2 * Some of the code in this file has been gleaned from the 64 bit
3 * discontigmem support code base.
5 * Copyright (C) 2002, IBM Corp.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Send feedback to Pat Gaughen <gone@us.ibm.com>
27 #include <linux/bootmem.h>
28 #include <linux/mmzone.h>
29 #include <linux/acpi.h>
30 #include <linux/nodemask.h>
32 #include <asm/topology.h>
36 * proximity macros and definitions
38 #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
39 #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
40 #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
41 #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
42 /* bitmap length; _PXM is at most 255 */
43 #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
44 static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
46 #define MAX_CHUNKS_PER_NODE 3
47 #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
48 struct node_memory_chunk_s {
49 unsigned long start_pfn;
50 unsigned long end_pfn;
51 u8 pxm; // proximity domain of node
52 u8 nid; // which cnode contains this chunk?
53 u8 bank; // which mem bank on this node
55 static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
57 static int num_memory_chunks; /* total number of memory chunks */
58 static u8 __initdata apicid_to_pxm[MAX_APICID];
60 extern void * boot_ioremap(unsigned long, unsigned long);
62 /* Identify CPU proximity domains */
63 static void __init parse_cpu_affinity_structure(char *p)
65 struct acpi_table_processor_affinity *cpu_affinity =
66 (struct acpi_table_processor_affinity *) p;
68 if (!cpu_affinity->flags.enabled)
69 return; /* empty entry */
71 /* mark this node as "seen" in node bitmap */
72 BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain);
74 apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain;
76 printk("CPU 0x%02X in proximity domain 0x%02X\n",
77 cpu_affinity->apic_id, cpu_affinity->proximity_domain);
81 * Identify memory proximity domains and hot-remove capabilities.
82 * Fill node memory chunk list structure.
84 static void __init parse_memory_affinity_structure (char *sratp)
86 unsigned long long paddr, size;
87 unsigned long start_pfn, end_pfn;
89 struct node_memory_chunk_s *p, *q, *pend;
90 struct acpi_table_memory_affinity *memory_affinity =
91 (struct acpi_table_memory_affinity *) sratp;
93 if (!memory_affinity->flags.enabled)
94 return; /* empty entry */
96 /* mark this node as "seen" in node bitmap */
97 BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain);
99 /* calculate info for memory chunk structure */
100 paddr = memory_affinity->base_addr_hi;
101 paddr = (paddr << 32) | memory_affinity->base_addr_lo;
102 size = memory_affinity->length_hi;
103 size = (size << 32) | memory_affinity->length_lo;
105 start_pfn = paddr >> PAGE_SHIFT;
106 end_pfn = (paddr + size) >> PAGE_SHIFT;
108 pxm = memory_affinity->proximity_domain;
110 if (num_memory_chunks >= MAXCHUNKS) {
111 printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
112 size/(1024*1024), paddr);
116 /* Insertion sort based on base address */
117 pend = &node_memory_chunk[num_memory_chunks];
118 for (p = &node_memory_chunk[0]; p < pend; p++) {
119 if (start_pfn < p->start_pfn)
123 for (q = pend; q >= p; q--)
126 p->start_pfn = start_pfn;
127 p->end_pfn = end_pfn;
132 printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
134 memory_affinity->memory_type,
135 memory_affinity->proximity_domain,
136 (memory_affinity->flags.hot_pluggable ?
137 "enabled and removable" : "enabled" ) );
141 * The SRAT table always lists ascending addresses, so can always
142 * assume that the first "start" address that you see is the real
143 * start of the node, and that the current "end" address is after
146 static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
149 * Only add present memory as told by the e820.
150 * There is no guarantee from the SRAT that the memory it
151 * enumerates is present at boot time because it represents
152 * *possible* memory hotplug areas the same as normal RAM.
154 if (memory_chunk->start_pfn >= max_pfn) {
155 printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
156 memory_chunk->start_pfn, memory_chunk->end_pfn);
159 if (memory_chunk->nid != nid)
162 if (!node_has_online_mem(nid))
163 node_start_pfn[nid] = memory_chunk->start_pfn;
165 if (node_start_pfn[nid] > memory_chunk->start_pfn)
166 node_start_pfn[nid] = memory_chunk->start_pfn;
168 if (node_end_pfn[nid] < memory_chunk->end_pfn)
169 node_end_pfn[nid] = memory_chunk->end_pfn;
172 /* Parse the ACPI Static Resource Affinity Table */
173 static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
178 start = (u8 *)(&(sratp->reserved) + 1); /* skip header */
180 end = (u8 *)sratp + sratp->header.length;
182 memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
183 memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
185 num_memory_chunks = 0;
188 case ACPI_SRAT_PROCESSOR_AFFINITY:
189 parse_cpu_affinity_structure(p);
191 case ACPI_SRAT_MEMORY_AFFINITY:
192 parse_memory_affinity_structure(p);
195 printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
200 printk("acpi20_parse_srat: Entry length value is zero;"
201 " can't parse any further!\n");
206 if (num_memory_chunks == 0) {
207 printk("could not finy any ACPI SRAT memory areas.\n");
211 /* Calculate total number of nodes in system from PXM bitmap and create
212 * a set of sequential node IDs starting at zero. (ACPI doesn't seem
213 * to specify the range of _PXM values.)
216 * MCD - we no longer HAVE to number nodes sequentially. PXM domain
217 * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
218 * 32, so we will continue numbering them in this manner until MAX_NUMNODES
219 * approaches MAX_PXM_DOMAINS for i386.
221 nodes_clear(node_online_map);
222 for (i = 0; i < MAX_PXM_DOMAINS; i++) {
223 if (BMAP_TEST(pxm_bitmap, i)) {
224 int nid = acpi_map_pxm_to_node(i);
225 node_set_online(nid);
228 BUG_ON(num_online_nodes() == 0);
230 /* set cnode id in memory chunk structure */
231 for (i = 0; i < num_memory_chunks; i++)
232 node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
234 printk("pxm bitmap: ");
235 for (i = 0; i < sizeof(pxm_bitmap); i++) {
236 printk("%02X ", pxm_bitmap[i]);
239 printk("Number of logical nodes in system = %d\n", num_online_nodes());
240 printk("Number of memory chunks in system = %d\n", num_memory_chunks);
242 for (i = 0; i < MAX_APICID; i++)
243 apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]);
245 for (j = 0; j < num_memory_chunks; j++){
246 struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
247 printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
248 j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
249 node_read_chunk(chunk->nid, chunk);
250 add_active_range(chunk->nid, chunk->start_pfn, chunk->end_pfn);
253 for_each_online_node(nid) {
254 unsigned long start = node_start_pfn[nid];
255 unsigned long end = node_end_pfn[nid];
257 memory_present(nid, start, end);
258 node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
265 int __init get_memcfg_from_srat(void)
267 struct acpi_table_header *header = NULL;
268 struct acpi_table_rsdp *rsdp = NULL;
269 struct acpi_table_rsdt *rsdt = NULL;
270 struct acpi_pointer *rsdp_address = NULL;
271 struct acpi_table_rsdt saved_rsdt;
275 if (ACPI_FAILURE(acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING,
277 printk("%s: System description tables not found\n",
282 if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) {
283 printk("%s: assigning address to rsdp\n", __FUNCTION__);
284 rsdp = (struct acpi_table_rsdp *)
285 (u32)rsdp_address->pointer.physical;
287 printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__);
291 printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
295 printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
298 if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) {
299 printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
303 rsdt = (struct acpi_table_rsdt *)
304 boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt));
308 "%s: ACPI: Invalid root system description tables (RSDT)\n",
313 header = & rsdt->header;
315 if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) {
316 printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
321 * The number of tables is computed by taking the
322 * size of all entries (header size minus total
323 * size of RSDT) divided by the size of each entry
324 * (4-byte table pointers).
326 tables = (header->length - sizeof(struct acpi_table_header)) / 4;
331 memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
333 if (saved_rsdt.header.length > sizeof(saved_rsdt)) {
334 printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
335 saved_rsdt.header.length);
339 printk("Begin SRAT table scan....\n");
341 for (i = 0; i < tables; i++) {
342 /* Map in header, then map in full table length. */
343 header = (struct acpi_table_header *)
344 boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header));
347 header = (struct acpi_table_header *)
348 boot_ioremap(saved_rsdt.entry[i], header->length);
352 if (strncmp((char *) &header->signature, "SRAT", 4))
355 /* we've found the srat table. don't need to look at any more tables */
356 return acpi20_parse_srat((struct acpi_table_srat *)header);
359 remove_all_active_ranges();
360 printk("failed to get NUMA memory information from SRAT table\n");