Merge git://git.kernel.org/pub/scm/linux/kernel/git/kkeil/ISDN-2.6
[linux-2.6] / drivers / mtd / mtdconcat.c
1 /*
2  * MTD device concatenation layer
3  *
4  * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
5  *
6  * NAND support by Christian Gan <cgan@iders.ca>
7  *
8  * This code is GPL
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/concat.h>
19
20 #include <asm/div64.h>
21
22 /*
23  * Our storage structure:
24  * Subdev points to an array of pointers to struct mtd_info objects
25  * which is allocated along with this structure
26  *
27  */
28 struct mtd_concat {
29         struct mtd_info mtd;
30         int num_subdev;
31         struct mtd_info **subdev;
32 };
33
34 /*
35  * how to calculate the size required for the above structure,
36  * including the pointer array subdev points to:
37  */
38 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)    \
39         ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
40
41 /*
42  * Given a pointer to the MTD object in the mtd_concat structure,
43  * we can retrieve the pointer to that structure with this macro.
44  */
45 #define CONCAT(x)  ((struct mtd_concat *)(x))
46
47 /*
48  * MTD methods which look up the relevant subdevice, translate the
49  * effective address and pass through to the subdevice.
50  */
51
52 static int
53 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
54             size_t * retlen, u_char * buf)
55 {
56         struct mtd_concat *concat = CONCAT(mtd);
57         int ret = 0, err;
58         int i;
59
60         *retlen = 0;
61
62         for (i = 0; i < concat->num_subdev; i++) {
63                 struct mtd_info *subdev = concat->subdev[i];
64                 size_t size, retsize;
65
66                 if (from >= subdev->size) {
67                         /* Not destined for this subdev */
68                         size = 0;
69                         from -= subdev->size;
70                         continue;
71                 }
72                 if (from + len > subdev->size)
73                         /* First part goes into this subdev */
74                         size = subdev->size - from;
75                 else
76                         /* Entire transaction goes into this subdev */
77                         size = len;
78
79                 err = subdev->read(subdev, from, size, &retsize, buf);
80
81                 /* Save information about bitflips! */
82                 if (unlikely(err)) {
83                         if (err == -EBADMSG) {
84                                 mtd->ecc_stats.failed++;
85                                 ret = err;
86                         } else if (err == -EUCLEAN) {
87                                 mtd->ecc_stats.corrected++;
88                                 /* Do not overwrite -EBADMSG !! */
89                                 if (!ret)
90                                         ret = err;
91                         } else
92                                 return err;
93                 }
94
95                 *retlen += retsize;
96                 len -= size;
97                 if (len == 0)
98                         return ret;
99
100                 buf += size;
101                 from = 0;
102         }
103         return -EINVAL;
104 }
105
106 static int
107 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
108              size_t * retlen, const u_char * buf)
109 {
110         struct mtd_concat *concat = CONCAT(mtd);
111         int err = -EINVAL;
112         int i;
113
114         if (!(mtd->flags & MTD_WRITEABLE))
115                 return -EROFS;
116
117         *retlen = 0;
118
119         for (i = 0; i < concat->num_subdev; i++) {
120                 struct mtd_info *subdev = concat->subdev[i];
121                 size_t size, retsize;
122
123                 if (to >= subdev->size) {
124                         size = 0;
125                         to -= subdev->size;
126                         continue;
127                 }
128                 if (to + len > subdev->size)
129                         size = subdev->size - to;
130                 else
131                         size = len;
132
133                 if (!(subdev->flags & MTD_WRITEABLE))
134                         err = -EROFS;
135                 else
136                         err = subdev->write(subdev, to, size, &retsize, buf);
137
138                 if (err)
139                         break;
140
141                 *retlen += retsize;
142                 len -= size;
143                 if (len == 0)
144                         break;
145
146                 err = -EINVAL;
147                 buf += size;
148                 to = 0;
149         }
150         return err;
151 }
152
153 static int
154 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
155                 unsigned long count, loff_t to, size_t * retlen)
156 {
157         struct mtd_concat *concat = CONCAT(mtd);
158         struct kvec *vecs_copy;
159         unsigned long entry_low, entry_high;
160         size_t total_len = 0;
161         int i;
162         int err = -EINVAL;
163
164         if (!(mtd->flags & MTD_WRITEABLE))
165                 return -EROFS;
166
167         *retlen = 0;
168
169         /* Calculate total length of data */
170         for (i = 0; i < count; i++)
171                 total_len += vecs[i].iov_len;
172
173         /* Do not allow write past end of device */
174         if ((to + total_len) > mtd->size)
175                 return -EINVAL;
176
177         /* Check alignment */
178         if (mtd->writesize > 1) {
179                 uint64_t __to = to;
180                 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
181                         return -EINVAL;
182         }
183
184         /* make a copy of vecs */
185         vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL);
186         if (!vecs_copy)
187                 return -ENOMEM;
188         memcpy(vecs_copy, vecs, sizeof(struct kvec) * count);
189
190         entry_low = 0;
191         for (i = 0; i < concat->num_subdev; i++) {
192                 struct mtd_info *subdev = concat->subdev[i];
193                 size_t size, wsize, retsize, old_iov_len;
194
195                 if (to >= subdev->size) {
196                         to -= subdev->size;
197                         continue;
198                 }
199
200                 size = min(total_len, (size_t)(subdev->size - to));
201                 wsize = size; /* store for future use */
202
203                 entry_high = entry_low;
204                 while (entry_high < count) {
205                         if (size <= vecs_copy[entry_high].iov_len)
206                                 break;
207                         size -= vecs_copy[entry_high++].iov_len;
208                 }
209
210                 old_iov_len = vecs_copy[entry_high].iov_len;
211                 vecs_copy[entry_high].iov_len = size;
212
213                 if (!(subdev->flags & MTD_WRITEABLE))
214                         err = -EROFS;
215                 else
216                         err = subdev->writev(subdev, &vecs_copy[entry_low],
217                                 entry_high - entry_low + 1, to, &retsize);
218
219                 vecs_copy[entry_high].iov_len = old_iov_len - size;
220                 vecs_copy[entry_high].iov_base += size;
221
222                 entry_low = entry_high;
223
224                 if (err)
225                         break;
226
227                 *retlen += retsize;
228                 total_len -= wsize;
229
230                 if (total_len == 0)
231                         break;
232
233                 err = -EINVAL;
234                 to = 0;
235         }
236
237         kfree(vecs_copy);
238         return err;
239 }
240
241 static int
242 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
243 {
244         struct mtd_concat *concat = CONCAT(mtd);
245         struct mtd_oob_ops devops = *ops;
246         int i, err, ret = 0;
247
248         ops->retlen = ops->oobretlen = 0;
249
250         for (i = 0; i < concat->num_subdev; i++) {
251                 struct mtd_info *subdev = concat->subdev[i];
252
253                 if (from >= subdev->size) {
254                         from -= subdev->size;
255                         continue;
256                 }
257
258                 /* partial read ? */
259                 if (from + devops.len > subdev->size)
260                         devops.len = subdev->size - from;
261
262                 err = subdev->read_oob(subdev, from, &devops);
263                 ops->retlen += devops.retlen;
264                 ops->oobretlen += devops.oobretlen;
265
266                 /* Save information about bitflips! */
267                 if (unlikely(err)) {
268                         if (err == -EBADMSG) {
269                                 mtd->ecc_stats.failed++;
270                                 ret = err;
271                         } else if (err == -EUCLEAN) {
272                                 mtd->ecc_stats.corrected++;
273                                 /* Do not overwrite -EBADMSG !! */
