[SCSI] Merge branch 'linus'
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58                unsigned int nr_bytes)
59 {
60         /*
61          * decide whether to reenable DMA -- 3 is a random magic for now,
62          * if we DMA timeout more than 3 times, just stay in PIO
63          */
64         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65             drive->retry_pio <= 3) {
66                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67                 ide_dma_on(drive);
68         }
69
70         return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75 {
76         const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77         struct ide_taskfile *tf = &cmd->tf;
78         struct request *rq = cmd->rq;
79         u8 tf_cmd = tf->command;
80
81         tf->error = err;
82         tf->status = stat;
83
84         if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85                 u8 data[2];
86
87                 tp_ops->input_data(drive, cmd, data, 2);
88
89                 cmd->tf.data  = data[0];
90                 cmd->hob.data = data[1];
91         }
92
93         ide_tf_readback(drive, cmd);
94
95         if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96             tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97                 if (tf->lbal != 0xc4) {
98                         printk(KERN_ERR "%s: head unload failed!\n",
99                                drive->name);
100                         ide_tf_dump(drive->name, cmd);
101                 } else
102                         drive->dev_flags |= IDE_DFLAG_PARKED;
103         }
104
105         if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106                 struct ide_cmd *orig_cmd = rq->special;
107
108                 if (cmd->tf_flags & IDE_TFLAG_DYN)
109                         kfree(orig_cmd);
110                 else
111                         memcpy(orig_cmd, cmd, sizeof(*cmd));
112         }
113 }
114
115 /* obsolete, blk_rq_bytes() should be used instead */
116 unsigned int ide_rq_bytes(struct request *rq)
117 {
118         if (blk_pc_request(rq))
119                 return blk_rq_bytes(rq);
120         else
121                 return blk_rq_cur_sectors(rq) << 9;
122 }
123 EXPORT_SYMBOL_GPL(ide_rq_bytes);
124
125 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
126 {
127         ide_hwif_t *hwif = drive->hwif;
128         struct request *rq = hwif->rq;
129         int rc;
130
131         /*
132          * if failfast is set on a request, override number of sectors
133          * and complete the whole request right now
134          */
135         if (blk_noretry_request(rq) && error <= 0)
136                 nr_bytes = blk_rq_sectors(rq) << 9;
137
138         rc = ide_end_rq(drive, rq, error, nr_bytes);
139         if (rc == 0)
140                 hwif->rq = NULL;
141
142         return rc;
143 }
144 EXPORT_SYMBOL(ide_complete_rq);
145
146 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147 {
148         u8 drv_req = blk_special_request(rq) && rq->rq_disk;
149         u8 media = drive->media;
150
151         drive->failed_pc = NULL;
152
153         if ((media == ide_floppy || media == ide_tape) && drv_req) {
154                 rq->errors = 0;
155                 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
156         } else {
157                 if (media == ide_tape)
158                         rq->errors = IDE_DRV_ERROR_GENERAL;
159                 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
160                         rq->errors = -EIO;
161                 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162         }
163 }
164
165 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166 {
167         tf->nsect   = drive->sect;
168         tf->lbal    = drive->sect;
169         tf->lbam    = drive->cyl;
170         tf->lbah    = drive->cyl >> 8;
171         tf->device  = (drive->head - 1) | drive->select;
172         tf->command = ATA_CMD_INIT_DEV_PARAMS;
173 }
174
175 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176 {
177         tf->nsect   = drive->sect;
178         tf->command = ATA_CMD_RESTORE;
179 }
180
181 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182 {
183         tf->nsect   = drive->mult_req;
184         tf->command = ATA_CMD_SET_MULTI;
185 }
186
187 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
188 {
189         special_t *s = &drive->special;
190         struct ide_cmd cmd;
191
192         memset(&cmd, 0, sizeof(cmd));
193         cmd.protocol = ATA_PROT_NODATA;
194
195         if (s->b.set_geometry) {
196                 s->b.set_geometry = 0;
197                 ide_tf_set_specify_cmd(drive, &cmd.tf);
198         } else if (s->b.recalibrate) {
199                 s->b.recalibrate = 0;
200                 ide_tf_set_restore_cmd(drive, &cmd.tf);
201         } else if (s->b.set_multmode) {
202                 s->b.set_multmode = 0;
203                 ide_tf_set_setmult_cmd(drive, &cmd.tf);
204         } else if (s->all) {
205                 int special = s->all;
206                 s->all = 0;
207                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
208                 return ide_stopped;
209         }
210
211         cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
212         cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
213         cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
214
215         do_rw_taskfile(drive, &cmd);
216
217         return ide_started;
218 }
219
220 /**
221  *      do_special              -       issue some special commands
222  *      @drive: drive the command is for
223  *
224  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
225  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
226  *
227  *      It used to do much more, but has been scaled back.
