Merge commit 'origin/master' into next
[linux-2.6] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT                      22
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long                    hpet_num_timers;
38 #endif
39 static void __iomem                     *hpet_virt_address;
40
41 struct hpet_dev {
42         struct clock_event_device       evt;
43         unsigned int                    num;
44         int                             cpu;
45         unsigned int                    irq;
46         unsigned int                    flags;
47         char                            name[10];
48 };
49
50 unsigned long hpet_readl(unsigned long a)
51 {
52         return readl(hpet_virt_address + a);
53 }
54
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57         writel(d, hpet_virt_address + a);
58 }
59
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63
64 static inline void hpet_set_mapping(void)
65 {
66         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71
72 static inline void hpet_clear_mapping(void)
73 {
74         iounmap(hpet_virt_address);
75         hpet_virt_address = NULL;
76 }
77
78 /*
79  * HPET command line enable / disable
80  */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83
84 static int __init hpet_setup(char *str)
85 {
86         if (str) {
87                 if (!strncmp("disable", str, 7))
88                         boot_hpet_disable = 1;
89                 if (!strncmp("force", str, 5))
90                         hpet_force_user = 1;
91         }
92         return 1;
93 }
94 __setup("hpet=", hpet_setup);
95
96 static int __init disable_hpet(char *str)
97 {
98         boot_hpet_disable = 1;
99         return 1;
100 }
101 __setup("nohpet", disable_hpet);
102
103 static inline int is_hpet_capable(void)
104 {
105         return !boot_hpet_disable && hpet_address;
106 }
107
108 /*
109  * HPET timer interrupt enable / disable
110  */
111 static int hpet_legacy_int_enabled;
112
113 /**
114  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
115  */
116 int is_hpet_enabled(void)
117 {
118         return is_hpet_capable() && hpet_legacy_int_enabled;
119 }
120 EXPORT_SYMBOL_GPL(is_hpet_enabled);
121
122 /*
123  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
124  * timer 0 and timer 1 in case of RTC emulation.
125  */
126 #ifdef CONFIG_HPET
127
128 static void hpet_reserve_msi_timers(struct hpet_data *hd);
129
130 static void hpet_reserve_platform_timers(unsigned long id)
131 {
132         struct hpet __iomem *hpet = hpet_virt_address;
133         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
134         unsigned int nrtimers, i;
135         struct hpet_data hd;
136
137         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138
139         memset(&hd, 0, sizeof(hd));
140         hd.hd_phys_address      = hpet_address;
141         hd.hd_address           = hpet;
142         hd.hd_nirqs             = nrtimers;
143         hpet_reserve_timer(&hd, 0);
144
145 #ifdef CONFIG_HPET_EMULATE_RTC
146         hpet_reserve_timer(&hd, 1);
147 #endif
148
149         /*
150          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
151          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
152          * don't bother configuring *any* comparator interrupts.
