USB: remove unused usb_host class
[linux-2.6] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS              64
94 struct usb_busmap {
95         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117         return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123  * Sharable chunks of root hub code.
124  */
125
126 /*-------------------------------------------------------------------------*/
127
128 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
130
131 /* usb 2.0 root hub device descriptor */
132 static const u8 usb2_rh_dev_descriptor [18] = {
133         0x12,       /*  __u8  bLength; */
134         0x01,       /*  __u8  bDescriptorType; Device */
135         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
140         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
143         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
153
154 /* usb 1.1 root hub device descriptor */
155 static const u8 usb11_rh_dev_descriptor [18] = {
156         0x12,       /*  __u8  bLength; */
157         0x01,       /*  __u8  bDescriptorType; Device */
158         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
159
160         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
161         0x00,       /*  __u8  bDeviceSubClass; */
162         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
163         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
164
165         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
166         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
167         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
168
169         0x03,       /*  __u8  iManufacturer; */
170         0x02,       /*  __u8  iProduct; */
171         0x01,       /*  __u8  iSerialNumber; */
172         0x01        /*  __u8  bNumConfigurations; */
173 };
174
175
176 /*-------------------------------------------------------------------------*/
177
178 /* Configuration descriptors for our root hubs */
179
180 static const u8 fs_rh_config_descriptor [] = {
181
182         /* one configuration */
183         0x09,       /*  __u8  bLength; */
184         0x02,       /*  __u8  bDescriptorType; Configuration */
185         0x19, 0x00, /*  __le16 wTotalLength; */
186         0x01,       /*  __u8  bNumInterfaces; (1) */
187         0x01,       /*  __u8  bConfigurationValue; */
188         0x00,       /*  __u8  iConfiguration; */
189         0xc0,       /*  __u8  bmAttributes; 
190                                  Bit 7: must be set,
191                                      6: Self-powered,
192                                      5: Remote wakeup,
193                                      4..0: resvd */
194         0x00,       /*  __u8  MaxPower; */
195       
196         /* USB 1.1:
197          * USB 2.0, single TT organization (mandatory):
198          *      one interface, protocol 0
199          *
200          * USB 2.0, multiple TT organization (optional):
201          *      two interfaces, protocols 1 (like single TT)
202          *      and 2 (multiple TT mode) ... config is
203          *      sometimes settable
204          *      NOT IMPLEMENTED
205          */
206
207         /* one interface */
208         0x09,       /*  __u8  if_bLength; */
209         0x04,       /*  __u8  if_bDescriptorType; Interface */
210         0x00,       /*  __u8  if_bInterfaceNumber; */
211         0x00,       /*  __u8  if_bAlternateSetting; */
212         0x01,       /*  __u8  if_bNumEndpoints; */
213         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
214         0x00,       /*  __u8  if_bInterfaceSubClass; */
215         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
216         0x00,       /*  __u8  if_iInterface; */
217      
218         /* one endpoint (status change endpoint) */
219         0x07,       /*  __u8  ep_bLength; */
220         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
221         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
222         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
223         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
224         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
225 };
226
227 static const u8 hs_rh_config_descriptor [] = {
228
229         /* one configuration */
230         0x09,       /*  __u8  bLength; */
231         0x02,       /*  __u8  bDescriptorType; Configuration */
232         0x19, 0x00, /*  __le16 wTotalLength; */
233         0x01,       /*  __u8  bNumInterfaces; (1) */
234         0x01,       /*  __u8  bConfigurationValue; */
235         0x00,       /*  __u8  iConfiguration; */
236         0xc0,       /*  __u8  bmAttributes; 
237                                  Bit 7: must be set,
238                                      6: Self-powered,
239                                      5: Remote wakeup,
240                                      4..0: resvd */
241         0x00,       /*  __u8  MaxPower; */
242       
243         /* USB 1.1:
244          * USB 2.0, single TT organization (mandatory):
245          *      one interface, protocol 0
246          *
247          * USB 2.0, multiple TT organization (optional):
248          *      two interfaces, protocols 1 (like single TT)
249          *      and 2 (multiple TT mode) ... config is
250          *      sometimes settable
251          *      NOT IMPLEMENTED
252          */
253
254         /* one interface */
255         0x09,       /*  __u8  if_bLength; */
256         0x04,       /*  __u8  if_bDescriptorType; Interface */
257         0x00,       /*  __u8  if_bInterfaceNumber; */
258         0x00,       /*  __u8  if_bAlternateSetting; */
259         0x01,       /*  __u8  if_bNumEndpoints; */
260         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
261         0x00,       /*  __u8  if_bInterfaceSubClass; */
262         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
263         0x00,       /*  __u8  if_iInterface; */
264      
265         /* one endpoint (status change endpoint) */
266         0x07,       /*  __u8  ep_bLength; */
267         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
268         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
269         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
270                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
271                      * see hub.c:hub_configure() for details. */
272         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
273         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
274 };
275
276 /*-------------------------------------------------------------------------*/
277
278 /*
279  * helper routine for returning string descriptors in UTF-16LE
280  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
281  */
282 static unsigned ascii2utf(char *s, u8 *utf, int utfmax)
283 {
284         unsigned retval;
285
286         for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
287                 *utf++ = *s++;
288                 *utf++ = 0;
289         }
290         if (utfmax > 0) {
291                 *utf = *s;
292                 ++retval;
293         }
294         return retval;
295 }
296
297 /*
298  * rh_string - provides manufacturer, product and serial strings for root hub
299  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
300  * @hcd: the host controller for this root hub
301  * @data: return packet in UTF-16 LE
302  * @len: length of the return packet
303  *
304  * Produces either a manufacturer, product or serial number string for the
305  * virtual root hub device.
306  */
307 static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len)
308 {
309         char buf [100];
310
311         // language ids
312         if (id == 0) {
313                 buf[0] = 4;    buf[1] = 3;      /* 4 bytes string data */
314                 buf[2] = 0x09; buf[3] = 0x04;   /* MSFT-speak for "en-us" */
315                 len = min_t(unsigned, len, 4);
316                 memcpy (data, buf, len);
317                 return len;
318
319         // serial number
320         } else if (id == 1) {
321                 strlcpy (buf, hcd->self.bus_name, sizeof buf);
322
323         // product description
324         } else if (id == 2) {
325                 strlcpy (buf, hcd->product_desc, sizeof buf);
326
327         // id 3 == vendor description
328         } else if (id == 3) {
329                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
330                         init_utsname()->release, hcd->driver->description);
331         }
332
333         switch (len) {          /* All cases fall through */
334         default:
335                 len = 2 + ascii2utf (buf, data + 2, len - 2);
336         case 2:
337                 data [1] = 3;   /* type == string */
338         case 1:
339                 data [0] = 2 * (strlen (buf) + 1);
340         case 0:
341                 ;               /* Compiler wants a statement here */
342         }
343         return len;
344 }
345
346
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
349 {
350         struct usb_ctrlrequest *cmd;
351         u16             typeReq, wValue, wIndex, wLength;
352         u8              *ubuf = urb->transfer_buffer;
353         u8              tbuf [sizeof (struct usb_hub_descriptor)]
354                 __attribute__((aligned(4)));
355         const u8        *bufp = tbuf;
356         unsigned        len = 0;
357         int             status;
358         u8              patch_wakeup = 0;
359         u8              patch_protocol = 0;
360
361         might_sleep();
362
363         spin_lock_irq(&hcd_root_hub_lock);
364         status = usb_hcd_link_urb_to_ep(hcd, urb);
365         spin_unlock_irq(&hcd_root_hub_lock);
366         if (status)
367                 return status;
368         urb->hcpriv = hcd;      /* Indicate it's queued */
369
370         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
371         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
372         wValue   = le16_to_cpu (cmd->wValue);
373         wIndex   = le16_to_cpu (cmd->wIndex);
374         wLength  = le16_to_cpu (cmd->wLength);
375
376         if (wLength > urb->transfer_buffer_length)
377                 goto error;
378
379         urb->actual_length = 0;
380         switch (typeReq) {
381
382         /* DEVICE REQUESTS */
383
384         /* The root hub's remote wakeup enable bit is implemented using
385          * driver model wakeup flags.  If this system supports wakeup
386          * through USB, userspace may change the default "allow wakeup"
387          * policy through sysfs or these calls.
