link_ok && speed == lc->speed &&
1237 duplex == lc->duplex && fc == lc->fc)
1238 return; /* nothing changed */
1240 if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1241 uses_xaui(adapter)) {
1244 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1245 link_ok ? F_TXACTENABLE | F_RXEN : 0);
1247 lc->link_ok = link_ok;
1248 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1249 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1251 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1252 /* Set MAC speed, duplex, and flow control to match PHY. */
1253 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1257 t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
1260 void t3_link_fault(struct adapter *adapter, int port_id)
1262 struct port_info *pi = adap2pinfo(adapter, port_id);
1263 struct cmac *mac = &pi->mac;
1264 struct cphy *phy = &pi->phy;
1265 struct link_config *lc = &pi->link_config;
1266 int link_ok, speed, duplex, fc, link_fault;
1267 u32 rx_cfg, rx_hash_high, rx_hash_low;
1269 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
1271 if (adapter->params.rev > 0 && uses_xaui(adapter))
1272 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
1274 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
1275 t3_mac_enable(mac, MAC_DIRECTION_RX);
1277 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
1279 link_fault = t3_read_reg(adapter,
1280 A_XGM_INT_STATUS + mac->offset);
1281 link_fault &= F_LINKFAULTCHANGE;
1283 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1287 lc->speed = SPEED_INVALID;
1288 lc->duplex = DUPLEX_INVALID;
1290 t3_os_link_fault(adapter, port_id, 0);
1292 /* Account link faults only when the phy reports a link up */
1294 mac->stats.link_faults++;
1297 t3_os_link_fault_handler(adapter, port_id);
1300 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1301 F_TXACTENABLE | F_RXEN);
1304 lc->link_ok = (unsigned char)link_ok;
1305 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1306 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1307 t3_os_link_fault(adapter, port_id, link_ok);
1312 * t3_link_start - apply link configuration to MAC/PHY
1313 * @phy: the PHY to setup
1314 * @mac: the MAC to setup
1315 * @lc: the requested link configuration
1317 * Set up a port's MAC and PHY according to a desired link configuration.
1318 * - If the PHY can auto-negotiate first decide what to advertise, then
1319 * enable/disable auto-negotiation as desired, and reset.
1320 * - If the PHY does not auto-negotiate just reset it.
1321 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1322 * otherwise do it later based on the outcome of auto-negotiation.
1324 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1326 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1329 if (lc->supported & SUPPORTED_Autoneg) {
1330 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1332 lc->advertising |= ADVERTISED_Asym_Pause;
1334 lc->advertising |= ADVERTISED_Pause;
1336 phy->ops->advertise(phy, lc->advertising);
1338 if (lc->autoneg == AUTONEG_DISABLE) {
1339 lc->speed = lc->requested_speed;
1340 lc->duplex = lc->requested_duplex;
1341 lc->fc = (unsigned char)fc;
1342 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1344 /* Also disables autoneg */
1345 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1347 phy->ops->autoneg_enable(phy);
1349 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1350 lc->fc = (unsigned char)fc;
1351 phy->ops->reset(phy, 0);
1357 * t3_set_vlan_accel - control HW VLAN extraction
1358 * @adapter: the adapter
1359 * @ports: bitmap of adapter ports to operate on
1360 * @on: enable (1) or disable (0) HW VLAN extraction
1362 * Enables or disables HW extraction of VLAN tags for the given port.
1364 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1366 t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1367 ports << S_VLANEXTRACTIONENABLE,
1368 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1372 unsigned int mask; /* bits to check in interrupt status */
1373 const char *msg; /* message to print or NULL */
1374 short stat_idx; /* stat counter to increment or -1 */
1375 unsigned short fatal; /* whether the condition reported is fatal */
1379 * t3_handle_intr_status - table driven interrupt handler
1380 * @adapter: the adapter that generated the interrupt
1381 * @reg: the interrupt status register to process
1382 * @mask: a mask to apply to the interrupt status
1383 * @acts: table of interrupt actions
1384 * @stats: statistics counters tracking interrupt occurences
1386 * A table driven interrupt handler that applies a set of masks to an
1387 * interrupt status word and performs the corresponding actions if the
1388 * interrupts described by the mask have occured. The actions include
1389 * optionally printing a warning or alert message, and optionally
1390 * incrementing a stat counter. The table is terminated by an entry
1391 * specifying mask 0. Returns the number of fatal interrupt conditions.
1393 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1395 const struct intr_info *acts,
1396 unsigned long *stats)
1399 unsigned int status = t3_read_reg(adapter, reg) & mask;
1401 for (; acts->mask; ++acts) {
1402 if (!(status & acts->mask))
1406 CH_ALERT(adapter, "%s (0x%x)\n",
1407 acts->msg, status & acts->mask);
1408 } else if (acts->msg)
1409 CH_WARN(adapter, "%s (0x%x)\n",
1410 acts->msg, status & acts->mask);
1411 if (acts->stat_idx >= 0)
1412 stats[acts->stat_idx]++;
1414 if (status) /* clear processed interrupts */
1415 t3_write_reg(adapter, reg, status);
1419 #define SGE_INTR_MASK (F_RSPQDISABLED | \
1420 F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
1421 F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
1422 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
1423 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
1424 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
1426 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1427 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1429 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1430 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1431 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1433 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1434 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1435 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1436 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1437 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1438 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1439 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1440 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1441 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1442 F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
1443 F_TXPARERR | V_BISTERR(M_BISTERR))
1444 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
1445 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
1446 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
1447 #define ULPTX_INTR_MASK 0xfc
1448 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
1449 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1450 F_ZERO_SWITCH_ERROR)
1451 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1452 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1453 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1454 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
1455 F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
1456 F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
1457 F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
1458 F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
1459 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1460 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1461 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1462 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1463 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1464 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1465 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1466 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1467 V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1468 V_MCAPARERRENB(M_MCAPARERRENB))
1469 #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
1470 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1471 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1472 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1473 F_MPS0 | F_CPL_SWITCH)
1475 * Interrupt handler for the PCIX1 module.
1477 static void pci_intr_handler(struct adapter *adapter)
1479 static const struct intr_info pcix1_intr_info[] = {
1480 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1481 {F_SIGTARABT, "PCI signaled target abort", -1, 1},
1482 {F_RCVTARABT, "PCI received target abort", -1, 1},
1483 {F_RCVMSTABT, "PCI received master abort", -1, 1},
1484 {F_SIGSYSERR, "PCI signaled system error", -1, 1},
1485 {F_DETPARERR, "PCI detected parity error", -1, 1},
1486 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1487 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1488 {F_RCVSPLCMPERR, "PCI received split completion error", -1,
1490 {F_DETCORECCERR, "PCI correctable ECC error",
1491 STAT_PCI_CORR_ECC, 0},
1492 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1493 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1494 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1496 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1498 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1500 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1505 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1506 pcix1_intr_info, adapter->irq_stats))
1507 t3_fatal_err(adapter);
1511 * Interrupt handler for the PCIE module.
1513 static void pcie_intr_handler(struct adapter *adapter)
1515 static const struct intr_info pcie_intr_info[] = {
1516 {F_PEXERR, "PCI PEX error", -1, 1},
1518 "PCI unexpected split completion DMA read error", -1, 1},
1520 "PCI unexpected split completion DMA command error", -1, 1},
1521 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1522 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1523 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1524 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1525 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1526 "PCI MSI-X table/PBA parity error", -1, 1},
1527 {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
1528 {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
1529 {F_RXPARERR, "PCI Rx parity error", -1, 1},
1530 {F_TXPARERR, "PCI Tx parity error", -1, 1},
1531 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1535 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
1536 CH_ALERT(adapter, "PEX error code 0x%x\n",
1537 t3_read_reg(adapter, A_PCIE_PEX_ERR));
1539 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1540 pcie_intr_info, adapter->irq_stats))
1541 t3_fatal_err(adapter);
1545 * TP interrupt handler.