153          */
154         hd.hd_irq[0] = HPET_LEGACY_8254;
155         hd.hd_irq[1] = HPET_LEGACY_RTC;
156
157         for (i = 2; i < nrtimers; timer++, i++) {
158                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
159                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
160         }
161
162         hpet_reserve_msi_timers(&hd);
163
164         hpet_alloc(&hd);
165
166 }
167 #else
168 static void hpet_reserve_platform_timers(unsigned long id) { }
169 #endif
170
171 /*
172  * Common hpet info
173  */
174 static unsigned long hpet_period;
175
176 static void hpet_legacy_set_mode(enum clock_event_mode mode,
177                           struct clock_event_device *evt);
178 static int hpet_legacy_next_event(unsigned long delta,
179                            struct clock_event_device *evt);
180
181 /*
182  * The hpet clock event device
183  */
184 static struct clock_event_device hpet_clockevent = {
185         .name           = "hpet",
186         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
187         .set_mode       = hpet_legacy_set_mode,
188         .set_next_event = hpet_legacy_next_event,
189         .shift          = 32,
190         .irq            = 0,
191         .rating         = 50,
192 };
193
194 static void hpet_start_counter(void)
195 {
196         unsigned long cfg = hpet_readl(HPET_CFG);
197
198         cfg &= ~HPET_CFG_ENABLE;
199         hpet_writel(cfg, HPET_CFG);
200         hpet_writel(0, HPET_COUNTER);
201         hpet_writel(0, HPET_COUNTER + 4);
202         cfg |= HPET_CFG_ENABLE;
203         hpet_writel(cfg, HPET_CFG);
204 }
205
206 static void hpet_resume_device(void)
207 {
208         force_hpet_resume();
209 }
210
211 static void hpet_restart_counter(void)
212 {
213         hpet_resume_device();
214         hpet_start_counter();
215 }
216
217 static void hpet_enable_legacy_int(void)
218 {
219         unsigned long cfg = hpet_readl(HPET_CFG);
220
221         cfg |= HPET_CFG_LEGACY;
222         hpet_writel(cfg, HPET_CFG);
223         hpet_legacy_int_enabled = 1;
224 }
225
226 static void hpet_legacy_clockevent_register(void)
227 {
228         /* Start HPET legacy interrupts */
229         hpet_enable_legacy_int();
230
231         /*
232          * The mult factor is defined as (include/linux/clockchips.h)
233          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
234          * hpet_period is in units of femtoseconds (per cycle), so
235          *  mult/2^shift = cyc/ns = 10^6/hpet_period
236          *  mult = (10^6 * 2^shift)/hpet_period
237          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
238          */
239         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
240                                       hpet_period, hpet_clockevent.shift);
241         /* Calculate the min / max delta */
242         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
243                                                            &hpet_clockevent);
244         /* 5 usec minimum reprogramming delta. */
245         hpet_clockevent.min_delta_ns = 5000;
246
247         /*
248          * Start hpet with the boot cpu mask and make it
249          * global after the IO_APIC has been initialized.
250          */
251         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
252         clockevents_register_device(&hpet_clockevent);
253         global_clock_event = &hpet_clockevent;
254         printk(KERN_DEBUG "hpet clockevent registered\n");
255 }
256
257 static int hpet_setup_msi_irq(unsigned int irq);
258
259 static void hpet_set_mode(enum clock_event_mode mode,
260                           struct clock_event_device *evt, int timer)
261 {
262         unsigned long cfg, cmp, now;
263         uint64_t delta;
264
265         switch (mode) {
266         case CLOCK_EVT_MODE_PERIODIC:
267                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
268                 delta >>= evt->shift;
269                 now = hpet_readl(HPET_COUNTER);
270                 cmp = now + (unsigned long) delta;
271                 cfg = hpet_readl(HPET_Tn_CFG(timer));
272                 /* Make sure we use edge triggered interrupts */
273                 cfg &= ~HPET_TN_LEVEL;
274                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
275                        HPET_TN_SETVAL | HPET_TN_32BIT;
276                 hpet_writel(cfg, HPET_Tn_CFG(timer));
277                 /*
278                  * The first write after writing TN_SETVAL to the
279                  * config register sets the counter value, the second
280                  * write sets the period.