228  */
229
230 static ide_startstop_t do_special (ide_drive_t *drive)
231 {
232         special_t *s = &drive->special;
233
234 #ifdef DEBUG
235         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
236 #endif
237         if (drive->media == ide_disk)
238                 return ide_disk_special(drive);
239
240         s->all = 0;
241         drive->mult_req = 0;
242         return ide_stopped;
243 }
244
245 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
246 {
247         ide_hwif_t *hwif = drive->hwif;
248         struct scatterlist *sg = hwif->sg_table;
249         struct request *rq = cmd->rq;
250
251         cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
252 }
253 EXPORT_SYMBOL_GPL(ide_map_sg);
254
255 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
256 {
257         cmd->nbytes = cmd->nleft = nr_bytes;
258         cmd->cursg_ofs = 0;
259         cmd->cursg = NULL;
260 }
261 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
262
263 /**
264  *      execute_drive_command   -       issue special drive command
265  *      @drive: the drive to issue the command on
266  *      @rq: the request structure holding the command
267  *
268  *      execute_drive_cmd() issues a special drive command,  usually 
269  *      initiated by ioctl() from the external hdparm program. The
270  *      command can be a drive command, drive task or taskfile 
271  *      operation. Weirdly you can call it with NULL to wait for
272  *      all commands to finish. Don't do this as that is due to change
273  */
274
275 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
276                 struct request *rq)
277 {
278         struct ide_cmd *cmd = rq->special;
279
280         if (cmd) {
281                 if (cmd->protocol == ATA_PROT_PIO) {
282                         ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
283                         ide_map_sg(drive, cmd);
284                 }
285
286                 return do_rw_taskfile(drive, cmd);
287         }
288
289         /*
290          * NULL is actually a valid way of waiting for
291          * all current requests to be flushed from the queue.
292          */
293 #ifdef DEBUG
294         printk("%s: DRIVE_CMD (null)\n", drive->name);
295 #endif
296         rq->errors = 0;
297         ide_complete_rq(drive, 0, blk_rq_bytes(rq));
298
299         return ide_stopped;
300 }
301
302 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
303 {
304         u8 cmd = rq->cmd[0];
305
306         switch (cmd) {
307         case REQ_PARK_HEADS:
308         case REQ_UNPARK_HEADS:
309                 return ide_do_park_unpark(drive, rq);
310         case REQ_DEVSET_EXEC:
311                 return ide_do_devset(drive, rq);
312         case REQ_DRIVE_RESET:
313                 return ide_do_reset(drive);
314         default:
315                 BUG();
316         }
317 }
318
319 /**
320  *      start_request   -       start of I/O and command issuing for IDE
321  *
322  *      start_request() initiates handling of a new I/O request. It
323  *      accepts commands and I/O (read/write) requests.
324  *
325  *      FIXME: this function needs a rename
326  */
327  
328 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
329 {
330         ide_startstop_t startstop;
331
332         BUG_ON(!blk_rq_started(rq));
333
334 #ifdef DEBUG
335         printk("%s: start_request: current=0x%08lx\n",
336                 drive->hwif->name, (unsigned long) rq);
337 #endif
338
339         /* bail early if we've exceeded max_failures */
340         if (drive->max_failures && (drive->failures > drive->max_failures)) {
341                 rq->cmd_flags |= REQ_FAILED;
342                 goto kill_rq;
343         }
344
345         if (blk_pm_request(rq))
346                 ide_check_pm_state(drive, rq);
347
348         drive->hwif->tp_ops->dev_select(drive);
349         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
350                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
351                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
352                 return startstop;
353         }
354         if (!drive->special.all) {
355                 struct ide_driver *drv;
356
357                 /*
358                  * We reset the drive so we need to issue a SETFEATURES.
359                  * Do it _after_ do_special() restored device parameters.
360                  */
361                 if (drive->current_speed == 0xff)
362                         ide_config_drive_speed(drive, drive->desired_speed);
363
364                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
365                         return execute_drive_cmd(drive, rq);
366                 else if (blk_pm_request(rq)) {
367                         struct request_pm_state *pm = rq->special;
368 #ifdef DEBUG_PM
369                         printk("%s: start_power_step(step: %d)\n",
370                                 drive->name, pm->pm_step);
371 #endif
372                         startstop = ide_start_power_step(drive, rq);
373                         if (startstop == ide_stopped &&
374                             pm->pm_step == IDE_PM_COMPLETED)
375                                 ide_complete_pm_rq(drive, rq);
376                         return startstop;
377                 } else if (!rq->rq_disk && blk_special_request(rq))
378                         /*
379                          * TODO: Once all ULDs have been modified to
380                          * check for specific op codes rather than
381                          * blindly accepting any special request, the
382                          * check for ->rq_disk above may be replaced
383                          * by a more suitable mechanism or even
384                          * dropped entirely.
385                          */
386                         return ide_special_rq(drive, rq);
387
388                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
389
390                 return drv->do_request(drive, rq, blk_rq_pos(rq));
391         }
392         return do_special(drive);
393 kill_rq:
394         ide_kill_rq(drive, rq);
395         return ide_stopped;
396 }
397
398 /**
399  *      ide_stall_queue         -       pause an IDE device
400  *      @drive: drive to stall
401  *      @timeout: time to stall for (jiffies)
402  *
403  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
404  *      to the port by sleeping for timeout jiffies.
405  */
406  
407 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
408 {
409         if (timeout > WAIT_WORSTCASE)
410                 timeout = WAIT_WORSTCASE;
411         drive->sleep = timeout + jiffies;
412         drive->dev_flags |= IDE_DFLAG_SLEEPING;
413 }
414 EXPORT_SYMBOL(ide_stall_queue);
415
416 static inline int ide_lock_port(ide_hwif_t *hwif)
417 {
418         if (hwif->busy)
419                 return 1;
420
421         hwif->busy = 1;
422
423         return 0;
424 }
425
426 static inline void ide_unlock_port(ide_hwif_t *hwif)
427 {
428         hwif->busy = 0;
429 }
430
431 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
432 {
433         int rc = 0;
434
435         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
436                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
437                 if (rc == 0) {
438                         if (host->get_lock)
439                                 host->get_lock(ide_intr, hwif);
440                 }
441         }
442         return rc;
443 }
444
445 static inline void ide_unlock_host(struct ide_host *host)
446 {
447         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
448                 if (host->release_lock)
449                         host->release_lock();
450                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
451         }
452 }
453
454 /*
455  * Issue a new request to a device.
456  */
457 void do_ide_request(struct request_queue *q)
458 {
459         ide_drive_t     *drive = q->queuedata;
460         ide_hwif_t      *hwif = drive->hwif;
461         struct ide_host *host = hwif->host;
462         struct request  *rq = NULL;
463         ide_startstop_t startstop;
464
465         /*
466          * drive is doing pre-flush, ordered write, post-flush sequence. even
467          * though that is 3 requests, it must be seen as a single transaction.
468          * we must not preempt this drive until that is complete
469          */
470         if (blk_queue_flushing(q))
471                 /*
472                  * small race where queue could get replugged during
473                  * the 3-request flush cycle, just yank the plug since
474                  * we want it to finish asap
475                  */
476                 blk_remove_plug(q);
477
478         spin_unlock_irq(q->queue_lock);
479
480         /* HLD do_request() callback might sleep, make sure it's okay */
481         might_sleep();
482
483         if (ide_lock_host(host, hwif))
484                 goto plug_device_2;
485
486         spin_lock_irq(&hwif->lock);
487
488         if (!ide_lock_port(hwif)) {
489                 ide_hwif_t *prev_port;
490
491                 WARN_ON_ONCE(hwif->rq);
492 repeat:
493                 prev_port = hwif->host->cur_port;
494                 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
495                     time_after(drive->sleep, jiffies)) {
496                         ide_unlock_port(hwif);
497                         goto plug_device;
498                 }
499
500                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
501                     hwif != prev_port) {
502                         /*
503                          * set nIEN for previous port, drives in the
504                          * quirk_list may not like intr setups/cleanups
505                          */
506                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
507                                 prev_port->tp_ops->write_devctl(prev_port,
508                                                                 ATA_NIEN |
509                                                                 ATA_DEVCTL_OBS);
510
511                         hwif->host->cur_port = hwif;
512                 }
513                 hwif->cur_dev = drive;
514                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
515
516                 spin_unlock_irq(&hwif->lock);
517                 spin_lock_irq(q->queue_lock);
518                 /*
519                  * we know that the queue isn't empty, but this can happen
520                  * if the q->prep_rq_fn() decides to kill a request
521                  */
522                 if (!rq)
523                         rq = blk_fetch_request(drive->queue);
524
525                 spin_unlock_irq(q->queue_lock);
526                 spin_lock_irq(&hwif->lock);
527
528                 if (!rq) {
529                         ide_unlock_port(hwif);
530                         goto out;
531                 }
532
533                 /*
534                  * Sanity: don't accept a request that isn't a PM request
535                  * if we are currently power managed. This is very important as
536                  * blk_stop_queue() doesn't prevent the blk_fetch_request()
537                  * above to return us whatever is in the queue. Since we call
538                  * ide_do_request() ourselves, we end up taking requests while
539                  * the queue is blocked...
540                  * 
541                  * We let requests forced at head of queue with ide-preempt
542                  * though. I hope that doesn't happen too much, hopefully not
543                  * unless the subdriver triggers such a thing in its own PM
544                  * state machine.
545                  */
546                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
547                     blk_pm_request(rq) == 0 &&
548                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
549                         /* there should be no pending command at this point */
550                         ide_unlock_port(hwif);
551                         goto plug_device;
552                 }
553
554                 hwif->rq = rq;
555
556                 spin_unlock_irq(&hwif->lock);
557                 startstop = start_request(drive, rq);
558                 spin_lock_irq(&hwif->lock);
559
560                 if (startstop == ide_stopped) {
561                         rq = hwif->rq;
562                         hwif->rq = NULL;
563                         goto repeat;
564                 }
565         } else
566                 goto plug_device;
567 out:
568         spin_unlock_irq(&hwif->lock);
569         if (rq == NULL)
570                 ide_unlock_host(host);
571         spin_lock_irq(q->queue_lock);
572         return;
573
574 plug_device:
575         spin_unlock_irq(&hwif->lock);
576         ide_unlock_host(host);
577 plug_device_2:
578         spin_lock_irq(q->queue_lock);
579
580         if (rq)
581                 blk_requeue_request(q, rq);
582         if (!elv_queue_empty(q))
583                 blk_plug_device(q);
584 }
585
586 static void ide_requeue_and_plug(ide_drive_t *drive, struct request *rq)
587 {
588         struct request_queue *q = drive->queue;
589         unsigned long flags;
590
591         spin_lock_irqsave(q->queue_lock, flags);
592
593         if (rq)
594                 blk_requeue_request(q, rq);
595         if (!elv_queue_empty(q))
596                 blk_plug_device(q);
597
598         spin_unlock_irqrestore(q->queue_lock, flags);
599 }
600
601 static int drive_is_ready(ide_drive_t *drive)
602 {
603         ide_hwif_t *hwif = drive->hwif;
604         u8 stat = 0;
605
606         if (drive->waiting_for_dma)
607                 return hwif->dma_ops->dma_test_irq(drive);
608
609         if (hwif->io_ports.ctl_addr &&
610             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
611                 stat = hwif->tp_ops->read_altstatus(hwif);
612         else
613                 /* Note: this may clear a pending IRQ!! */
614                 stat = hwif->tp_ops->read_status(hwif);
615
616         if (stat & ATA_BUSY)
617                 /* drive busy: definitely not interrupting */
618                 return 0;
619
620         /* drive ready: *might* be interrupting */
621         return 1;
622 }
623
624 /**
625  *      ide_timer_expiry        -       handle lack of an IDE interrupt
626  *      @data: timer callback magic (hwif)
627  *
628  *      An IDE command has timed out before the expected drive return
629  *      occurred. At this point we attempt to clean up the current
630  *      mess. If the current handler includes an expiry handler then
631  *      we invoke the expiry handler, and providing it is happy the
632  *      work is done. If that fails we apply generic recovery rules
633  *      invoking the handler and checking the drive DMA status. We
634  *      have an excessively incestuous relationship with the DMA
635  *      logic that wants cleaning up.
636  */
637  
638 void ide_timer_expiry (unsigned long data)
639 {
640         ide_hwif_t      *hwif = (ide_hwif_t *)data;
641         ide_drive_t     *uninitialized_var(drive);
642         ide_handler_t   *handler;
643         unsigned long   flags;
644         int             wait = -1;
645         int             plug_device = 0;
646         struct request  *uninitialized_var(rq_in_flight);
647
648         spin_lock_irqsave(&hwif->lock, flags);
649
650         handler = hwif->handler;
651
652         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
653                 /*
654                  * Either a marginal timeout occurred
655                  * (got the interrupt just as timer expired),
656                  * or we were "sleeping" to give other devices a chance.
657                  * Either way, we don't really want to complain about anything.
658                  */
659         } else {
660                 ide_expiry_t *expiry = hwif->expiry;
661                 ide_startstop_t startstop = ide_stopped;
662
663                 drive = hwif->cur_dev;
664
665                 if (expiry) {
666                         wait = expiry(drive);
667                         if (wait > 0) { /* continue */
668                                 /* reset timer */
669                                 hwif->timer.expires = jiffies + wait;
670                                 hwif->req_gen_timer = hwif->req_gen;
671                                 add_timer(&hwif->timer);
672                                 spin_unlock_irqrestore(&hwif->lock, flags);
673                                 return;
674                         }
675                 }
676                 hwif->handler = NULL;
677                 hwif->expiry = NULL;
678                 /*
679                  * We need to simulate a real interrupt when invoking
680                  * the handler() function, which means we need to
681                  * globally mask the specific IRQ:
682                  */
683                 spin_unlock(&hwif->lock);
684                 /* disable_irq_nosync ?? */
685                 disable_irq(hwif->irq);
686                 /* local CPU only, as if we were handling an interrupt */
687                 local_irq_disable();
688                 if (hwif->polling) {
689                         startstop = handler(drive);
690                 } else if (drive_is_ready(drive)) {
691                         if (drive->waiting_for_dma)
692                                 hwif->dma_ops->dma_lost_irq(drive);
693                         if (hwif->ack_intr)
694                                 hwif->ack_intr(hwif);
695                         printk(KERN_WARNING "%s: lost interrupt\n",
696                                 drive->name);
697                         startstop = handler(drive);
698                 } else {
699                         if (drive->waiting_for_dma)
700                                 startstop = ide_dma_timeout_retry(drive, wait);
701                         else
702                                 startstop = ide_error(drive, "irq timeout",
703                                         hwif->tp_ops->read_status(hwif));
704                 }
705                 spin_lock_irq(&hwif->lock);
706                 enable_irq(hwif->irq);
707                 if (startstop == ide_stopped && hwif->polling == 0) {
708                         rq_in_flight = hwif->rq;
709                         hwif->rq = NULL;
710                         ide_unlock_port(hwif);
711                         plug_device = 1;
712                 }
713         }
714         spin_unlock_irqrestore(&hwif->lock, flags);
715
716         if (plug_device) {
717                 ide_unlock_host(hwif->host);
718                 ide_requeue_and_plug(drive, rq_in_flight);
719         }
720 }
721
722 /**
723  *      unexpected_intr         -       handle an unexpected IDE interrupt
724  *      @irq: interrupt line
725  *      @hwif: port being processed
726  *
727  *      There's nothing really useful we can do with an unexpected interrupt,
728  *      other than reading the status register (to clear it), and logging it.
729  *      There should be no way that an irq can happen before we're ready for it,
730  *      so we needn't worry much about losing an "important" interrupt here.
731  *
732  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
733  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
734  *      looks "good", we just ignore the interrupt completely.
735  *
736  *      This routine assumes __cli() is in effect when called.
737  *
738  *      If an unexpected interrupt happens on irq15 while we are handling irq14
739  *      and if the two interfaces are "serialized" (CMD640), then it looks like
740  *      we could screw up by interfering with a new request being set up for 
741  *      irq15.
742  *
743  *      In reality, this is a non-issue.  The new command is not sent unless 
744  *      the drive is ready to accept one, in which case we know the drive is
745  *      not trying to interrupt us.  And ide_set_handler() is always invoked
746  *      before completing the issuance of any new drive command, so we will not
747  *      be accidentally invoked as a result of any valid command completion
748  *      interrupt.
749  */
750
751 static void unexpected_intr(int irq, ide_hwif_t *hwif)
752 {
753         u8 stat = hwif->tp_ops->read_status(hwif);
754
755         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
756                 /* Try to not flood the console with msgs */
757                 static unsigned long last_msgtime, count;
758                 ++count;
759
760                 if (time_after(jiffies, last_msgtime + HZ)) {
761                         last_msgtime = jiffies;
762                         printk(KERN_ERR "%s: unexpected interrupt, "
763                                 "status=0x%02x, count=%ld\n",
764                                 hwif->name, stat, count);
765                 }
766         }
767 }
768
769 /**
770  *      ide_intr        -       default IDE interrupt handler
771  *      @irq: interrupt number
772  *      @dev_id: hwif
773  *      @regs: unused weirdness from the kernel irq layer
774  *
775  *      This is the default IRQ handler for the IDE layer. You should
776  *      not need to override it. If you do be aware it is subtle in
777  *      places
778  *
779  *      hwif is the interface in the group currently performing
780  *      a command. hwif->cur_dev is the drive and hwif->handler is
781  *      the IRQ handler to call. As we issue a command the handlers
782  *      step through multiple states, reassigning the handler to the
783  *      next step in the process. Unlike a smart SCSI controller IDE
784  *      expects the main processor to sequence the various transfer
785  *      stages. We also manage a poll timer to catch up with most
786  *      timeout situations. There are still a few where the handlers
787  *      don't ever decide to give up.
788  *
789  *      The handler eventually returns ide_stopped to indicate the
790  *      request completed. At this point we issue the next request
791  *      on the port and the process begins again.
792  */
793
794 irqreturn_t ide_intr (int irq, void *dev_id)
795 {
796         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
797         struct ide_host *host = hwif->host;
798         ide_drive_t *uninitialized_var(drive);
799         ide_handler_t *handler;
800         unsigned long flags;
801         ide_startstop_t startstop;
802         irqreturn_t irq_ret = IRQ_NONE;
803         int plug_device = 0;
804         struct request *uninitialized_var(rq_in_flight);
805
806         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
807                 if (hwif != host->cur_port)
808                         goto out_early;
809         }
810
811         spin_lock_irqsave(&hwif->lock, flags);
812
813         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
814                 goto out;
815
816         handler = hwif->handler;
817
818         if (handler == NULL || hwif->polling) {
819                 /*
820                  * Not expecting an interrupt from this drive.
821                  * That means this could be:
822                  *      (1) an interrupt from another PCI device
823                  *      sharing the same PCI INT# as us.
824                  * or   (2) a drive just entered sleep or standby mode,
825                  *      and is interrupting to let us know.
826                  * or   (3) a spurious interrupt of unknown origin.
827                  *
828                  * For PCI, we cannot tell the difference,
829                  * so in that case we just ignore it and hope it goes away.
830                  */
831                 if ((host->irq_flags & IRQF_SHARED) == 0) {
832                         /*
833                          * Probably not a shared PCI interrupt,
834                          * so we can safely try to do something about it:
835                          */
836                         unexpected_intr(irq, hwif);
837                 } else {
838                         /*
839                          * Whack the status register, just in case
840                          * we have a leftover pending IRQ.
841                          */
842                         (void)hwif->tp_ops->read_status(hwif);
843                 }
844                 goto out;
845         }
846
847         drive = hwif->cur_dev;
848
849         if (!drive_is_ready(drive))
850                 /*
851                  * This happens regularly when we share a PCI IRQ with
852                  * another device.  Unfortunately, it can also happen
853                  * with some buggy drives that trigger the IRQ before
854                  * their status register is up to date.  Hopefully we have
855                  * enough advance overhead that the latter isn't a problem.
856                  */
857                 goto out;
858
859         hwif->handler = NULL;
860         hwif->expiry = NULL;
861         hwif->req_gen++;
862         del_timer(&hwif->timer);
863         spin_unlock(&hwif->lock);
864
865         if (hwif->port_ops && hwif->port_ops->clear_irq)
866                 hwif->port_ops->clear_irq(drive);
867
868         if (drive->dev_flags & IDE_DFLAG_UNMASK)
869                 local_irq_enable_in_hardirq();
870
871         /* service this interrupt, may set handler for next interrupt */
872         startstop = handler(drive);
873
874         spin_lock_irq(&hwif->lock);
875         /*
876          * Note that handler() may have set things up for another
877          * interrupt to occur soon, but it cannot happen until
878          * we exit from this routine, because it will be the
879          * same irq as is currently being serviced here, and Linux
880          * won't allow another of the same (on any CPU) until we return.
881          */
882         if (startstop == ide_stopped && hwif->polling == 0) {
883                 BUG_ON(hwif->handler);
884                 rq_in_flight = hwif->rq;
885                 hwif->rq = NULL;
886                 ide_unlock_port(hwif);
887                 plug_device = 1;
888         }
889         irq_ret = IRQ_HANDLED;
890 out:
891         spin_unlock_irqrestore(&hwif->lock, flags);
892 out_early:
893         if (plug_device) {
894                 ide_unlock_host(hwif->host);
895                 ide_requeue_and_plug(drive, rq_in_flight);
896         }
897
898         return irq_ret;
899 }
900 EXPORT_SYMBOL_GPL(ide_intr);
901
902 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
903 {
904         ide_hwif_t *hwif = drive->hwif;
905         u8 buf[4] = { 0 };
906
907         while (len > 0) {
908                 if (write)
909                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
910                 else
911                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
912                 len -= 4;
913         }
914 }
915 EXPORT_SYMBOL_GPL(ide_pad_transfer);