388          *
389          * Most root hubs support wakeup from downstream devices, for
390          * runtime power management (disabling USB clocks and reducing
391          * VBUS power usage).  However, not all of them do so; silicon,
392          * board, and BIOS bugs here are not uncommon, so these can't
393          * be treated quite like external hubs.
394          *
395          * Likewise, not all root hubs will pass wakeup events upstream,
396          * to wake up the whole system.  So don't assume root hub and
397          * controller capabilities are identical.
398          */
399
400         case DeviceRequest | USB_REQ_GET_STATUS:
401                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
402                                         << USB_DEVICE_REMOTE_WAKEUP)
403                                 | (1 << USB_DEVICE_SELF_POWERED);
404                 tbuf [1] = 0;
405                 len = 2;
406                 break;
407         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
408                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
409                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
410                 else
411                         goto error;
412                 break;
413         case DeviceOutRequest | USB_REQ_SET_FEATURE:
414                 if (device_can_wakeup(&hcd->self.root_hub->dev)
415                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
416                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
417                 else
418                         goto error;
419                 break;
420         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
421                 tbuf [0] = 1;
422                 len = 1;
423                         /* FALLTHROUGH */
424         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
425                 break;
426         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
427                 switch (wValue & 0xff00) {
428                 case USB_DT_DEVICE << 8:
429                         if (hcd->driver->flags & HCD_USB2)
430                                 bufp = usb2_rh_dev_descriptor;
431                         else if (hcd->driver->flags & HCD_USB11)
432                                 bufp = usb11_rh_dev_descriptor;
433                         else
434                                 goto error;
435                         len = 18;
436                         if (hcd->has_tt)
437                                 patch_protocol = 1;
438                         break;
439                 case USB_DT_CONFIG << 8:
440                         if (hcd->driver->flags & HCD_USB2) {
441                                 bufp = hs_rh_config_descriptor;
442                                 len = sizeof hs_rh_config_descriptor;
443                         } else {
444                                 bufp = fs_rh_config_descriptor;
445                                 len = sizeof fs_rh_config_descriptor;
446                         }
447                         if (device_can_wakeup(&hcd->self.root_hub->dev))
448                                 patch_wakeup = 1;
449                         break;
450                 case USB_DT_STRING << 8:
451                         if ((wValue & 0xff) < 4)
452                                 urb->actual_length = rh_string(wValue & 0xff,
453                                                 hcd, ubuf, wLength);
454                         else /* unsupported IDs --> "protocol stall" */
455                                 goto error;
456                         break;
457                 default:
458                         goto error;
459                 }
460                 break;
461         case DeviceRequest | USB_REQ_GET_INTERFACE:
462                 tbuf [0] = 0;
463                 len = 1;
464                         /* FALLTHROUGH */
465         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
466                 break;
467         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468                 // wValue == urb->dev->devaddr
469                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
470                         wValue);
471                 break;
472
473         /* INTERFACE REQUESTS (no defined feature/status flags) */
474
475         /* ENDPOINT REQUESTS */
476
477         case EndpointRequest | USB_REQ_GET_STATUS:
478                 // ENDPOINT_HALT flag
479                 tbuf [0] = 0;
480                 tbuf [1] = 0;
481                 len = 2;
482                         /* FALLTHROUGH */
483         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484         case EndpointOutRequest | USB_REQ_SET_FEATURE:
485                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
486                 break;
487
488         /* CLASS REQUESTS (and errors) */
489
490         default:
491                 /* non-generic request */
492                 switch (typeReq) {
493                 case GetHubStatus:
494                 case GetPortStatus:
495                         len = 4;
496                         break;
497                 case GetHubDescriptor:
498                         len = sizeof (struct usb_hub_descriptor);
499                         break;
500                 }
501                 status = hcd->driver->hub_control (hcd,
502                         typeReq, wValue, wIndex,
503                         tbuf, wLength);
504                 break;
505 error:
506                 /* "protocol stall" on error */
507                 status = -EPIPE;
508         }
509
510         if (status) {
511                 len = 0;
512                 if (status != -EPIPE) {
513                         dev_dbg (hcd->self.controller,
514                                 "CTRL: TypeReq=0x%x val=0x%x "
515                                 "idx=0x%x len=%d ==> %d\n",
516                                 typeReq, wValue, wIndex,
517                                 wLength, status);
518                 }
519         }
520         if (len) {
521                 if (urb->transfer_buffer_length < len)
522                         len = urb->transfer_buffer_length;
523                 urb->actual_length = len;
524                 // always USB_DIR_IN, toward host
525                 memcpy (ubuf, bufp, len);
526
527                 /* report whether RH hardware supports remote wakeup */
528                 if (patch_wakeup &&
529                                 len > offsetof (struct usb_config_descriptor,
530                                                 bmAttributes))
531                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
532                                 |= USB_CONFIG_ATT_WAKEUP;
533
534                 /* report whether RH hardware has an integrated TT */
535                 if (patch_protocol &&
536                                 len > offsetof(struct usb_device_descriptor,
537                                                 bDeviceProtocol))
538                         ((struct usb_device_descriptor *) ubuf)->
539                                         bDeviceProtocol = 1;
540         }
541
542         /* any errors get returned through the urb completion */
543         spin_lock_irq(&hcd_root_hub_lock);
544         usb_hcd_unlink_urb_from_ep(hcd, urb);
545
546         /* This peculiar use of spinlocks echoes what real HC drivers do.
547          * Avoiding calls to local_irq_disable/enable makes the code
548          * RT-friendly.
549          */
550         spin_unlock(&hcd_root_hub_lock);
551         usb_hcd_giveback_urb(hcd, urb, status);
552         spin_lock(&hcd_root_hub_lock);
553
554         spin_unlock_irq(&hcd_root_hub_lock);
555         return 0;
556 }
557
558 /*-------------------------------------------------------------------------*/
559
560 /*
561  * Root Hub interrupt transfers are polled using a timer if the
562  * driver requests it; otherwise the driver is responsible for
563  * calling usb_hcd_poll_rh_status() when an event occurs.
564  *
565  * Completions are called in_interrupt(), but they may or may not
566  * be in_irq().