281                  */
282                 hpet_writel(cmp, HPET_Tn_CMP(timer));
283                 udelay(1);
284                 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
285                 break;
286
287         case CLOCK_EVT_MODE_ONESHOT:
288                 cfg = hpet_readl(HPET_Tn_CFG(timer));
289                 cfg &= ~HPET_TN_PERIODIC;
290                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
291                 hpet_writel(cfg, HPET_Tn_CFG(timer));
292                 break;
293
294         case CLOCK_EVT_MODE_UNUSED:
295         case CLOCK_EVT_MODE_SHUTDOWN:
296                 cfg = hpet_readl(HPET_Tn_CFG(timer));
297                 cfg &= ~HPET_TN_ENABLE;
298                 hpet_writel(cfg, HPET_Tn_CFG(timer));
299                 break;
300
301         case CLOCK_EVT_MODE_RESUME:
302                 if (timer == 0) {
303                         hpet_enable_legacy_int();
304                 } else {
305                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
306                         hpet_setup_msi_irq(hdev->irq);
307                         disable_irq(hdev->irq);
308                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
309                         enable_irq(hdev->irq);
310                 }
311                 break;
312         }
313 }
314
315 static int hpet_next_event(unsigned long delta,
316                            struct clock_event_device *evt, int timer)
317 {
318         u32 cnt;
319
320         cnt = hpet_readl(HPET_COUNTER);
321         cnt += (u32) delta;
322         hpet_writel(cnt, HPET_Tn_CMP(timer));
323
324         /*
325          * We need to read back the CMP register to make sure that
326          * what we wrote hit the chip before we compare it to the
327          * counter.
328          */
329         WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
330
331         return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
332 }
333
334 static void hpet_legacy_set_mode(enum clock_event_mode mode,
335                         struct clock_event_device *evt)
336 {
337         hpet_set_mode(mode, evt, 0);
338 }
339
340 static int hpet_legacy_next_event(unsigned long delta,
341                         struct clock_event_device *evt)
342 {
343         return hpet_next_event(delta, evt, 0);
344 }
345
346 /*
347  * HPET MSI Support
348  */
349 #ifdef CONFIG_PCI_MSI
350
351 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
352 static struct hpet_dev  *hpet_devs;
353
354 void hpet_msi_unmask(unsigned int irq)
355 {
356         struct hpet_dev *hdev = get_irq_data(irq);
357         unsigned long cfg;
358
359         /* unmask it */
360         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
361         cfg |= HPET_TN_FSB;
362         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
363 }
364
365 void hpet_msi_mask(unsigned int irq)
366 {
367         unsigned long cfg;
368         struct hpet_dev *hdev = get_irq_data(irq);
369
370         /* mask it */
371         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
372         cfg &= ~HPET_TN_FSB;
373         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
374 }
375
376 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
377 {
378         struct hpet_dev *hdev = get_irq_data(irq);
379
380         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
381         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
382 }
383
384 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
385 {
386         struct hpet_dev *hdev = get_irq_data(irq);
387
388         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
389         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
390         msg->address_hi = 0;
391 }
392
393 static void hpet_msi_set_mode(enum clock_event_mode mode,
394                                 struct clock_event_device *evt)
395 {
396         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
397         hpet_set_mode(mode, evt, hdev->num);
398 }
399
400 static int hpet_msi_next_event(unsigned long delta,
401                                 struct clock_event_device *evt)
402 {
403         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
404         return hpet_next_event(delta, evt, hdev->num);
405 }
406
407 static int hpet_setup_msi_irq(unsigned int irq)
408 {
409         if (arch_setup_hpet_msi(irq)) {
410                 destroy_irq(irq);
411                 return -EINVAL;
412         }
413         return 0;
414 }
415
416 static int hpet_assign_irq(struct hpet_dev *dev)
417 {
418         unsigned int irq;
419
420         irq = create_irq();
421         if (!irq)
422                 return -EINVAL;
423
424         set_irq_data(irq, dev);
425
426         if (hpet_setup_msi_irq(irq))