274                                 if (!ret)
275                                         ret = err;
276                         } else
277                                 return err;
278                 }
279
280                 if (devops.datbuf) {
281                         devops.len = ops->len - ops->retlen;
282                         if (!devops.len)
283                                 return ret;
284                         devops.datbuf += devops.retlen;
285                 }
286                 if (devops.oobbuf) {
287                         devops.ooblen = ops->ooblen - ops->oobretlen;
288                         if (!devops.ooblen)
289                                 return ret;
290                         devops.oobbuf += ops->oobretlen;
291                 }
292
293                 from = 0;
294         }
295         return -EINVAL;
296 }
297
298 static int
299 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
300 {
301         struct mtd_concat *concat = CONCAT(mtd);
302         struct mtd_oob_ops devops = *ops;
303         int i, err;
304
305         if (!(mtd->flags & MTD_WRITEABLE))
306                 return -EROFS;
307
308         ops->retlen = 0;
309
310         for (i = 0; i < concat->num_subdev; i++) {
311                 struct mtd_info *subdev = concat->subdev[i];
312
313                 if (to >= subdev->size) {
314                         to -= subdev->size;
315                         continue;
316                 }
317
318                 /* partial write ? */
319                 if (to + devops.len > subdev->size)
320                         devops.len = subdev->size - to;
321
322                 err = subdev->write_oob(subdev, to, &devops);
323                 ops->retlen += devops.retlen;
324                 if (err)
325                         return err;
326
327                 if (devops.datbuf) {
328                         devops.len = ops->len - ops->retlen;
329                         if (!devops.len)
330                                 return 0;
331                         devops.datbuf += devops.retlen;
332                 }
333                 if (devops.oobbuf) {
334                         devops.ooblen = ops->ooblen - ops->oobretlen;
335                         if (!devops.ooblen)
336                                 return 0;
337                         devops.oobbuf += devops.oobretlen;
338                 }
339                 to = 0;
340         }
341         return -EINVAL;
342 }
343
344 static void concat_erase_callback(struct erase_info *instr)
345 {
346         wake_up((wait_queue_head_t *) instr->priv);
347 }
348
349 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
350 {
351         int err;
352         wait_queue_head_t waitq;
353         DECLARE_WAITQUEUE(wait, current);
354
355         /*
356          * This code was stol^H^H^H^Hinspired by mtdchar.c
357          */
358         init_waitqueue_head(&waitq);
359
360         erase->mtd = mtd;
361         erase->callback = concat_erase_callback;
362         erase->priv = (unsigned long) &waitq;
363
364         /*
365          * FIXME: Allow INTERRUPTIBLE. Which means
366          * not having the wait_queue head on the stack.
367          */
368         err = mtd->erase(mtd, erase);
369         if (!err) {
370                 set_current_state(TASK_UNINTERRUPTIBLE);
371                 add_wait_queue(&waitq, &wait);
372                 if (erase->state != MTD_ERASE_DONE
373                     && erase->state != MTD_ERASE_FAILED)
374                         schedule();
375                 remove_wait_queue(&waitq, &wait);
376                 set_current_state(TASK_RUNNING);
377
378                 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
379         }
380         return err;
381 }
382
383 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
384 {
385         struct mtd_concat *concat = CONCAT(mtd);
386         struct mtd_info *subdev;
387         int i, err;
388         u_int32_t length, offset = 0;
389         struct erase_info *erase;
390
391         if (!(mtd->flags & MTD_WRITEABLE))
392                 return -EROFS;
393
394         if (instr->addr > concat->mtd.size)
395                 return -EINVAL;
396
397         if (instr->len + instr->addr > concat->mtd.size)
398                 return -EINVAL;
399
400         /*
401          * Check for proper erase block alignment of the to-be-erased area.
402          * It is easier to do this based on the super device's erase
403          * region info rather than looking at each particular sub-device
404          * in turn.
405          */
406         if (!concat->mtd.numeraseregions) {
407                 /* the easy case: device has uniform erase block size */
408                 if (instr->addr & (concat->mtd.erasesize - 1))
409                         return -EINVAL;
410                 if (instr->len & (concat->mtd.erasesize - 1))
411                         return -EINVAL;
412         } else {
413                 /* device has variable erase size */
414                 struct mtd_erase_region_info *erase_regions =
415                     concat->mtd.eraseregions;
416
417                 /*
418                  * Find the erase region where the to-be-erased area begins:
419                  */
420                 for (i = 0; i < concat->mtd.numeraseregions &&
421                      instr->addr >= erase_regions[i].offset; i++) ;
422                 --i;
423
424                 /*
425                  * Now erase_regions[i] is the region in which the
426                  * to-be-erased area begins. Verify that the starting
427                  * offset is aligned to this region's erase size:
428                  */
429                 if (instr->addr & (erase_regions[i].erasesize - 1))
430                         return -EINVAL;
431
432                 /*
433                  * now find the erase region where the to-be-erased area ends:
434                  */
435                 for (; i < concat->mtd.numeraseregions &&
436                      (instr->addr + instr->len) >= erase_regions[i].offset;
437                      ++i) ;
438                 --i;
439                 /*
440                  * check if the ending offset is aligned to this region's erase size
441                  */
442                 if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
443                                                   1))
444                         return -EINVAL;
445         }
446
447         instr->fail_addr = 0xffffffff;
448
449         /* make a local copy of instr to avoid modifying the caller's struct */
450         erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
451
452         if (!erase)
453                 return -ENOMEM;
454
455         *erase = *instr;
456         length = instr->len;
457
458         /*
459          * find the subdevice where the to-be-erased area begins, adjust
460          * starting offset to be relative to the subdevice start
461          */
462         for (i = 0; i < concat->num_subdev; i++) {
463                 subdev = concat->subdev[i];
464                 if (subdev->size <= erase->addr) {
465                         erase->addr -= subdev->size;
466                         offset += subdev->size;
467                 } else {
468                         break;
469                 }
470         }
471
472         /* must never happen since size limit has been verified above */
473         BUG_ON(i >= concat->num_subdev);
474
475         /* now do the erase: */
476         err = 0;
477         for (; length > 0; i++) {
478                 /* loop for all subdevices affected by this request */
479                 subdev = concat->subdev[i];     /* get current subdevice */
480
481                 /* limit length to subdevice's size: */
482                 if (erase->addr + length > subdev->size)
483                         erase->len = subdev->size - erase->addr;
484                 else
485                         erase->len = length;
486
487                 if (!(subdev->flags & MTD_WRITEABLE)) {
488                         err = -EROFS;
489                         break;
490                 }
491                 length -= erase->len;
492                 if ((err = concat_dev_erase(subdev, erase))) {
493                         /* sanity check: should never happen since
494                          * block alignment has been checked above */
495                         BUG_ON(err == -EINVAL);
496                         if (erase->fail_addr != 0xffffffff)
497                                 instr->fail_addr = erase->fail_addr + offset;
498                         break;
499                 }
500                 /*
501                  * erase->addr specifies the offset of the area to be
502                  * erased *within the current subdevice*. It can be
503                  * non-zero only the first time through this loop, i.e.
504                  * for the first subdevice where blocks need to be erased.
505                  * All the following erases must begin at the start of the
506                  * current subdevice, i.e. at offset zero.
507                  */
508                 erase->addr = 0;
509                 offset += subdev->size;
510         }
511         instr->state = erase->state;
512         kfree(erase);
513         if (err)
514                 return err;
515
516         if (instr->callback)
517                 instr->callback(instr);
518         return 0;
519 }
520
521 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
522 {
523         struct mtd_concat *concat = CONCAT(mtd);
524         int i, err = -EINVAL;
525
526         if ((len + ofs) > mtd->size)
527                 return -EINVAL;
528
529         for (i = 0; i < concat->num_subdev; i++) {
530                 struct mtd_info *subdev = concat->subdev[i];
531                 size_t size;
532
533                 if (ofs >= subdev->size) {
534                         size = 0;
535                         ofs -= subdev->size;
536                         continue;
537                 }
538                 if (ofs + len > subdev->size)
539                         size = subdev->size - ofs;
540                 else
541                         size = len;
542
543                 err = subdev->lock(subdev, ofs, size);
544
545                 if (err)
546                         break;
547
548                 len -= size;
549                 if (len == 0)
550                         break;
551
552                 err = -EINVAL;
553                 ofs = 0;
554         }
555
556         return err;
557 }
558
559 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
560 {
561         struct mtd_concat *concat = CONCAT(mtd);
562         int i, err = 0;
563
564         if ((len + ofs) > mtd->size)
565                 return -EINVAL;
566
567         for (i = 0; i < concat->num_subdev; i++) {
568                 struct mtd_info *subdev = concat->subdev[i];
569                 size_t size;
570
571                 if (ofs >= subdev->size) {
572                         size = 0;
573                         ofs -= subdev->size;
574                         continue;
575                 }
576                 if (ofs + len > subdev->size)
577                         size = subdev->size - ofs;
578                 else
579                         size = len;
580
581                 err = subdev->unlock(subdev, ofs, size);
582
583                 if (err)
584                         break;
585
586                 len -= size;
587                 if (len == 0)
588                         break;
589
590                 err = -EINVAL;
591                 ofs = 0;
592         }
593
594         return err;
595 }
596
597 static void concat_sync(struct mtd_info *mtd)
598 {
599         struct mtd_concat *concat = CONCAT(mtd);
600         int i;
601
602         for (i = 0; i < concat->num_subdev; i++) {
603                 struct mtd_info *subdev = concat->subdev[i];
604                 subdev->sync(subdev);
605         }
606 }
607
608 static int concat_suspend(struct mtd_info *mtd)
609 {
610         struct mtd_concat *concat = CONCAT(mtd);
611         int i, rc = 0;
612
613         for (i = 0; i < concat->num_subdev; i++) {
614                 struct mtd_info *subdev = concat->subdev[i];
615                 if ((rc = subdev->suspend(subdev)) < 0)
616                         return rc;
617         }
618         return rc;
619 }
620
621 static void concat_resume(struct mtd_info *mtd)
622 {
623         struct mtd_concat *concat = CONCAT(mtd);
624         int i;
625
626         for (i = 0; i < concat->num_subdev; i++) {
627                 struct mtd_info *subdev = concat->subdev[i];
628                 subdev->resume(subdev);
629         }
630 }
631
632 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
633 {
634         struct mtd_concat *concat = CONCAT(mtd);
635         int i, res = 0;
636
637         if (!concat->subdev[0]->block_isbad)
638                 return res;
639
640         if (ofs > mtd->size)
641                 return -EINVAL;
642
643         for (i = 0; i < concat->num_subdev; i++) {
644                 struct mtd_info *subdev = concat->subdev[i];
645
646                 if (ofs >= subdev->size) {
647                         ofs -= subdev->size;
648                         continue;
649                 }
650
651                 res = subdev->block_isbad(subdev, ofs);
652                 break;
653         }
654
655         return res;
656 }
657
658 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
659 {
660         struct mtd_concat *concat = CONCAT(mtd);
661         int i, err = -EINVAL;
662
663         if (!concat->subdev[0]->block_markbad)
664                 return 0;
665
666         if (ofs > mtd->size)
667                 return -EINVAL;
668
669         for (i = 0; i < concat->num_subdev; i++) {
670                 struct mtd_info *subdev = concat->subdev[i];
671
672                 if (ofs >= subdev->size) {
673                         ofs -= subdev->size;
674                         continue;
675                 }
676
677                 err = subdev->block_markbad(subdev, ofs);
678                 if (!err)
679                         mtd->ecc_stats.badblocks++;
680                 break;
681         }
682
683         return err;
684 }
685
686 /*
687  * This function constructs a virtual MTD device by concatenating
688  * num_devs MTD devices. A pointer to the new device object is
689  * stored to *new_dev upon success. This function does _not_
690  * register any devices: this is the caller's responsibility.
691  */
692 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],   /* subdevices to concatenate */
693                                    int num_devs,        /* number of subdevices      */
694                                    char *name)
695 {                               /* name for the new device   */
696         int i;
697         size_t size;
698         struct mtd_concat *concat;
699         u_int32_t max_erasesize, curr_erasesize;
700         int num_erase_region;
701
702         printk(KERN_NOTICE "Concatenating MTD devices:\n");
703         for (i = 0; i < num_devs; i++)
704                 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
705         printk(KERN_NOTICE "into device \"%s\"\n", name);
706
707         /* allocate the device structure */
708         size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
709         concat = kzalloc(size, GFP_KERNEL);
710         if (!concat) {
711                 printk
712                     ("memory allocation error while creating concatenated device \"%s\"\n",
713                      name);
714                 return NULL;
715         }
716         concat->subdev = (struct mtd_info **) (concat + 1);
717
718         /*
719          * Set up the new "super" device's MTD object structure, check for
720          * incompatibilites between the subdevices.
721          */
722         concat->mtd.type = subdev[0]->type;
723         concat->mtd.flags = subdev[0]->flags;
724         concat->mtd.size = subdev[0]->size;
725         concat->mtd.erasesize = subdev[0]->erasesize;
726         concat->mtd.writesize = subdev[0]->writesize;
727         concat->mtd.subpage_sft = subdev[0]->subpage_sft;
728         concat->mtd.oobsize = subdev[0]->oobsize;
729         concat->mtd.oobavail = subdev[0]->oobavail;
730         if (subdev[0]->writev)
731                 concat->mtd.writev = concat_writev;
732         if (subdev[0]->read_oob)
733                 concat->mtd.read_oob = concat_read_oob;
734         if (subdev[0]->write_oob)
735                 concat->mtd.write_oob = concat_write_oob;
736         if (subdev[0]->block_isbad)
737                 concat->mtd.block_isbad = concat_block_isbad;
738         if (subdev[0]->block_markbad)
739                 concat->mtd.block_markbad = concat_block_markbad;
740
741         concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
742
743         concat->subdev[0] = subdev[0];
744
745         for (i = 1; i < num_devs; i++) {
746                 if (concat->mtd.type != subdev[i]->type) {
747                         kfree(concat);
748                         printk("Incompatible device type on \"%s\"\n",
749                                subdev[i]->name);
750                         return NULL;
751                 }
752                 if (concat->mtd.flags != subdev[i]->flags) {
753                         /*
754                          * Expect all flags except MTD_WRITEABLE to be
755                          * equal on all subdevices.
756                          */
757                         if ((concat->mtd.flags ^ subdev[i]->
758                              flags) & ~MTD_WRITEABLE) {
759                                 kfree(concat);
760                                 printk("Incompatible device flags on \"%s\"\n",
761                                        subdev[i]->name);
762                                 return NULL;
763                         } else
764                                 /* if writeable attribute differs,
765                                    make super device writeable */
766                                 concat->mtd.flags |=
767                                     subdev[i]->flags & MTD_WRITEABLE;
768                 }
769                 concat->mtd.size += subdev[i]->size;
770                 concat->mtd.ecc_stats.badblocks +=
771                         subdev[i]->ecc_stats.badblocks;
772                 if (concat->mtd.writesize   !=  subdev[i]->writesize ||
773                     concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
774                     concat->mtd.oobsize    !=  subdev[i]->oobsize ||
775                     !concat->mtd.read_oob  != !subdev[i]->read_oob ||
776                     !concat->mtd.write_oob != !subdev[i]->write_oob) {
777                         kfree(concat);
778                         printk("Incompatible OOB or ECC data on \"%s\"\n",
779                                subdev[i]->name);
780                         return NULL;
781                 }
782                 concat->subdev[i] = subdev[i];
783
784         }
785
786         concat->mtd.ecclayout = subdev[0]->ecclayout;
787
788         concat->num_subdev = num_devs;
789         concat->mtd.name = name;
790
791         concat->mtd.erase = concat_erase;
792         concat->mtd.read = concat_read;
793         concat->mtd.write = concat_write;
794         concat->mtd.sync = concat_sync;
795         concat->mtd.lock = concat_lock;
796         concat->mtd.unlock = concat_unlock;
797         concat->mtd.suspend = concat_suspend;
798         concat->mtd.resume = concat_resume;
799
800         /*
801          * Combine the erase block size info of the subdevices:
802          *
803          * first, walk the map of the new device and see how
804          * many changes in erase size we have
805          */
806         max_erasesize = curr_erasesize = subdev[0]->erasesize;
807         num_erase_region = 1;
808         for (i = 0; i < num_devs; i++) {
809                 if (subdev[i]->numeraseregions == 0) {
810                         /* current subdevice has uniform erase size */
811                         if (subdev[i]->erasesize != curr_erasesize) {
812                                 /* if it differs from the last subdevice's erase size, count it */
813                                 ++num_erase_region;
814                                 curr_erasesize = subdev[i]->erasesize;
815                                 if (curr_erasesize > max_erasesize)
816                                         max_erasesize = curr_erasesize;
817                         }
818                 } else {
819                         /* current subdevice has variable erase size */
820                         int j;
821                         for (j = 0; j < subdev[i]->numeraseregions; j++) {
822
823                                 /* walk the list of erase regions, count any changes */
824                                 if (subdev[i]->eraseregions[j].erasesize !=
825                                     curr_erasesize) {
826                                         ++num_erase_region;
827                                         curr_erasesize =
828                                             subdev[i]->eraseregions[j].
829                                             erasesize;
830                                         if (curr_erasesize > max_erasesize)
831                                                 max_erasesize = curr_erasesize;
832                                 }
833                         }
834                 }
835         }
836
837         if (num_erase_region == 1) {
838                 /*
839                  * All subdevices have the same uniform erase size.
840                  * This is easy:
841                  */
842                 concat->mtd.erasesize = curr_erasesize;
843                 concat->mtd.numeraseregions = 0;
844         } else {
845                 /*
846                  * erase block size varies across the subdevices: allocate
847                  * space to store the data describing the variable erase regions
848                  */
849                 struct mtd_erase_region_info *erase_region_p;
850                 u_int32_t begin, position;
851
852                 concat->mtd.erasesize = max_erasesize;
853                 concat->mtd.numeraseregions = num_erase_region;
854                 concat->mtd.eraseregions = erase_region_p =
855                     kmalloc(num_erase_region *
856                             sizeof (struct mtd_erase_region_info), GFP_KERNEL);
857                 if (!erase_region_p) {
858                         kfree(concat);
859                         printk
860                             ("memory allocation error while creating erase region list"
861                              " for device \"%s\"\n", name);
862                         return NULL;
863                 }
864
865                 /*
866                  * walk the map of the new device once more and fill in
867                  * in erase region info:
868                  */
869                 curr_erasesize = subdev[0]->erasesize;
870                 begin = position = 0;
871                 for (i = 0; i < num_devs; i++) {
872                         if (subdev[i]->numeraseregions == 0) {
873                                 /* current subdevice has uniform erase size */
874                                 if (subdev[i]->erasesize != curr_erasesize) {
875                                         /*
876                                          *  fill in an mtd_erase_region_info structure for the area
877                                          *  we have walked so far:
878                                          */
879                                         erase_region_p->offset = begin;
880                                         erase_region_p->erasesize =
881                                             curr_erasesize;
882                                         erase_region_p->numblocks =
883                                             (position - begin) / curr_erasesize;
884                                         begin = position;
885
886                                         curr_erasesize = subdev[i]->erasesize;
887                                         ++erase_region_p;
888                                 }
889                                 position += subdev[i]->size;
890                         } else {
891                                 /* current subdevice has variable erase size */
892                                 int j;
893                                 for (j = 0; j < subdev[i]->numeraseregions; j++) {
894                                         /* walk the list of erase regions, count any changes */
895                                         if (subdev[i]->eraseregions[j].
896                                             erasesize != curr_erasesize) {
897                                                 erase_region_p->offset = begin;
898                                                 erase_region_p->erasesize =
899                                                     curr_erasesize;
900                                                 erase_region_p->numblocks =
901                                                     (position -
902                                                      begin) / curr_erasesize;
903                                                 begin = position;
904
905                                                 curr_erasesize =
906                                                     subdev[i]->eraseregions[j].
907                                                     erasesize;
908                                                 ++erase_region_p;
909                                         }
910                                         position +=
911                                             subdev[i]->eraseregions[j].
912                                             numblocks * curr_erasesize;
913                                 }
914                         }
915                 }
916                 /* Now write the final entry */
917                 erase_region_p->offset = begin;
918                 erase_region_p->erasesize = curr_erasesize;
919                 erase_region_p->numblocks = (position - begin) / curr_erasesize;
920         }
921
922         return &concat->mtd;
923 }
924
925 /*
926  * This function destroys an MTD object obtained from concat_mtd_devs()
927  */
928
929 void mtd_concat_destroy(struct mtd_info *mtd)
930 {
931         struct mtd_concat *concat = CONCAT(mtd);
932         if (concat->mtd.numeraseregions)
933                 kfree(concat->mtd.eraseregions);
934         kfree(concat);
935 }
936
937 EXPORT_SYMBOL(mtd_concat_create);
938 EXPORT_SYMBOL(mtd_concat_destroy);
939
940 MODULE_LICENSE("GPL");
941 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
942 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");