567  */
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
569 {
570         struct urb      *urb;
571         int             length;
572         unsigned long   flags;
573         char            buffer[4];      /* Any root hubs with > 31 ports? */
574
575         if (unlikely(!hcd->rh_registered))
576                 return;
577         if (!hcd->uses_new_polling && !hcd->status_urb)
578                 return;
579
580         length = hcd->driver->hub_status_data(hcd, buffer);
581         if (length > 0) {
582
583                 /* try to complete the status urb */
584                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
585                 urb = hcd->status_urb;
586                 if (urb) {
587                         hcd->poll_pending = 0;
588                         hcd->status_urb = NULL;
589                         urb->actual_length = length;
590                         memcpy(urb->transfer_buffer, buffer, length);
591
592                         usb_hcd_unlink_urb_from_ep(hcd, urb);
593                         spin_unlock(&hcd_root_hub_lock);
594                         usb_hcd_giveback_urb(hcd, urb, 0);
595                         spin_lock(&hcd_root_hub_lock);
596                 } else {
597                         length = 0;
598                         hcd->poll_pending = 1;
599                 }
600                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
601         }
602
603         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
604          * exceed that limit if HZ is 100. The math is more clunky than
605          * maybe expected, this is to make sure that all timers for USB devices
606          * fire at the same time to give the CPU a break inbetween */
607         if (hcd->uses_new_polling ? hcd->poll_rh :
608                         (length == 0 && hcd->status_urb != NULL))
609                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
610 }
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
612
613 /* timer callback */
614 static void rh_timer_func (unsigned long _hcd)
615 {
616         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
617 }
618
619 /*-------------------------------------------------------------------------*/
620
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
622 {
623         int             retval;
624         unsigned long   flags;
625         unsigned        len = 1 + (urb->dev->maxchild / 8);
626
627         spin_lock_irqsave (&hcd_root_hub_lock, flags);
628         if (hcd->status_urb || urb->transfer_buffer_length < len) {
629                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
630                 retval = -EINVAL;
631                 goto done;
632         }
633
634         retval = usb_hcd_link_urb_to_ep(hcd, urb);
635         if (retval)
636                 goto done;
637
638         hcd->status_urb = urb;
639         urb->hcpriv = hcd;      /* indicate it's queued */
640         if (!hcd->uses_new_polling)
641                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
642
643         /* If a status change has already occurred, report it ASAP */
644         else if (hcd->poll_pending)
645                 mod_timer(&hcd->rh_timer, jiffies);
646         retval = 0;
647  done:
648         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
649         return retval;
650 }
651
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
653 {
654         if (usb_endpoint_xfer_int(&urb->ep->desc))
655                 return rh_queue_status (hcd, urb);
656         if (usb_endpoint_xfer_control(&urb->ep->desc))
657                 return rh_call_control (hcd, urb);
658         return -EINVAL;
659 }
660
661 /*-------------------------------------------------------------------------*/
662
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664  * since these URBs always execute synchronously.
665  */
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
667 {
668         unsigned long   flags;
669         int             rc;
670
671         spin_lock_irqsave(&hcd_root_hub_lock, flags);
672         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
673         if (rc)
674                 goto done;
675
676         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
677                 ;       /* Do nothing */
678
679         } else {                                /* Status URB */
680                 if (!hcd->uses_new_polling)
681                         del_timer (&hcd->rh_timer);
682                 if (urb == hcd->status_urb) {
683                         hcd->status_urb = NULL;
684                         usb_hcd_unlink_urb_from_ep(hcd, urb);
685
686                         spin_unlock(&hcd_root_hub_lock);
687                         usb_hcd_giveback_urb(hcd, urb, status);
688                         spin_lock(&hcd_root_hub_lock);
689                 }
690         }
691  done:
692         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
693         return rc;
694 }
695
696
697
698 /*
699  * Show & store the current value of authorized_default
700  */
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702                                                 struct device_attribute *attr,
703                                                 char *buf)
704 {
705         struct usb_device *rh_usb_dev = to_usb_device(dev);
706         struct usb_bus *usb_bus = rh_usb_dev->bus;
707         struct usb_hcd *usb_hcd;
708
709         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
710                 return -ENODEV;
711         usb_hcd = bus_to_hcd(usb_bus);
712         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
713 }
714
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716                                                  struct device_attribute *attr,
717                                                  const char *buf, size_t size)
718 {
719         ssize_t result;
720         unsigned val;
721         struct usb_device *rh_usb_dev = to_usb_device(dev);
722         struct usb_bus *usb_bus = rh_usb_dev->bus;
723         struct usb_hcd *usb_hcd;
724
725         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
726                 return -ENODEV;
727         usb_hcd = bus_to_hcd(usb_bus);
728         result = sscanf(buf, "%u\n", &val);
729         if (result == 1) {
730                 usb_hcd->authorized_default = val? 1 : 0;
731                 result = size;
732         }
733         else
734                 result = -EINVAL;
735         return result;
736 }
737
738 static DEVICE_ATTR(authorized_default, 0644,
739             usb_host_authorized_default_show,
740             usb_host_authorized_default_store);
741
742
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745                 &dev_attr_authorized_default.attr,
746                 NULL,
747 };
748
749 static struct attribute_group usb_bus_attr_group = {
750         .name = NULL,   /* we want them in the same directory */
751         .attrs = usb_bus_attrs,
752 };
753
754
755
756 /*-------------------------------------------------------------------------*/
757
758 /**
759  * usb_bus_init - shared initialization code
760  * @bus: the bus structure being initialized
761  *
762  * This code is used to initialize a usb_bus structure, memory for which is
763  * separately managed.
764  */
765 static void usb_bus_init (struct usb_bus *bus)
766 {
767         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
768
769         bus->devnum_next = 1;
770
771         bus->root_hub = NULL;
772         bus->busnum = -1;
773         bus->bandwidth_allocated = 0;
774         bus->bandwidth_int_reqs  = 0;
775         bus->bandwidth_isoc_reqs = 0;
776
777         INIT_LIST_HEAD (&bus->bus_list);
778 }
779
780 /*-------------------------------------------------------------------------*/
781
782 /**
783  * usb_register_bus - registers the USB host controller with the usb core
784  * @bus: pointer to the bus to register
785  * Context: !in_interrupt()
786  *
787  * Assigns a bus number, and links the controller into usbcore data
788  * structures so that it can be seen by scanning the bus list.
789  */
790 static int usb_register_bus(struct usb_bus *bus)
791 {
792         int result = -E2BIG;
793         int busnum;
794
795         mutex_lock(&usb_bus_list_lock);
796         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
797         if (busnum >= USB_MAXBUS) {
798                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
799                 goto error_find_busnum;
800         }
801         set_bit (busnum, busmap.busmap);
802         bus->busnum = busnum;
803
804         /* Add it to the local list of buses */
805         list_add (&bus->bus_list, &usb_bus_list);
806         mutex_unlock(&usb_bus_list_lock);
807
808         usb_notify_add_bus(bus);
809
810         dev_info (bus->controller, "new USB bus registered, assigned bus "
811                   "number %d\n", bus->busnum);
812         return 0;
813
814 error_find_busnum:
815         mutex_unlock(&usb_bus_list_lock);
816         return result;
817 }
818
819 /**
820  * usb_deregister_bus - deregisters the USB host controller
821  * @bus: pointer to the bus to deregister
822  * Context: !in_interrupt()
823  *
824  * Recycles the bus number, and unlinks the controller from usbcore data
825  * structures so that it won't be seen by scanning the bus list.
826  */
827 static void usb_deregister_bus (struct usb_bus *bus)
828 {
829         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
830
831         /*
832          * NOTE: make sure that all the devices are removed by the
833          * controller code, as well as having it call this when cleaning
834          * itself up
835          */
836         mutex_lock(&usb_bus_list_lock);
837         list_del (&bus->bus_list);
838         mutex_unlock(&usb_bus_list_lock);
839
840         usb_notify_remove_bus(bus);
841
842         clear_bit (bus->busnum, busmap.busmap);
843 }
844
845 /**
846  * register_root_hub - called by usb_add_hcd() to register a root hub
847  * @hcd: host controller for this root hub
848  *
849  * This function registers the root hub with the USB subsystem.  It sets up
850  * the device properly in the device tree and then calls usb_new_device()
851  * to register the usb device.  It also assigns the root hub's USB address
852  * (always 1).