427                 return -EINVAL;
428
429         dev->irq = irq;
430         return 0;
431 }
432
433 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
434 {
435         struct hpet_dev *dev = (struct hpet_dev *)data;
436         struct clock_event_device *hevt = &dev->evt;
437
438         if (!hevt->event_handler) {
439                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
440                                 dev->num);
441                 return IRQ_HANDLED;
442         }
443
444         hevt->event_handler(hevt);
445         return IRQ_HANDLED;
446 }
447
448 static int hpet_setup_irq(struct hpet_dev *dev)
449 {
450
451         if (request_irq(dev->irq, hpet_interrupt_handler,
452                         IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
453                 return -1;
454
455         disable_irq(dev->irq);
456         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
457         enable_irq(dev->irq);
458
459         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
460                          dev->name, dev->irq);
461
462         return 0;
463 }
464
465 /* This should be called in specific @cpu */
466 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
467 {
468         struct clock_event_device *evt = &hdev->evt;
469         uint64_t hpet_freq;
470
471         WARN_ON(cpu != smp_processor_id());
472         if (!(hdev->flags & HPET_DEV_VALID))
473                 return;
474
475         if (hpet_setup_msi_irq(hdev->irq))
476                 return;
477
478         hdev->cpu = cpu;
479         per_cpu(cpu_hpet_dev, cpu) = hdev;
480         evt->name = hdev->name;
481         hpet_setup_irq(hdev);
482         evt->irq = hdev->irq;
483
484         evt->rating = 110;
485         evt->features = CLOCK_EVT_FEAT_ONESHOT;
486         if (hdev->flags & HPET_DEV_PERI_CAP)
487                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
488
489         evt->set_mode = hpet_msi_set_mode;
490         evt->set_next_event = hpet_msi_next_event;
491         evt->shift = 32;
492
493         /*
494          * The period is a femto seconds value. We need to calculate the
495          * scaled math multiplication factor for nanosecond to hpet tick
496          * conversion.
497          */
498         hpet_freq = 1000000000000000ULL;
499         do_div(hpet_freq, hpet_period);
500         evt->mult = div_sc((unsigned long) hpet_freq,
501                                       NSEC_PER_SEC, evt->shift);
502         /* Calculate the max delta */
503         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
504         /* 5 usec minimum reprogramming delta. */
505         evt->min_delta_ns = 5000;
506
507         evt->cpumask = cpumask_of(hdev->cpu);
508         clockevents_register_device(evt);
509 }
510
511 #ifdef CONFIG_HPET
512 /* Reserve at least one timer for userspace (/dev/hpet) */
513 #define RESERVE_TIMERS 1
514 #else
515 #define RESERVE_TIMERS 0
516 #endif
517
518 static void hpet_msi_capability_lookup(unsigned int start_timer)
519 {
520         unsigned int id;
521         unsigned int num_timers;
522         unsigned int num_timers_used = 0;
523         int i;
524
525         id = hpet_readl(HPET_ID);
526
527         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
528         num_timers++; /* Value read out starts from 0 */
529
530         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
531         if (!hpet_devs)
532                 return;
533
534         hpet_num_timers = num_timers;
535
536         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
537                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
538                 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
539
540                 /* Only consider HPET timer with MSI support */
541                 if (!(cfg & HPET_TN_FSB_CAP))
542                         continue;
543
544                 hdev->flags = 0;
545                 if (cfg & HPET_TN_PERIODIC_CAP)
546                         hdev->flags |= HPET_DEV_PERI_CAP;
547                 hdev->num = i;
548
549                 sprintf(hdev->name, "hpet%d", i);
550                 if (hpet_assign_irq(hdev))
551                         continue;
552
553                 hdev->flags |= HPET_DEV_FSB_CAP;
554                 hdev->flags |= HPET_DEV_VALID;
555                 num_timers_used++;
556                 if (num_timers_used == num_possible_cpus())
557                         break;
558         }
559
560         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
561                 num_timers, num_timers_used);
562 }
563
564 #ifdef CONFIG_HPET
565 static void hpet_reserve_msi_timers(struct hpet_data *hd)
566 {
567         int i;
568
569         if (!hpet_devs)
570                 return;
571