1547 static void tp_intr_handler(struct adapter *adapter)
1549 static const struct intr_info tp_intr_info[] = {
1550 {0xffffff, "TP parity error", -1, 1},
1551 {0x1000000, "TP out of Rx pages", -1, 1},
1552 {0x2000000, "TP out of Tx pages", -1, 1},
1556 static struct intr_info tp_intr_info_t3c[] = {
1557 {0x1fffffff, "TP parity error", -1, 1},
1558 {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
1559 {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
1563 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1564 adapter->params.rev < T3_REV_C ?
1565 tp_intr_info : tp_intr_info_t3c, NULL))
1566 t3_fatal_err(adapter);
1570 * CIM interrupt handler.
1572 static void cim_intr_handler(struct adapter *adapter)
1574 static const struct intr_info cim_intr_info[] = {
1575 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1576 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1577 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1578 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1579 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1580 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1581 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1582 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1583 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1584 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1585 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1586 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1587 {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
1588 {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
1589 {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
1590 {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
1591 {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
1592 {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
1593 {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
1594 {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
1595 {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
1596 {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
1597 {F_ITAGPARERR, "CIM itag parity error", -1, 1},
1598 {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
1602 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1603 cim_intr_info, NULL))
1604 t3_fatal_err(adapter);
1608 * ULP RX interrupt handler.
1610 static void ulprx_intr_handler(struct adapter *adapter)
1612 static const struct intr_info ulprx_intr_info[] = {
1613 {F_PARERRDATA, "ULP RX data parity error", -1, 1},
1614 {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
1615 {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
1616 {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
1617 {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
1618 {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
1619 {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
1620 {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
1624 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1625 ulprx_intr_info, NULL))
1626 t3_fatal_err(adapter);
1630 * ULP TX interrupt handler.
1632 static void ulptx_intr_handler(struct adapter *adapter)
1634 static const struct intr_info ulptx_intr_info[] = {
1635 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1636 STAT_ULP_CH0_PBL_OOB, 0},
1637 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1638 STAT_ULP_CH1_PBL_OOB, 0},
1639 {0xfc, "ULP TX parity error", -1, 1},
1643 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1644 ulptx_intr_info, adapter->irq_stats))
1645 t3_fatal_err(adapter);
1648 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1649 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1650 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1651 F_ICSPI1_TX_FRAMING_ERROR)
1652 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1653 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1654 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1655 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1658 * PM TX interrupt handler.
1660 static void pmtx_intr_handler(struct adapter *adapter)
1662 static const struct intr_info pmtx_intr_info[] = {
1663 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1664 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1665 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1666 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1667 "PMTX ispi parity error", -1, 1},
1668 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1669 "PMTX ospi parity error", -1, 1},
1673 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1674 pmtx_intr_info, NULL))
1675 t3_fatal_err(adapter);
1678 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1679 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1680 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1681 F_IESPI1_TX_FRAMING_ERROR)
1682 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1683 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1684 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1685 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1688 * PM RX interrupt handler.
1690 static void pmrx_intr_handler(struct adapter *adapter)
1692 static const struct intr_info pmrx_intr_info[] = {
1693 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1694 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1695 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1696 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1697 "PMRX ispi parity error", -1, 1},
1698 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1699 "PMRX ospi parity error", -1, 1},
1703 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1704 pmrx_intr_info, NULL))
1705 t3_fatal_err(adapter);
1709 * CPL switch interrupt handler.
1711 static void cplsw_intr_handler(struct adapter *adapter)
1713 static const struct intr_info cplsw_intr_info[] = {
1714 {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
1715 {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
1716 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1717 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1718 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1719 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1723 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1724 cplsw_intr_info, NULL))
1725 t3_fatal_err(adapter);
1729 * MPS interrupt handler.
1731 static void mps_intr_handler(struct adapter *adapter)
1733 static const struct intr_info mps_intr_info[] = {
1734 {0x1ff, "MPS parity error", -1, 1},
1738 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1739 mps_intr_info, NULL))
1740 t3_fatal_err(adapter);
1743 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1746 * MC7 interrupt handler.
1748 static void mc7_intr_handler(struct mc7 *mc7)
1750 struct adapter *adapter = mc7->adapter;
1751 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1754 mc7->stats.corr_err++;
1755 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1756 "data 0x%x 0x%x 0x%x\n", mc7->name,
1757 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1758 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1759 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1760 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1764 mc7->stats.uncorr_err++;
1765 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1766 "data 0x%x 0x%x 0x%x\n", mc7->name,
1767 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1768 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1769 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1770 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1774 mc7->stats.parity_err++;
1775 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1776 mc7->name, G_PE(cause));
1782 if (adapter->params.rev > 0)
1783 addr = t3_read_reg(adapter,
1784 mc7->offset + A_MC7_ERR_ADDR);
1785 mc7->stats.addr_err++;
1786 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1790 if (cause & MC7_INTR_FATAL)
1791 t3_fatal_err(adapter);
1793 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1796 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1797 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1799 * XGMAC interrupt handler.
1801 static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1803 struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1805 * We mask out interrupt causes for which we're not taking interrupts.
1806 * This allows us to use polling logic to monitor some of the other
1807 * conditions when taking interrupts would impose too much load on the
1810 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
1813 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1814 mac->stats.tx_fifo_parity_err++;
1815 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1817 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1818 mac->stats.rx_fifo_parity_err++;
1819 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1821 if (cause & F_TXFIFO_UNDERRUN)
1822 mac->stats.tx_fifo_urun++;
1823 if (cause & F_RXFIFO_OVERFLOW)
1824 mac->stats.rx_fifo_ovfl++;
1825 if (cause & V_SERDES_LOS(M_SERDES_LOS))
1826 mac->stats.serdes_signal_loss++;
1827 if (cause & F_XAUIPCSCTCERR)
1828 mac->stats.xaui_pcs_ctc_err++;
1829 if (cause & F_XAUIPCSALIGNCHANGE)
1830 mac->stats.xaui_pcs_align_change++;
1831 if (cause & F_XGM_INT) {
1832 t3_set_reg_field(adap,
1833 A_XGM_INT_ENABLE + mac->offset,
1835 mac->stats.link_faults++;
1837 t3_os_link_fault_handler(adap, idx);
1840 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1842 if (cause & XGM_INTR_FATAL)
1849 * Interrupt handler for PHY events.
1851 int t3_phy_intr_handler(struct adapter *adapter)
1853 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1855 for_each_port(adapter, i) {
1856 struct port_info *p = adap2pinfo(adapter, i);
1858 if (!(p->phy.caps & SUPPORTED_IRQ))
1861 if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
1862 int phy_cause = p->phy.ops->intr_handler(&p->phy);
1864 if (phy_cause & cphy_cause_link_change)
1865 t3_link_changed(adapter, i);
1866 if (phy_cause & cphy_cause_fifo_error)
1867 p->phy.fifo_errors++;
1868 if (phy_cause & cphy_cause_module_change)
1869 t3_os_phymod_changed(adapter, i);
1873 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1878 * T3 slow path (non-data) interrupt handler.