853  */
854 static int register_root_hub(struct usb_hcd *hcd)
855 {
856         struct device *parent_dev = hcd->self.controller;
857         struct usb_device *usb_dev = hcd->self.root_hub;
858         const int devnum = 1;
859         int retval;
860
861         usb_dev->devnum = devnum;
862         usb_dev->bus->devnum_next = devnum + 1;
863         memset (&usb_dev->bus->devmap.devicemap, 0,
864                         sizeof usb_dev->bus->devmap.devicemap);
865         set_bit (devnum, usb_dev->bus->devmap.devicemap);
866         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
867
868         mutex_lock(&usb_bus_list_lock);
869
870         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
871         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
872         if (retval != sizeof usb_dev->descriptor) {
873                 mutex_unlock(&usb_bus_list_lock);
874                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
875                                 dev_name(&usb_dev->dev), retval);
876                 return (retval < 0) ? retval : -EMSGSIZE;
877         }
878
879         retval = usb_new_device (usb_dev);
880         if (retval) {
881                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
882                                 dev_name(&usb_dev->dev), retval);
883         }
884         mutex_unlock(&usb_bus_list_lock);
885
886         if (retval == 0) {
887                 spin_lock_irq (&hcd_root_hub_lock);
888                 hcd->rh_registered = 1;
889                 spin_unlock_irq (&hcd_root_hub_lock);
890
891                 /* Did the HC die before the root hub was registered? */
892                 if (hcd->state == HC_STATE_HALT)
893                         usb_hc_died (hcd);      /* This time clean up */
894         }
895
896         return retval;
897 }
898
899
900 /*-------------------------------------------------------------------------*/
901
902 /**
903  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
904  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
905  * @is_input: true iff the transaction sends data to the host
906  * @isoc: true for isochronous transactions, false for interrupt ones
907  * @bytecount: how many bytes in the transaction.
908  *
909  * Returns approximate bus time in nanoseconds for a periodic transaction.
910  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
911  * scheduled in software, this function is only used for such scheduling.
912  */
913 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
914 {
915         unsigned long   tmp;
916
917         switch (speed) {
918         case USB_SPEED_LOW:     /* INTR only */
919                 if (is_input) {
920                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
921                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
922                 } else {
923                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
924                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
925                 }
926         case USB_SPEED_FULL:    /* ISOC or INTR */
927                 if (isoc) {
928                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
929                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
930                 } else {
931                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
932                         return (9107L + BW_HOST_DELAY + tmp);
933                 }
934         case USB_SPEED_HIGH:    /* ISOC or INTR */
935                 // FIXME adjust for input vs output
936                 if (isoc)
937                         tmp = HS_NSECS_ISO (bytecount);
938                 else
939                         tmp = HS_NSECS (bytecount);
940                 return tmp;
941         default:
942                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
943                 return -1;
944         }
945 }
946 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
947
948
949 /*-------------------------------------------------------------------------*/
950
951 /*
952  * Generic HC operations.
953  */
954
955 /*-------------------------------------------------------------------------*/
956
957 /**
958  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
959  * @hcd: host controller to which @urb was submitted
960  * @urb: URB being submitted
961  *
962  * Host controller drivers should call this routine in their enqueue()
963  * method.  The HCD's private spinlock must be held and interrupts must
964  * be disabled.  The actions carried out here are required for URB
965  * submission, as well as for endpoint shutdown and for usb_kill_urb.
966  *
967  * Returns 0 for no error, otherwise a negative error code (in which case
968  * the enqueue() method must fail).  If no error occurs but enqueue() fails
969  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
970  * the private spinlock and returning.
971  */
972 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
973 {
974         int             rc = 0;
975
976         spin_lock(&hcd_urb_list_lock);
977
978         /* Check that the URB isn't being killed */
979         if (unlikely(atomic_read(&urb->reject))) {
980                 rc = -EPERM;
981                 goto done;
982         }
983
984         if (unlikely(!urb->ep->enabled)) {
985                 rc = -ENOENT;
986                 goto done;
987         }
988
989         if (unlikely(!urb->dev->can_submit)) {
990                 rc = -EHOSTUNREACH;
991                 goto done;
992         }
993
994         /*
995          * Check the host controller's state and add the URB to the
996          * endpoint's queue.
997          */
998         switch (hcd->state) {
999         case HC_STATE_RUNNING:
1000         case HC_STATE_RESUMING:
1001                 urb->unlinked = 0;
1002                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1003                 break;
1004         default:
1005                 rc = -ESHUTDOWN;
1006                 goto done;
1007         }
1008  done:
1009         spin_unlock(&hcd_urb_list_lock);
1010         return rc;
1011 }
1012 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1013
1014 /**
1015  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1016  * @hcd: host controller to which @urb was submitted
1017  * @urb: URB being checked for unlinkability
1018  * @status: error code to store in @urb if the unlink succeeds
1019  *
1020  * Host controller drivers should call this routine in their dequeue()
1021  * method.  The HCD's private spinlock must be held and interrupts must
1022  * be disabled.  The actions carried out here are required for making
1023  * sure than an unlink is valid.
1024  *
1025  * Returns 0 for no error, otherwise a negative error code (in which case
1026  * the dequeue() method must fail).  The possible error codes are:
1027  *
1028  *      -EIDRM: @urb was not submitted or has already completed.
1029  *              The completion function may not have been called yet.
1030  *
1031  *      -EBUSY: @urb has already been unlinked.
1032  */
1033 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1034                 int status)
1035 {
1036         struct list_head        *tmp;
1037
1038         /* insist the urb is still queued */
1039         list_for_each(tmp, &urb->ep->urb_list) {
1040                 if (tmp == &urb->urb_list)
1041                         break;
1042         }
1043         if (tmp != &urb->urb_list)
1044                 return -EIDRM;
1045
1046         /* Any status except -EINPROGRESS means something already started to
1047          * unlink this URB from the hardware.  So there's no more work to do.
1048          */
1049         if (urb->unlinked)
1050                 return -EBUSY;
1051         urb->unlinked = status;
1052
1053         /* IRQ setup can easily be broken so that USB controllers
1054          * never get completion IRQs ... maybe even the ones we need to
1055          * finish unlinking the initial failed usb_set_address()
1056          * or device descriptor fetch.
1057          */
1058         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1059                         !is_root_hub(urb->dev)) {
1060                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1061                         "Controller is probably using the wrong IRQ.\n");
1062                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1063         }
1064
1065         return 0;
1066 }
1067 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1068
1069 /**
1070  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1071  * @hcd: host controller to which @urb was submitted
1072  * @urb: URB being unlinked
1073  *
1074  * Host controller drivers should call this routine before calling
1075  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1076  * interrupts must be disabled.  The actions carried out here are required
1077  * for URB completion.
1078  */
1079 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1080 {
1081         /* clear all state linking urb to this dev (and hcd) */
1082         spin_lock(&hcd_urb_list_lock);
1083         list_del_init(&urb->urb_list);
1084         spin_unlock(&hcd_urb_list_lock);
1085 }
1086 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1087
1088 /*
1089  * Some usb host controllers can only perform dma using a small SRAM area.
1090  * The usb core itself is however optimized for host controllers that can dma
1091  * using regular system memory - like pci devices doing bus mastering.
1092  *
1093  * To support host controllers with limited dma capabilites we provide dma
1094  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1095  * For this to work properly the host controller code must first use the
1096  * function dma_declare_coherent_memory() to point out which memory area
1097  * that should be used for dma allocations.
1098  *
1099  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1100  * dma using dma_alloc_coherent() which in turn allocates from the memory
1101  * area pointed out with dma_declare_coherent_memory().
1102  *
1103  * So, to summarize...
1104  *
1105  * - We need "local" memory, canonical example being
1106  *   a small SRAM on a discrete controller being the
1107  *   only memory that the controller can read ...
1108  *   (a) "normal" kernel memory is no good, and
1109  *   (b) there's not enough to share
1110  *
1111  * - The only *portable* hook for such stuff in the
1112  *   DMA framework is dma_declare_coherent_memory()
1113  *
1114  * - So we use that, even though the primary requirement
1115  *   is that the memory be "local" (hence addressible
1116  *   by that device), not "coherent".