572         for (i = 0; i < hpet_num_timers; i++) {
573                 struct hpet_dev *hdev = &hpet_devs[i];
574
575                 if (!(hdev->flags & HPET_DEV_VALID))
576                         continue;
577
578                 hd->hd_irq[hdev->num] = hdev->irq;
579                 hpet_reserve_timer(hd, hdev->num);
580         }
581 }
582 #endif
583
584 static struct hpet_dev *hpet_get_unused_timer(void)
585 {
586         int i;
587
588         if (!hpet_devs)
589                 return NULL;
590
591         for (i = 0; i < hpet_num_timers; i++) {
592                 struct hpet_dev *hdev = &hpet_devs[i];
593
594                 if (!(hdev->flags & HPET_DEV_VALID))
595                         continue;
596                 if (test_and_set_bit(HPET_DEV_USED_BIT,
597                         (unsigned long *)&hdev->flags))
598                         continue;
599                 return hdev;
600         }
601         return NULL;
602 }
603
604 struct hpet_work_struct {
605         struct delayed_work work;
606         struct completion complete;
607 };
608
609 static void hpet_work(struct work_struct *w)
610 {
611         struct hpet_dev *hdev;
612         int cpu = smp_processor_id();
613         struct hpet_work_struct *hpet_work;
614
615         hpet_work = container_of(w, struct hpet_work_struct, work.work);
616
617         hdev = hpet_get_unused_timer();
618         if (hdev)
619                 init_one_hpet_msi_clockevent(hdev, cpu);
620
621         complete(&hpet_work->complete);
622 }
623
624 static int hpet_cpuhp_notify(struct notifier_block *n,
625                 unsigned long action, void *hcpu)
626 {
627         unsigned long cpu = (unsigned long)hcpu;
628         struct hpet_work_struct work;
629         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
630
631         switch (action & 0xf) {
632         case CPU_ONLINE:
633                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
634                 init_completion(&work.complete);
635                 /* FIXME: add schedule_work_on() */
636                 schedule_delayed_work_on(cpu, &work.work, 0);
637                 wait_for_completion(&work.complete);
638                 destroy_timer_on_stack(&work.work.timer);
639                 break;
640         case CPU_DEAD:
641                 if (hdev) {
642                         free_irq(hdev->irq, hdev);
643                         hdev->flags &= ~HPET_DEV_USED;
644                         per_cpu(cpu_hpet_dev, cpu) = NULL;
645                 }
646                 break;
647         }
648         return NOTIFY_OK;
649 }
650 #else
651
652 static int hpet_setup_msi_irq(unsigned int irq)
653 {
654         return 0;
655 }
656 static void hpet_msi_capability_lookup(unsigned int start_timer)
657 {
658         return;
659 }
660
661 #ifdef CONFIG_HPET
662 static void hpet_reserve_msi_timers(struct hpet_data *hd)
663 {
664         return;
665 }
666 #endif
667
668 static int hpet_cpuhp_notify(struct notifier_block *n,
669                 unsigned long action, void *hcpu)
670 {
671         return NOTIFY_OK;
672 }
673
674 #endif
675
676 /*
677  * Clock source related code
678  */
679 static cycle_t read_hpet(void)
680 {
681         return (cycle_t)hpet_readl(HPET_COUNTER);
682 }
683
684 #ifdef CONFIG_X86_64
685 static cycle_t __vsyscall_fn vread_hpet(void)
686 {
687         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
688 }
689 #endif
690
691 static struct clocksource clocksource_hpet = {
692         .name           = "hpet",
693         .rating         = 250,
694         .read           = read_hpet,
695         .mask           = HPET_MASK,
696         .shift          = HPET_SHIFT,
697         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
698         .resume         = hpet_restart_counter,
699 #ifdef CONFIG_X86_64
700         .vread          = vread_hpet,
701 #endif
702 };
703
704 static int hpet_clocksource_register(void)
705 {
706         u64 start, now;
707         cycle_t t1;
708
709         /* Start the counter */
710         hpet_start_counter();
711
712         /* Verify whether hpet counter works */
713         t1 = read_hpet();
714         rdtscll(start);
715
716         /*
717          * We don't know the TSC frequency yet, but waiting for
718          * 200000 TSC cycles is safe:
719          * 4 GHz == 50us
720          * 1 GHz == 200us
721          */
722         do {
723                 rep_nop();
724                 rdtscll(now);
725         } while ((now - start) < 200000UL);
726
727         if (t1 == read_hpet()) {
728                 printk(KERN_WARNING
729                        "HPET counter not counting. HPET disabled\n");
730                 return -ENODEV;
731         }
732
733         /*
734          * The definition of mult is (include/linux/clocksource.h)