1880 int t3_slow_intr_handler(struct adapter *adapter)
1882 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1884 cause &= adapter->slow_intr_mask;
1887 if (cause & F_PCIM0) {
1888 if (is_pcie(adapter))
1889 pcie_intr_handler(adapter);
1891 pci_intr_handler(adapter);
1894 t3_sge_err_intr_handler(adapter);
1895 if (cause & F_MC7_PMRX)
1896 mc7_intr_handler(&adapter->pmrx);
1897 if (cause & F_MC7_PMTX)
1898 mc7_intr_handler(&adapter->pmtx);
1899 if (cause & F_MC7_CM)
1900 mc7_intr_handler(&adapter->cm);
1902 cim_intr_handler(adapter);
1904 tp_intr_handler(adapter);
1905 if (cause & F_ULP2_RX)
1906 ulprx_intr_handler(adapter);
1907 if (cause & F_ULP2_TX)
1908 ulptx_intr_handler(adapter);
1909 if (cause & F_PM1_RX)
1910 pmrx_intr_handler(adapter);
1911 if (cause & F_PM1_TX)
1912 pmtx_intr_handler(adapter);
1913 if (cause & F_CPL_SWITCH)
1914 cplsw_intr_handler(adapter);
1916 mps_intr_handler(adapter);
1918 t3_mc5_intr_handler(&adapter->mc5);
1919 if (cause & F_XGMAC0_0)
1920 mac_intr_handler(adapter, 0);
1921 if (cause & F_XGMAC0_1)
1922 mac_intr_handler(adapter, 1);
1923 if (cause & F_T3DBG)
1924 t3_os_ext_intr_handler(adapter);
1926 /* Clear the interrupts just processed. */
1927 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1928 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1932 static unsigned int calc_gpio_intr(struct adapter *adap)
1934 unsigned int i, gpi_intr = 0;
1936 for_each_port(adap, i)
1937 if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
1938 adapter_info(adap)->gpio_intr[i])
1939 gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
1944 * t3_intr_enable - enable interrupts
1945 * @adapter: the adapter whose interrupts should be enabled
1947 * Enable interrupts by setting the interrupt enable registers of the
1948 * various HW modules and then enabling the top-level interrupt
1951 void t3_intr_enable(struct adapter *adapter)
1953 static const struct addr_val_pair intr_en_avp[] = {
1954 {A_SG_INT_ENABLE, SGE_INTR_MASK},
1955 {A_MC7_INT_ENABLE, MC7_INTR_MASK},
1956 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1958 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1960 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
1961 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
1962 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
1963 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
1964 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
1965 {A_MPS_INT_ENABLE, MPS_INTR_MASK},
1968 adapter->slow_intr_mask = PL_INTR_MASK;
1970 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
1971 t3_write_reg(adapter, A_TP_INT_ENABLE,
1972 adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
1974 if (adapter->params.rev > 0) {
1975 t3_write_reg(adapter, A_CPL_INTR_ENABLE,
1976 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
1977 t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
1978 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
1979 F_PBL_BOUND_ERR_CH1);
1981 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
1982 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
1985 t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
1987 if (is_pcie(adapter))
1988 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
1990 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
1991 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
1992 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1996 * t3_intr_disable - disable a card's interrupts
1997 * @adapter: the adapter whose interrupts should be disabled
1999 * Disable interrupts. We only disable the top-level interrupt
2000 * concentrator and the SGE data interrupts.
2002 void t3_intr_disable(struct adapter *adapter)
2004 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
2005 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
2006 adapter->slow_intr_mask = 0;
2010 * t3_intr_clear - clear all interrupts
2011 * @adapter: the adapter whose interrupts should be cleared
2013 * Clears all interrupts.
2015 void t3_intr_clear(struct adapter *adapter)
2017 static const unsigned int cause_reg_addr[] = {
2019 A_SG_RSPQ_FL_STATUS,
2022 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
2023 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
2024 A_CIM_HOST_INT_CAUSE,
2037 /* Clear PHY and MAC interrupts for each port. */
2038 for_each_port(adapter, i)
2039 t3_port_intr_clear(adapter, i);
2041 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
2042 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
2044 if (is_pcie(adapter))
2045 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
2046 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
2047 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
2050 void t3_xgm_intr_enable(struct adapter *adapter, int idx)
2052 struct port_info *pi = adap2pinfo(adapter, idx);
2054 t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
2055 XGM_EXTRA_INTR_MASK);
2058 void t3_xgm_intr_disable(struct adapter *adapter, int idx)
2060 struct port_info *pi = adap2pinfo(adapter, idx);
2062 t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
2067 * t3_port_intr_enable - enable port-specific interrupts
2068 * @adapter: associated adapter
2069 * @idx: index of port whose interrupts should be enabled
2071 * Enable port-specific (i.e., MAC and PHY) interrupts for the given
2074 void t3_port_intr_enable(struct adapter *adapter, int idx)
2076 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2078 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
2079 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
2080 phy->ops->intr_enable(phy);
2084 * t3_port_intr_disable - disable port-specific interrupts
2085 * @adapter: associated adapter
2086 * @idx: index of port whose interrupts should be disabled
2088 * Disable port-specific (i.e., MAC and PHY) interrupts for the given
2091 void t3_port_intr_disable(struct adapter *adapter, int idx)
2093 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2095 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
2096 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
2097 phy->ops->intr_disable(phy);
2101 * t3_port_intr_clear - clear port-specific interrupts
2102 * @adapter: associated adapter
2103 * @idx: index of port whose interrupts to clear
2105 * Clear port-specific (i.e., MAC and PHY) interrupts for the given
2108 void t3_port_intr_clear(struct adapter *adapter, int idx)
2110 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2112 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
2113 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
2114 phy->ops->intr_clear(phy);
2117 #define SG_CONTEXT_CMD_ATTEMPTS 100
2120 * t3_sge_write_context - write an SGE context
2121 * @adapter: the adapter
2122 * @id: the context id
2123 * @type: the context type
2125 * Program an SGE context with the values already loaded in the
2126 * CONTEXT_DATA? registers.
2128 static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
2131 if (type == F_RESPONSEQ) {
2133 * Can't write the Response Queue Context bits for
2134 * Interrupt Armed or the Reserve bits after the chip
2135 * has been initialized out of reset. Writing to these
2136 * bits can confuse the hardware.
2138 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2139 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2140 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
2141 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2143 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2144 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2145 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
2146 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2148 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2149 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2150 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2151 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2155 * clear_sge_ctxt - completely clear an SGE context
2156 * @adapter: the adapter
2157 * @id: the context id
2158 * @type: the context type
2160 * Completely clear an SGE context. Used predominantly at post-reset
2161 * initialization. Note in particular that we don't skip writing to any
2162 * "sensitive bits" in the contexts the way that t3_sge_write_context()
2165 static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
2168 t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
2169 t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
2170 t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
2171 t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
2172 t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
2173 t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
2174 t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
2175 t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
2176 t3_write_reg(adap, A_SG_CONTEXT_CMD,
2177 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2178 return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2179 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2183 * t3_sge_init_ecntxt - initialize an SGE egress context
2184 * @adapter: the adapter to configure
2185 * @id: the context id
2186 * @gts_enable: whether to enable GTS for the context
2187 * @type: the egress context type
2188 * @respq: associated response queue
2189 * @base_addr: base address of queue
2190 * @size: number of queue entries
2192 * @gen: initial generation value for the context
2193 * @cidx: consumer pointer
2195 * Initialize an SGE egress context and make it ready for use. If the
2196 * platform allows concurrent context operations, the caller is
2197 * responsible for appropriate locking.
2199 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
2200 enum sge_context_type type, int respq, u64 base_addr,
2201 unsigned int size, unsigned int token, int gen,
2204 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
2206 if (base_addr & 0xfff) /* must be 4K aligned */
2208 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2212 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
2213 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
2214 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
2215 V_EC_BASE_LO(base_addr & 0xffff));
2217 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
2219 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2220 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
2221 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
2223 return t3_sge_write_context(adapter, id, F_EGRESS);
2227 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
2228 * @adapter: the adapter to configure
2229 * @id: the context id
2230 * @gts_enable: whether to enable GTS for the context
2231 * @base_addr: base address of queue
2232 * @size: number of queue entries
2233 * @bsize: size of each buffer for this queue
2234 * @cong_thres: threshold to signal congestion to upstream producers
2235 * @gen: initial generation value for the context
2236 * @cidx: consumer pointer
2238 * Initialize an SGE free list context and make it ready for use. The
2239 * caller is responsible for ensuring only one context operation occurs
2242 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
2243 int gts_enable, u64 base_addr, unsigned int size,
2244 unsigned int bsize, unsigned int cong_thres, int gen,
2247 if (base_addr & 0xfff) /* must be 4K aligned */
2249 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2253 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
2255 t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
2256 V_FL_BASE_HI((u32) base_addr) |
2257 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
2258 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
2259 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
2260 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
2261 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2262 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
2263 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
2264 return t3_sge_write_context(adapter, id, F_FREELIST);
2268 * t3_sge_init_rspcntxt - initialize an SGE response queue context
2269 * @adapter: the adapter to configure
2270 * @id: the context id
2271 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
2272 * @base_addr: base address of queue
2273 * @size: number of queue entries
2274 * @fl_thres: threshold for selecting the normal or jumbo free list
2275 * @gen: initial generation value for the context
2276 * @cidx: consumer pointer
2278 * Initialize an SGE response queue context and make it ready for use.
2279 * The caller is responsible for ensuring only one context operation
2282 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
2283 int irq_vec_idx, u64 base_addr, unsigned int size,
2284 unsigned int fl_thres, int gen, unsigned int cidx)
2286 unsigned int intr = 0;
2288 if (base_addr & 0xfff) /* must be 4K aligned */
2290 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2294 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
2296 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2298 if (irq_vec_idx >= 0)
2299 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
2300 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2301 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
2302 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
2303 return t3_sge_write_context(adapter, id, F_RESPONSEQ);
2307 * t3_sge_init_cqcntxt - initialize an SGE completion queue context
2308 * @adapter: the adapter to configure
2309 * @id: the context id
2310 * @base_addr: base address of queue
2311 * @size: number of queue entries
2312 * @rspq: response queue for async notifications
2313 * @ovfl_mode: CQ overflow mode
2314 * @credits: completion queue credits
2315 * @credit_thres: the credit threshold
2317 * Initialize an SGE completion queue context and make it ready for use.
2318 * The caller is responsible for ensuring only one context operation
2321 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
2322 unsigned int size, int rspq, int ovfl_mode,
2323 unsigned int credits, unsigned int credit_thres)
2325 if (base_addr & 0xfff) /* must be 4K aligned */
2327 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2331 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
2332 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2334 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2335 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
2336 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
2337 V_CQ_ERR(ovfl_mode));
2338 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
2339 V_CQ_CREDIT_THRES(credit_thres));
2340 return t3_sge_write_context(adapter, id, F_CQ);
2344 * t3_sge_enable_ecntxt - enable/disable an SGE egress context
2345 * @adapter: the adapter
2346 * @id: the egress context id
2347 * @enable: enable (1) or disable (0) the context
2349 * Enable or disable an SGE egress context. The caller is responsible for
2350 * ensuring only one context operation occurs at a time.
2352 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
2354 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2357 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2358 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2359 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2360 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
2361 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
2362 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2363 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
2364 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2365 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2369 * t3_sge_disable_fl - disable an SGE free-buffer list
2370 * @adapter: the adapter
2371 * @id: the free list context id
2373 * Disable an SGE free-buffer list. The caller is responsible for
2374 * ensuring only one context operation occurs at a time.
2376 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
2378 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2381 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2382 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2383 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
2384 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2385 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
2386 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2387 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
2388 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2389 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2393 * t3_sge_disable_rspcntxt - disable an SGE response queue
2394 * @adapter: the adapter
2395 * @id: the response queue context id
2397 * Disable an SGE response queue. The caller is responsible for
2398 * ensuring only one context operation occurs at a time.
2400 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2402 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2405 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2406 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2407 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2408 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2409 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2410 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2411 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2412 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2413 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2417 * t3_sge_disable_cqcntxt - disable an SGE completion queue
2418 * @adapter: the adapter
2419 * @id: the completion queue context id
2421 * Disable an SGE completion queue. The caller is responsible for
2422 * ensuring only one context operation occurs at a time.
2424 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2426 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2429 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2430 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2431 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2432 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2433 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2434 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2435 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2436 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2437 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2441 * t3_sge_cqcntxt_op - perform an operation on a completion queue context
2442 * @adapter: the adapter
2443 * @id: the context id
2444 * @op: the operation to perform
2446 * Perform the selected operation on an SGE completion queue context.
2447 * The caller is responsible for ensuring only one context operation
2450 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2451 unsigned int credits)
2455 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2458 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2459 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2460 V_CONTEXT(id) | F_CQ);
2461 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2462 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
2465 if (op >= 2 && op < 7) {
2466 if (adapter->params.rev > 0)
2467 return G_CQ_INDEX(val);
2469 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2470 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2471 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2472 F_CONTEXT_CMD_BUSY, 0,
2473 SG_CONTEXT_CMD_ATTEMPTS, 1))
2475 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2481 * t3_sge_read_context - read an SGE context
2482 * @type: the context type
2483 * @adapter: the adapter
2484 * @id: the context id
2485 * @data: holds the retrieved context
2487 * Read an SGE egress context. The caller is responsible for ensuring
2488 * only one context operation occurs at a time.
2490 static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
2491 unsigned int id, u32 data[4])
2493 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2496 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2497 V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
2498 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
2499 SG_CONTEXT_CMD_ATTEMPTS, 1))
2501 data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
2502 data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
2503 data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
2504 data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
2509 * t3_sge_read_ecntxt - read an SGE egress context
2510 * @adapter: the adapter
2511 * @id: the context id
2512 * @data: holds the retrieved context
2514 * Read an SGE egress context. The caller is responsible for ensuring
2515 * only one context operation occurs at a time.
2517 int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
2521 return t3_sge_read_context(F_EGRESS, adapter, id, data);
2525 * t3_sge_read_cq - read an SGE CQ context
2526 * @adapter: the adapter
2527 * @id: the context id
2528 * @data: holds the retrieved context
2530 * Read an SGE CQ context. The caller is responsible for ensuring
2531 * only one context operation occurs at a time.
2533 int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
2537 return t3_sge_read_context(F_CQ, adapter, id, data);
2541 * t3_sge_read_fl - read an SGE free-list context
2542 * @adapter: the adapter
2543 * @id: the context id
2544 * @data: holds the retrieved context
2546 * Read an SGE free-list context. The caller is responsible for ensuring
2547 * only one context operation occurs at a time.
2549 int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
2551 if (id >= SGE_QSETS * 2)
2553 return t3_sge_read_context(F_FREELIST, adapter, id, data);
2557 * t3_sge_read_rspq - read an SGE response queue context
2558 * @adapter: the adapter
2559 * @id: the context id
2560 * @data: holds the retrieved context
2562 * Read an SGE response queue context. The caller is responsible for
2563 * ensuring only one context operation occurs at a time.
2565 int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
2567 if (id >= SGE_QSETS)
2569 return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
2573 * t3_config_rss - configure Rx packet steering
2574 * @adapter: the adapter
2575 * @rss_config: RSS settings (written to TP_RSS_CONFIG)
2576 * @cpus: values for the CPU lookup table (0xff terminated)
2577 * @rspq: values for the response queue lookup table (0xffff terminated)
2579 * Programs the receive packet steering logic. @cpus and @rspq provide
2580 * the values for the CPU and response queue lookup tables. If they
2581 * provide fewer values than the size of the tables the supplied values
2582 * are used repeatedly until the tables are fully populated.
2584 void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2585 const u8 * cpus, const u16 *rspq)
2587 int i, j, cpu_idx = 0, q_idx = 0;
2590 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2593 for (j = 0; j < 2; ++j) {
2594 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2595 if (cpus[cpu_idx] == 0xff)
2598 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2602 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2603 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2604 (i << 16) | rspq[q_idx++]);
2605 if (rspq[q_idx] == 0xffff)
2609 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2613 * t3_read_rss - read the contents of the RSS tables
2614 * @adapter: the adapter
2615 * @lkup: holds the contents of the RSS lookup table
2616 * @map: holds the contents of the RSS map table
2618 * Reads the contents of the receive packet steering tables.
2620 int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
2626 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2627 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
2629 val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
2630 if (!(val & 0x80000000))
2633 *lkup++ = (val >> 8);
2637 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2638 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2640 val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
2641 if (!(val & 0x80000000))
2649 * t3_tp_set_offload_mode - put TP in NIC/offload mode
2650 * @adap: the adapter
2651 * @enable: 1 to select offload mode, 0 for regular NIC
2653 * Switches TP to NIC/offload mode.
2655 void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2657 if (is_offload(adap) || !enable)
2658 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2659 V_NICMODE(!enable));
2663 * pm_num_pages - calculate the number of pages of the payload memory
2664 * @mem_size: the size of the payload memory
2665 * @pg_size: the size of each payload memory page
2667 * Calculate the number of pages, each of the given size, that fit in a
2668 * memory of the specified size, respecting the HW requirement that the
2669 * number of pages must be a multiple of 24.
2671 static inline unsigned int pm_num_pages(unsigned int mem_size,
2672 unsigned int pg_size)
2674 unsigned int n = mem_size / pg_size;
2679 #define mem_region(adap, start, size, reg) \
2680 t3_write_reg((adap), A_ ## reg, (start)); \
2684 * partition_mem - partition memory and configure TP memory settings
2685 * @adap: the adapter
2686 * @p: the TP parameters
2688 * Partitions context and payload memory and configures TP's memory
2691 static void partition_mem(struct adapter *adap, const struct tp_params *p)
2693 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2694 unsigned int timers = 0, timers_shift = 22;
2696 if (adap->params.rev > 0) {
2697 if (tids <= 16 * 1024) {
2700 } else if (tids <= 64 * 1024) {
2703 } else if (tids <= 256 * 1024) {
2709 t3_write_reg(adap, A_TP_PMM_SIZE,
2710 p->chan_rx_size | (p->chan_tx_size >> 16));
2712 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2713 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2714 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2715 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2716 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2718 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2719 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2720 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2722 pstructs = p->rx_num_pgs + p->tx_num_pgs;
2723 /* Add a bit of headroom and make multiple of 24 */
2725 pstructs -= pstructs % 24;
2726 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2728 m = tids * TCB_SIZE;
2729 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2730 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2731 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2732 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2733 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2734 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2735 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2736 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2738 m = (m + 4095) & ~0xfff;
2739 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2740 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2742 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2743 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2744 adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2746 adap->params.mc5.nservers += m - tids;
2749 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2752 t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2753 t3_write_reg(adap, A_TP_PIO_DATA, val);
2756 static void tp_config(struct adapter *adap, const struct tp_params *p)
2758 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2759 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2760 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2761 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2762 F_MTUENABLE | V_WINDOWSCALEMODE(1) |
2763 V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
2764 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2765 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2766 V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
2767 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2768 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
2769 F_IPV6ENABLE | F_NICMODE);
2770 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2771 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
2772 t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2773 adap->params.rev > 0 ? F_ENABLEESND :
2776 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2778 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2779 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
2780 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
2781 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
2782 F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
2783 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2784 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2786 if (adap->params.rev > 0) {
2787 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2788 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2790 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2791 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2793 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2795 if (adap->params.rev == T3_REV_C)
2796 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2797 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
2798 V_TABLELATENCYDELTA(4));
2800 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2801 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2802 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2803 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
2806 /* Desired TP timer resolution in usec */
2807 #define TP_TMR_RES 50
2809 /* TCP timer values in ms */
2810 #define TP_DACK_TIMER 50
2811 #define TP_RTO_MIN 250
2814 * tp_set_timers - set TP timing parameters
2815 * @adap: the adapter to set
2816 * @core_clk: the core clock frequency in Hz
2818 * Set TP's timing parameters, such as the various timer resolutions and
2819 * the TCP timer values.
2821 static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2823 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2824 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
2825 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
2826 unsigned int tps = core_clk >> tre;
2828 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2829 V_DELAYEDACKRESOLUTION(dack_re) |
2830 V_TIMESTAMPRESOLUTION(tstamp_re));
2831 t3_write_reg(adap, A_TP_DACK_TIMER,
2832 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2833 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2834 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2835 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2836 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2837 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2838 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2839 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2842 #define SECONDS * tps
2844 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2845 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2846 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2847 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2848 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2849 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2850 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2851 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2852 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2858 * t3_tp_set_coalescing_size - set receive coalescing size
2859 * @adap: the adapter
2860 * @size: the receive coalescing size
2861 * @psh: whether a set PSH bit should deliver coalesced data
2863 * Set the receive coalescing size and PSH bit handling.
2865 int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
2869 if (size > MAX_RX_COALESCING_LEN)
2872 val = t3_read_reg(adap, A_TP_PARA_REG3);
2873 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2876 val |= F_RXCOALESCEENABLE;
2878 val |= F_RXCOALESCEPSHEN;
2879 size = min(MAX_RX_COALESCING_LEN, size);
2880 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2881 V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2883 t3_write_reg(adap, A_TP_PARA_REG3, val);
2888 * t3_tp_set_max_rxsize - set the max receive size
2889 * @adap: the adapter
2890 * @size: the max receive size
2892 * Set TP's max receive size. This is the limit that applies when
2893 * receive coalescing is disabled.
2895 void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2897 t3_write_reg(adap, A_TP_PARA_REG7,
2898 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2901 static void init_mtus(unsigned short mtus[])
2904 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
2905 * it can accomodate max size TCP/IP headers when SACK and timestamps
2906 * are enabled and still have at least 8 bytes of payload.
2927 * Initial congestion control parameters.
2929 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2931 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2956 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2959 b[13] = b[14] = b[15] = b[16] = 3;
2960 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2961 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2966 /* The minimum additive increment value for the congestion control table */
2967 #define CC_MIN_INCR 2U
2970 * t3_load_mtus - write the MTU and congestion control HW tables
2971 * @adap: the adapter
2972 * @mtus: the unrestricted values for the MTU table
2973 * @alphs: the values for the congestion control alpha parameter
2974 * @beta: the values for the congestion control beta parameter
2975 * @mtu_cap: the maximum permitted effective MTU
2977 * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2978 * Update the high-speed congestion control table with the supplied alpha,
2981 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2982 unsigned short alpha[NCCTRL_WIN],
2983 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2985 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2986 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2987 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2988 28672, 40960, 57344, 81920, 114688, 163840, 229376
2993 for (i = 0; i < NMTUS; ++i) {
2994 unsigned int mtu = min(mtus[i], mtu_cap);
2995 unsigned int log2 = fls(mtu);
2997 if (!(mtu & ((1 << log2) >> 2))) /* round */
2999 t3_write_reg(adap, A_TP_MTU_TABLE,
3000 (i << 24) | (log2 << 16) | mtu);
3002 for (w = 0; w < NCCTRL_WIN; ++w) {
3005 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
3008 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
3009 (w << 16) | (beta[w] << 13) | inc);
3015 * t3_read_hw_mtus - returns the values in the HW MTU table
3016 * @adap: the adapter
3017 * @mtus: where to store the HW MTU values
3019 * Reads the HW MTU table.
3021 void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
3025 for (i = 0; i < NMTUS; ++i) {
3028 t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
3029 val = t3_read_reg(adap, A_TP_MTU_TABLE);
3030 mtus[i] = val & 0x3fff;
3035 * t3_get_cong_cntl_tab - reads the congestion control table
3036 * @adap: the adapter
3037 * @incr: where to store the alpha values
3039 * Reads the additive increments programmed into the HW congestion
3042 void t3_get_cong_cntl_tab(struct adapter *adap,
3043 unsigned short incr[NMTUS][NCCTRL_WIN])
3045 unsigned int mtu, w;
3047 for (mtu = 0; mtu < NMTUS; ++mtu)
3048 for (w = 0; w < NCCTRL_WIN; ++w) {
3049 t3_write_reg(adap, A_TP_CCTRL_TABLE,
3050 0xffff0000 | (mtu << 5) | w);
3051 incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
3057 * t3_tp_get_mib_stats - read TP's MIB counters
3058 * @adap: the adapter
3059 * @tps: holds the returned counter values
3061 * Returns the values of TP's MIB counters.
3063 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
3065 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
3066 sizeof(*tps) / sizeof(u32), 0);
3069 #define ulp_region(adap, name, start, len) \
3070 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
3071 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
3072 (start) + (len) - 1); \
3075 #define ulptx_region(adap, name, start, len) \
3076 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
3077 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
3078 (start) + (len) - 1)
3080 static void ulp_config(struct adapter *adap, const struct tp_params *p)
3082 unsigned int m = p->chan_rx_size;
3084 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
3085 ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
3086 ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
3087 ulp_region(adap, STAG, m, p->chan_rx_size / 4);
3088 ulp_region(adap, RQ, m, p->chan_rx_size / 4);
3089 ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
3090 ulp_region(adap, PBL, m, p->chan_rx_size / 4);
3091 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
3095 * t3_set_proto_sram - set the contents of the protocol sram
3096 * @adapter: the adapter
3097 * @data: the protocol image
3099 * Write the contents of the protocol SRAM.
3101 int t3_set_proto_sram(struct adapter *adap, const u8 *data)
3104 const __be32 *buf = (const __be32 *)data;
3106 for (i = 0; i < PROTO_SRAM_LINES; i++) {
3107 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
3108 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
3109 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
3110 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
3111 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
3113 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
3114 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
3117 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
3122 void t3_config_trace_filter(struct adapter *adapter,
3123 const struct trace_params *tp, int filter_index,
3124 int invert, int enable)
3126 u32 addr, key[4], mask[4];
3128 key[0] = tp->sport | (tp->sip << 16);
3129 key[1] = (tp->sip >> 16) | (tp->dport << 16);
3131 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
3133 mask[0] = tp->sport_mask | (tp->sip_mask << 16);
3134 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
3135 mask[2] = tp->dip_mask;
3136 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
3139 key[3] |= (1 << 29);
3141 key[3] |= (1 << 28);
3143 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
3144 tp_wr_indirect(adapter, addr++, key[0]);
3145 tp_wr_indirect(adapter, addr++, mask[0]);
3146 tp_wr_indirect(adapter, addr++, key[1]);
3147 tp_wr_indirect(adapter, addr++, mask[1]);
3148 tp_wr_indirect(adapter, addr++, key[2]);
3149 tp_wr_indirect(adapter, addr++, mask[2]);
3150 tp_wr_indirect(adapter, addr++, key[3]);
3151 tp_wr_indirect(adapter, addr, mask[3]);
3152 t3_read_reg(adapter, A_TP_PIO_DATA);
3156 * t3_config_sched - configure a HW traffic scheduler
3157 * @adap: the adapter
3158 * @kbps: target rate in Kbps
3159 * @sched: the scheduler index
3161 * Configure a HW scheduler for the target rate
3163 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
3165 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3166 unsigned int clk = adap->params.vpd.cclk * 1000;
3167 unsigned int selected_cpt = 0, selected_bpt = 0;
3170 kbps *= 125; /* -> bytes */
3171 for (cpt = 1; cpt <= 255; cpt++) {
3173 bpt = (kbps + tps / 2) / tps;
3174 if (bpt > 0 && bpt <= 255) {
3176 delta = v >= kbps ? v - kbps : kbps - v;
3177 if (delta <= mindelta) {
3182 } else if (selected_cpt)
3188 t3_write_reg(adap, A_TP_TM_PIO_ADDR,
3189 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3190 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
3192 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3194 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3195 t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
3199 static int tp_init(struct adapter *adap, const struct tp_params *p)
3204 t3_set_vlan_accel(adap, 3, 0);
3206 if (is_offload(adap)) {
3207 tp_set_timers(adap, adap->params.vpd.cclk * 1000);
3208 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
3209 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
3212 CH_ERR(adap, "TP initialization timed out\n");
3216 t3_write_reg(adap, A_TP_RESET, F_TPRESET);
3220 int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
3222 if (port_mask & ~((1 << adap->params.nports) - 1))
3224 t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
3225 port_mask << S_PORT0ACTIVE);
3230 * Perform the bits of HW initialization that are dependent on the Tx
3231 * channels being used.
3233 static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
3237 if (chan_map != 3) { /* one channel */
3238 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
3239 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
3240 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
3241 (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
3242 F_TPTXPORT1EN | F_PORT1ACTIVE));
3243 t3_write_reg(adap, A_PM1_TX_CFG,
3244 chan_map == 1 ? 0xffffffff : 0);
3245 } else { /* two channels */
3246 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
3247 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
3248 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
3249 V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
3250 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
3251 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
3253 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
3254 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
3255 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
3256 V_TX_MOD_QUEUE_REQ_MAP(0xaa));
3257 for (i = 0; i < 16; i++)
3258 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
3259 (i << 16) | 0x1010);
3263 static int calibrate_xgm(struct adapter *adapter)
3265 if (uses_xaui(adapter)) {
3268 for (i = 0; i < 5; ++i) {
3269 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
3270 t3_read_reg(adapter, A_XGM_XAUI_IMP);
3272 v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
3273 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
3274 t3_write_reg(adapter, A_XGM_XAUI_IMP,
3275 V_XAUIIMP(G_CALIMP(v) >> 2));
3279 CH_ERR(adapter, "MAC calibration failed\n");
3282 t3_write_reg(adapter, A_XGM_RGMII_IMP,
3283 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3284 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3285 F_XGM_IMPSETUPDATE);
3290 static void calibrate_xgm_t3b(struct adapter *adapter)
3292 if (!uses_xaui(adapter)) {
3293 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
3294 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3295 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
3296 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
3297 F_XGM_IMPSETUPDATE);
3298 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3300 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
3301 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
3305 struct mc7_timing_params {
3306 unsigned char ActToPreDly;
3307 unsigned char ActToRdWrDly;
3308 unsigned char PreCyc;
3309 unsigned char RefCyc[5];
3310 unsigned char BkCyc;
3311 unsigned char WrToRdDly;
3312 unsigned char RdToWrDly;
3316 * Write a value to a register and check that the write completed. These
3317 * writes normally complete in a cycle or two, so one read should suffice.
3318 * The very first read exists to flush the posted write to the device.
3320 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
3322 t3_write_reg(adapter, addr, val);
3323 t3_read_reg(adapter, addr); /* flush */
3324 if (!(t3_read_reg(adapter, addr) & F_BUSY))
3326 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
3330 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
3332 static const unsigned int mc7_mode[] = {
3333 0x632, 0x642, 0x652, 0x432, 0x442
3335 static const struct mc7_timing_params mc7_timings[] = {
3336 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
3337 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
3338 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
3339 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
3340 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
3344 unsigned int width, density, slow, attempts;
3345 struct adapter *adapter = mc7->adapter;
3346 const struct mc7_timing_params *p = &mc7_timings[mem_type];
3351 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3352 slow = val & F_SLOW;
3353 width = G_WIDTH(val);
3354 density = G_DEN(val);
3356 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
3357 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3361 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
3362 t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
3364 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
3365 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
3366 CH_ERR(adapter, "%s MC7 calibration timed out\n",
3372 t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
3373 V_ACTTOPREDLY(p->ActToPreDly) |
3374 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
3375 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
3376 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
3378 t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
3379 val | F_CLKEN | F_TERM150);
3380 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3383 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
3388 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3389 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
3390 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
3391 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3395 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
3396 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
3400 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3401 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3402 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3403 wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
3404 mc7_mode[mem_type]) ||
3405 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
3406 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3409 /* clock value is in KHz */
3410 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
3411 mc7_clock /= 1000000; /* KHz->MHz, ns->us */
3413 t3_write_reg(adapter, mc7->offset + A_MC7_REF,
3414 F_PERREFEN | V_PREREFDIV(mc7_clock));
3415 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
3417 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
3418 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
3419 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
3420 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
3421 (mc7->size << width) - 1);
3422 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
3423 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
3428 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
3429 } while ((val & F_BUSY) && --attempts);
3431 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
3435 /* Enable normal memory accesses. */
3436 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3443 static void config_pcie(struct adapter *adap)
3445 static const u16 ack_lat[4][6] = {
3446 {237, 416, 559, 1071, 2095, 4143},
3447 {128, 217, 289, 545, 1057, 2081},
3448 {73, 118, 154, 282, 538, 1050},
3449 {67, 107, 86, 150, 278, 534}
3451 static const u16 rpl_tmr[4][6] = {
3452 {711, 1248, 1677, 3213, 6285, 12429},
3453 {384, 651, 867, 1635, 3171, 6243},
3454 {219, 354, 462, 846, 1614, 3150},
3455 {201, 321, 258, 450, 834, 1602}
3459 unsigned int log2_width, pldsize;
3460 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3462 pci_read_config_word(adap->pdev,
3463 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
3465 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3466 pci_read_config_word(adap->pdev,
3467 adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
3470 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3471 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3472 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3473 log2_width = fls(adap->params.pci.width) - 1;
3474 acklat = ack_lat[log2_width][pldsize];
3475 if (val & 1) /* check LOsEnable */
3476 acklat += fst_trn_tx * 4;
3477 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3479 if (adap->params.rev == 0)
3480 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3481 V_T3A_ACKLAT(M_T3A_ACKLAT),
3482 V_T3A_ACKLAT(acklat));
3484 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3487 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3488 V_REPLAYLMT(rpllmt));
3490 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3491 t3_set_reg_field(adap, A_PCIE_CFG, 0,
3492 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
3493 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
3497 * Initialize and configure T3 HW modules. This performs the
3498 * initialization steps that need to be done once after a card is reset.
3499 * MAC and PHY initialization is handled separarely whenever a port is enabled.
3501 * fw_params are passed to FW and their value is platform dependent. Only the
3502 * top 8 bits are available for use, the rest must be 0.
3504 int t3_init_hw(struct adapter *adapter, u32 fw_params)
3506 int err = -EIO, attempts, i;
3507 const struct vpd_params *vpd = &adapter->params.vpd;
3509 if (adapter->params.rev > 0)
3510 calibrate_xgm_t3b(adapter);
3511 else if (calibrate_xgm(adapter))
3515 partition_mem(adapter, &adapter->params.tp);
3517 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3518 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3519 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3520 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3521 adapter->params.mc5.nfilters,
3522 adapter->params.mc5.nroutes))
3525 for (i = 0; i < 32; i++)
3526 if (clear_sge_ctxt(adapter, i, F_CQ))
3530 if (tp_init(adapter, &adapter->params.tp))
3533 t3_tp_set_coalescing_size(adapter,
3534 min(adapter->params.sge.max_pkt_size,
3535 MAX_RX_COALESCING_LEN), 1);
3536 t3_tp_set_max_rxsize(adapter,
3537 min(adapter->params.sge.max_pkt_size, 16384U));
3538 ulp_config(adapter, &adapter->params.tp);
3540 if (is_pcie(adapter))
3541 config_pcie(adapter);
3543 t3_set_reg_field(adapter, A_PCIX_CFG, 0,
3544 F_DMASTOPEN | F_CLIDECEN);
3546 if (adapter->params.rev == T3_REV_C)
3547 t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
3548 F_CFG_CQE_SOP_MASK);
3550 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
3551 t3_write_reg(adapter, A_PM1_RX_MODE, 0);
3552 t3_write_reg(adapter, A_PM1_TX_MODE, 0);
3553 chan_init_hw(adapter, adapter->params.chan_map);
3554 t3_sge_init(adapter, &adapter->params.sge);
3556 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
3558 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3559 t3_write_reg(adapter, A_CIM_BOOT_CFG,
3560 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3561 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
3564 do { /* wait for uP to initialize */
3566 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
3568 CH_ERR(adapter, "uP initialization timed out\n");
3578 * get_pci_mode - determine a card's PCI mode
3579 * @adapter: the adapter
3580 * @p: where to store the PCI settings
3582 * Determines a card's PCI mode and associated parameters, such as speed
3585 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
3587 static unsigned short speed_map[] = { 33, 66, 100, 133 };
3588 u32 pci_mode, pcie_cap;
3590 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3594 p->variant = PCI_VARIANT_PCIE;
3595 p->pcie_cap_addr = pcie_cap;
3596 pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
3598 p->width = (val >> 4) & 0x3f;
3602 pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3603 p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3604 p->width = (pci_mode & F_64BIT) ? 64 : 32;
3605 pci_mode = G_PCIXINITPAT(pci_mode);
3607 p->variant = PCI_VARIANT_PCI;
3608 else if (pci_mode < 4)
3609 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3610 else if (pci_mode < 8)
3611 p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3613 p->variant = PCI_VARIANT_PCIX_266_MODE2;
3617 * init_link_config - initialize a link's SW state
3618 * @lc: structure holding the link state
3619 * @ai: information about the current card
3621 * Initializes the SW state maintained for each link, including the link's
3622 * capabilities and default speed/duplex/flow-control/autonegotiation
3625 static void init_link_config(struct link_config *lc, unsigned int caps)
3627 lc->supported = caps;
3628 lc->requested_speed = lc->speed = SPEED_INVALID;
3629 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3630 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3631 if (lc->supported & SUPPORTED_Autoneg) {
3632 lc->advertising = lc->supported;
3633 lc->autoneg = AUTONEG_ENABLE;
3634 lc->requested_fc |= PAUSE_AUTONEG;
3636 lc->advertising = 0;
3637 lc->autoneg = AUTONEG_DISABLE;
3642 * mc7_calc_size - calculate MC7 memory size
3643 * @cfg: the MC7 configuration
3645 * Calculates the size of an MC7 memory in bytes from the value of its
3646 * configuration register.
3648 static unsigned int mc7_calc_size(u32 cfg)
3650 unsigned int width = G_WIDTH(cfg);
3651 unsigned int banks = !!(cfg & F_BKS) + 1;
3652 unsigned int org = !!(cfg & F_ORG) + 1;
3653 unsigned int density = G_DEN(cfg);
3654 unsigned int MBs = ((256 << density) * banks) / (org << width);
3659 static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3660 unsigned int base_addr, const char *name)
3664 mc7->adapter = adapter;
3666 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3667 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3668 mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
3669 mc7->width = G_WIDTH(cfg);
3672 void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3674 mac->adapter = adapter;
3675 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3678 if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3679 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3680 is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3681 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3686 void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
3688 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3690 mi1_init(adapter, ai);
3691 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
3692 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3693 t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3694 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
3695 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
3696 t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
3698 if (adapter->params.rev == 0 || !uses_xaui(adapter))
3701 /* Enable MAC clocks so we can access the registers */
3702 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3703 t3_read_reg(adapter, A_XGM_PORT_CFG);
3705 val |= F_CLKDIVRESET_;
3706 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3707 t3_read_reg(adapter, A_XGM_PORT_CFG);
3708 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3709 t3_read_reg(adapter, A_XGM_PORT_CFG);
3713 * Reset the adapter.
3714 * Older PCIe cards lose their config space during reset, PCI-X
3717 int t3_reset_adapter(struct adapter *adapter)
3719 int i, save_and_restore_pcie =
3720 adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
3723 if (save_and_restore_pcie)
3724 pci_save_state(adapter->pdev);
3725 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3728 * Delay. Give Some time to device to reset fully.
3729 * XXX The delay time should be modified.
3731 for (i = 0; i < 10; i++) {
3733 pci_read_config_word(adapter->pdev, 0x00, &devid);
3734 if (devid == 0x1425)
3738 if (devid != 0x1425)
3741 if (save_and_restore_pcie)
3742 pci_restore_state(adapter->pdev);
3746 static int init_parity(struct adapter *adap)
3750 if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
3753 for (err = i = 0; !err && i < 16; i++)
3754 err = clear_sge_ctxt(adap, i, F_EGRESS);
3755 for (i = 0xfff0; !err && i <= 0xffff; i++)
3756 err = clear_sge_ctxt(adap, i, F_EGRESS);
3757 for (i = 0; !err && i < SGE_QSETS; i++)
3758 err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
3762 t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
3763 for (i = 0; i < 4; i++)
3764 for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
3765 t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
3766 F_IBQDBGWR | V_IBQDBGQID(i) |
3767 V_IBQDBGADDR(addr));
3768 err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
3769 F_IBQDBGBUSY, 0, 2, 1);
3777 * Initialize adapter SW state for the various HW modules, set initial values
3778 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3781 int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
3785 unsigned int i, j = -1;
3787 get_pci_mode(adapter, &adapter->params.pci);
3789 adapter->params.info = ai;
3790 adapter->params.nports = ai->nports0 + ai->nports1;
3791 adapter->params.chan_map = !!ai->nports0 | (!!ai->nports1 << 1);
3792 adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3794 * We used to only run the "adapter check task" once a second if
3795 * we had PHYs which didn't support interrupts (we would check
3796 * their link status once a second). Now we check other conditions
3797 * in that routine which could potentially impose a very high
3798 * interrupt load on the system. As such, we now always scan the
3799 * adapter state once a second ...
3801 adapter->params.linkpoll_period = 10;
3802 adapter->params.stats_update_period = is_10G(adapter) ?
3803 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3804 adapter->params.pci.vpd_cap_addr =
3805 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3806 ret = get_vpd_params(adapter, &adapter->params.vpd);
3810 if (reset && t3_reset_adapter(adapter))
3813 t3_sge_prep(adapter, &adapter->params.sge);
3815 if (adapter->params.vpd.mclk) {
3816 struct tp_params *p = &adapter->params.tp;
3818 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3819 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3820 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3822 p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
3823 p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3824 p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3825 p->cm_size = t3_mc7_size(&adapter->cm);
3826 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
3827 p->chan_tx_size = p->pmtx_size / p->nchan;
3828 p->rx_pg_size = 64 * 1024;
3829 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3830 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3831 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3832 p->ntimer_qs = p->cm_size >= (128 << 20) ||
3833 adapter->params.rev > 0 ? 12 : 6;
3836 adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3837 t3_mc7_size(&adapter->pmtx) &&
3838 t3_mc7_size(&adapter->cm);
3840 if (is_offload(adapter)) {
3841 adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3842 adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3843 DEFAULT_NFILTERS : 0;
3844 adapter->params.mc5.nroutes = 0;
3845 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3847 init_mtus(adapter->params.mtus);
3848 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3851 early_hw_init(adapter, ai);
3852 ret = init_parity(adapter);
3856 for_each_port(adapter, i) {
3858 const struct port_type_info *pti;
3859 struct port_info *p = adap2pinfo(adapter, i);
3861 while (!adapter->params.vpd.port_type[++j])
3864 pti = &port_types[adapter->params.vpd.port_type[j]];
3865 if (!pti->phy_prep) {
3866 CH_ALERT(adapter, "Invalid port type index %d\n",
3867 adapter->params.vpd.port_type[j]);
3871 ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3875 mac_prep(&p->mac, adapter, j);
3878 * The VPD EEPROM stores the base Ethernet address for the
3879 * card. A port's address is derived from the base by adding
3880 * the port's index to the base's low octet.
3882 memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3883 hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3885 memcpy(adapter->port[i]->dev_addr, hw_addr,
3887 memcpy(adapter->port[i]->perm_addr, hw_addr,
3889 init_link_config(&p->link_config, p->phy.caps);
3890 p->phy.ops->power_down(&p->phy, 1);
3893 * If the PHY doesn't support interrupts for link status
3894 * changes, schedule a scan of the adapter links at least
3897 if (!(p->phy.caps & SUPPORTED_IRQ) &&
3898 adapter->params.linkpoll_period > 10)
3899 adapter->params.linkpoll_period = 10;
3905 void t3_led_ready(struct adapter *adapter)
3907 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3911 int t3_replay_prep_adapter(struct adapter *adapter)
3913 const struct adapter_info *ai = adapter->params.info;
3914 unsigned int i, j = -1;
3917 early_hw_init(adapter, ai);
3918 ret = init_parity(adapter);
3922 for_each_port(adapter, i) {
3923 const struct port_type_info *pti;
3924 struct port_info *p = adap2pinfo(adapter, i);
3926 while (!adapter->params.vpd.port_type[++j])
3929 pti = &port_types[adapter->params.vpd.port_type[j]];
3930 ret = pti->phy_prep(&p->phy, adapter, p->phy.addr, NULL);
3933 p->phy.ops->power_down(&p->phy, 1);