1117  *
1118  */
1119
1120 static int hcd_alloc_coherent(struct usb_bus *bus,
1121                               gfp_t mem_flags, dma_addr_t *dma_handle,
1122                               void **vaddr_handle, size_t size,
1123                               enum dma_data_direction dir)
1124 {
1125         unsigned char *vaddr;
1126
1127         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1128                                  mem_flags, dma_handle);
1129         if (!vaddr)
1130                 return -ENOMEM;
1131
1132         /*
1133          * Store the virtual address of the buffer at the end
1134          * of the allocated dma buffer. The size of the buffer
1135          * may be uneven so use unaligned functions instead
1136          * of just rounding up. It makes sense to optimize for
1137          * memory footprint over access speed since the amount
1138          * of memory available for dma may be limited.
1139          */
1140         put_unaligned((unsigned long)*vaddr_handle,
1141                       (unsigned long *)(vaddr + size));
1142
1143         if (dir == DMA_TO_DEVICE)
1144                 memcpy(vaddr, *vaddr_handle, size);
1145
1146         *vaddr_handle = vaddr;
1147         return 0;
1148 }
1149
1150 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1151                               void **vaddr_handle, size_t size,
1152                               enum dma_data_direction dir)
1153 {
1154         unsigned char *vaddr = *vaddr_handle;
1155
1156         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1157
1158         if (dir == DMA_FROM_DEVICE)
1159                 memcpy(vaddr, *vaddr_handle, size);
1160
1161         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1162
1163         *vaddr_handle = vaddr;
1164         *dma_handle = 0;
1165 }
1166
1167 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1168                            gfp_t mem_flags)
1169 {
1170         enum dma_data_direction dir;
1171         int ret = 0;
1172
1173         /* Map the URB's buffers for DMA access.
1174          * Lower level HCD code should use *_dma exclusively,
1175          * unless it uses pio or talks to another transport.
1176          */
1177         if (is_root_hub(urb->dev))
1178                 return 0;
1179
1180         if (usb_endpoint_xfer_control(&urb->ep->desc)
1181             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1182                 if (hcd->self.uses_dma)
1183                         urb->setup_dma = dma_map_single(
1184                                         hcd->self.controller,
1185                                         urb->setup_packet,
1186                                         sizeof(struct usb_ctrlrequest),
1187                                         DMA_TO_DEVICE);
1188                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1189                         ret = hcd_alloc_coherent(
1190                                         urb->dev->bus, mem_flags,
1191                                         &urb->setup_dma,
1192                                         (void **)&urb->setup_packet,
1193                                         sizeof(struct usb_ctrlrequest),
1194                                         DMA_TO_DEVICE);
1195         }
1196
1197         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1198         if (ret == 0 && urb->transfer_buffer_length != 0
1199             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1200                 if (hcd->self.uses_dma)
1201                         urb->transfer_dma = dma_map_single (
1202                                         hcd->self.controller,
1203                                         urb->transfer_buffer,
1204                                         urb->transfer_buffer_length,
1205                                         dir);
1206                 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1207                         ret = hcd_alloc_coherent(
1208                                         urb->dev->bus, mem_flags,
1209                                         &urb->transfer_dma,
1210                                         &urb->transfer_buffer,
1211                                         urb->transfer_buffer_length,
1212                                         dir);
1213
1214                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1215                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1216                                 hcd_free_coherent(urb->dev->bus,
1217                                         &urb->setup_dma,
1218                                         (void **)&urb->setup_packet,
1219                                         sizeof(struct usb_ctrlrequest),
1220                                         DMA_TO_DEVICE);
1221                 }
1222         }
1223         return ret;
1224 }
1225
1226 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1227 {
1228         enum dma_data_direction dir;
1229
1230         if (is_root_hub(urb->dev))
1231                 return;
1232
1233         if (usb_endpoint_xfer_control(&urb->ep->desc)
1234             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1235                 if (hcd->self.uses_dma)
1236                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1237                                         sizeof(struct usb_ctrlrequest),
1238                                         DMA_TO_DEVICE);
1239                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1240                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1241                                         (void **)&urb->setup_packet,
1242                                         sizeof(struct usb_ctrlrequest),
1243                                         DMA_TO_DEVICE);
1244         }
1245
1246         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1247         if (urb->transfer_buffer_length != 0
1248             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1249                 if (hcd->self.uses_dma)
1250                         dma_unmap_single(hcd->self.controller,
1251                                         urb->transfer_dma,
1252                                         urb->transfer_buffer_length,
1253                                         dir);
1254                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1255                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1256                                         &urb->transfer_buffer,
1257                                         urb->transfer_buffer_length,
1258                                         dir);
1259         }
1260 }
1261
1262 /*-------------------------------------------------------------------------*/
1263
1264 /* may be called in any context with a valid urb->dev usecount
1265  * caller surrenders "ownership" of urb
1266  * expects usb_submit_urb() to have sanity checked and conditioned all
1267  * inputs in the urb
1268  */
1269 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1270 {
1271         int                     status;
1272         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1273
1274         /* increment urb's reference count as part of giving it to the HCD
1275          * (which will control it).  HCD guarantees that it either returns
1276          * an error or calls giveback(), but not both.
1277          */
1278         usb_get_urb(urb);
1279         atomic_inc(&urb->use_count);
1280         atomic_inc(&urb->dev->urbnum);
1281         usbmon_urb_submit(&hcd->self, urb);
1282
1283         /* NOTE requirements on root-hub callers (usbfs and the hub
1284          * driver, for now):  URBs' urb->transfer_buffer must be
1285          * valid and usb_buffer_{sync,unmap}() not be needed, since
1286          * they could clobber root hub response data.  Also, control
1287          * URBs must be submitted in process context with interrupts
1288          * enabled.
1289          */
1290         status = map_urb_for_dma(hcd, urb, mem_flags);
1291         if (unlikely(status)) {
1292                 usbmon_urb_submit_error(&hcd->self, urb, status);
1293                 goto error;
1294         }
1295
1296         if (is_root_hub(urb->dev))
1297                 status = rh_urb_enqueue(hcd, urb);
1298         else
1299                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1300
1301         if (unlikely(status)) {
1302                 usbmon_urb_submit_error(&hcd->self, urb, status);
1303                 unmap_urb_for_dma(hcd, urb);
1304  error:
1305                 urb->hcpriv = NULL;
1306                 INIT_LIST_HEAD(&urb->urb_list);
1307                 atomic_dec(&urb->use_count);
1308                 atomic_dec(&urb->dev->urbnum);
1309                 if (atomic_read(&urb->reject))
1310                         wake_up(&usb_kill_urb_queue);
1311                 usb_put_urb(urb);
1312         }
1313         return status;
1314 }
1315
1316 /*-------------------------------------------------------------------------*/
1317
1318 /* this makes the hcd giveback() the urb more quickly, by kicking it
1319  * off hardware queues (which may take a while) and returning it as
1320  * soon as practical.  we've already set up the urb's return status,
1321  * but we can't know if the callback completed already.
1322  */
1323 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1324 {
1325         int             value;
1326
1327         if (is_root_hub(urb->dev))
1328                 value = usb_rh_urb_dequeue(hcd, urb, status);
1329         else {
1330
1331                 /* The only reason an HCD might fail this call is if
1332                  * it has not yet fully queued the urb to begin with.
1333                  * Such failures should be harmless. */
1334                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1335         }
1336         return value;
1337 }
1338
1339 /*
1340  * called in any context
1341  *
1342  * caller guarantees urb won't be recycled till both unlink()
1343  * and the urb's completion function return
1344  */
1345 int usb_hcd_unlink_urb (struct urb *urb, int status)
1346 {
1347         struct usb_hcd          *hcd;
1348         int                     retval = -EIDRM;
1349         unsigned long           flags;
1350
1351         /* Prevent the device and bus from going away while
1352          * the unlink is carried out.  If they are already gone
1353          * then urb->use_count must be 0, since disconnected
1354          * devices can't have any active URBs.