735          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
736          * so we first need to convert hpet_period to ns/cyc units:
737          *  mult/2^shift = ns/cyc = hpet_period/10^6
738          *  mult = (hpet_period * 2^shift)/10^6
739          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
740          */
741         clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
742
743         clocksource_register(&clocksource_hpet);
744
745         return 0;
746 }
747
748 /**
749  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
750  */
751 int __init hpet_enable(void)
752 {
753         unsigned long id;
754         int i;
755
756         if (!is_hpet_capable())
757                 return 0;
758
759         hpet_set_mapping();
760
761         /*
762          * Read the period and check for a sane value:
763          */
764         hpet_period = hpet_readl(HPET_PERIOD);
765
766         /*
767          * AMD SB700 based systems with spread spectrum enabled use a
768          * SMM based HPET emulation to provide proper frequency
769          * setting. The SMM code is initialized with the first HPET
770          * register access and takes some time to complete. During
771          * this time the config register reads 0xffffffff. We check
772          * for max. 1000 loops whether the config register reads a non
773          * 0xffffffff value to make sure that HPET is up and running
774          * before we go further. A counting loop is safe, as the HPET
775          * access takes thousands of CPU cycles. On non SB700 based
776          * machines this check is only done once and has no side
777          * effects.
778          */
779         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
780                 if (i == 1000) {
781                         printk(KERN_WARNING
782                                "HPET config register value = 0xFFFFFFFF. "
783                                "Disabling HPET\n");
784                         goto out_nohpet;
785                 }
786         }
787
788         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
789                 goto out_nohpet;
790
791         /*
792          * Read the HPET ID register to retrieve the IRQ routing
793          * information and the number of channels
794          */
795         id = hpet_readl(HPET_ID);
796
797 #ifdef CONFIG_HPET_EMULATE_RTC
798         /*
799          * The legacy routing mode needs at least two channels, tick timer
800          * and the rtc emulation channel.
801          */
802         if (!(id & HPET_ID_NUMBER))
803                 goto out_nohpet;
804 #endif
805
806         if (hpet_clocksource_register())
807                 goto out_nohpet;
808
809         if (id & HPET_ID_LEGSUP) {
810                 hpet_legacy_clockevent_register();
811                 hpet_msi_capability_lookup(2);
812                 return 1;
813         }
814         hpet_msi_capability_lookup(0);
815         return 0;
816
817 out_nohpet:
818         hpet_clear_mapping();
819         hpet_address = 0;
820         return 0;
821 }
822
823 /*
824  * Needs to be late, as the reserve_timer code calls kalloc !
825  *
826  * Not a problem on i386 as hpet_enable is called from late_time_init,
827  * but on x86_64 it is necessary !
828  */
829 static __init int hpet_late_init(void)
830 {
831         int cpu;
832
833         if (boot_hpet_disable)
834                 return -ENODEV;
835
836         if (!hpet_address) {
837                 if (!force_hpet_address)
838                         return -ENODEV;
839
840                 hpet_address = force_hpet_address;
841                 hpet_enable();
842         }
843
844         if (!hpet_virt_address)
845                 return -ENODEV;
846
847         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
848
849         for_each_online_cpu(cpu) {
850                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
851         }
852
853         /* This notifier should be called after workqueue is ready */
854         hotcpu_notifier(hpet_cpuhp_notify, -20);
855
856         return 0;
857 }
858 fs_initcall(hpet_late_init);
859
860 void hpet_disable(void)
861 {
862         if (is_hpet_capable()) {
863                 unsigned long cfg = hpet_readl(HPET_CFG);
864
865                 if (hpet_legacy_int_enabled) {
866                         cfg &= ~HPET_CFG_LEGACY;
867                         hpet_legacy_int_enabled = 0;
868                 }
869                 cfg &= ~HPET_CFG_ENABLE;
870                 hpet_writel(cfg, HPET_CFG);
871         }
872 }
873
874 #ifdef CONFIG_HPET_EMULATE_RTC
875
876 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
877  * is enabled, we support RTC interrupt functionality in software.
