2 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
4 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
22 /* See mt2060_priv.h for details */
24 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/delay.h>
29 #include <linux/dvb/frontend.h>
31 #include "mt2060_priv.h"
34 module_param(debug, int, 0644);
35 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
37 #define dprintk(args...) do { if (debug) printk(KERN_DEBUG "MT2060: " args); printk("\n"); } while (0)
39 // Reads a single register
40 static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
42 struct i2c_msg msg[2] = {
43 { .addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1 },
44 { .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
47 if (i2c_transfer(state->i2c, msg, 2) != 2) {
48 printk(KERN_WARNING "mt2060 I2C read failed\n");
54 // Writes a single register
55 static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
58 struct i2c_msg msg = {
59 .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
64 if (i2c_transfer(state->i2c, &msg, 1) != 1) {
65 printk(KERN_WARNING "mt2060 I2C write failed\n");
71 // Writes a set of consecutive registers
72 static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
74 struct i2c_msg msg = {
75 .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
77 if (i2c_transfer(state->i2c, &msg, 1) != 1) {
78 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
84 // Initialisation sequences
85 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
86 static u8 mt2060_config1[] = {
88 0x3F, 0x74, 0x00, 0x08, 0x93
91 // FMCG=2, GP2=0, GP1=0
92 static u8 mt2060_config2[] = {
94 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
98 static u8 mt2060_config3[] = {
103 int mt2060_init(struct mt2060_state *state)
105 if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
107 if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
111 EXPORT_SYMBOL(mt2060_init);
113 #ifdef MT2060_SPURCHECK
114 /* The function below calculates the frequency offset between the output frequency if2
115 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
116 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
121 for (I = 1; I < 10; I++) {
122 J = ((2*I*lo1)/lo2+1)/2;
123 diff = I*(int)lo1-J*(int)lo2;
124 if (diff < 0) diff=-diff;
125 dia = (diff-(int)if2);
126 if (dia < 0) dia=-dia;
127 if (diamin > dia) diamin=dia;
132 #define BANDWIDTH 4000 // kHz
134 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
135 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
142 Spur=mt2060_spurcalc(lo1,lo2,if2);
143 if (Spur < BANDWIDTH) {
144 /* Potential spurs detected */
145 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
148 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
149 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
152 J=-J; I=-I; Spur=Sp2;
156 while (Spur < BANDWIDTH) {
158 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
160 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
161 (int)(lo1+I),(int)(lo2+I));
167 #define IF2 36150 // IF2 frequency = 36.150 MHz
168 #define FREF 16000 // Quartz oscillator 16 MHz
170 int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
177 u32 div1,num1,div2,num2;
181 if1 = state->if1_freq;
184 mt2060_writeregs(state,b,2);
186 freq = fep->frequency / 1000; // Hz -> kHz
188 f_lo1 = freq + if1 * 1000;
189 f_lo1 = (f_lo1/250)*250;
190 f_lo2 = f_lo1 - freq - IF2;
191 f_lo2 = (f_lo2/50)*50;
193 #ifdef MT2060_SPURCHECK
194 // LO-related spurs detection and correction
195 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
199 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
201 num1 = (64 * (f_lo1 % FREF) )/FREF;
203 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
205 num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
207 if (freq <= 95000) lnaband = 0xB0; else
208 if (freq <= 180000) lnaband = 0xA0; else
209 if (freq <= 260000) lnaband = 0x90; else
210 if (freq <= 335000) lnaband = 0x80; else
211 if (freq <= 425000) lnaband = 0x70; else
212 if (freq <= 480000) lnaband = 0x60; else
213 if (freq <= 570000) lnaband = 0x50; else
214 if (freq <= 645000) lnaband = 0x40; else
215 if (freq <= 730000) lnaband = 0x30; else
216 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
219 b[1] = lnaband | ((num1 >>2) & 0x0F);
221 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
223 b[5] = ((num2 >>12) & 1) | (div2 << 1);
225 dprintk("IF1: %dMHz",(int)if1);
226 dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
227 dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
228 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
230 mt2060_writeregs(state,b,6);
232 //Waits for pll lock or timeout
235 mt2060_readreg(state,REG_LO_STATUS,b);
236 if ((b[0] & 0x88)==0x88) break;
243 EXPORT_SYMBOL(mt2060_set);
245 /* from usbsnoop.log */
246 static void mt2060_calibrate(struct mt2060_state *state)
251 if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
253 if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
257 b |= (1 << 6); // FM1SS;
258 mt2060_writereg(state, REG_LO2C1,b);
262 b |= (1 << 7); // FM1CA;
263 mt2060_writereg(state, REG_LO2C1,b);
264 b &= ~(1 << 7); // FM1CA;
268 b &= ~(1 << 6); // FM1SS
269 mt2060_writereg(state, REG_LO2C1,b);
276 while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
280 mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
281 dprintk("calibration was successful: %d", state->fmfreq);
283 dprintk("FMCAL timed out");
286 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
287 int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
290 memset(state,0,sizeof(struct mt2060_state));
292 state->config = config;
294 state->if1_freq = if1;
296 if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
302 printk(KERN_INFO "MT2060: successfully identified\n");
304 mt2060_calibrate(state);
308 EXPORT_SYMBOL(mt2060_attach);
310 MODULE_AUTHOR("Olivier DANET");
311 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
312 MODULE_LICENSE("GPL");