1355          */
1356         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1357         if (atomic_read(&urb->use_count) > 0) {
1358                 retval = 0;
1359                 usb_get_dev(urb->dev);
1360         }
1361         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1362         if (retval == 0) {
1363                 hcd = bus_to_hcd(urb->dev->bus);
1364                 retval = unlink1(hcd, urb, status);
1365                 usb_put_dev(urb->dev);
1366         }
1367
1368         if (retval == 0)
1369                 retval = -EINPROGRESS;
1370         else if (retval != -EIDRM && retval != -EBUSY)
1371                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1372                                 urb, retval);
1373         return retval;
1374 }
1375
1376 /*-------------------------------------------------------------------------*/
1377
1378 /**
1379  * usb_hcd_giveback_urb - return URB from HCD to device driver
1380  * @hcd: host controller returning the URB
1381  * @urb: urb being returned to the USB device driver.
1382  * @status: completion status code for the URB.
1383  * Context: in_interrupt()
1384  *
1385  * This hands the URB from HCD to its USB device driver, using its
1386  * completion function.  The HCD has freed all per-urb resources
1387  * (and is done using urb->hcpriv).  It also released all HCD locks;
1388  * the device driver won't cause problems if it frees, modifies,
1389  * or resubmits this URB.
1390  *
1391  * If @urb was unlinked, the value of @status will be overridden by
1392  * @urb->unlinked.  Erroneous short transfers are detected in case
1393  * the HCD hasn't checked for them.
1394  */
1395 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1396 {
1397         urb->hcpriv = NULL;
1398         if (unlikely(urb->unlinked))
1399                 status = urb->unlinked;
1400         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1401                         urb->actual_length < urb->transfer_buffer_length &&
1402                         !status))
1403                 status = -EREMOTEIO;
1404
1405         unmap_urb_for_dma(hcd, urb);
1406         usbmon_urb_complete(&hcd->self, urb, status);
1407         usb_unanchor_urb(urb);
1408
1409         /* pass ownership to the completion handler */
1410         urb->status = status;
1411         urb->complete (urb);
1412         atomic_dec (&urb->use_count);
1413         if (unlikely(atomic_read(&urb->reject)))
1414                 wake_up (&usb_kill_urb_queue);
1415         usb_put_urb (urb);
1416 }
1417 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1418
1419 /*-------------------------------------------------------------------------*/
1420
1421 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1422  * queue to drain completely.  The caller must first insure that no more
1423  * URBs can be submitted for this endpoint.
1424  */
1425 void usb_hcd_flush_endpoint(struct usb_device *udev,
1426                 struct usb_host_endpoint *ep)
1427 {
1428         struct usb_hcd          *hcd;
1429         struct urb              *urb;
1430
1431         if (!ep)
1432                 return;
1433         might_sleep();
1434         hcd = bus_to_hcd(udev->bus);
1435
1436         /* No more submits can occur */
1437         spin_lock_irq(&hcd_urb_list_lock);
1438 rescan:
1439         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1440                 int     is_in;
1441
1442                 if (urb->unlinked)
1443                         continue;
1444                 usb_get_urb (urb);
1445                 is_in = usb_urb_dir_in(urb);
1446                 spin_unlock(&hcd_urb_list_lock);
1447
1448                 /* kick hcd */
1449                 unlink1(hcd, urb, -ESHUTDOWN);
1450                 dev_dbg (hcd->self.controller,
1451                         "shutdown urb %p ep%d%s%s\n",
1452                         urb, usb_endpoint_num(&ep->desc),
1453                         is_in ? "in" : "out",
1454                         ({      char *s;
1455
1456                                  switch (usb_endpoint_type(&ep->desc)) {
1457                                  case USB_ENDPOINT_XFER_CONTROL:
1458                                         s = ""; break;
1459                                  case USB_ENDPOINT_XFER_BULK:
1460                                         s = "-bulk"; break;
1461                                  case USB_ENDPOINT_XFER_INT:
1462                                         s = "-intr"; break;
1463                                  default:
1464                                         s = "-iso"; break;
1465                                 };
1466                                 s;
1467                         }));
1468                 usb_put_urb (urb);
1469
1470                 /* list contents may have changed */
1471                 spin_lock(&hcd_urb_list_lock);
1472                 goto rescan;
1473         }
1474         spin_unlock_irq(&hcd_urb_list_lock);
1475
1476         /* Wait until the endpoint queue is completely empty */
1477         while (!list_empty (&ep->urb_list)) {
1478                 spin_lock_irq(&hcd_urb_list_lock);
1479
1480                 /* The list may have changed while we acquired the spinlock */
1481                 urb = NULL;
1482                 if (!list_empty (&ep->urb_list)) {
1483                         urb = list_entry (ep->urb_list.prev, struct urb,
1484                                         urb_list);
1485                         usb_get_urb (urb);
1486                 }
1487                 spin_unlock_irq(&hcd_urb_list_lock);
1488
1489                 if (urb) {
1490                         usb_kill_urb (urb);
1491                         usb_put_urb (urb);
1492                 }
1493         }
1494 }
1495
1496 /* Disables the endpoint: synchronizes with the hcd to make sure all
1497  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1498  * have been called previously.  Use for set_configuration, set_interface,
1499  * driver removal, physical disconnect.
1500  *
1501  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1502  * type, maxpacket size, toggle, halt status, and scheduling.
1503  */
1504 void usb_hcd_disable_endpoint(struct usb_device *udev,
1505                 struct usb_host_endpoint *ep)
1506 {
1507         struct usb_hcd          *hcd;
1508
1509         might_sleep();
1510         hcd = bus_to_hcd(udev->bus);
1511         if (hcd->driver->endpoint_disable)
1512                 hcd->driver->endpoint_disable(hcd, ep);
1513 }
1514
1515 /**
1516  * usb_hcd_reset_endpoint - reset host endpoint state
1517  * @udev: USB device.
1518  * @ep:   the endpoint to reset.
1519  *
1520  * Resets any host endpoint state such as the toggle bit, sequence
1521  * number and current window.
1522  */
1523 void usb_hcd_reset_endpoint(struct usb_device *udev,
1524                             struct usb_host_endpoint *ep)
1525 {
1526         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1527
1528         if (hcd->driver->endpoint_reset)
1529                 hcd->driver->endpoint_reset(hcd, ep);
1530         else {
1531                 int epnum = usb_endpoint_num(&ep->desc);
1532                 int is_out = usb_endpoint_dir_out(&ep->desc);
1533                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1534
1535                 usb_settoggle(udev, epnum, is_out, 0);
1536                 if (is_control)
1537                         usb_settoggle(udev, epnum, !is_out, 0);
1538         }
1539 }
1540
1541 /* Protect against drivers that try to unlink URBs after the device
1542  * is gone, by waiting until all unlinks for @udev are finished.
1543  * Since we don't currently track URBs by device, simply wait until
1544  * nothing is running in the locked region of usb_hcd_unlink_urb().