878  * RTC has 3 kinds of interrupts:
879  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
880  *    is updated
881  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
882  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
883  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
884  * (1) and (2) above are implemented using polling at a frequency of
885  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
886  * overhead. (DEFAULT_RTC_INT_FREQ)
887  * For (3), we use interrupts at 64Hz or user specified periodic
888  * frequency, whichever is higher.
889  */
890 #include <linux/mc146818rtc.h>
891 #include <linux/rtc.h>
892 #include <asm/rtc.h>
893
894 #define DEFAULT_RTC_INT_FREQ    64
895 #define DEFAULT_RTC_SHIFT       6
896 #define RTC_NUM_INTS            1
897
898 static unsigned long hpet_rtc_flags;
899 static int hpet_prev_update_sec;
900 static struct rtc_time hpet_alarm_time;
901 static unsigned long hpet_pie_count;
902 static u32 hpet_t1_cmp;
903 static unsigned long hpet_default_delta;
904 static unsigned long hpet_pie_delta;
905 static unsigned long hpet_pie_limit;
906
907 static rtc_irq_handler irq_handler;
908
909 /*
910  * Check that the hpet counter c1 is ahead of the c2
911  */
912 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
913 {
914         return (s32)(c2 - c1) < 0;
915 }
916
917 /*
918  * Registers a IRQ handler.
919  */
920 int hpet_register_irq_handler(rtc_irq_handler handler)
921 {
922         if (!is_hpet_enabled())
923                 return -ENODEV;
924         if (irq_handler)
925                 return -EBUSY;
926
927         irq_handler = handler;
928
929         return 0;
930 }
931 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
932
933 /*
934  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
935  * and does cleanup.
936  */
937 void hpet_unregister_irq_handler(rtc_irq_handler handler)
938 {
939         if (!is_hpet_enabled())
940                 return;
941
942         irq_handler = NULL;
943         hpet_rtc_flags = 0;
944 }
945 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
946
947 /*
948  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
949  * is not supported by all HPET implementations for timer 1.
950  *
951  * hpet_rtc_timer_init() is called when the rtc is initialized.
952  */
953 int hpet_rtc_timer_init(void)
954 {
955         unsigned long cfg, cnt, delta, flags;
956
957         if (!is_hpet_enabled())
958                 return 0;
959
960         if (!hpet_default_delta) {
961                 uint64_t clc;
962
963                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
964                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
965                 hpet_default_delta = (unsigned long) clc;
966         }
967
968         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
969                 delta = hpet_default_delta;
970         else
971                 delta = hpet_pie_delta;
972
973         local_irq_save(flags);
974
975         cnt = delta + hpet_readl(HPET_COUNTER);
976         hpet_writel(cnt, HPET_T1_CMP);
977         hpet_t1_cmp = cnt;
978
979         cfg = hpet_readl(HPET_T1_CFG);
980         cfg &= ~HPET_TN_PERIODIC;
981         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
982         hpet_writel(cfg, HPET_T1_CFG);
983
984         local_irq_restore(flags);
985
986         return 1;
987 }
988 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
989
990 /*
991  * The functions below are called from rtc driver.
992  * Return 0 if HPET is not being used.
993  * Otherwise do the necessary changes and return 1.
