3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
7 #include <asm/spu_priv1.h>
9 #include <asm/unistd.h>
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu)
16 struct spu_context *ctx = spu->ctx;
18 wake_up_all(&ctx->stop_wq);
21 static inline int spu_stopped(struct spu_context *ctx, u32 *stat)
26 *stat = ctx->ops->status_read(ctx);
29 if (ctx->state != SPU_STATE_RUNNABLE ||
30 test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
32 pte_fault = spu->dsisr &
33 (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED);
34 return (!(*stat & SPU_STATUS_RUNNING) || pte_fault || spu->class_0_pending) ?
38 static int spu_setup_isolated(struct spu_context *ctx)
41 u64 __iomem *mfc_cntl;
44 unsigned long timeout;
45 const u32 status_loading = SPU_STATUS_RUNNING
46 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
53 * We need to exclude userspace access to the context.
55 * To protect against memory access we invalidate all ptes
56 * and make sure the pagefault handlers block on the mutex.
58 spu_unmap_mappings(ctx);
60 mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
62 /* purge the MFC DMA queue to ensure no spurious accesses before we
63 * enter kernel mode */
64 timeout = jiffies + HZ;
65 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
66 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
67 != MFC_CNTL_PURGE_DMA_COMPLETE) {
68 if (time_after(jiffies, timeout)) {
69 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
77 /* put the SPE in kernel mode to allow access to the loader */
78 sr1 = spu_mfc_sr1_get(ctx->spu);
79 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
80 spu_mfc_sr1_set(ctx->spu, sr1);
82 /* start the loader */
83 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
84 ctx->ops->signal2_write(ctx,
85 (unsigned long)isolated_loader & 0xffffffff);
87 ctx->ops->runcntl_write(ctx,
88 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
91 timeout = jiffies + HZ;
92 while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
94 if (time_after(jiffies, timeout)) {
95 printk(KERN_ERR "%s: timeout waiting for loader\n",
103 if (!(status & SPU_STATUS_RUNNING)) {
104 /* If isolated LOAD has failed: run SPU, we will get a stop-and
106 pr_debug("%s: isolated LOAD failed\n", __FUNCTION__);
107 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
112 if (!(status & SPU_STATUS_ISOLATED_STATE)) {
113 /* This isn't allowed by the CBEA, but check anyway */
114 pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__);
115 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
121 /* Finished accessing the loader. Drop kernel mode */
122 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
123 spu_mfc_sr1_set(ctx->spu, sr1);
129 static int spu_run_init(struct spu_context *ctx, u32 *npc)
131 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
133 if (ctx->flags & SPU_CREATE_ISOLATE) {
134 unsigned long runcntl;
136 if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
137 int ret = spu_setup_isolated(ctx);
142 /* if userspace has set the runcntrl register (eg, to issue an
143 * isolated exit), we need to re-set it here */
144 runcntl = ctx->ops->runcntl_read(ctx) &
145 (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
147 runcntl = SPU_RUNCNTL_RUNNABLE;
148 ctx->ops->runcntl_write(ctx, runcntl);
150 unsigned long mode = SPU_PRIVCNTL_MODE_NORMAL;
151 ctx->ops->npc_write(ctx, *npc);
152 if (test_thread_flag(TIF_SINGLESTEP))
153 mode = SPU_PRIVCNTL_MODE_SINGLE_STEP;
154 out_be64(&ctx->spu->priv2->spu_privcntl_RW, mode);
155 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
158 spuctx_switch_state(ctx, SPU_UTIL_USER);
163 static int spu_run_fini(struct spu_context *ctx, u32 *npc,
168 *status = ctx->ops->status_read(ctx);
169 *npc = ctx->ops->npc_read(ctx);
171 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
174 if (signal_pending(current))
180 static int spu_reacquire_runnable(struct spu_context *ctx, u32 *npc,
185 ret = spu_run_fini(ctx, npc, status);
189 if (*status & (SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_STOPPED_BY_HALT))
192 ret = spu_acquire_runnable(ctx, 0);
196 ret = spu_run_init(ctx, npc);
205 * SPU syscall restarting is tricky because we violate the basic
206 * assumption that the signal handler is running on the interrupted
207 * thread. Here instead, the handler runs on PowerPC user space code,
208 * while the syscall was called from the SPU.
209 * This means we can only do a very rough approximation of POSIX
212 int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
219 case -ERESTARTNOINTR:
221 * Enter the regular syscall restarting for
222 * sys_spu_run, then restart the SPU syscall
228 case -ERESTARTNOHAND:
229 case -ERESTART_RESTARTBLOCK:
231 * Restart block is too hard for now, just return -EINTR
233 * ERESTARTNOHAND comes from sys_pause, we also return
235 * Assume that we need to be restarted ourselves though.
241 printk(KERN_WARNING "%s: unexpected return code %ld\n",
242 __FUNCTION__, *spu_ret);
248 int spu_process_callback(struct spu_context *ctx)
250 struct spu_syscall_block s;
256 /* get syscall block from local store */
257 npc = ctx->ops->npc_read(ctx) & ~3;
258 ls = (void __iomem *)ctx->ops->get_ls(ctx);
259 ls_pointer = in_be32(ls + npc);
260 if (ls_pointer > (LS_SIZE - sizeof(s)))
262 memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
264 /* do actual syscall without pinning the spu */
269 if (s.nr_ret < __NR_syscalls) {
271 /* do actual system call from here */
272 spu_ret = spu_sys_callback(&s);
273 if (spu_ret <= -ERESTARTSYS) {
274 ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
277 if (ret == -ERESTARTSYS)
281 /* write result, jump over indirect pointer */
282 memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
283 ctx->ops->npc_write(ctx, npc);
284 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
288 static inline int spu_process_events(struct spu_context *ctx)
290 struct spu *spu = ctx->spu;
293 if (spu->class_0_pending)
294 ret = spu_irq_class_0_bottom(spu);
295 if (!ret && signal_pending(current))
300 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
306 if (mutex_lock_interruptible(&ctx->run_mutex))
309 ctx->ops->master_start(ctx);
310 ctx->event_return = 0;
313 if (ctx->state == SPU_STATE_SAVED) {
314 __spu_update_sched_info(ctx);
316 ret = spu_activate(ctx, 0);
323 * We have to update the scheduling priority under active_mutex
324 * to protect against find_victim().
326 spu_update_sched_info(ctx);
329 ret = spu_run_init(ctx, npc);
336 ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
340 if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
341 &ctx->sched_flags))) {
342 if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
343 spu_switch_notify(spu, ctx);
348 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
350 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
351 (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
352 ret = spu_process_callback(ctx);
355 status &= ~SPU_STATUS_STOPPED_BY_STOP;
357 ret = spufs_handle_class1(ctx);
361 if (unlikely(ctx->state != SPU_STATE_RUNNABLE)) {
362 ret = spu_reacquire_runnable(ctx, npc, &status);
367 ret = spu_process_events(ctx);
369 } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
370 SPU_STATUS_STOPPED_BY_HALT |
371 SPU_STATUS_SINGLE_STEP)));
373 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
374 (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100) &&
375 (ctx->state == SPU_STATE_RUNNABLE))
376 ctx->stats.libassist++;
379 ctx->ops->master_stop(ctx);
380 ret = spu_run_fini(ctx, npc, &status);
385 ((ret == -ERESTARTSYS) &&
386 ((status & SPU_STATUS_STOPPED_BY_HALT) ||
387 (status & SPU_STATUS_SINGLE_STEP) ||
388 ((status & SPU_STATUS_STOPPED_BY_STOP) &&
389 (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
392 /* Note: we don't need to force_sig SIGTRAP on single-step
393 * since we have TIF_SINGLESTEP set, thus the kernel will do
394 * it upon return from the syscall anyawy
396 if ((status & SPU_STATUS_STOPPED_BY_STOP)
397 && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff) {
398 force_sig(SIGTRAP, current);
403 *event = ctx->event_return;
404 mutex_unlock(&ctx->run_mutex);