1545  */
1546 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1547 {
1548         spin_lock_irq(&hcd_urb_unlink_lock);
1549         spin_unlock_irq(&hcd_urb_unlink_lock);
1550 }
1551
1552 /*-------------------------------------------------------------------------*/
1553
1554 /* called in any context */
1555 int usb_hcd_get_frame_number (struct usb_device *udev)
1556 {
1557         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1558
1559         if (!HC_IS_RUNNING (hcd->state))
1560                 return -ESHUTDOWN;
1561         return hcd->driver->get_frame_number (hcd);
1562 }
1563
1564 /*-------------------------------------------------------------------------*/
1565
1566 #ifdef  CONFIG_PM
1567
1568 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1569 {
1570         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1571         int             status;
1572         int             old_state = hcd->state;
1573
1574         dev_dbg(&rhdev->dev, "bus %s%s\n",
1575                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1576         if (!hcd->driver->bus_suspend) {
1577                 status = -ENOENT;
1578         } else {
1579                 hcd->state = HC_STATE_QUIESCING;
1580                 status = hcd->driver->bus_suspend(hcd);
1581         }
1582         if (status == 0) {
1583                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1584                 hcd->state = HC_STATE_SUSPENDED;
1585         } else {
1586                 hcd->state = old_state;
1587                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1588                                 "suspend", status);
1589         }
1590         return status;
1591 }
1592
1593 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1594 {
1595         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1596         int             status;
1597         int             old_state = hcd->state;
1598
1599         dev_dbg(&rhdev->dev, "usb %s%s\n",
1600                         (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1601         if (!hcd->driver->bus_resume)
1602                 return -ENOENT;
1603         if (hcd->state == HC_STATE_RUNNING)
1604                 return 0;
1605
1606         hcd->state = HC_STATE_RESUMING;
1607         status = hcd->driver->bus_resume(hcd);
1608         if (status == 0) {
1609                 /* TRSMRCY = 10 msec */
1610                 msleep(10);
1611                 usb_set_device_state(rhdev, rhdev->actconfig
1612                                 ? USB_STATE_CONFIGURED
1613                                 : USB_STATE_ADDRESS);
1614                 hcd->state = HC_STATE_RUNNING;
1615         } else {
1616                 hcd->state = old_state;
1617                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1618                                 "resume", status);
1619                 if (status != -ESHUTDOWN)
1620                         usb_hc_died(hcd);
1621         }
1622         return status;
1623 }
1624
1625 /* Workqueue routine for root-hub remote wakeup */
1626 static void hcd_resume_work(struct work_struct *work)
1627 {
1628         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1629         struct usb_device *udev = hcd->self.root_hub;
1630
1631         usb_lock_device(udev);
1632         usb_mark_last_busy(udev);
1633         usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1634         usb_unlock_device(udev);
1635 }
1636
1637 /**
1638  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1639  * @hcd: host controller for this root hub
1640  *
1641  * The USB host controller calls this function when its root hub is
1642  * suspended (with the remote wakeup feature enabled) and a remote
1643  * wakeup request is received.  The routine submits a workqueue request
1644  * to resume the root hub (that is, manage its downstream ports again).
1645  */
1646 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1647 {
1648         unsigned long flags;
1649
1650         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1651         if (hcd->rh_registered)
1652                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1653         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1654 }
1655 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1656
1657 #endif
1658
1659 /*-------------------------------------------------------------------------*/
1660
1661 #ifdef  CONFIG_USB_OTG
1662
1663 /**
1664  * usb_bus_start_enum - start immediate enumeration (for OTG)
1665  * @bus: the bus (must use hcd framework)
1666  * @port_num: 1-based number of port; usually bus->otg_port
1667  * Context: in_interrupt()
1668  *
1669  * Starts enumeration, with an immediate reset followed later by
1670  * khubd identifying and possibly configuring the device.
1671  * This is needed by OTG controller drivers, where it helps meet
1672  * HNP protocol timing requirements for starting a port reset.
1673  */
1674 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1675 {
1676         struct usb_hcd          *hcd;
1677         int                     status = -EOPNOTSUPP;
1678
1679         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1680          * boards with root hubs hooked up to internal devices (instead of
1681          * just the OTG port) may need more attention to resetting...
1682          */
1683         hcd = container_of (bus, struct usb_hcd, self);
1684         if (port_num && hcd->driver->start_port_reset)
1685                 status = hcd->driver->start_port_reset(hcd, port_num);
1686
1687         /* run khubd shortly after (first) root port reset finishes;
1688          * it may issue others, until at least 50 msecs have passed.
1689          */
1690         if (status == 0)
1691                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1692         return status;
1693 }
1694 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1695
1696 #endif
1697
1698 /*-------------------------------------------------------------------------*/
1699
1700 /**
1701  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1702  * @irq: the IRQ being raised
1703  * @__hcd: pointer to the HCD whose IRQ is being signaled
1704  *
1705  * If the controller isn't HALTed, calls the driver's irq handler.
1706  * Checks whether the controller is now dead.
1707  */
1708 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1709 {
1710         struct usb_hcd          *hcd = __hcd;
1711         unsigned long           flags;
1712         irqreturn_t             rc;
1713
1714         /* IRQF_DISABLED doesn't work correctly with shared IRQs
1715          * when the first handler doesn't use it.  So let's just
1716          * assume it's never used.
1717          */
1718         local_irq_save(flags);
1719
1720         if (unlikely(hcd->state == HC_STATE_HALT ||
1721                      !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1722                 rc = IRQ_NONE;
1723         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1724                 rc = IRQ_NONE;
1725         } else {
1726                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1727
1728                 if (unlikely(hcd->state == HC_STATE_HALT))
1729                         usb_hc_died(hcd);
1730                 rc = IRQ_HANDLED;
1731         }
1732
1733         local_irq_restore(flags);
1734         return rc;
1735 }
1736
1737 /*-------------------------------------------------------------------------*/
1738
1739 /**
1740  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1741  * @hcd: pointer to the HCD representing the controller
1742  *
1743  * This is called by bus glue to report a USB host controller that died
1744  * while operations may still have been pending.  It's called automatically
1745  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1746  */
1747 void usb_hc_died (struct usb_hcd *hcd)
1748 {
1749         unsigned long flags;
1750
1751         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1752
1753         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1754         if (hcd->rh_registered) {
1755                 hcd->poll_rh = 0;
1756
1757                 /* make khubd clean up old urbs and devices */
1758                 usb_set_device_state (hcd->self.root_hub,
1759                                 USB_STATE_NOTATTACHED);
1760                 usb_kick_khubd (hcd->self.root_hub);
1761         }
1762         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1763 }
1764 EXPORT_SYMBOL_GPL (usb_hc_died);
1765
1766 /*-------------------------------------------------------------------------*/
1767
1768 /**
1769  * usb_create_hcd - create and initialize an HCD structure
1770  * @driver: HC driver that will use this hcd
1771  * @dev: device for this HC, stored in hcd->self.controller
1772  * @bus_name: value to store in hcd->self.bus_name
1773  * Context: !in_interrupt()
1774  *
1775  * Allocate a struct usb_hcd, with extra space at the end for the
1776  * HC driver's private data.  Initialize the generic members of the
1777  * hcd structure.
1778  *
1779  * If memory is unavailable, returns NULL.
1780  */
1781 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1782                 struct device *dev, const char *bus_name)
1783 {
1784         struct usb_hcd *hcd;
1785
1786         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1787         if (!hcd) {
1788                 dev_dbg (dev, "hcd alloc failed\n");
1789                 return NULL;
1790         }
1791         dev_set_drvdata(dev, hcd);
1792         kref_init(&hcd->kref);
1793
1794         usb_bus_init(&hcd->self);
1795         hcd->self.controller = dev;
1796         hcd->self.bus_name = bus_name;
1797         hcd->self.uses_dma = (dev->dma_mask != NULL);
1798
1799         init_timer(&hcd->rh_timer);
1800         hcd->rh_timer.function = rh_timer_func;
1801         hcd->rh_timer.data = (unsigned long) hcd;
1802 #ifdef CONFIG_PM
1803         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1804 #endif
1805
1806         hcd->driver = driver;
1807         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1808                         "USB Host Controller";
1809         return hcd;
1810 }
1811 EXPORT_SYMBOL_GPL(usb_create_hcd);
1812
1813 static void hcd_release (struct kref *kref)
1814 {
1815         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1816
1817         kfree(hcd);
1818 }
1819
1820 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1821 {
1822         if (hcd)
1823                 kref_get (&hcd->kref);
1824         return hcd;
1825 }
1826 EXPORT_SYMBOL_GPL(usb_get_hcd);
1827
1828 void usb_put_hcd (struct usb_hcd *hcd)
1829 {
1830         if (hcd)
1831                 kref_put (&hcd->kref, hcd_release);
1832 }
1833 EXPORT_SYMBOL_GPL(usb_put_hcd);
1834
1835 /**
1836  * usb_add_hcd - finish generic HCD structure initialization and register
1837  * @hcd: the usb_hcd structure to initialize
1838  * @irqnum: Interrupt line to allocate
1839  * @irqflags: Interrupt type flags
1840  *
1841  * Finish the remaining parts of generic HCD initialization: allocate the
1842  * buffers of consistent memory, register the bus, request the IRQ line,
1843  * and call the driver's reset() and start() routines.