994  */
995 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
996 {
997         if (!is_hpet_enabled())
998                 return 0;
999
1000         hpet_rtc_flags &= ~bit_mask;
1001         return 1;
1002 }
1003 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1004
1005 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1006 {
1007         unsigned long oldbits = hpet_rtc_flags;
1008
1009         if (!is_hpet_enabled())
1010                 return 0;
1011
1012         hpet_rtc_flags |= bit_mask;
1013
1014         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1015                 hpet_prev_update_sec = -1;
1016
1017         if (!oldbits)
1018                 hpet_rtc_timer_init();
1019
1020         return 1;
1021 }
1022 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1023
1024 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1025                         unsigned char sec)
1026 {
1027         if (!is_hpet_enabled())
1028                 return 0;
1029
1030         hpet_alarm_time.tm_hour = hrs;
1031         hpet_alarm_time.tm_min = min;
1032         hpet_alarm_time.tm_sec = sec;
1033
1034         return 1;
1035 }
1036 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1037
1038 int hpet_set_periodic_freq(unsigned long freq)
1039 {
1040         uint64_t clc;
1041
1042         if (!is_hpet_enabled())
1043                 return 0;
1044
1045         if (freq <= DEFAULT_RTC_INT_FREQ)
1046                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1047         else {
1048                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1049                 do_div(clc, freq);
1050                 clc >>= hpet_clockevent.shift;
1051                 hpet_pie_delta = (unsigned long) clc;
1052         }
1053         return 1;
1054 }
1055 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1056
1057 int hpet_rtc_dropped_irq(void)
1058 {
1059         return is_hpet_enabled();
1060 }
1061 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1062
1063 static void hpet_rtc_timer_reinit(void)
1064 {
1065         unsigned long cfg, delta;
1066         int lost_ints = -1;
1067
1068         if (unlikely(!hpet_rtc_flags)) {
1069                 cfg = hpet_readl(HPET_T1_CFG);
1070                 cfg &= ~HPET_TN_ENABLE;
1071                 hpet_writel(cfg, HPET_T1_CFG);
1072                 return;
1073         }
1074
1075         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1076                 delta = hpet_default_delta;
1077         else
1078                 delta = hpet_pie_delta;
1079
1080         /*
1081          * Increment the comparator value until we are ahead of the
1082          * current count.
1083          */
1084         do {
1085                 hpet_t1_cmp += delta;
1086                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1087                 lost_ints++;
1088         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1089
1090         if (lost_ints) {
1091                 if (hpet_rtc_flags & RTC_PIE)
1092                         hpet_pie_count += lost_ints;
1093                 if (printk_ratelimit())
1094                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1095                                 lost_ints);
1096         }
1097 }
1098
1099 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1100 {
1101         struct rtc_time curr_time;
1102         unsigned long rtc_int_flag = 0;
1103
1104         hpet_rtc_timer_reinit();
1105         memset(&curr_time, 0, sizeof(struct rtc_time));
1106
1107         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1108                 get_rtc_time(&curr_time);
1109
1110         if (hpet_rtc_flags & RTC_UIE &&
1111             curr_time.tm_sec != hpet_prev_update_sec) {
1112                 if (hpet_prev_update_sec >= 0)
1113                         rtc_int_flag = RTC_UF;
1114                 hpet_prev_update_sec = curr_time.tm_sec;
1115         }
1116
1117         if (hpet_rtc_flags & RTC_PIE &&
1118             ++hpet_pie_count >= hpet_pie_limit) {
1119                 rtc_int_flag |= RTC_PF;
1120                 hpet_pie_count = 0;
1121         }
1122
1123         if (hpet_rtc_flags & RTC_AIE &&
1124             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1125             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1126             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1127                         rtc_int_flag |= RTC_AF;
1128
1129         if (rtc_int_flag) {
1130                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1131                 if (irq_handler)
1132                         irq_handler(rtc_int_flag, dev_id);
1133         }
1134         return IRQ_HANDLED;
1135 }
1136 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1137 #endif