1844  */
1845 int usb_add_hcd(struct usb_hcd *hcd,
1846                 unsigned int irqnum, unsigned long irqflags)
1847 {
1848         int retval;
1849         struct usb_device *rhdev;
1850
1851         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1852
1853         hcd->authorized_default = hcd->wireless? 0 : 1;
1854         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1855
1856         /* HC is in reset state, but accessible.  Now do the one-time init,
1857          * bottom up so that hcds can customize the root hubs before khubd
1858          * starts talking to them.  (Note, bus id is assigned early too.)
1859          */
1860         if ((retval = hcd_buffer_create(hcd)) != 0) {
1861                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1862                 return retval;
1863         }
1864
1865         if ((retval = usb_register_bus(&hcd->self)) < 0)
1866                 goto err_register_bus;
1867
1868         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1869                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1870                 retval = -ENOMEM;
1871                 goto err_allocate_root_hub;
1872         }
1873         rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1874                         USB_SPEED_FULL;
1875         hcd->self.root_hub = rhdev;
1876
1877         /* wakeup flag init defaults to "everything works" for root hubs,
1878          * but drivers can override it in reset() if needed, along with
1879          * recording the overall controller's system wakeup capability.
1880          */
1881         device_init_wakeup(&rhdev->dev, 1);
1882
1883         /* "reset" is misnamed; its role is now one-time init. the controller
1884          * should already have been reset (and boot firmware kicked off etc).
1885          */
1886         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1887                 dev_err(hcd->self.controller, "can't setup\n");
1888                 goto err_hcd_driver_setup;
1889         }
1890
1891         /* NOTE: root hub and controller capabilities may not be the same */
1892         if (device_can_wakeup(hcd->self.controller)
1893                         && device_can_wakeup(&hcd->self.root_hub->dev))
1894                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1895
1896         /* enable irqs just before we start the controller */
1897         if (hcd->driver->irq) {
1898
1899                 /* IRQF_DISABLED doesn't work as advertised when used together
1900                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
1901                  * interrupts we can remove it here.
1902                  */
1903                 if (irqflags & IRQF_SHARED)
1904                         irqflags &= ~IRQF_DISABLED;
1905
1906                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1907                                 hcd->driver->description, hcd->self.busnum);
1908                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1909                                 hcd->irq_descr, hcd)) != 0) {
1910                         dev_err(hcd->self.controller,
1911                                         "request interrupt %d failed\n", irqnum);
1912                         goto err_request_irq;
1913                 }
1914                 hcd->irq = irqnum;
1915                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1916                                 (hcd->driver->flags & HCD_MEMORY) ?
1917                                         "io mem" : "io base",
1918                                         (unsigned long long)hcd->rsrc_start);
1919         } else {
1920                 hcd->irq = -1;
1921                 if (hcd->rsrc_start)
1922                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
1923                                         (hcd->driver->flags & HCD_MEMORY) ?
1924                                         "io mem" : "io base",
1925                                         (unsigned long long)hcd->rsrc_start);
1926         }
1927
1928         if ((retval = hcd->driver->start(hcd)) < 0) {
1929                 dev_err(hcd->self.controller, "startup error %d\n", retval);
1930                 goto err_hcd_driver_start;
1931         }
1932
1933         /* starting here, usbcore will pay attention to this root hub */
1934         rhdev->bus_mA = min(500u, hcd->power_budget);
1935         if ((retval = register_root_hub(hcd)) != 0)
1936                 goto err_register_root_hub;
1937
1938         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1939         if (retval < 0) {
1940                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1941                        retval);
1942                 goto error_create_attr_group;
1943         }
1944         if (hcd->uses_new_polling && hcd->poll_rh)
1945                 usb_hcd_poll_rh_status(hcd);
1946         return retval;
1947
1948 error_create_attr_group:
1949         mutex_lock(&usb_bus_list_lock);
1950         usb_disconnect(&hcd->self.root_hub);
1951         mutex_unlock(&usb_bus_list_lock);
1952 err_register_root_hub:
1953         hcd->driver->stop(hcd);
1954 err_hcd_driver_start:
1955         if (hcd->irq >= 0)
1956                 free_irq(irqnum, hcd);
1957 err_request_irq:
1958 err_hcd_driver_setup:
1959         hcd->self.root_hub = NULL;
1960         usb_put_dev(rhdev);
1961 err_allocate_root_hub:
1962         usb_deregister_bus(&hcd->self);
1963 err_register_bus:
1964         hcd_buffer_destroy(hcd);
1965         return retval;
1966
1967 EXPORT_SYMBOL_GPL(usb_add_hcd);
1968
1969 /**
1970  * usb_remove_hcd - shutdown processing for generic HCDs
1971  * @hcd: the usb_hcd structure to remove
1972  * Context: !in_interrupt()
1973  *
1974  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1975  * invoking the HCD's stop() method.
1976  */
1977 void usb_remove_hcd(struct usb_hcd *hcd)
1978 {
1979         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1980
1981         if (HC_IS_RUNNING (hcd->state))
1982                 hcd->state = HC_STATE_QUIESCING;
1983
1984         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1985         spin_lock_irq (&hcd_root_hub_lock);
1986         hcd->rh_registered = 0;
1987         spin_unlock_irq (&hcd_root_hub_lock);
1988
1989 #ifdef CONFIG_PM
1990         cancel_work_sync(&hcd->wakeup_work);
1991 #endif
1992
1993         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1994         mutex_lock(&usb_bus_list_lock);
1995         usb_disconnect(&hcd->self.root_hub);
1996         mutex_unlock(&usb_bus_list_lock);
1997
1998         hcd->driver->stop(hcd);
1999         hcd->state = HC_STATE_HALT;
2000
2001         hcd->poll_rh = 0;
2002         del_timer_sync(&hcd->rh_timer);
2003
2004         if (hcd->irq >= 0)
2005                 free_irq(hcd->irq, hcd);
2006         usb_deregister_bus(&hcd->self);
2007         hcd_buffer_destroy(hcd);
2008 }
2009 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2010
2011 void
2012 usb_hcd_platform_shutdown(struct platform_device* dev)
2013 {
2014         struct usb_hcd *hcd = platform_get_drvdata(dev);
2015
2016         if (hcd->driver->shutdown)
2017                 hcd->driver->shutdown(hcd);
2018 }
2019 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2020
2021 /*-------------------------------------------------------------------------*/
2022
2023 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2024
2025 struct usb_mon_operations *mon_ops;
2026
2027 /*
2028  * The registration is unlocked.
2029  * We do it this way because we do not want to lock in hot paths.
2030  *
2031  * Notice that the code is minimally error-proof. Because usbmon needs
2032  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2033  */
2034  
2035 int usb_mon_register (struct usb_mon_operations *ops)
2036 {
2037
2038         if (mon_ops)
2039                 return -EBUSY;
2040
2041         mon_ops = ops;
2042         mb();
2043         return 0;
2044 }
2045 EXPORT_SYMBOL_GPL (usb_mon_register);
2046
2047 void usb_mon_deregister (void)
2048 {
2049
2050         if (mon_ops == NULL) {
2051                 printk(KERN_ERR "USB: monitor was not registered\n");
2052                 return;
2053         }
2054         mon_ops = NULL;
2055         mb();
2056 }
2057 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2058
2059 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */