Merge branch 'drm-patches' of master.kernel.org:/pub/scm/linux/kernel/git/airlied...
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_work(priv->workqueue, &priv->reset_work);
683
684                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
685                         priv->reset_backoff++;
686
687                 wake_up_interruptible(&priv->wait_command_queue);
688         } else
689                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
690                                priv->net_dev->name);
691
692 }
693
694 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
695 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
696                                    struct host_command *cmd)
697 {
698         struct list_head *element;
699         struct ipw2100_tx_packet *packet;
700         unsigned long flags;
701         int err = 0;
702
703         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
704                      command_types[cmd->host_command], cmd->host_command,
705                      cmd->host_command_length);
706         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
707                    cmd->host_command_length);
708
709         spin_lock_irqsave(&priv->low_lock, flags);
710
711         if (priv->fatal_error) {
712                 IPW_DEBUG_INFO
713                     ("Attempt to send command while hardware in fatal error condition.\n");
714                 err = -EIO;
715                 goto fail_unlock;
716         }
717
718         if (!(priv->status & STATUS_RUNNING)) {
719                 IPW_DEBUG_INFO
720                     ("Attempt to send command while hardware is not running.\n");
721                 err = -EIO;
722                 goto fail_unlock;
723         }
724
725         if (priv->status & STATUS_CMD_ACTIVE) {
726                 IPW_DEBUG_INFO
727                     ("Attempt to send command while another command is pending.\n");
728                 err = -EBUSY;
729                 goto fail_unlock;
730         }
731
732         if (list_empty(&priv->msg_free_list)) {
733                 IPW_DEBUG_INFO("no available msg buffers\n");
734                 goto fail_unlock;
735         }
736
737         priv->status |= STATUS_CMD_ACTIVE;
738         priv->messages_sent++;
739
740         element = priv->msg_free_list.next;
741
742         packet = list_entry(element, struct ipw2100_tx_packet, list);
743         packet->jiffy_start = jiffies;
744
745         /* initialize the firmware command packet */
746         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
747         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
748         packet->info.c_struct.cmd->host_command_len_reg =
749             cmd->host_command_length;
750         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
751
752         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
753                cmd->host_command_parameters,
754                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
755
756         list_del(element);
757         DEC_STAT(&priv->msg_free_stat);
758
759         list_add_tail(element, &priv->msg_pend_list);
760         INC_STAT(&priv->msg_pend_stat);
761
762         ipw2100_tx_send_commands(priv);
763         ipw2100_tx_send_data(priv);
764
765         spin_unlock_irqrestore(&priv->low_lock, flags);
766
767         /*
768          * We must wait for this command to complete before another
769          * command can be sent...  but if we wait more than 3 seconds
770          * then there is a problem.
771          */
772
773         err =
774             wait_event_interruptible_timeout(priv->wait_command_queue,
775                                              !(priv->
776                                                status & STATUS_CMD_ACTIVE),
777                                              HOST_COMPLETE_TIMEOUT);
778
779         if (err == 0) {
780                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
781                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
782                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
783                 priv->status &= ~STATUS_CMD_ACTIVE;
784                 schedule_reset(priv);
785                 return -EIO;
786         }
787
788         if (priv->fatal_error) {
789                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
790                        priv->net_dev->name);
791                 return -EIO;
792         }
793
794         /* !!!!! HACK TEST !!!!!
795          * When lots of debug trace statements are enabled, the driver
796          * doesn't seem to have as many firmware restart cycles...
797          *
798          * As a test, we're sticking in a 1/100s delay here */
799         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
800
801         return 0;
802
803       fail_unlock:
804         spin_unlock_irqrestore(&priv->low_lock, flags);
805
806         return err;
807 }
808
809 /*
810  * Verify the values and data access of the hardware
811  * No locks needed or used.  No functions called.
812  */
813 static int ipw2100_verify(struct ipw2100_priv *priv)
814 {
815         u32 data1, data2;
816         u32 address;
817
818         u32 val1 = 0x76543210;
819         u32 val2 = 0xFEDCBA98;
820
821         /* Domain 0 check - all values should be DOA_DEBUG */
822         for (address = IPW_REG_DOA_DEBUG_AREA_START;
823              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
824                 read_register(priv->net_dev, address, &data1);
825                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
826                         return -EIO;
827         }
828
829         /* Domain 1 check - use arbitrary read/write compare  */
830         for (address = 0; address < 5; address++) {
831                 /* The memory area is not used now */
832                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
833                                val1);
834                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
835                                val2);
836                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
837                               &data1);
838                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
839                               &data2);
840                 if (val1 == data1 && val2 == data2)
841                         return 0;
842         }
843
844         return -EIO;
845 }
846
847 /*
848  *
849  * Loop until the CARD_DISABLED bit is the same value as the
850  * supplied parameter
851  *
852  * TODO: See if it would be more efficient to do a wait/wake
853  *       cycle and have the completion event trigger the wakeup
854  *
855  */
856 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
857 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
858 {
859         int i;
860         u32 card_state;
861         u32 len = sizeof(card_state);
862         int err;
863
864         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
865                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
866                                           &card_state, &len);
867                 if (err) {
868                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
869                                        "failed.\n");
870                         return 0;
871                 }
872
873                 /* We'll break out if either the HW state says it is
874                  * in the state we want, or if HOST_COMPLETE command
875                  * finishes */
876                 if ((card_state == state) ||
877                     ((priv->status & STATUS_ENABLED) ?
878                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
879                         if (state == IPW_HW_STATE_ENABLED)
880                                 priv->status |= STATUS_ENABLED;
881                         else
882                                 priv->status &= ~STATUS_ENABLED;
883
884                         return 0;
885                 }
886
887                 udelay(50);
888         }
889
890         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
891                        state ? "DISABLED" : "ENABLED");
892         return -EIO;
893 }
894
895 /*********************************************************************
896     Procedure   :   sw_reset_and_clock
897     Purpose     :   Asserts s/w reset, asserts clock initialization
898                     and waits for clock stabilization
899  ********************************************************************/
900 static int sw_reset_and_clock(struct ipw2100_priv *priv)
901 {
902         int i;
903         u32 r;
904
905         // assert s/w reset
906         write_register(priv->net_dev, IPW_REG_RESET_REG,
907                        IPW_AUX_HOST_RESET_REG_SW_RESET);
908
909         // wait for clock stabilization
910         for (i = 0; i < 1000; i++) {
911                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
912
913                 // check clock ready bit
914                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
915                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
916                         break;
917         }
918
919         if (i == 1000)
920                 return -EIO;    // TODO: better error value
921
922         /* set "initialization complete" bit to move adapter to
923          * D0 state */
924         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
925                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
926
927         /* wait for clock stabilization */
928         for (i = 0; i < 10000; i++) {
929                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
930
931                 /* check clock ready bit */
932                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
933                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
934                         break;
935         }
936
937         if (i == 10000)
938                 return -EIO;    /* TODO: better error value */
939
940         /* set D0 standby bit */
941         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
942         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
943                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
944
945         return 0;
946 }
947
948 /*********************************************************************
949     Procedure   :   ipw2100_download_firmware
950     Purpose     :   Initiaze adapter after power on.
951                     The sequence is:
952                     1. assert s/w reset first!
953                     2. awake clocks & wait for clock stabilization
954                     3. hold ARC (don't ask me why...)
955                     4. load Dino ucode and reset/clock init again
956                     5. zero-out shared mem
957                     6. download f/w
958  *******************************************************************/
959 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
960 {
961         u32 address;
962         int err;
963
964 #ifndef CONFIG_PM
965         /* Fetch the firmware and microcode */
966         struct ipw2100_fw ipw2100_firmware;
967 #endif
968
969         if (priv->fatal_error) {
970                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
971                                 "fatal error %d.  Interface must be brought down.\n",
972                                 priv->net_dev->name, priv->fatal_error);
973                 return -EINVAL;
974         }
975 #ifdef CONFIG_PM
976         if (!ipw2100_firmware.version) {
977                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
978                 if (err) {
979                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
980                                         priv->net_dev->name, err);
981                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
982                         goto fail;
983                 }
984         }
985 #else
986         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
987         if (err) {
988                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
989                                 priv->net_dev->name, err);
990                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
991                 goto fail;
992         }
993 #endif
994         priv->firmware_version = ipw2100_firmware.version;
995
996         /* s/w reset and clock stabilization */
997         err = sw_reset_and_clock(priv);
998         if (err) {
999                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1000                                 priv->net_dev->name, err);
1001                 goto fail;
1002         }
1003
1004         err = ipw2100_verify(priv);
1005         if (err) {
1006                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1007                                 priv->net_dev->name, err);
1008                 goto fail;
1009         }
1010
1011         /* Hold ARC */
1012         write_nic_dword(priv->net_dev,
1013                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1014
1015         /* allow ARC to run */
1016         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1017
1018         /* load microcode */
1019         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1020         if (err) {
1021                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1022                        priv->net_dev->name, err);
1023                 goto fail;
1024         }
1025
1026         /* release ARC */
1027         write_nic_dword(priv->net_dev,
1028                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1029
1030         /* s/w reset and clock stabilization (again!!!) */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 printk(KERN_ERR DRV_NAME
1034                        ": %s: sw_reset_and_clock failed: %d\n",
1035                        priv->net_dev->name, err);
1036                 goto fail;
1037         }
1038
1039         /* load f/w */
1040         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1041         if (err) {
1042                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1043                                 priv->net_dev->name, err);
1044                 goto fail;
1045         }
1046 #ifndef CONFIG_PM
1047         /*
1048          * When the .resume method of the driver is called, the other
1049          * part of the system, i.e. the ide driver could still stay in
1050          * the suspend stage. This prevents us from loading the firmware
1051          * from the disk.  --YZ
1052          */
1053
1054         /* free any storage allocated for firmware image */
1055         ipw2100_release_firmware(priv, &ipw2100_firmware);
1056 #endif
1057
1058         /* zero out Domain 1 area indirectly (Si requirement) */
1059         for (address = IPW_HOST_FW_SHARED_AREA0;
1060              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1061                 write_nic_dword(priv->net_dev, address, 0);
1062         for (address = IPW_HOST_FW_SHARED_AREA1;
1063              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1064                 write_nic_dword(priv->net_dev, address, 0);
1065         for (address = IPW_HOST_FW_SHARED_AREA2;
1066              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1067                 write_nic_dword(priv->net_dev, address, 0);
1068         for (address = IPW_HOST_FW_SHARED_AREA3;
1069              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1070                 write_nic_dword(priv->net_dev, address, 0);
1071         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1072              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1073                 write_nic_dword(priv->net_dev, address, 0);
1074
1075         return 0;
1076
1077       fail:
1078         ipw2100_release_firmware(priv, &ipw2100_firmware);
1079         return err;
1080 }
1081
1082 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1083 {
1084         if (priv->status & STATUS_INT_ENABLED)
1085                 return;
1086         priv->status |= STATUS_INT_ENABLED;
1087         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1088 }
1089
1090 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1091 {
1092         if (!(priv->status & STATUS_INT_ENABLED))
1093                 return;
1094         priv->status &= ~STATUS_INT_ENABLED;
1095         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1096 }
1097
1098 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1099 {
1100         struct ipw2100_ordinals *ord = &priv->ordinals;
1101
1102         IPW_DEBUG_INFO("enter\n");
1103
1104         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1105                       &ord->table1_addr);
1106
1107         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1108                       &ord->table2_addr);
1109
1110         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1111         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1112
1113         ord->table2_size &= 0x0000FFFF;
1114
1115         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1116         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1117         IPW_DEBUG_INFO("exit\n");
1118 }
1119
1120 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1121 {
1122         u32 reg = 0;
1123         /*
1124          * Set GPIO 3 writable by FW; GPIO 1 writable
1125          * by driver and enable clock
1126          */
1127         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1128                IPW_BIT_GPIO_LED_OFF);
1129         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1130 }
1131
1132 static int rf_kill_active(struct ipw2100_priv *priv)
1133 {
1134 #define MAX_RF_KILL_CHECKS 5
1135 #define RF_KILL_CHECK_DELAY 40
1136
1137         unsigned short value = 0;
1138         u32 reg = 0;
1139         int i;
1140
1141         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1142                 priv->status &= ~STATUS_RF_KILL_HW;
1143                 return 0;
1144         }
1145
1146         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1147                 udelay(RF_KILL_CHECK_DELAY);
1148                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1149                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1150         }
1151
1152         if (value == 0)
1153                 priv->status |= STATUS_RF_KILL_HW;
1154         else
1155                 priv->status &= ~STATUS_RF_KILL_HW;
1156
1157         return (value == 0);
1158 }
1159
1160 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1161 {
1162         u32 addr, len;
1163         u32 val;
1164
1165         /*
1166          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1167          */
1168         len = sizeof(addr);
1169         if (ipw2100_get_ordinal
1170             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1171                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1172                                __LINE__);
1173                 return -EIO;
1174         }
1175
1176         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1177
1178         /*
1179          * EEPROM version is the byte at offset 0xfd in firmware
1180          * We read 4 bytes, then shift out the byte we actually want */
1181         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1182         priv->eeprom_version = (val >> 24) & 0xFF;
1183         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1184
1185         /*
1186          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1187          *
1188          *  notice that the EEPROM bit is reverse polarity, i.e.
1189          *     bit = 0  signifies HW RF kill switch is supported
1190          *     bit = 1  signifies HW RF kill switch is NOT supported
1191          */
1192         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1193         if (!((val >> 24) & 0x01))
1194                 priv->hw_features |= HW_FEATURE_RFKILL;
1195
1196         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1197                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1198
1199         return 0;
1200 }
1201
1202 /*
1203  * Start firmware execution after power on and intialization
1204  * The sequence is:
1205  *  1. Release ARC
1206  *  2. Wait for f/w initialization completes;
1207  */
1208 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1209 {
1210         int i;
1211         u32 inta, inta_mask, gpio;
1212
1213         IPW_DEBUG_INFO("enter\n");
1214
1215         if (priv->status & STATUS_RUNNING)
1216                 return 0;
1217
1218         /*
1219          * Initialize the hw - drive adapter to DO state by setting
1220          * init_done bit. Wait for clk_ready bit and Download
1221          * fw & dino ucode
1222          */
1223         if (ipw2100_download_firmware(priv)) {
1224                 printk(KERN_ERR DRV_NAME
1225                        ": %s: Failed to power on the adapter.\n",
1226                        priv->net_dev->name);
1227                 return -EIO;
1228         }
1229
1230         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1231          * in the firmware RBD and TBD ring queue */
1232         ipw2100_queues_initialize(priv);
1233
1234         ipw2100_hw_set_gpio(priv);
1235
1236         /* TODO -- Look at disabling interrupts here to make sure none
1237          * get fired during FW initialization */
1238
1239         /* Release ARC - clear reset bit */
1240         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1241
1242         /* wait for f/w intialization complete */
1243         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1244         i = 5000;
1245         do {
1246                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1247                 /* Todo... wait for sync command ... */
1248
1249                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1250
1251                 /* check "init done" bit */
1252                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1253                         /* reset "init done" bit */
1254                         write_register(priv->net_dev, IPW_REG_INTA,
1255                                        IPW2100_INTA_FW_INIT_DONE);
1256                         break;
1257                 }
1258
1259                 /* check error conditions : we check these after the firmware
1260                  * check so that if there is an error, the interrupt handler
1261                  * will see it and the adapter will be reset */
1262                 if (inta &
1263                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1264                         /* clear error conditions */
1265                         write_register(priv->net_dev, IPW_REG_INTA,
1266                                        IPW2100_INTA_FATAL_ERROR |
1267                                        IPW2100_INTA_PARITY_ERROR);
1268                 }
1269         } while (i--);
1270
1271         /* Clear out any pending INTAs since we aren't supposed to have
1272          * interrupts enabled at this point... */
1273         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1275         inta &= IPW_INTERRUPT_MASK;
1276         /* Clear out any pending interrupts */
1277         if (inta & inta_mask)
1278                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1279
1280         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1281                      i ? "SUCCESS" : "FAILED");
1282
1283         if (!i) {
1284                 printk(KERN_WARNING DRV_NAME
1285                        ": %s: Firmware did not initialize.\n",
1286                        priv->net_dev->name);
1287                 return -EIO;
1288         }
1289
1290         /* allow firmware to write to GPIO1 & GPIO3 */
1291         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1292
1293         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1294
1295         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1296
1297         /* Ready to receive commands */
1298         priv->status |= STATUS_RUNNING;
1299
1300         /* The adapter has been reset; we are not associated */
1301         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1302
1303         IPW_DEBUG_INFO("exit\n");
1304
1305         return 0;
1306 }
1307
1308 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1309 {
1310         if (!priv->fatal_error)
1311                 return;
1312
1313         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1314         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1315         priv->fatal_error = 0;
1316 }
1317
1318 /* NOTE: Our interrupt is disabled when this method is called */
1319 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1320 {
1321         u32 reg;
1322         int i;
1323
1324         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1325
1326         ipw2100_hw_set_gpio(priv);
1327
1328         /* Step 1. Stop Master Assert */
1329         write_register(priv->net_dev, IPW_REG_RESET_REG,
1330                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1331
1332         /* Step 2. Wait for stop Master Assert
1333          *         (not more then 50us, otherwise ret error */
1334         i = 5;
1335         do {
1336                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1337                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1338
1339                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1340                         break;
1341         } while (i--);
1342
1343         priv->status &= ~STATUS_RESET_PENDING;
1344
1345         if (!i) {
1346                 IPW_DEBUG_INFO
1347                     ("exit - waited too long for master assert stop\n");
1348                 return -EIO;
1349         }
1350
1351         write_register(priv->net_dev, IPW_REG_RESET_REG,
1352                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1353
1354         /* Reset any fatal_error conditions */
1355         ipw2100_reset_fatalerror(priv);
1356
1357         /* At this point, the adapter is now stopped and disabled */
1358         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1359                           STATUS_ASSOCIATED | STATUS_ENABLED);
1360
1361         return 0;
1362 }
1363
1364 /*
1365  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1366  *
1367  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1368  *
1369  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1370  * if STATUS_ASSN_LOST is sent.
1371  */
1372 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1373 {
1374
1375 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1376
1377         struct host_command cmd = {
1378                 .host_command = CARD_DISABLE_PHY_OFF,
1379                 .host_command_sequence = 0,
1380                 .host_command_length = 0,
1381         };
1382         int err, i;
1383         u32 val1, val2;
1384
1385         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1386
1387         /* Turn off the radio */
1388         err = ipw2100_hw_send_command(priv, &cmd);
1389         if (err)
1390                 return err;
1391
1392         for (i = 0; i < 2500; i++) {
1393                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1394                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1395
1396                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1397                     (val2 & IPW2100_COMMAND_PHY_OFF))
1398                         return 0;
1399
1400                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1401         }
1402
1403         return -EIO;
1404 }
1405
1406 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1407 {
1408         struct host_command cmd = {
1409                 .host_command = HOST_COMPLETE,
1410                 .host_command_sequence = 0,
1411                 .host_command_length = 0
1412         };
1413         int err = 0;
1414
1415         IPW_DEBUG_HC("HOST_COMPLETE\n");
1416
1417         if (priv->status & STATUS_ENABLED)
1418                 return 0;
1419
1420         mutex_lock(&priv->adapter_mutex);
1421
1422         if (rf_kill_active(priv)) {
1423                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1424                 goto fail_up;
1425         }
1426
1427         err = ipw2100_hw_send_command(priv, &cmd);
1428         if (err) {
1429                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1430                 goto fail_up;
1431         }
1432
1433         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1434         if (err) {
1435                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1436                                priv->net_dev->name);
1437                 goto fail_up;
1438         }
1439
1440         if (priv->stop_hang_check) {
1441                 priv->stop_hang_check = 0;
1442                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1443         }
1444
1445       fail_up:
1446         mutex_unlock(&priv->adapter_mutex);
1447         return err;
1448 }
1449
1450 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1451 {
1452 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1453
1454         struct host_command cmd = {
1455                 .host_command = HOST_PRE_POWER_DOWN,
1456                 .host_command_sequence = 0,
1457                 .host_command_length = 0,
1458         };
1459         int err, i;
1460         u32 reg;
1461
1462         if (!(priv->status & STATUS_RUNNING))
1463                 return 0;
1464
1465         priv->status |= STATUS_STOPPING;
1466
1467         /* We can only shut down the card if the firmware is operational.  So,
1468          * if we haven't reset since a fatal_error, then we can not send the
1469          * shutdown commands. */
1470         if (!priv->fatal_error) {
1471                 /* First, make sure the adapter is enabled so that the PHY_OFF
1472                  * command can shut it down */
1473                 ipw2100_enable_adapter(priv);
1474
1475                 err = ipw2100_hw_phy_off(priv);
1476                 if (err)
1477                         printk(KERN_WARNING DRV_NAME
1478                                ": Error disabling radio %d\n", err);
1479
1480                 /*
1481                  * If in D0-standby mode going directly to D3 may cause a
1482                  * PCI bus violation.  Therefore we must change out of the D0
1483                  * state.
1484                  *
1485                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1486                  * hardware from going into standby mode and will transition
1487                  * out of D0-standby if it is already in that state.
1488                  *
1489                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1490                  * driver upon completion.  Once received, the driver can
1491                  * proceed to the D3 state.
1492                  *
1493                  * Prepare for power down command to fw.  This command would
1494                  * take HW out of D0-standby and prepare it for D3 state.
1495                  *
1496                  * Currently FW does not support event notification for this
1497                  * event. Therefore, skip waiting for it.  Just wait a fixed
1498                  * 100ms
1499                  */
1500                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1501
1502                 err = ipw2100_hw_send_command(priv, &cmd);
1503                 if (err)
1504                         printk(KERN_WARNING DRV_NAME ": "
1505                                "%s: Power down command failed: Error %d\n",
1506                                priv->net_dev->name, err);
1507                 else
1508                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1509         }
1510
1511         priv->status &= ~STATUS_ENABLED;
1512
1513         /*
1514          * Set GPIO 3 writable by FW; GPIO 1 writable
1515          * by driver and enable clock
1516          */
1517         ipw2100_hw_set_gpio(priv);
1518
1519         /*
1520          * Power down adapter.  Sequence:
1521          * 1. Stop master assert (RESET_REG[9]=1)
1522          * 2. Wait for stop master (RESET_REG[8]==1)
1523          * 3. S/w reset assert (RESET_REG[7] = 1)
1524          */
1525
1526         /* Stop master assert */
1527         write_register(priv->net_dev, IPW_REG_RESET_REG,
1528                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1529
1530         /* wait stop master not more than 50 usec.
1531          * Otherwise return error. */
1532         for (i = 5; i > 0; i--) {
1533                 udelay(10);
1534
1535                 /* Check master stop bit */
1536                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1537
1538                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1539                         break;
1540         }
1541
1542         if (i == 0)
1543                 printk(KERN_WARNING DRV_NAME
1544                        ": %s: Could now power down adapter.\n",
1545                        priv->net_dev->name);
1546
1547         /* assert s/w reset */
1548         write_register(priv->net_dev, IPW_REG_RESET_REG,
1549                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1550
1551         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1552
1553         return 0;
1554 }
1555
1556 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1557 {
1558         struct host_command cmd = {
1559                 .host_command = CARD_DISABLE,
1560                 .host_command_sequence = 0,
1561                 .host_command_length = 0
1562         };
1563         int err = 0;
1564
1565         IPW_DEBUG_HC("CARD_DISABLE\n");
1566
1567         if (!(priv->status & STATUS_ENABLED))
1568                 return 0;
1569
1570         /* Make sure we clear the associated state */
1571         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1572
1573         if (!priv->stop_hang_check) {
1574                 priv->stop_hang_check = 1;
1575                 cancel_delayed_work(&priv->hang_check);
1576         }
1577
1578         mutex_lock(&priv->adapter_mutex);
1579
1580         err = ipw2100_hw_send_command(priv, &cmd);
1581         if (err) {
1582                 printk(KERN_WARNING DRV_NAME
1583                        ": exit - failed to send CARD_DISABLE command\n");
1584                 goto fail_up;
1585         }
1586
1587         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1588         if (err) {
1589                 printk(KERN_WARNING DRV_NAME
1590                        ": exit - card failed to change to DISABLED\n");
1591                 goto fail_up;
1592         }
1593
1594         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1595
1596       fail_up:
1597         mutex_unlock(&priv->adapter_mutex);
1598         return err;
1599 }
1600
1601 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1602 {
1603         struct host_command cmd = {
1604                 .host_command = SET_SCAN_OPTIONS,
1605                 .host_command_sequence = 0,
1606                 .host_command_length = 8
1607         };
1608         int err;
1609
1610         IPW_DEBUG_INFO("enter\n");
1611
1612         IPW_DEBUG_SCAN("setting scan options\n");
1613
1614         cmd.host_command_parameters[0] = 0;
1615
1616         if (!(priv->config & CFG_ASSOCIATE))
1617                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1618         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1619                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1620         if (priv->config & CFG_PASSIVE_SCAN)
1621                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1622
1623         cmd.host_command_parameters[1] = priv->channel_mask;
1624
1625         err = ipw2100_hw_send_command(priv, &cmd);
1626
1627         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1628                      cmd.host_command_parameters[0]);
1629
1630         return err;
1631 }
1632
1633 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1634 {
1635         struct host_command cmd = {
1636                 .host_command = BROADCAST_SCAN,
1637                 .host_command_sequence = 0,
1638                 .host_command_length = 4
1639         };
1640         int err;
1641
1642         IPW_DEBUG_HC("START_SCAN\n");
1643
1644         cmd.host_command_parameters[0] = 0;
1645
1646         /* No scanning if in monitor mode */
1647         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1648                 return 1;
1649
1650         if (priv->status & STATUS_SCANNING) {
1651                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1652                 return 0;
1653         }
1654
1655         IPW_DEBUG_INFO("enter\n");
1656
1657         /* Not clearing here; doing so makes iwlist always return nothing...
1658          *
1659          * We should modify the table logic to use aging tables vs. clearing
1660          * the table on each scan start.
1661          */
1662         IPW_DEBUG_SCAN("starting scan\n");
1663
1664         priv->status |= STATUS_SCANNING;
1665         err = ipw2100_hw_send_command(priv, &cmd);
1666         if (err)
1667                 priv->status &= ~STATUS_SCANNING;
1668
1669         IPW_DEBUG_INFO("exit\n");
1670
1671         return err;
1672 }
1673
1674 static const struct ieee80211_geo ipw_geos[] = {
1675         {                       /* Restricted */
1676          "---",
1677          .bg_channels = 14,
1678          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1679                 {2427, 4}, {2432, 5}, {2437, 6},
1680                 {2442, 7}, {2447, 8}, {2452, 9},
1681                 {2457, 10}, {2462, 11}, {2467, 12},
1682                 {2472, 13}, {2484, 14}},
1683          },
1684 };
1685
1686 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1687 {
1688         unsigned long flags;
1689         int rc = 0;
1690         u32 lock;
1691         u32 ord_len = sizeof(lock);
1692
1693         /* Quite if manually disabled. */
1694         if (priv->status & STATUS_RF_KILL_SW) {
1695                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1696                                "switch\n", priv->net_dev->name);
1697                 return 0;
1698         }
1699
1700         /* the ipw2100 hardware really doesn't want power management delays
1701          * longer than 175usec
1702          */
1703         modify_acceptable_latency("ipw2100", 175);
1704
1705         /* If the interrupt is enabled, turn it off... */
1706         spin_lock_irqsave(&priv->low_lock, flags);
1707         ipw2100_disable_interrupts(priv);
1708
1709         /* Reset any fatal_error conditions */
1710         ipw2100_reset_fatalerror(priv);
1711         spin_unlock_irqrestore(&priv->low_lock, flags);
1712
1713         if (priv->status & STATUS_POWERED ||
1714             (priv->status & STATUS_RESET_PENDING)) {
1715                 /* Power cycle the card ... */
1716                 if (ipw2100_power_cycle_adapter(priv)) {
1717                         printk(KERN_WARNING DRV_NAME
1718                                ": %s: Could not cycle adapter.\n",
1719                                priv->net_dev->name);
1720                         rc = 1;
1721                         goto exit;
1722                 }
1723         } else
1724                 priv->status |= STATUS_POWERED;
1725
1726         /* Load the firmware, start the clocks, etc. */
1727         if (ipw2100_start_adapter(priv)) {
1728                 printk(KERN_ERR DRV_NAME
1729                        ": %s: Failed to start the firmware.\n",
1730                        priv->net_dev->name);
1731                 rc = 1;
1732                 goto exit;
1733         }
1734
1735         ipw2100_initialize_ordinals(priv);
1736
1737         /* Determine capabilities of this particular HW configuration */
1738         if (ipw2100_get_hw_features(priv)) {
1739                 printk(KERN_ERR DRV_NAME
1740                        ": %s: Failed to determine HW features.\n",
1741                        priv->net_dev->name);
1742                 rc = 1;
1743                 goto exit;
1744         }
1745
1746         /* Initialize the geo */
1747         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1748                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1749                 return 0;
1750         }
1751         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1752
1753         lock = LOCK_NONE;
1754         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1755                 printk(KERN_ERR DRV_NAME
1756                        ": %s: Failed to clear ordinal lock.\n",
1757                        priv->net_dev->name);
1758                 rc = 1;
1759                 goto exit;
1760         }
1761
1762         priv->status &= ~STATUS_SCANNING;
1763
1764         if (rf_kill_active(priv)) {
1765                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1766                        priv->net_dev->name);
1767
1768                 if (priv->stop_rf_kill) {
1769                         priv->stop_rf_kill = 0;
1770                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1771                 }
1772
1773                 deferred = 1;
1774         }
1775
1776         /* Turn on the interrupt so that commands can be processed */
1777         ipw2100_enable_interrupts(priv);
1778
1779         /* Send all of the commands that must be sent prior to
1780          * HOST_COMPLETE */
1781         if (ipw2100_adapter_setup(priv)) {
1782                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1783                        priv->net_dev->name);
1784                 rc = 1;
1785                 goto exit;
1786         }
1787
1788         if (!deferred) {
1789                 /* Enable the adapter - sends HOST_COMPLETE */
1790                 if (ipw2100_enable_adapter(priv)) {
1791                         printk(KERN_ERR DRV_NAME ": "
1792                                "%s: failed in call to enable adapter.\n",
1793                                priv->net_dev->name);
1794                         ipw2100_hw_stop_adapter(priv);
1795                         rc = 1;
1796                         goto exit;
1797                 }
1798
1799                 /* Start a scan . . . */
1800                 ipw2100_set_scan_options(priv);
1801                 ipw2100_start_scan(priv);
1802         }
1803
1804       exit:
1805         return rc;
1806 }
1807
1808 /* Called by register_netdev() */
1809 static int ipw2100_net_init(struct net_device *dev)
1810 {
1811         struct ipw2100_priv *priv = ieee80211_priv(dev);
1812         return ipw2100_up(priv, 1);
1813 }
1814
1815 static void ipw2100_down(struct ipw2100_priv *priv)
1816 {
1817         unsigned long flags;
1818         union iwreq_data wrqu = {
1819                 .ap_addr = {
1820                             .sa_family = ARPHRD_ETHER}
1821         };
1822         int associated = priv->status & STATUS_ASSOCIATED;
1823
1824         /* Kill the RF switch timer */
1825         if (!priv->stop_rf_kill) {
1826                 priv->stop_rf_kill = 1;
1827                 cancel_delayed_work(&priv->rf_kill);
1828         }
1829
1830         /* Kill the firmare hang check timer */
1831         if (!priv->stop_hang_check) {
1832                 priv->stop_hang_check = 1;
1833                 cancel_delayed_work(&priv->hang_check);
1834         }
1835
1836         /* Kill any pending resets */
1837         if (priv->status & STATUS_RESET_PENDING)
1838                 cancel_delayed_work(&priv->reset_work);
1839
1840         /* Make sure the interrupt is on so that FW commands will be
1841          * processed correctly */
1842         spin_lock_irqsave(&priv->low_lock, flags);
1843         ipw2100_enable_interrupts(priv);
1844         spin_unlock_irqrestore(&priv->low_lock, flags);
1845
1846         if (ipw2100_hw_stop_adapter(priv))
1847                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1848                        priv->net_dev->name);
1849
1850         /* Do not disable the interrupt until _after_ we disable
1851          * the adaptor.  Otherwise the CARD_DISABLE command will never
1852          * be ack'd by the firmware */
1853         spin_lock_irqsave(&priv->low_lock, flags);
1854         ipw2100_disable_interrupts(priv);
1855         spin_unlock_irqrestore(&priv->low_lock, flags);
1856
1857         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1858
1859 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1860         if (priv->config & CFG_C3_DISABLED) {
1861                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1862                 acpi_set_cstate_limit(priv->cstate_limit);
1863                 priv->config &= ~CFG_C3_DISABLED;
1864         }
1865 #endif
1866
1867         /* We have to signal any supplicant if we are disassociating */
1868         if (associated)
1869                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1870
1871         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1872         netif_carrier_off(priv->net_dev);
1873         netif_stop_queue(priv->net_dev);
1874 }
1875
1876 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1877 {
1878         unsigned long flags;
1879         union iwreq_data wrqu = {
1880                 .ap_addr = {
1881                             .sa_family = ARPHRD_ETHER}
1882         };
1883         int associated = priv->status & STATUS_ASSOCIATED;
1884
1885         spin_lock_irqsave(&priv->low_lock, flags);
1886         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1887         priv->resets++;
1888         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1889         priv->status |= STATUS_SECURITY_UPDATED;
1890
1891         /* Force a power cycle even if interface hasn't been opened
1892          * yet */
1893         cancel_delayed_work(&priv->reset_work);
1894         priv->status |= STATUS_RESET_PENDING;
1895         spin_unlock_irqrestore(&priv->low_lock, flags);
1896
1897         mutex_lock(&priv->action_mutex);
1898         /* stop timed checks so that they don't interfere with reset */
1899         priv->stop_hang_check = 1;
1900         cancel_delayed_work(&priv->hang_check);
1901
1902         /* We have to signal any supplicant if we are disassociating */
1903         if (associated)
1904                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1905
1906         ipw2100_up(priv, 0);
1907         mutex_unlock(&priv->action_mutex);
1908
1909 }
1910
1911 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1912 {
1913
1914 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1915         int ret, len, essid_len;
1916         char essid[IW_ESSID_MAX_SIZE];
1917         u32 txrate;
1918         u32 chan;
1919         char *txratename;
1920         u8 bssid[ETH_ALEN];
1921
1922         /*
1923          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1924          *      an actual MAC of the AP. Seems like FW sets this
1925          *      address too late. Read it later and expose through
1926          *      /proc or schedule a later task to query and update
1927          */
1928
1929         essid_len = IW_ESSID_MAX_SIZE;
1930         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1931                                   essid, &essid_len);
1932         if (ret) {
1933                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1934                                __LINE__);
1935                 return;
1936         }
1937
1938         len = sizeof(u32);
1939         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1940         if (ret) {
1941                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1942                                __LINE__);
1943                 return;
1944         }
1945
1946         len = sizeof(u32);
1947         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1948         if (ret) {
1949                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1950                                __LINE__);
1951                 return;
1952         }
1953         len = ETH_ALEN;
1954         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1955         if (ret) {
1956                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1957                                __LINE__);
1958                 return;
1959         }
1960         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1961
1962         switch (txrate) {
1963         case TX_RATE_1_MBIT:
1964                 txratename = "1Mbps";
1965                 break;
1966         case TX_RATE_2_MBIT:
1967                 txratename = "2Mbsp";
1968                 break;
1969         case TX_RATE_5_5_MBIT:
1970                 txratename = "5.5Mbps";
1971                 break;
1972         case TX_RATE_11_MBIT:
1973                 txratename = "11Mbps";
1974                 break;
1975         default:
1976                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1977                 txratename = "unknown rate";
1978                 break;
1979         }
1980
1981         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1982                        MAC_FMT ")\n",
1983                        priv->net_dev->name, escape_essid(essid, essid_len),
1984                        txratename, chan, MAC_ARG(bssid));
1985
1986         /* now we copy read ssid into dev */
1987         if (!(priv->config & CFG_STATIC_ESSID)) {
1988                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1989                 memcpy(priv->essid, essid, priv->essid_len);
1990         }
1991         priv->channel = chan;
1992         memcpy(priv->bssid, bssid, ETH_ALEN);
1993
1994         priv->status |= STATUS_ASSOCIATING;
1995         priv->connect_start = get_seconds();
1996
1997         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1998 }
1999
2000 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2001                              int length, int batch_mode)
2002 {
2003         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2004         struct host_command cmd = {
2005                 .host_command = SSID,
2006                 .host_command_sequence = 0,
2007                 .host_command_length = ssid_len
2008         };
2009         int err;
2010
2011         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2012
2013         if (ssid_len)
2014                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2015
2016         if (!batch_mode) {
2017                 err = ipw2100_disable_adapter(priv);
2018                 if (err)
2019                         return err;
2020         }
2021
2022         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2023          * disable auto association -- so we cheat by setting a bogus SSID */
2024         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2025                 int i;
2026                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2027                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2028                         bogus[i] = 0x18 + i;
2029                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2030         }
2031
2032         /* NOTE:  We always send the SSID command even if the provided ESSID is
2033          * the same as what we currently think is set. */
2034
2035         err = ipw2100_hw_send_command(priv, &cmd);
2036         if (!err) {
2037                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2038                 memcpy(priv->essid, essid, ssid_len);
2039                 priv->essid_len = ssid_len;
2040         }
2041
2042         if (!batch_mode) {
2043                 if (ipw2100_enable_adapter(priv))
2044                         err = -EIO;
2045         }
2046
2047         return err;
2048 }
2049
2050 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2051 {
2052         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2053                   "disassociated: '%s' " MAC_FMT " \n",
2054                   escape_essid(priv->essid, priv->essid_len),
2055                   MAC_ARG(priv->bssid));
2056
2057         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2058
2059         if (priv->status & STATUS_STOPPING) {
2060                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2061                 return;
2062         }
2063
2064         memset(priv->bssid, 0, ETH_ALEN);
2065         memset(priv->ieee->bssid, 0, ETH_ALEN);
2066
2067         netif_carrier_off(priv->net_dev);
2068         netif_stop_queue(priv->net_dev);
2069
2070         if (!(priv->status & STATUS_RUNNING))
2071                 return;
2072
2073         if (priv->status & STATUS_SECURITY_UPDATED)
2074                 queue_work(priv->workqueue, &priv->security_work);
2075
2076         queue_work(priv->workqueue, &priv->wx_event_work);
2077 }
2078
2079 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2080 {
2081         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2082                        priv->net_dev->name);
2083
2084         /* RF_KILL is now enabled (else we wouldn't be here) */
2085         priv->status |= STATUS_RF_KILL_HW;
2086
2087 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2088         if (priv->config & CFG_C3_DISABLED) {
2089                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2090                 acpi_set_cstate_limit(priv->cstate_limit);
2091                 priv->config &= ~CFG_C3_DISABLED;
2092         }
2093 #endif
2094
2095         /* Make sure the RF Kill check timer is running */
2096         priv->stop_rf_kill = 0;
2097         cancel_delayed_work(&priv->rf_kill);
2098         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2099 }
2100
2101 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2102 {
2103         IPW_DEBUG_SCAN("scan complete\n");
2104         /* Age the scan results... */
2105         priv->ieee->scans++;
2106         priv->status &= ~STATUS_SCANNING;
2107 }
2108
2109 #ifdef CONFIG_IPW2100_DEBUG
2110 #define IPW2100_HANDLER(v, f) { v, f, # v }
2111 struct ipw2100_status_indicator {
2112         int status;
2113         void (*cb) (struct ipw2100_priv * priv, u32 status);
2114         char *name;
2115 };
2116 #else
2117 #define IPW2100_HANDLER(v, f) { v, f }
2118 struct ipw2100_status_indicator {
2119         int status;
2120         void (*cb) (struct ipw2100_priv * priv, u32 status);
2121 };
2122 #endif                          /* CONFIG_IPW2100_DEBUG */
2123
2124 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2125 {
2126         IPW_DEBUG_SCAN("Scanning...\n");
2127         priv->status |= STATUS_SCANNING;
2128 }
2129
2130 static const struct ipw2100_status_indicator status_handlers[] = {
2131         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2132         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2133         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2134         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2135         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2136         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2137         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2138         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2139         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2140         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2141         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2142         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2143         IPW2100_HANDLER(-1, NULL)
2144 };
2145
2146 static void isr_status_change(struct ipw2100_priv *priv, int status)
2147 {
2148         int i;
2149
2150         if (status == IPW_STATE_SCANNING &&
2151             priv->status & STATUS_ASSOCIATED &&
2152             !(priv->status & STATUS_SCANNING)) {
2153                 IPW_DEBUG_INFO("Scan detected while associated, with "
2154                                "no scan request.  Restarting firmware.\n");
2155
2156                 /* Wake up any sleeping jobs */
2157                 schedule_reset(priv);
2158         }
2159
2160         for (i = 0; status_handlers[i].status != -1; i++) {
2161                 if (status == status_handlers[i].status) {
2162                         IPW_DEBUG_NOTIF("Status change: %s\n",
2163                                         status_handlers[i].name);
2164                         if (status_handlers[i].cb)
2165                                 status_handlers[i].cb(priv, status);
2166                         priv->wstats.status = status;
2167                         return;
2168                 }
2169         }
2170
2171         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2172 }
2173
2174 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2175                                     struct ipw2100_cmd_header *cmd)
2176 {
2177 #ifdef CONFIG_IPW2100_DEBUG
2178         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2179                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2180                              command_types[cmd->host_command_reg],
2181                              cmd->host_command_reg);
2182         }
2183 #endif
2184         if (cmd->host_command_reg == HOST_COMPLETE)
2185                 priv->status |= STATUS_ENABLED;
2186
2187         if (cmd->host_command_reg == CARD_DISABLE)
2188                 priv->status &= ~STATUS_ENABLED;
2189
2190         priv->status &= ~STATUS_CMD_ACTIVE;
2191
2192         wake_up_interruptible(&priv->wait_command_queue);
2193 }
2194
2195 #ifdef CONFIG_IPW2100_DEBUG
2196 static const char *frame_types[] = {
2197         "COMMAND_STATUS_VAL",
2198         "STATUS_CHANGE_VAL",
2199         "P80211_DATA_VAL",
2200         "P8023_DATA_VAL",
2201         "HOST_NOTIFICATION_VAL"
2202 };
2203 #endif
2204
2205 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2206                                     struct ipw2100_rx_packet *packet)
2207 {
2208         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2209         if (!packet->skb)
2210                 return -ENOMEM;
2211
2212         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2213         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2214                                           sizeof(struct ipw2100_rx),
2215                                           PCI_DMA_FROMDEVICE);
2216         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2217          *       dma_addr */
2218
2219         return 0;
2220 }
2221
2222 #define SEARCH_ERROR   0xffffffff
2223 #define SEARCH_FAIL    0xfffffffe
2224 #define SEARCH_SUCCESS 0xfffffff0
2225 #define SEARCH_DISCARD 0
2226 #define SEARCH_SNAPSHOT 1
2227
2228 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2229 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2230 {
2231         int i;
2232         if (!priv->snapshot[0])
2233                 return;
2234         for (i = 0; i < 0x30; i++)
2235                 kfree(priv->snapshot[i]);
2236         priv->snapshot[0] = NULL;
2237 }
2238
2239 #ifdef CONFIG_IPW2100_DEBUG_C3
2240 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2241 {
2242         int i;
2243         if (priv->snapshot[0])
2244                 return 1;
2245         for (i = 0; i < 0x30; i++) {
2246                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2247                 if (!priv->snapshot[i]) {
2248                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2249                                        "buffer %d\n", priv->net_dev->name, i);
2250                         while (i > 0)
2251                                 kfree(priv->snapshot[--i]);
2252                         priv->snapshot[0] = NULL;
2253                         return 0;
2254                 }
2255         }
2256
2257         return 1;
2258 }
2259
2260 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2261                                     size_t len, int mode)
2262 {
2263         u32 i, j;
2264         u32 tmp;
2265         u8 *s, *d;
2266         u32 ret;
2267
2268         s = in_buf;
2269         if (mode == SEARCH_SNAPSHOT) {
2270                 if (!ipw2100_snapshot_alloc(priv))
2271                         mode = SEARCH_DISCARD;
2272         }
2273
2274         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2275                 read_nic_dword(priv->net_dev, i, &tmp);
2276                 if (mode == SEARCH_SNAPSHOT)
2277                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2278                 if (ret == SEARCH_FAIL) {
2279                         d = (u8 *) & tmp;
2280                         for (j = 0; j < 4; j++) {
2281                                 if (*s != *d) {
2282                                         s = in_buf;
2283                                         continue;
2284                                 }
2285
2286                                 s++;
2287                                 d++;
2288
2289                                 if ((s - in_buf) == len)
2290                                         ret = (i + j) - len + 1;
2291                         }
2292                 } else if (mode == SEARCH_DISCARD)
2293                         return ret;
2294         }
2295
2296         return ret;
2297 }
2298 #endif
2299
2300 /*
2301  *
2302  * 0) Disconnect the SKB from the firmware (just unmap)
2303  * 1) Pack the ETH header into the SKB
2304  * 2) Pass the SKB to the network stack
2305  *
2306  * When packet is provided by the firmware, it contains the following:
2307  *
2308  * .  ieee80211_hdr
2309  * .  ieee80211_snap_hdr
2310  *
2311  * The size of the constructed ethernet
2312  *
2313  */
2314 #ifdef CONFIG_IPW2100_RX_DEBUG
2315 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2316 #endif
2317
2318 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2319 {
2320 #ifdef CONFIG_IPW2100_DEBUG_C3
2321         struct ipw2100_status *status = &priv->status_queue.drv[i];
2322         u32 match, reg;
2323         int j;
2324 #endif
2325 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2326         int limit;
2327 #endif
2328
2329         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2330                        i * sizeof(struct ipw2100_status));
2331
2332 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2333         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2334         limit = acpi_get_cstate_limit();
2335         if (limit > 2) {
2336                 priv->cstate_limit = limit;
2337                 acpi_set_cstate_limit(2);
2338                 priv->config |= CFG_C3_DISABLED;
2339         }
2340 #endif
2341
2342 #ifdef CONFIG_IPW2100_DEBUG_C3
2343         /* Halt the fimrware so we can get a good image */
2344         write_register(priv->net_dev, IPW_REG_RESET_REG,
2345                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2346         j = 5;
2347         do {
2348                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2349                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2350
2351                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2352                         break;
2353         } while (j--);
2354
2355         match = ipw2100_match_buf(priv, (u8 *) status,
2356                                   sizeof(struct ipw2100_status),
2357                                   SEARCH_SNAPSHOT);
2358         if (match < SEARCH_SUCCESS)
2359                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2360                                "offset 0x%06X, length %d:\n",
2361                                priv->net_dev->name, match,
2362                                sizeof(struct ipw2100_status));
2363         else
2364                 IPW_DEBUG_INFO("%s: No DMA status match in "
2365                                "Firmware.\n", priv->net_dev->name);
2366
2367         printk_buf((u8 *) priv->status_queue.drv,
2368                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2369 #endif
2370
2371         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2372         priv->ieee->stats.rx_errors++;
2373         schedule_reset(priv);
2374 }
2375
2376 static void isr_rx(struct ipw2100_priv *priv, int i,
2377                           struct ieee80211_rx_stats *stats)
2378 {
2379         struct ipw2100_status *status = &priv->status_queue.drv[i];
2380         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2381
2382         IPW_DEBUG_RX("Handler...\n");
2383
2384         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2385                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2386                                "  Dropping.\n",
2387                                priv->net_dev->name,
2388                                status->frame_size, skb_tailroom(packet->skb));
2389                 priv->ieee->stats.rx_errors++;
2390                 return;
2391         }
2392
2393         if (unlikely(!netif_running(priv->net_dev))) {
2394                 priv->ieee->stats.rx_errors++;
2395                 priv->wstats.discard.misc++;
2396                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2397                 return;
2398         }
2399
2400         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2401                      !(priv->status & STATUS_ASSOCIATED))) {
2402                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2403                 priv->wstats.discard.misc++;
2404                 return;
2405         }
2406
2407         pci_unmap_single(priv->pci_dev,
2408                          packet->dma_addr,
2409                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2410
2411         skb_put(packet->skb, status->frame_size);
2412
2413 #ifdef CONFIG_IPW2100_RX_DEBUG
2414         /* Make a copy of the frame so we can dump it to the logs if
2415          * ieee80211_rx fails */
2416         memcpy(packet_data, packet->skb->data,
2417                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2418 #endif
2419
2420         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2421 #ifdef CONFIG_IPW2100_RX_DEBUG
2422                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2423                                priv->net_dev->name);
2424                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2425 #endif
2426                 priv->ieee->stats.rx_errors++;
2427
2428                 /* ieee80211_rx failed, so it didn't free the SKB */
2429                 dev_kfree_skb_any(packet->skb);
2430                 packet->skb = NULL;
2431         }
2432
2433         /* We need to allocate a new SKB and attach it to the RDB. */
2434         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2435                 printk(KERN_WARNING DRV_NAME ": "
2436                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2437                        "adapter.\n", priv->net_dev->name);
2438                 /* TODO: schedule adapter shutdown */
2439                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2440         }
2441
2442         /* Update the RDB entry */
2443         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2444 }
2445
2446 #ifdef CONFIG_IPW2100_MONITOR
2447
2448 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2449                    struct ieee80211_rx_stats *stats)
2450 {
2451         struct ipw2100_status *status = &priv->status_queue.drv[i];
2452         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2453
2454         /* Magic struct that slots into the radiotap header -- no reason
2455          * to build this manually element by element, we can write it much
2456          * more efficiently than we can parse it. ORDER MATTERS HERE */
2457         struct ipw_rt_hdr {
2458                 struct ieee80211_radiotap_header rt_hdr;
2459                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2460         } *ipw_rt;
2461
2462         IPW_DEBUG_RX("Handler...\n");
2463
2464         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2465                                 sizeof(struct ipw_rt_hdr))) {
2466                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2467                                "  Dropping.\n",
2468                                priv->net_dev->name,
2469                                status->frame_size,
2470                                skb_tailroom(packet->skb));
2471                 priv->ieee->stats.rx_errors++;
2472                 return;
2473         }
2474
2475         if (unlikely(!netif_running(priv->net_dev))) {
2476                 priv->ieee->stats.rx_errors++;
2477                 priv->wstats.discard.misc++;
2478                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2479                 return;
2480         }
2481
2482         if (unlikely(priv->config & CFG_CRC_CHECK &&
2483                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2484                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2485                 priv->ieee->stats.rx_errors++;
2486                 return;
2487         }
2488
2489         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2490                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2491         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2492                 packet->skb->data, status->frame_size);
2493
2494         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2495
2496         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2497         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2498         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2499
2500         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2501
2502         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2503
2504         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2505
2506         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2507                 priv->ieee->stats.rx_errors++;
2508
2509                 /* ieee80211_rx failed, so it didn't free the SKB */
2510                 dev_kfree_skb_any(packet->skb);
2511                 packet->skb = NULL;
2512         }
2513
2514         /* We need to allocate a new SKB and attach it to the RDB. */
2515         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2516                 IPW_DEBUG_WARNING(
2517                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2518                         "adapter.\n", priv->net_dev->name);
2519                 /* TODO: schedule adapter shutdown */
2520                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2521         }
2522
2523         /* Update the RDB entry */
2524         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2525 }
2526
2527 #endif
2528
2529 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2530 {
2531         struct ipw2100_status *status = &priv->status_queue.drv[i];
2532         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2533         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2534
2535         switch (frame_type) {
2536         case COMMAND_STATUS_VAL:
2537                 return (status->frame_size != sizeof(u->rx_data.command));
2538         case STATUS_CHANGE_VAL:
2539                 return (status->frame_size != sizeof(u->rx_data.status));
2540         case HOST_NOTIFICATION_VAL:
2541                 return (status->frame_size < sizeof(u->rx_data.notification));
2542         case P80211_DATA_VAL:
2543         case P8023_DATA_VAL:
2544 #ifdef CONFIG_IPW2100_MONITOR
2545                 return 0;
2546 #else
2547                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2548                 case IEEE80211_FTYPE_MGMT:
2549                 case IEEE80211_FTYPE_CTL:
2550                         return 0;
2551                 case IEEE80211_FTYPE_DATA:
2552                         return (status->frame_size >
2553                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2554                 }
2555 #endif
2556         }
2557
2558         return 1;
2559 }
2560
2561 /*
2562  * ipw2100 interrupts are disabled at this point, and the ISR
2563  * is the only code that calls this method.  So, we do not need
2564  * to play with any locks.
2565  *
2566  * RX Queue works as follows:
2567  *
2568  * Read index - firmware places packet in entry identified by the
2569  *              Read index and advances Read index.  In this manner,
2570  *              Read index will always point to the next packet to
2571  *              be filled--but not yet valid.
2572  *
2573  * Write index - driver fills this entry with an unused RBD entry.
2574  *               This entry has not filled by the firmware yet.
2575  *
2576  * In between the W and R indexes are the RBDs that have been received
2577  * but not yet processed.
2578  *
2579  * The process of handling packets will start at WRITE + 1 and advance
2580  * until it reaches the READ index.
2581  *
2582  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2583  *
2584  */
2585 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2586 {
2587         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2588         struct ipw2100_status_queue *sq = &priv->status_queue;
2589         struct ipw2100_rx_packet *packet;
2590         u16 frame_type;
2591         u32 r, w, i, s;
2592         struct ipw2100_rx *u;
2593         struct ieee80211_rx_stats stats = {
2594                 .mac_time = jiffies,
2595         };
2596
2597         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2598         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2599
2600         if (r >= rxq->entries) {
2601                 IPW_DEBUG_RX("exit - bad read index\n");
2602                 return;
2603         }
2604
2605         i = (rxq->next + 1) % rxq->entries;
2606         s = i;
2607         while (i != r) {
2608                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2609                    r, rxq->next, i); */
2610
2611                 packet = &priv->rx_buffers[i];
2612
2613                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2614                  * the correct values */
2615                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2616                                             sq->nic +
2617                                             sizeof(struct ipw2100_status) * i,
2618                                             sizeof(struct ipw2100_status),
2619                                             PCI_DMA_FROMDEVICE);
2620
2621                 /* Sync the DMA for the RX buffer so CPU is sure to get
2622                  * the correct values */
2623                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2624                                             sizeof(struct ipw2100_rx),
2625                                             PCI_DMA_FROMDEVICE);
2626
2627                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2628                         ipw2100_corruption_detected(priv, i);
2629                         goto increment;
2630                 }
2631
2632                 u = packet->rxp;
2633                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2634                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2635                 stats.len = sq->drv[i].frame_size;
2636
2637                 stats.mask = 0;
2638                 if (stats.rssi != 0)
2639                         stats.mask |= IEEE80211_STATMASK_RSSI;
2640                 stats.freq = IEEE80211_24GHZ_BAND;
2641
2642                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2643                              priv->net_dev->name, frame_types[frame_type],
2644                              stats.len);
2645
2646                 switch (frame_type) {
2647                 case COMMAND_STATUS_VAL:
2648                         /* Reset Rx watchdog */
2649                         isr_rx_complete_command(priv, &u->rx_data.command);
2650                         break;
2651
2652                 case STATUS_CHANGE_VAL:
2653                         isr_status_change(priv, u->rx_data.status);
2654                         break;
2655
2656                 case P80211_DATA_VAL:
2657                 case P8023_DATA_VAL:
2658 #ifdef CONFIG_IPW2100_MONITOR
2659                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2660                                 isr_rx_monitor(priv, i, &stats);
2661                                 break;
2662                         }
2663 #endif
2664                         if (stats.len < sizeof(u->rx_data.header))
2665                                 break;
2666                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2667                         case IEEE80211_FTYPE_MGMT:
2668                                 ieee80211_rx_mgt(priv->ieee,
2669                                                  &u->rx_data.header, &stats);
2670                                 break;
2671
2672                         case IEEE80211_FTYPE_CTL:
2673                                 break;
2674
2675                         case IEEE80211_FTYPE_DATA:
2676                                 isr_rx(priv, i, &stats);
2677                                 break;
2678
2679                         }
2680                         break;
2681                 }
2682
2683               increment:
2684                 /* clear status field associated with this RBD */
2685                 rxq->drv[i].status.info.field = 0;
2686
2687                 i = (i + 1) % rxq->entries;
2688         }
2689
2690         if (i != s) {
2691                 /* backtrack one entry, wrapping to end if at 0 */
2692                 rxq->next = (i ? i : rxq->entries) - 1;
2693
2694                 write_register(priv->net_dev,
2695                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2696         }
2697 }
2698
2699 /*
2700  * __ipw2100_tx_process
2701  *
2702  * This routine will determine whether the next packet on
2703  * the fw_pend_list has been processed by the firmware yet.
2704  *
2705  * If not, then it does nothing and returns.
2706  *
2707  * If so, then it removes the item from the fw_pend_list, frees
2708  * any associated storage, and places the item back on the
2709  * free list of its source (either msg_free_list or tx_free_list)
2710  *
2711  * TX Queue works as follows:
2712  *
2713  * Read index - points to the next TBD that the firmware will
2714  *              process.  The firmware will read the data, and once
2715  *              done processing, it will advance the Read index.
2716  *
2717  * Write index - driver fills this entry with an constructed TBD
2718  *               entry.  The Write index is not advanced until the
2719  *               packet has been configured.
2720  *
2721  * In between the W and R indexes are the TBDs that have NOT been
2722  * processed.  Lagging behind the R index are packets that have
2723  * been processed but have not been freed by the driver.
2724  *
2725  * In order to free old storage, an internal index will be maintained
2726  * that points to the next packet to be freed.  When all used
2727  * packets have been freed, the oldest index will be the same as the
2728  * firmware's read index.
2729  *
2730  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2731  *
2732  * Because the TBD structure can not contain arbitrary data, the
2733  * driver must keep an internal queue of cached allocations such that
2734  * it can put that data back into the tx_free_list and msg_free_list
2735  * for use by future command and data packets.
2736  *
2737  */
2738 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2739 {
2740         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2741         struct ipw2100_bd *tbd;
2742         struct list_head *element;
2743         struct ipw2100_tx_packet *packet;
2744         int descriptors_used;
2745         int e, i;
2746         u32 r, w, frag_num = 0;
2747
2748         if (list_empty(&priv->fw_pend_list))
2749                 return 0;
2750
2751         element = priv->fw_pend_list.next;
2752
2753         packet = list_entry(element, struct ipw2100_tx_packet, list);
2754         tbd = &txq->drv[packet->index];
2755
2756         /* Determine how many TBD entries must be finished... */
2757         switch (packet->type) {
2758         case COMMAND:
2759                 /* COMMAND uses only one slot; don't advance */
2760                 descriptors_used = 1;
2761                 e = txq->oldest;
2762                 break;
2763
2764         case DATA:
2765                 /* DATA uses two slots; advance and loop position. */
2766                 descriptors_used = tbd->num_fragments;
2767                 frag_num = tbd->num_fragments - 1;
2768                 e = txq->oldest + frag_num;
2769                 e %= txq->entries;
2770                 break;
2771
2772         default:
2773                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2774                        priv->net_dev->name);
2775                 return 0;
2776         }
2777
2778         /* if the last TBD is not done by NIC yet, then packet is
2779          * not ready to be released.
2780          *
2781          */
2782         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2783                       &r);
2784         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2785                       &w);
2786         if (w != txq->next)
2787                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2788                        priv->net_dev->name);
2789
2790         /*
2791          * txq->next is the index of the last packet written txq->oldest is
2792          * the index of the r is the index of the next packet to be read by
2793          * firmware
2794          */
2795
2796         /*
2797          * Quick graphic to help you visualize the following
2798          * if / else statement
2799          *
2800          * ===>|                     s---->|===============
2801          *                               e>|
2802          * | a | b | c | d | e | f | g | h | i | j | k | l
2803          *       r---->|
2804          *               w
2805          *
2806          * w - updated by driver
2807          * r - updated by firmware
2808          * s - start of oldest BD entry (txq->oldest)
2809          * e - end of oldest BD entry
2810          *
2811          */
2812         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2813                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2814                 return 0;
2815         }
2816
2817         list_del(element);
2818         DEC_STAT(&priv->fw_pend_stat);
2819
2820 #ifdef CONFIG_IPW2100_DEBUG
2821         {
2822                 int i = txq->oldest;
2823                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2824                              &txq->drv[i],
2825                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2826                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2827
2828                 if (packet->type == DATA) {
2829                         i = (i + 1) % txq->entries;
2830
2831                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2832                                      &txq->drv[i],
2833                                      (u32) (txq->nic + i *
2834                                             sizeof(struct ipw2100_bd)),
2835                                      (u32) txq->drv[i].host_addr,
2836                                      txq->drv[i].buf_length);
2837                 }
2838         }
2839 #endif
2840
2841         switch (packet->type) {
2842         case DATA:
2843                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2844                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2845                                "Expecting DATA TBD but pulled "
2846                                "something else: ids %d=%d.\n",
2847                                priv->net_dev->name, txq->oldest, packet->index);
2848
2849                 /* DATA packet; we have to unmap and free the SKB */
2850                 for (i = 0; i < frag_num; i++) {
2851                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2852
2853                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2854                                      (packet->index + 1 + i) % txq->entries,
2855                                      tbd->host_addr, tbd->buf_length);
2856
2857                         pci_unmap_single(priv->pci_dev,
2858                                          tbd->host_addr,
2859                                          tbd->buf_length, PCI_DMA_TODEVICE);
2860                 }
2861
2862                 ieee80211_txb_free(packet->info.d_struct.txb);
2863                 packet->info.d_struct.txb = NULL;
2864
2865                 list_add_tail(element, &priv->tx_free_list);
2866                 INC_STAT(&priv->tx_free_stat);
2867
2868                 /* We have a free slot in the Tx queue, so wake up the
2869                  * transmit layer if it is stopped. */
2870                 if (priv->status & STATUS_ASSOCIATED)
2871                         netif_wake_queue(priv->net_dev);
2872
2873                 /* A packet was processed by the hardware, so update the
2874                  * watchdog */
2875                 priv->net_dev->trans_start = jiffies;
2876
2877                 break;
2878
2879         case COMMAND:
2880                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2881                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2882                                "Expecting COMMAND TBD but pulled "
2883                                "something else: ids %d=%d.\n",
2884                                priv->net_dev->name, txq->oldest, packet->index);
2885
2886 #ifdef CONFIG_IPW2100_DEBUG
2887                 if (packet->info.c_struct.cmd->host_command_reg <
2888                     sizeof(command_types) / sizeof(*command_types))
2889                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2890                                      command_types[packet->info.c_struct.cmd->
2891                                                    host_command_reg],
2892                                      packet->info.c_struct.cmd->
2893                                      host_command_reg,
2894                                      packet->info.c_struct.cmd->cmd_status_reg);
2895 #endif
2896
2897                 list_add_tail(element, &priv->msg_free_list);
2898                 INC_STAT(&priv->msg_free_stat);
2899                 break;
2900         }
2901
2902         /* advance oldest used TBD pointer to start of next entry */
2903         txq->oldest = (e + 1) % txq->entries;
2904         /* increase available TBDs number */
2905         txq->available += descriptors_used;
2906         SET_STAT(&priv->txq_stat, txq->available);
2907
2908         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2909                      jiffies - packet->jiffy_start);
2910
2911         return (!list_empty(&priv->fw_pend_list));
2912 }
2913
2914 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2915 {
2916         int i = 0;
2917
2918         while (__ipw2100_tx_process(priv) && i < 200)
2919                 i++;
2920
2921         if (i == 200) {
2922                 printk(KERN_WARNING DRV_NAME ": "
2923                        "%s: Driver is running slow (%d iters).\n",
2924                        priv->net_dev->name, i);
2925         }
2926 }
2927
2928 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2929 {
2930         struct list_head *element;
2931         struct ipw2100_tx_packet *packet;
2932         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2933         struct ipw2100_bd *tbd;
2934         int next = txq->next;
2935
2936         while (!list_empty(&priv->msg_pend_list)) {
2937                 /* if there isn't enough space in TBD queue, then
2938                  * don't stuff a new one in.
2939                  * NOTE: 3 are needed as a command will take one,
2940                  *       and there is a minimum of 2 that must be
2941                  *       maintained between the r and w indexes
2942                  */
2943                 if (txq->available <= 3) {
2944                         IPW_DEBUG_TX("no room in tx_queue\n");
2945                         break;
2946                 }
2947
2948                 element = priv->msg_pend_list.next;
2949                 list_del(element);
2950                 DEC_STAT(&priv->msg_pend_stat);
2951
2952                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2953
2954                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2955                              &txq->drv[txq->next],
2956                              (void *)(txq->nic + txq->next *
2957                                       sizeof(struct ipw2100_bd)));
2958
2959                 packet->index = txq->next;
2960
2961                 tbd = &txq->drv[txq->next];
2962
2963                 /* initialize TBD */
2964                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2965                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2966                 /* not marking number of fragments causes problems
2967                  * with f/w debug version */
2968                 tbd->num_fragments = 1;
2969                 tbd->status.info.field =
2970                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2971                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2972
2973                 /* update TBD queue counters */
2974                 txq->next++;
2975                 txq->next %= txq->entries;
2976                 txq->available--;
2977                 DEC_STAT(&priv->txq_stat);
2978
2979                 list_add_tail(element, &priv->fw_pend_list);
2980                 INC_STAT(&priv->fw_pend_stat);
2981         }
2982
2983         if (txq->next != next) {
2984                 /* kick off the DMA by notifying firmware the
2985                  * write index has moved; make sure TBD stores are sync'd */
2986                 wmb();
2987                 write_register(priv->net_dev,
2988                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2989                                txq->next);
2990         }
2991 }
2992
2993 /*
2994  * ipw2100_tx_send_data
2995  *
2996  */
2997 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2998 {
2999         struct list_head *element;
3000         struct ipw2100_tx_packet *packet;
3001         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3002         struct ipw2100_bd *tbd;
3003         int next = txq->next;
3004         int i = 0;
3005         struct ipw2100_data_header *ipw_hdr;
3006         struct ieee80211_hdr_3addr *hdr;
3007
3008         while (!list_empty(&priv->tx_pend_list)) {
3009                 /* if there isn't enough space in TBD queue, then
3010                  * don't stuff a new one in.
3011                  * NOTE: 4 are needed as a data will take two,
3012                  *       and there is a minimum of 2 that must be
3013                  *       maintained between the r and w indexes
3014                  */
3015                 element = priv->tx_pend_list.next;
3016                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3017
3018                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3019                              IPW_MAX_BDS)) {
3020                         /* TODO: Support merging buffers if more than
3021                          * IPW_MAX_BDS are used */
3022                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3023                                        "Increase fragmentation level.\n",
3024                                        priv->net_dev->name);
3025                 }
3026
3027                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3028                         IPW_DEBUG_TX("no room in tx_queue\n");
3029                         break;
3030                 }
3031
3032                 list_del(element);
3033                 DEC_STAT(&priv->tx_pend_stat);
3034
3035                 tbd = &txq->drv[txq->next];
3036
3037                 packet->index = txq->next;
3038
3039                 ipw_hdr = packet->info.d_struct.data;
3040                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3041                     fragments[0]->data;
3042
3043                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3044                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3045                            Addr3 = DA */
3046                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3047                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3048                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3049                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3050                            Addr3 = BSSID */
3051                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3052                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3053                 }
3054
3055                 ipw_hdr->host_command_reg = SEND;
3056                 ipw_hdr->host_command_reg1 = 0;
3057
3058                 /* For now we only support host based encryption */
3059                 ipw_hdr->needs_encryption = 0;
3060                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3061                 if (packet->info.d_struct.txb->nr_frags > 1)
3062                         ipw_hdr->fragment_size =
3063                             packet->info.d_struct.txb->frag_size -
3064                             IEEE80211_3ADDR_LEN;
3065                 else
3066                         ipw_hdr->fragment_size = 0;
3067
3068                 tbd->host_addr = packet->info.d_struct.data_phys;
3069                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3070                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3071                 tbd->status.info.field =
3072                     IPW_BD_STATUS_TX_FRAME_802_3 |
3073                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3074                 txq->next++;
3075                 txq->next %= txq->entries;
3076
3077                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3078                              packet->index, tbd->host_addr, tbd->buf_length);
3079 #ifdef CONFIG_IPW2100_DEBUG
3080                 if (packet->info.d_struct.txb->nr_frags > 1)
3081                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3082                                        packet->info.d_struct.txb->nr_frags);
3083 #endif
3084
3085                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3086                         tbd = &txq->drv[txq->next];
3087                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3088                                 tbd->status.info.field =
3089                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3090                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3091                         else
3092                                 tbd->status.info.field =
3093                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3094                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3095
3096                         tbd->buf_length = packet->info.d_struct.txb->
3097                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3098
3099                         tbd->host_addr = pci_map_single(priv->pci_dev,
3100                                                         packet->info.d_struct.
3101                                                         txb->fragments[i]->
3102                                                         data +
3103                                                         IEEE80211_3ADDR_LEN,
3104                                                         tbd->buf_length,
3105                                                         PCI_DMA_TODEVICE);
3106
3107                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3108                                      txq->next, tbd->host_addr,
3109                                      tbd->buf_length);
3110
3111                         pci_dma_sync_single_for_device(priv->pci_dev,
3112                                                        tbd->host_addr,
3113                                                        tbd->buf_length,
3114                                                        PCI_DMA_TODEVICE);
3115
3116                         txq->next++;
3117                         txq->next %= txq->entries;
3118                 }
3119
3120                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3121                 SET_STAT(&priv->txq_stat, txq->available);
3122
3123                 list_add_tail(element, &priv->fw_pend_list);
3124                 INC_STAT(&priv->fw_pend_stat);
3125         }
3126
3127         if (txq->next != next) {
3128                 /* kick off the DMA by notifying firmware the
3129                  * write index has moved; make sure TBD stores are sync'd */
3130                 write_register(priv->net_dev,
3131                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3132                                txq->next);
3133         }
3134         return;
3135 }
3136
3137 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3138 {
3139         struct net_device *dev = priv->net_dev;
3140         unsigned long flags;
3141         u32 inta, tmp;
3142
3143         spin_lock_irqsave(&priv->low_lock, flags);
3144         ipw2100_disable_interrupts(priv);
3145
3146         read_register(dev, IPW_REG_INTA, &inta);
3147
3148         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3149                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3150
3151         priv->in_isr++;
3152         priv->interrupts++;
3153
3154         /* We do not loop and keep polling for more interrupts as this
3155          * is frowned upon and doesn't play nicely with other potentially
3156          * chained IRQs */
3157         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3158                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3159
3160         if (inta & IPW2100_INTA_FATAL_ERROR) {
3161                 printk(KERN_WARNING DRV_NAME
3162                        ": Fatal interrupt. Scheduling firmware restart.\n");
3163                 priv->inta_other++;
3164                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3165
3166                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3167                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3168                                priv->net_dev->name, priv->fatal_error);
3169
3170                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3171                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3172                                priv->net_dev->name, tmp);
3173
3174                 /* Wake up any sleeping jobs */
3175                 schedule_reset(priv);
3176         }
3177
3178         if (inta & IPW2100_INTA_PARITY_ERROR) {
3179                 printk(KERN_ERR DRV_NAME
3180                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3181                 priv->inta_other++;
3182                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3183         }
3184
3185         if (inta & IPW2100_INTA_RX_TRANSFER) {
3186                 IPW_DEBUG_ISR("RX interrupt\n");
3187
3188                 priv->rx_interrupts++;
3189
3190                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3191
3192                 __ipw2100_rx_process(priv);
3193                 __ipw2100_tx_complete(priv);
3194         }
3195
3196         if (inta & IPW2100_INTA_TX_TRANSFER) {
3197                 IPW_DEBUG_ISR("TX interrupt\n");
3198
3199                 priv->tx_interrupts++;
3200
3201                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3202
3203                 __ipw2100_tx_complete(priv);
3204                 ipw2100_tx_send_commands(priv);
3205                 ipw2100_tx_send_data(priv);
3206         }
3207
3208         if (inta & IPW2100_INTA_TX_COMPLETE) {
3209                 IPW_DEBUG_ISR("TX complete\n");
3210                 priv->inta_other++;
3211                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3212
3213                 __ipw2100_tx_complete(priv);
3214         }
3215
3216         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3217                 /* ipw2100_handle_event(dev); */
3218                 priv->inta_other++;
3219                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3220         }
3221
3222         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3223                 IPW_DEBUG_ISR("FW init done interrupt\n");
3224                 priv->inta_other++;
3225
3226                 read_register(dev, IPW_REG_INTA, &tmp);
3227                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3228                            IPW2100_INTA_PARITY_ERROR)) {
3229                         write_register(dev, IPW_REG_INTA,
3230                                        IPW2100_INTA_FATAL_ERROR |
3231                                        IPW2100_INTA_PARITY_ERROR);
3232                 }
3233
3234                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3235         }
3236
3237         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3238                 IPW_DEBUG_ISR("Status change interrupt\n");
3239                 priv->inta_other++;
3240                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3241         }
3242
3243         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3244                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3245                 priv->inta_other++;
3246                 write_register(dev, IPW_REG_INTA,
3247                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3248         }
3249
3250         priv->in_isr--;
3251         ipw2100_enable_interrupts(priv);
3252
3253         spin_unlock_irqrestore(&priv->low_lock, flags);
3254
3255         IPW_DEBUG_ISR("exit\n");
3256 }
3257
3258 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3259 {
3260         struct ipw2100_priv *priv = data;
3261         u32 inta, inta_mask;
3262
3263         if (!data)
3264                 return IRQ_NONE;
3265
3266         spin_lock(&priv->low_lock);
3267
3268         /* We check to see if we should be ignoring interrupts before
3269          * we touch the hardware.  During ucode load if we try and handle
3270          * an interrupt we can cause keyboard problems as well as cause
3271          * the ucode to fail to initialize */
3272         if (!(priv->status & STATUS_INT_ENABLED)) {
3273                 /* Shared IRQ */
3274                 goto none;
3275         }
3276
3277         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3278         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3279
3280         if (inta == 0xFFFFFFFF) {
3281                 /* Hardware disappeared */
3282                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3283                 goto none;
3284         }
3285
3286         inta &= IPW_INTERRUPT_MASK;
3287
3288         if (!(inta & inta_mask)) {
3289                 /* Shared interrupt */
3290                 goto none;
3291         }
3292
3293         /* We disable the hardware interrupt here just to prevent unneeded
3294          * calls to be made.  We disable this again within the actual
3295          * work tasklet, so if another part of the code re-enables the
3296          * interrupt, that is fine */
3297         ipw2100_disable_interrupts(priv);
3298
3299         tasklet_schedule(&priv->irq_tasklet);
3300         spin_unlock(&priv->low_lock);
3301
3302         return IRQ_HANDLED;
3303       none:
3304         spin_unlock(&priv->low_lock);
3305         return IRQ_NONE;
3306 }
3307
3308 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3309                       int pri)
3310 {
3311         struct ipw2100_priv *priv = ieee80211_priv(dev);
3312         struct list_head *element;
3313         struct ipw2100_tx_packet *packet;
3314         unsigned long flags;
3315
3316         spin_lock_irqsave(&priv->low_lock, flags);
3317
3318         if (!(priv->status & STATUS_ASSOCIATED)) {
3319                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3320                 priv->ieee->stats.tx_carrier_errors++;
3321                 netif_stop_queue(dev);
3322                 goto fail_unlock;
3323         }
3324
3325         if (list_empty(&priv->tx_free_list))
3326                 goto fail_unlock;
3327
3328         element = priv->tx_free_list.next;
3329         packet = list_entry(element, struct ipw2100_tx_packet, list);
3330
3331         packet->info.d_struct.txb = txb;
3332
3333         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3334         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3335
3336         packet->jiffy_start = jiffies;
3337
3338         list_del(element);
3339         DEC_STAT(&priv->tx_free_stat);
3340
3341         list_add_tail(element, &priv->tx_pend_list);
3342         INC_STAT(&priv->tx_pend_stat);
3343
3344         ipw2100_tx_send_data(priv);
3345
3346         spin_unlock_irqrestore(&priv->low_lock, flags);
3347         return 0;
3348
3349       fail_unlock:
3350         netif_stop_queue(dev);
3351         spin_unlock_irqrestore(&priv->low_lock, flags);
3352         return 1;
3353 }
3354
3355 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3356 {
3357         int i, j, err = -EINVAL;
3358         void *v;
3359         dma_addr_t p;
3360
3361         priv->msg_buffers =
3362             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3363                                                 sizeof(struct
3364                                                        ipw2100_tx_packet),
3365                                                 GFP_KERNEL);
3366         if (!priv->msg_buffers) {
3367                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3368                        "buffers.\n", priv->net_dev->name);
3369                 return -ENOMEM;
3370         }
3371
3372         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3373                 v = pci_alloc_consistent(priv->pci_dev,
3374                                          sizeof(struct ipw2100_cmd_header), &p);
3375                 if (!v) {
3376                         printk(KERN_ERR DRV_NAME ": "
3377                                "%s: PCI alloc failed for msg "
3378                                "buffers.\n", priv->net_dev->name);
3379                         err = -ENOMEM;
3380                         break;
3381                 }
3382
3383                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3384
3385                 priv->msg_buffers[i].type = COMMAND;
3386                 priv->msg_buffers[i].info.c_struct.cmd =
3387                     (struct ipw2100_cmd_header *)v;
3388                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3389         }
3390
3391         if (i == IPW_COMMAND_POOL_SIZE)
3392                 return 0;
3393
3394         for (j = 0; j < i; j++) {
3395                 pci_free_consistent(priv->pci_dev,
3396                                     sizeof(struct ipw2100_cmd_header),
3397                                     priv->msg_buffers[j].info.c_struct.cmd,
3398                                     priv->msg_buffers[j].info.c_struct.
3399                                     cmd_phys);
3400         }
3401
3402         kfree(priv->msg_buffers);
3403         priv->msg_buffers = NULL;
3404
3405         return err;
3406 }
3407
3408 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3409 {
3410         int i;
3411
3412         INIT_LIST_HEAD(&priv->msg_free_list);
3413         INIT_LIST_HEAD(&priv->msg_pend_list);
3414
3415         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3416                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3417         SET_STAT(&priv->msg_free_stat, i);
3418
3419         return 0;
3420 }
3421
3422 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3423 {
3424         int i;
3425
3426         if (!priv->msg_buffers)
3427                 return;
3428
3429         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3430                 pci_free_consistent(priv->pci_dev,
3431                                     sizeof(struct ipw2100_cmd_header),
3432                                     priv->msg_buffers[i].info.c_struct.cmd,
3433                                     priv->msg_buffers[i].info.c_struct.
3434                                     cmd_phys);
3435         }
3436
3437         kfree(priv->msg_buffers);
3438         priv->msg_buffers = NULL;
3439 }
3440
3441 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3442                         char *buf)
3443 {
3444         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3445         char *out = buf;
3446         int i, j;
3447         u32 val;
3448
3449         for (i = 0; i < 16; i++) {
3450                 out += sprintf(out, "[%08X] ", i * 16);
3451                 for (j = 0; j < 16; j += 4) {
3452                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3453                         out += sprintf(out, "%08X ", val);
3454                 }
3455                 out += sprintf(out, "\n");
3456         }
3457
3458         return out - buf;
3459 }
3460
3461 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3462
3463 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3464                         char *buf)
3465 {
3466         struct ipw2100_priv *p = d->driver_data;
3467         return sprintf(buf, "0x%08x\n", (int)p->config);
3468 }
3469
3470 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3471
3472 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3473                            char *buf)
3474 {
3475         struct ipw2100_priv *p = d->driver_data;
3476         return sprintf(buf, "0x%08x\n", (int)p->status);
3477 }
3478
3479 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3480
3481 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3482                                char *buf)
3483 {
3484         struct ipw2100_priv *p = d->driver_data;
3485         return sprintf(buf, "0x%08x\n", (int)p->capability);
3486 }
3487
3488 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3489
3490 #define IPW2100_REG(x) { IPW_ ##x, #x }
3491 static const struct {
3492         u32 addr;
3493         const char *name;
3494 } hw_data[] = {
3495 IPW2100_REG(REG_GP_CNTRL),
3496             IPW2100_REG(REG_GPIO),
3497             IPW2100_REG(REG_INTA),
3498             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3499 #define IPW2100_NIC(x, s) { x, #x, s }
3500 static const struct {
3501         u32 addr;
3502         const char *name;
3503         size_t size;
3504 } nic_data[] = {
3505 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3506             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3507 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3508 static const struct {
3509         u8 index;
3510         const char *name;
3511         const char *desc;
3512 } ord_data[] = {
3513 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3514             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3515                                 "successful Host Tx's (MSDU)"),
3516             IPW2100_ORD(STAT_TX_DIR_DATA,
3517                                 "successful Directed Tx's (MSDU)"),
3518             IPW2100_ORD(STAT_TX_DIR_DATA1,
3519                                 "successful Directed Tx's (MSDU) @ 1MB"),
3520             IPW2100_ORD(STAT_TX_DIR_DATA2,
3521                                 "successful Directed Tx's (MSDU) @ 2MB"),
3522             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3523                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3524             IPW2100_ORD(STAT_TX_DIR_DATA11,
3525                                 "successful Directed Tx's (MSDU) @ 11MB"),
3526             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3527                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3528             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3529                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3530             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3531                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3532             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3533                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3534             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3535             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3536             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3537             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3538             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3539             IPW2100_ORD(STAT_TX_ASSN_RESP,
3540                                 "successful Association response Tx's"),
3541             IPW2100_ORD(STAT_TX_REASSN,
3542                                 "successful Reassociation Tx's"),
3543             IPW2100_ORD(STAT_TX_REASSN_RESP,
3544                                 "successful Reassociation response Tx's"),
3545             IPW2100_ORD(STAT_TX_PROBE,
3546                                 "probes successfully transmitted"),
3547             IPW2100_ORD(STAT_TX_PROBE_RESP,
3548                                 "probe responses successfully transmitted"),
3549             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3550             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3551             IPW2100_ORD(STAT_TX_DISASSN,
3552                                 "successful Disassociation TX"),
3553             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3554             IPW2100_ORD(STAT_TX_DEAUTH,
3555                                 "successful Deauthentication TX"),
3556             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3557                                 "Total successful Tx data bytes"),
3558             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3559             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3560             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3561             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3562             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3563             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3564             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3565                                 "times max tries in a hop failed"),
3566             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3567                                 "times disassociation failed"),
3568             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3569             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3570             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3571             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3572             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3573             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3574             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3575                                 "directed packets at 5.5MB"),
3576             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3577             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3578             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3579                                 "nondirected packets at 1MB"),
3580             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3581                                 "nondirected packets at 2MB"),
3582             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3583                                 "nondirected packets at 5.5MB"),
3584             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3585                                 "nondirected packets at 11MB"),
3586             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3587             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3588                                                                     "Rx CTS"),
3589             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3590             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3591             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3592             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3593             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3594             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3595             IPW2100_ORD(STAT_RX_REASSN_RESP,
3596                                 "Reassociation response Rx's"),
3597             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3598             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3599             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3600             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3601             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3602             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3603             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3604             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3605                                 "Total rx data bytes received"),
3606             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3607             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3608             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3609             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3610             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3611             IPW2100_ORD(STAT_RX_DUPLICATE1,
3612                                 "duplicate rx packets at 1MB"),
3613             IPW2100_ORD(STAT_RX_DUPLICATE2,
3614                                 "duplicate rx packets at 2MB"),
3615             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3616                                 "duplicate rx packets at 5.5MB"),
3617             IPW2100_ORD(STAT_RX_DUPLICATE11,
3618                                 "duplicate rx packets at 11MB"),
3619             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3620             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3621             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3622             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3623             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3624                                 "rx frames with invalid protocol"),
3625             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3626             IPW2100_ORD(STAT_RX_NO_BUFFER,
3627                                 "rx frames rejected due to no buffer"),
3628             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3629                                 "rx frames dropped due to missing fragment"),
3630             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3631                                 "rx frames dropped due to non-sequential fragment"),
3632             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3633                                 "rx frames dropped due to unmatched 1st frame"),
3634             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3635                                 "rx frames dropped due to uncompleted frame"),
3636             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3637                                 "ICV errors during decryption"),
3638             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3639             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3640             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3641                                 "poll response timeouts"),
3642             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3643                                 "timeouts waiting for last {broad,multi}cast pkt"),
3644             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3645             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3646             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3647             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3648             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3649                                 "current calculation of % missed beacons"),
3650             IPW2100_ORD(STAT_PERCENT_RETRIES,
3651                                 "current calculation of % missed tx retries"),
3652             IPW2100_ORD(ASSOCIATED_AP_PTR,
3653                                 "0 if not associated, else pointer to AP table entry"),
3654             IPW2100_ORD(AVAILABLE_AP_CNT,
3655                                 "AP's decsribed in the AP table"),
3656             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3657             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3658             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3659             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3660                                 "failures due to response fail"),
3661             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3662             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3663             IPW2100_ORD(STAT_ROAM_INHIBIT,
3664                                 "times roaming was inhibited due to activity"),
3665             IPW2100_ORD(RSSI_AT_ASSN,
3666                                 "RSSI of associated AP at time of association"),
3667             IPW2100_ORD(STAT_ASSN_CAUSE1,
3668                                 "reassociation: no probe response or TX on hop"),
3669             IPW2100_ORD(STAT_ASSN_CAUSE2,
3670                                 "reassociation: poor tx/rx quality"),
3671             IPW2100_ORD(STAT_ASSN_CAUSE3,
3672                                 "reassociation: tx/rx quality (excessive AP load"),
3673             IPW2100_ORD(STAT_ASSN_CAUSE4,
3674                                 "reassociation: AP RSSI level"),
3675             IPW2100_ORD(STAT_ASSN_CAUSE5,
3676                                 "reassociations due to load leveling"),
3677             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3678             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3679                                 "times authentication response failed"),
3680             IPW2100_ORD(STATION_TABLE_CNT,
3681                                 "entries in association table"),
3682             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3683             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3684             IPW2100_ORD(COUNTRY_CODE,
3685                                 "IEEE country code as recv'd from beacon"),
3686             IPW2100_ORD(COUNTRY_CHANNELS,
3687                                 "channels suported by country"),
3688             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3689             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3690             IPW2100_ORD(ANTENNA_DIVERSITY,
3691                                 "TRUE if antenna diversity is disabled"),
3692             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3693             IPW2100_ORD(OUR_FREQ,
3694                                 "current radio freq lower digits - channel ID"),
3695             IPW2100_ORD(RTC_TIME, "current RTC time"),
3696             IPW2100_ORD(PORT_TYPE, "operating mode"),
3697             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3698             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3699             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3700             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3701             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3702             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3703             IPW2100_ORD(CAPABILITIES,
3704                                 "Management frame capability field"),
3705             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3706             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3707             IPW2100_ORD(RTS_THRESHOLD,
3708                                 "Min packet length for RTS handshaking"),
3709             IPW2100_ORD(INT_MODE, "International mode"),
3710             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3711                                 "protocol frag threshold"),
3712             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3713                                 "EEPROM offset in SRAM"),
3714             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3715                                 "EEPROM size in SRAM"),
3716             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3717             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3718                                 "EEPROM IBSS 11b channel set"),
3719             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3720             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3721             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3722             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3723             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3724
3725 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3726                               char *buf)
3727 {
3728         int i;
3729         struct ipw2100_priv *priv = dev_get_drvdata(d);
3730         struct net_device *dev = priv->net_dev;
3731         char *out = buf;
3732         u32 val = 0;
3733
3734         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3735
3736         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3737                 read_register(dev, hw_data[i].addr, &val);
3738                 out += sprintf(out, "%30s [%08X] : %08X\n",
3739                                hw_data[i].name, hw_data[i].addr, val);
3740         }
3741
3742         return out - buf;
3743 }
3744
3745 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3746
3747 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3748                              char *buf)
3749 {
3750         struct ipw2100_priv *priv = dev_get_drvdata(d);
3751         struct net_device *dev = priv->net_dev;
3752         char *out = buf;
3753         int i;
3754
3755         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3756
3757         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3758                 u8 tmp8;
3759                 u16 tmp16;
3760                 u32 tmp32;
3761
3762                 switch (nic_data[i].size) {
3763                 case 1:
3764                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3765                         out += sprintf(out, "%30s [%08X] : %02X\n",
3766                                        nic_data[i].name, nic_data[i].addr,
3767                                        tmp8);
3768                         break;
3769                 case 2:
3770                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3771                         out += sprintf(out, "%30s [%08X] : %04X\n",
3772                                        nic_data[i].name, nic_data[i].addr,
3773                                        tmp16);
3774                         break;
3775                 case 4:
3776                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3777                         out += sprintf(out, "%30s [%08X] : %08X\n",
3778                                        nic_data[i].name, nic_data[i].addr,
3779                                        tmp32);
3780                         break;
3781                 }
3782         }
3783         return out - buf;
3784 }
3785
3786 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3787
3788 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3789                            char *buf)
3790 {
3791         struct ipw2100_priv *priv = dev_get_drvdata(d);
3792         struct net_device *dev = priv->net_dev;
3793         static unsigned long loop = 0;
3794         int len = 0;
3795         u32 buffer[4];
3796         int i;
3797         char line[81];
3798
3799         if (loop >= 0x30000)
3800                 loop = 0;
3801
3802         /* sysfs provides us PAGE_SIZE buffer */
3803         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3804
3805                 if (priv->snapshot[0])
3806                         for (i = 0; i < 4; i++)
3807                                 buffer[i] =
3808                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3809                 else
3810                         for (i = 0; i < 4; i++)
3811                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3812
3813                 if (priv->dump_raw)
3814                         len += sprintf(buf + len,
3815                                        "%c%c%c%c"
3816                                        "%c%c%c%c"
3817                                        "%c%c%c%c"
3818                                        "%c%c%c%c",
3819                                        ((u8 *) buffer)[0x0],
3820                                        ((u8 *) buffer)[0x1],
3821                                        ((u8 *) buffer)[0x2],
3822                                        ((u8 *) buffer)[0x3],
3823                                        ((u8 *) buffer)[0x4],
3824                                        ((u8 *) buffer)[0x5],
3825                                        ((u8 *) buffer)[0x6],
3826                                        ((u8 *) buffer)[0x7],
3827                                        ((u8 *) buffer)[0x8],
3828                                        ((u8 *) buffer)[0x9],
3829                                        ((u8 *) buffer)[0xa],
3830                                        ((u8 *) buffer)[0xb],
3831                                        ((u8 *) buffer)[0xc],
3832                                        ((u8 *) buffer)[0xd],
3833                                        ((u8 *) buffer)[0xe],
3834                                        ((u8 *) buffer)[0xf]);
3835                 else
3836                         len += sprintf(buf + len, "%s\n",
3837                                        snprint_line(line, sizeof(line),
3838                                                     (u8 *) buffer, 16, loop));
3839                 loop += 16;
3840         }
3841
3842         return len;
3843 }
3844
3845 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3846                             const char *buf, size_t count)
3847 {
3848         struct ipw2100_priv *priv = dev_get_drvdata(d);
3849         struct net_device *dev = priv->net_dev;
3850         const char *p = buf;
3851
3852         (void)dev;              /* kill unused-var warning for debug-only code */
3853
3854         if (count < 1)
3855                 return count;
3856
3857         if (p[0] == '1' ||
3858             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3859                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3860                                dev->name);
3861                 priv->dump_raw = 1;
3862
3863         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3864                                    tolower(p[1]) == 'f')) {
3865                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3866                                dev->name);
3867                 priv->dump_raw = 0;
3868
3869         } else if (tolower(p[0]) == 'r') {
3870                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3871                 ipw2100_snapshot_free(priv);
3872
3873         } else
3874                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3875                                "reset = clear memory snapshot\n", dev->name);
3876
3877         return count;
3878 }
3879
3880 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3881
3882 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3883                              char *buf)
3884 {
3885         struct ipw2100_priv *priv = dev_get_drvdata(d);
3886         u32 val = 0;
3887         int len = 0;
3888         u32 val_len;
3889         static int loop = 0;
3890
3891         if (priv->status & STATUS_RF_KILL_MASK)
3892                 return 0;
3893
3894         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3895                 loop = 0;
3896
3897         /* sysfs provides us PAGE_SIZE buffer */
3898         while (len < PAGE_SIZE - 128 &&
3899                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3900
3901                 val_len = sizeof(u32);
3902
3903                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3904                                         &val_len))
3905                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3906                                        ord_data[loop].index,
3907                                        ord_data[loop].desc);
3908                 else
3909                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3910                                        ord_data[loop].index, val,
3911                                        ord_data[loop].desc);
3912                 loop++;
3913         }
3914
3915         return len;
3916 }
3917
3918 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3919
3920 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3921                           char *buf)
3922 {
3923         struct ipw2100_priv *priv = dev_get_drvdata(d);
3924         char *out = buf;
3925
3926         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3927                        priv->interrupts, priv->tx_interrupts,
3928                        priv->rx_interrupts, priv->inta_other);
3929         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3930         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3931 #ifdef CONFIG_IPW2100_DEBUG
3932         out += sprintf(out, "packet mismatch image: %s\n",
3933                        priv->snapshot[0] ? "YES" : "NO");
3934 #endif
3935
3936         return out - buf;
3937 }
3938
3939 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3940
3941 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3942 {
3943         int err;
3944
3945         if (mode == priv->ieee->iw_mode)
3946                 return 0;
3947
3948         err = ipw2100_disable_adapter(priv);
3949         if (err) {
3950                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3951                        priv->net_dev->name, err);
3952                 return err;
3953         }
3954
3955         switch (mode) {
3956         case IW_MODE_INFRA:
3957                 priv->net_dev->type = ARPHRD_ETHER;
3958                 break;
3959         case IW_MODE_ADHOC:
3960                 priv->net_dev->type = ARPHRD_ETHER;
3961                 break;
3962 #ifdef CONFIG_IPW2100_MONITOR
3963         case IW_MODE_MONITOR:
3964                 priv->last_mode = priv->ieee->iw_mode;
3965                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3966                 break;
3967 #endif                          /* CONFIG_IPW2100_MONITOR */
3968         }
3969
3970         priv->ieee->iw_mode = mode;
3971
3972 #ifdef CONFIG_PM
3973         /* Indicate ipw2100_download_firmware download firmware
3974          * from disk instead of memory. */
3975         ipw2100_firmware.version = 0;
3976 #endif
3977
3978         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3979         priv->reset_backoff = 0;
3980         schedule_reset(priv);
3981
3982         return 0;
3983 }
3984
3985 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3986                               char *buf)
3987 {
3988         struct ipw2100_priv *priv = dev_get_drvdata(d);
3989         int len = 0;
3990
3991 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3992
3993         if (priv->status & STATUS_ASSOCIATED)
3994                 len += sprintf(buf + len, "connected: %lu\n",
3995                                get_seconds() - priv->connect_start);
3996         else
3997                 len += sprintf(buf + len, "not connected\n");
3998
3999         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4000         DUMP_VAR(status, "08lx");
4001         DUMP_VAR(config, "08lx");
4002         DUMP_VAR(capability, "08lx");
4003
4004         len +=
4005             sprintf(buf + len, "last_rtc: %lu\n",
4006                     (unsigned long)priv->last_rtc);
4007
4008         DUMP_VAR(fatal_error, "d");
4009         DUMP_VAR(stop_hang_check, "d");
4010         DUMP_VAR(stop_rf_kill, "d");
4011         DUMP_VAR(messages_sent, "d");
4012
4013         DUMP_VAR(tx_pend_stat.value, "d");
4014         DUMP_VAR(tx_pend_stat.hi, "d");
4015
4016         DUMP_VAR(tx_free_stat.value, "d");
4017         DUMP_VAR(tx_free_stat.lo, "d");
4018
4019         DUMP_VAR(msg_free_stat.value, "d");
4020         DUMP_VAR(msg_free_stat.lo, "d");
4021
4022         DUMP_VAR(msg_pend_stat.value, "d");
4023         DUMP_VAR(msg_pend_stat.hi, "d");
4024
4025         DUMP_VAR(fw_pend_stat.value, "d");
4026         DUMP_VAR(fw_pend_stat.hi, "d");
4027
4028         DUMP_VAR(txq_stat.value, "d");
4029         DUMP_VAR(txq_stat.lo, "d");
4030
4031         DUMP_VAR(ieee->scans, "d");
4032         DUMP_VAR(reset_backoff, "d");
4033
4034         return len;
4035 }
4036
4037 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4038
4039 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4040                             char *buf)
4041 {
4042         struct ipw2100_priv *priv = dev_get_drvdata(d);
4043         char essid[IW_ESSID_MAX_SIZE + 1];
4044         u8 bssid[ETH_ALEN];
4045         u32 chan = 0;
4046         char *out = buf;
4047         int length;
4048         int ret;
4049
4050         if (priv->status & STATUS_RF_KILL_MASK)
4051                 return 0;
4052
4053         memset(essid, 0, sizeof(essid));
4054         memset(bssid, 0, sizeof(bssid));
4055
4056         length = IW_ESSID_MAX_SIZE;
4057         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4058         if (ret)
4059                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4060                                __LINE__);
4061
4062         length = sizeof(bssid);
4063         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4064                                   bssid, &length);
4065         if (ret)
4066                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4067                                __LINE__);
4068
4069         length = sizeof(u32);
4070         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4071         if (ret)
4072                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4073                                __LINE__);
4074
4075         out += sprintf(out, "ESSID: %s\n", essid);
4076         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4077                        bssid[0], bssid[1], bssid[2],
4078                        bssid[3], bssid[4], bssid[5]);
4079         out += sprintf(out, "Channel: %d\n", chan);
4080
4081         return out - buf;
4082 }
4083
4084 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4085
4086 #ifdef CONFIG_IPW2100_DEBUG
4087 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4088 {
4089         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4090 }
4091
4092 static ssize_t store_debug_level(struct device_driver *d,
4093                                  const char *buf, size_t count)
4094 {
4095         char *p = (char *)buf;
4096         u32 val;
4097
4098         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4099                 p++;
4100                 if (p[0] == 'x' || p[0] == 'X')
4101                         p++;
4102                 val = simple_strtoul(p, &p, 16);
4103         } else
4104                 val = simple_strtoul(p, &p, 10);
4105         if (p == buf)
4106                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4107         else
4108                 ipw2100_debug_level = val;
4109
4110         return strnlen(buf, count);
4111 }
4112
4113 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4114                    store_debug_level);
4115 #endif                          /* CONFIG_IPW2100_DEBUG */
4116
4117 static ssize_t show_fatal_error(struct device *d,
4118                                 struct device_attribute *attr, char *buf)
4119 {
4120         struct ipw2100_priv *priv = dev_get_drvdata(d);
4121         char *out = buf;
4122         int i;
4123
4124         if (priv->fatal_error)
4125                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4126         else
4127                 out += sprintf(out, "0\n");
4128
4129         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4130                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4131                                         IPW2100_ERROR_QUEUE])
4132                         continue;
4133
4134                 out += sprintf(out, "%d. 0x%08X\n", i,
4135                                priv->fatal_errors[(priv->fatal_index - i) %
4136                                                   IPW2100_ERROR_QUEUE]);
4137         }
4138
4139         return out - buf;
4140 }
4141
4142 static ssize_t store_fatal_error(struct device *d,
4143                                  struct device_attribute *attr, const char *buf,
4144                                  size_t count)
4145 {
4146         struct ipw2100_priv *priv = dev_get_drvdata(d);
4147         schedule_reset(priv);
4148         return count;
4149 }
4150
4151 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4152                    store_fatal_error);
4153
4154 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4155                              char *buf)
4156 {
4157         struct ipw2100_priv *priv = dev_get_drvdata(d);
4158         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4159 }
4160
4161 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4162                               const char *buf, size_t count)
4163 {
4164         struct ipw2100_priv *priv = dev_get_drvdata(d);
4165         struct net_device *dev = priv->net_dev;
4166         char buffer[] = "00000000";
4167         unsigned long len =
4168             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4169         unsigned long val;
4170         char *p = buffer;
4171
4172         (void)dev;              /* kill unused-var warning for debug-only code */
4173
4174         IPW_DEBUG_INFO("enter\n");
4175
4176         strncpy(buffer, buf, len);
4177         buffer[len] = 0;
4178
4179         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4180                 p++;
4181                 if (p[0] == 'x' || p[0] == 'X')
4182                         p++;
4183                 val = simple_strtoul(p, &p, 16);
4184         } else
4185                 val = simple_strtoul(p, &p, 10);
4186         if (p == buffer) {
4187                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4188         } else {
4189                 priv->ieee->scan_age = val;
4190                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4191         }
4192
4193         IPW_DEBUG_INFO("exit\n");
4194         return len;
4195 }
4196
4197 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4198
4199 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4200                             char *buf)
4201 {
4202         /* 0 - RF kill not enabled
4203            1 - SW based RF kill active (sysfs)
4204            2 - HW based RF kill active
4205            3 - Both HW and SW baed RF kill active */
4206         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4207         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4208             (rf_kill_active(priv) ? 0x2 : 0x0);
4209         return sprintf(buf, "%i\n", val);
4210 }
4211
4212 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4213 {
4214         if ((disable_radio ? 1 : 0) ==
4215             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4216                 return 0;
4217
4218         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4219                           disable_radio ? "OFF" : "ON");
4220
4221         mutex_lock(&priv->action_mutex);
4222
4223         if (disable_radio) {
4224                 priv->status |= STATUS_RF_KILL_SW;
4225                 ipw2100_down(priv);
4226         } else {
4227                 priv->status &= ~STATUS_RF_KILL_SW;
4228                 if (rf_kill_active(priv)) {
4229                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4230                                           "disabled by HW switch\n");
4231                         /* Make sure the RF_KILL check timer is running */
4232                         priv->stop_rf_kill = 0;
4233                         cancel_delayed_work(&priv->rf_kill);
4234                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4235                 } else
4236                         schedule_reset(priv);
4237         }
4238
4239         mutex_unlock(&priv->action_mutex);
4240         return 1;
4241 }
4242
4243 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4244                              const char *buf, size_t count)
4245 {
4246         struct ipw2100_priv *priv = dev_get_drvdata(d);
4247         ipw_radio_kill_sw(priv, buf[0] == '1');
4248         return count;
4249 }
4250
4251 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4252
4253 static struct attribute *ipw2100_sysfs_entries[] = {
4254         &dev_attr_hardware.attr,
4255         &dev_attr_registers.attr,
4256         &dev_attr_ordinals.attr,
4257         &dev_attr_pci.attr,
4258         &dev_attr_stats.attr,
4259         &dev_attr_internals.attr,
4260         &dev_attr_bssinfo.attr,
4261         &dev_attr_memory.attr,
4262         &dev_attr_scan_age.attr,
4263         &dev_attr_fatal_error.attr,
4264         &dev_attr_rf_kill.attr,
4265         &dev_attr_cfg.attr,
4266         &dev_attr_status.attr,
4267         &dev_attr_capability.attr,
4268         NULL,
4269 };
4270
4271 static struct attribute_group ipw2100_attribute_group = {
4272         .attrs = ipw2100_sysfs_entries,
4273 };
4274
4275 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4276 {
4277         struct ipw2100_status_queue *q = &priv->status_queue;
4278
4279         IPW_DEBUG_INFO("enter\n");
4280
4281         q->size = entries * sizeof(struct ipw2100_status);
4282         q->drv =
4283             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4284                                                           q->size, &q->nic);
4285         if (!q->drv) {
4286                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4287                 return -ENOMEM;
4288         }
4289
4290         memset(q->drv, 0, q->size);
4291
4292         IPW_DEBUG_INFO("exit\n");
4293
4294         return 0;
4295 }
4296
4297 static void status_queue_free(struct ipw2100_priv *priv)
4298 {
4299         IPW_DEBUG_INFO("enter\n");
4300
4301         if (priv->status_queue.drv) {
4302                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4303                                     priv->status_queue.drv,
4304                                     priv->status_queue.nic);
4305                 priv->status_queue.drv = NULL;
4306         }
4307
4308         IPW_DEBUG_INFO("exit\n");
4309 }
4310
4311 static int bd_queue_allocate(struct ipw2100_priv *priv,
4312                              struct ipw2100_bd_queue *q, int entries)
4313 {
4314         IPW_DEBUG_INFO("enter\n");
4315
4316         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4317
4318         q->entries = entries;
4319         q->size = entries * sizeof(struct ipw2100_bd);
4320         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4321         if (!q->drv) {
4322                 IPW_DEBUG_INFO
4323                     ("can't allocate shared memory for buffer descriptors\n");
4324                 return -ENOMEM;
4325         }
4326         memset(q->drv, 0, q->size);
4327
4328         IPW_DEBUG_INFO("exit\n");
4329
4330         return 0;
4331 }
4332
4333 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4334 {
4335         IPW_DEBUG_INFO("enter\n");
4336
4337         if (!q)
4338                 return;
4339
4340         if (q->drv) {
4341                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4342                 q->drv = NULL;
4343         }
4344
4345         IPW_DEBUG_INFO("exit\n");
4346 }
4347
4348 static void bd_queue_initialize(struct ipw2100_priv *priv,
4349                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4350                                 u32 r, u32 w)
4351 {
4352         IPW_DEBUG_INFO("enter\n");
4353
4354         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4355                        (u32) q->nic);
4356
4357         write_register(priv->net_dev, base, q->nic);
4358         write_register(priv->net_dev, size, q->entries);
4359         write_register(priv->net_dev, r, q->oldest);
4360         write_register(priv->net_dev, w, q->next);
4361
4362         IPW_DEBUG_INFO("exit\n");
4363 }
4364
4365 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4366 {
4367         if (priv->workqueue) {
4368                 priv->stop_rf_kill = 1;
4369                 priv->stop_hang_check = 1;
4370                 cancel_delayed_work(&priv->reset_work);
4371                 cancel_delayed_work(&priv->security_work);
4372                 cancel_delayed_work(&priv->wx_event_work);
4373                 cancel_delayed_work(&priv->hang_check);
4374                 cancel_delayed_work(&priv->rf_kill);
4375                 destroy_workqueue(priv->workqueue);
4376                 priv->workqueue = NULL;
4377         }
4378 }
4379
4380 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4381 {
4382         int i, j, err = -EINVAL;
4383         void *v;
4384         dma_addr_t p;
4385
4386         IPW_DEBUG_INFO("enter\n");
4387
4388         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4389         if (err) {
4390                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4391                                 priv->net_dev->name);
4392                 return err;
4393         }
4394
4395         priv->tx_buffers =
4396             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4397                                                 sizeof(struct
4398                                                        ipw2100_tx_packet),
4399                                                 GFP_ATOMIC);
4400         if (!priv->tx_buffers) {
4401                 printk(KERN_ERR DRV_NAME
4402                        ": %s: alloc failed form tx buffers.\n",
4403                        priv->net_dev->name);
4404                 bd_queue_free(priv, &priv->tx_queue);
4405                 return -ENOMEM;
4406         }
4407
4408         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4409                 v = pci_alloc_consistent(priv->pci_dev,
4410                                          sizeof(struct ipw2100_data_header),
4411                                          &p);
4412                 if (!v) {
4413                         printk(KERN_ERR DRV_NAME
4414                                ": %s: PCI alloc failed for tx " "buffers.\n",
4415                                priv->net_dev->name);
4416                         err = -ENOMEM;
4417                         break;
4418                 }
4419
4420                 priv->tx_buffers[i].type = DATA;
4421                 priv->tx_buffers[i].info.d_struct.data =
4422                     (struct ipw2100_data_header *)v;
4423                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4424                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4425         }
4426
4427         if (i == TX_PENDED_QUEUE_LENGTH)
4428                 return 0;
4429
4430         for (j = 0; j < i; j++) {
4431                 pci_free_consistent(priv->pci_dev,
4432                                     sizeof(struct ipw2100_data_header),
4433                                     priv->tx_buffers[j].info.d_struct.data,
4434                                     priv->tx_buffers[j].info.d_struct.
4435                                     data_phys);
4436         }
4437
4438         kfree(priv->tx_buffers);
4439         priv->tx_buffers = NULL;
4440
4441         return err;
4442 }
4443
4444 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4445 {
4446         int i;
4447
4448         IPW_DEBUG_INFO("enter\n");
4449
4450         /*
4451          * reinitialize packet info lists
4452          */
4453         INIT_LIST_HEAD(&priv->fw_pend_list);
4454         INIT_STAT(&priv->fw_pend_stat);
4455
4456         /*
4457          * reinitialize lists
4458          */
4459         INIT_LIST_HEAD(&priv->tx_pend_list);
4460         INIT_LIST_HEAD(&priv->tx_free_list);
4461         INIT_STAT(&priv->tx_pend_stat);
4462         INIT_STAT(&priv->tx_free_stat);
4463
4464         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4465                 /* We simply drop any SKBs that have been queued for
4466                  * transmit */
4467                 if (priv->tx_buffers[i].info.d_struct.txb) {
4468                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4469                                            txb);
4470                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4471                 }
4472
4473                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4474         }
4475
4476         SET_STAT(&priv->tx_free_stat, i);
4477
4478         priv->tx_queue.oldest = 0;
4479         priv->tx_queue.available = priv->tx_queue.entries;
4480         priv->tx_queue.next = 0;
4481         INIT_STAT(&priv->txq_stat);
4482         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4483
4484         bd_queue_initialize(priv, &priv->tx_queue,
4485                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4486                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4487                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4488                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4489
4490         IPW_DEBUG_INFO("exit\n");
4491
4492 }
4493
4494 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4495 {
4496         int i;
4497
4498         IPW_DEBUG_INFO("enter\n");
4499
4500         bd_queue_free(priv, &priv->tx_queue);
4501
4502         if (!priv->tx_buffers)
4503                 return;
4504
4505         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4506                 if (priv->tx_buffers[i].info.d_struct.txb) {
4507                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4508                                            txb);
4509                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4510                 }
4511                 if (priv->tx_buffers[i].info.d_struct.data)
4512                         pci_free_consistent(priv->pci_dev,
4513                                             sizeof(struct ipw2100_data_header),
4514                                             priv->tx_buffers[i].info.d_struct.
4515                                             data,
4516                                             priv->tx_buffers[i].info.d_struct.
4517                                             data_phys);
4518         }
4519
4520         kfree(priv->tx_buffers);
4521         priv->tx_buffers = NULL;
4522
4523         IPW_DEBUG_INFO("exit\n");
4524 }
4525
4526 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4527 {
4528         int i, j, err = -EINVAL;
4529
4530         IPW_DEBUG_INFO("enter\n");
4531
4532         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4533         if (err) {
4534                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4535                 return err;
4536         }
4537
4538         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4539         if (err) {
4540                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4541                 bd_queue_free(priv, &priv->rx_queue);
4542                 return err;
4543         }
4544
4545         /*
4546          * allocate packets
4547          */
4548         priv->rx_buffers = (struct ipw2100_rx_packet *)
4549             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4550                     GFP_KERNEL);
4551         if (!priv->rx_buffers) {
4552                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4553
4554                 bd_queue_free(priv, &priv->rx_queue);
4555
4556                 status_queue_free(priv);
4557
4558                 return -ENOMEM;
4559         }
4560
4561         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4562                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4563
4564                 err = ipw2100_alloc_skb(priv, packet);
4565                 if (unlikely(err)) {
4566                         err = -ENOMEM;
4567                         break;
4568                 }
4569
4570                 /* The BD holds the cache aligned address */
4571                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4572                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4573                 priv->status_queue.drv[i].status_fields = 0;
4574         }
4575
4576         if (i == RX_QUEUE_LENGTH)
4577                 return 0;
4578
4579         for (j = 0; j < i; j++) {
4580                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4581                                  sizeof(struct ipw2100_rx_packet),
4582                                  PCI_DMA_FROMDEVICE);
4583                 dev_kfree_skb(priv->rx_buffers[j].skb);
4584         }
4585
4586         kfree(priv->rx_buffers);
4587         priv->rx_buffers = NULL;
4588
4589         bd_queue_free(priv, &priv->rx_queue);
4590
4591         status_queue_free(priv);
4592
4593         return err;
4594 }
4595
4596 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4597 {
4598         IPW_DEBUG_INFO("enter\n");
4599
4600         priv->rx_queue.oldest = 0;
4601         priv->rx_queue.available = priv->rx_queue.entries - 1;
4602         priv->rx_queue.next = priv->rx_queue.entries - 1;
4603
4604         INIT_STAT(&priv->rxq_stat);
4605         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4606
4607         bd_queue_initialize(priv, &priv->rx_queue,
4608                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4609                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4610                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4611                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4612
4613         /* set up the status queue */
4614         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4615                        priv->status_queue.nic);
4616
4617         IPW_DEBUG_INFO("exit\n");
4618 }
4619
4620 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4621 {
4622         int i;
4623
4624         IPW_DEBUG_INFO("enter\n");
4625
4626         bd_queue_free(priv, &priv->rx_queue);
4627         status_queue_free(priv);
4628
4629         if (!priv->rx_buffers)
4630                 return;
4631
4632         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4633                 if (priv->rx_buffers[i].rxp) {
4634                         pci_unmap_single(priv->pci_dev,
4635                                          priv->rx_buffers[i].dma_addr,
4636                                          sizeof(struct ipw2100_rx),
4637                                          PCI_DMA_FROMDEVICE);
4638                         dev_kfree_skb(priv->rx_buffers[i].skb);
4639                 }
4640         }
4641
4642         kfree(priv->rx_buffers);
4643         priv->rx_buffers = NULL;
4644
4645         IPW_DEBUG_INFO("exit\n");
4646 }
4647
4648 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4649 {
4650         u32 length = ETH_ALEN;
4651         u8 mac[ETH_ALEN];
4652
4653         int err;
4654
4655         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4656         if (err) {
4657                 IPW_DEBUG_INFO("MAC address read failed\n");
4658                 return -EIO;
4659         }
4660         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4661                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4662
4663         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4664
4665         return 0;
4666 }
4667
4668 /********************************************************************
4669  *
4670  * Firmware Commands
4671  *
4672  ********************************************************************/
4673
4674 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4675 {
4676         struct host_command cmd = {
4677                 .host_command = ADAPTER_ADDRESS,
4678                 .host_command_sequence = 0,
4679                 .host_command_length = ETH_ALEN
4680         };
4681         int err;
4682
4683         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4684
4685         IPW_DEBUG_INFO("enter\n");
4686
4687         if (priv->config & CFG_CUSTOM_MAC) {
4688                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4689                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4690         } else
4691                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4692                        ETH_ALEN);
4693
4694         err = ipw2100_hw_send_command(priv, &cmd);
4695
4696         IPW_DEBUG_INFO("exit\n");
4697         return err;
4698 }
4699
4700 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4701                                  int batch_mode)
4702 {
4703         struct host_command cmd = {
4704                 .host_command = PORT_TYPE,
4705                 .host_command_sequence = 0,
4706                 .host_command_length = sizeof(u32)
4707         };
4708         int err;
4709
4710         switch (port_type) {
4711         case IW_MODE_INFRA:
4712                 cmd.host_command_parameters[0] = IPW_BSS;
4713                 break;
4714         case IW_MODE_ADHOC:
4715                 cmd.host_command_parameters[0] = IPW_IBSS;
4716                 break;
4717         }
4718
4719         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4720                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4721
4722         if (!batch_mode) {
4723                 err = ipw2100_disable_adapter(priv);
4724                 if (err) {
4725                         printk(KERN_ERR DRV_NAME
4726                                ": %s: Could not disable adapter %d\n",
4727                                priv->net_dev->name, err);
4728                         return err;
4729                 }
4730         }
4731
4732         /* send cmd to firmware */
4733         err = ipw2100_hw_send_command(priv, &cmd);
4734
4735         if (!batch_mode)
4736                 ipw2100_enable_adapter(priv);
4737
4738         return err;
4739 }
4740
4741 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4742                                int batch_mode)
4743 {
4744         struct host_command cmd = {
4745                 .host_command = CHANNEL,
4746                 .host_command_sequence = 0,
4747                 .host_command_length = sizeof(u32)
4748         };
4749         int err;
4750
4751         cmd.host_command_parameters[0] = channel;
4752
4753         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4754
4755         /* If BSS then we don't support channel selection */
4756         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4757                 return 0;
4758
4759         if ((channel != 0) &&
4760             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4761                 return -EINVAL;
4762
4763         if (!batch_mode) {
4764                 err = ipw2100_disable_adapter(priv);
4765                 if (err)
4766                         return err;
4767         }
4768
4769         err = ipw2100_hw_send_command(priv, &cmd);
4770         if (err) {
4771                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4772                 return err;
4773         }
4774
4775         if (channel)
4776                 priv->config |= CFG_STATIC_CHANNEL;
4777         else
4778                 priv->config &= ~CFG_STATIC_CHANNEL;
4779
4780         priv->channel = channel;
4781
4782         if (!batch_mode) {
4783                 err = ipw2100_enable_adapter(priv);
4784                 if (err)
4785                         return err;
4786         }
4787
4788         return 0;
4789 }
4790
4791 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4792 {
4793         struct host_command cmd = {
4794                 .host_command = SYSTEM_CONFIG,
4795                 .host_command_sequence = 0,
4796                 .host_command_length = 12,
4797         };
4798         u32 ibss_mask, len = sizeof(u32);
4799         int err;
4800
4801         /* Set system configuration */
4802
4803         if (!batch_mode) {
4804                 err = ipw2100_disable_adapter(priv);
4805                 if (err)
4806                         return err;
4807         }
4808
4809         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4810                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4811
4812         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4813             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4814
4815         if (!(priv->config & CFG_LONG_PREAMBLE))
4816                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4817
4818         err = ipw2100_get_ordinal(priv,
4819                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4820                                   &ibss_mask, &len);
4821         if (err)
4822                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4823
4824         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4825         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4826
4827         /* 11b only */
4828         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4829
4830         err = ipw2100_hw_send_command(priv, &cmd);
4831         if (err)
4832                 return err;
4833
4834 /* If IPv6 is configured in the kernel then we don't want to filter out all
4835  * of the multicast packets as IPv6 needs some. */
4836 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4837         cmd.host_command = ADD_MULTICAST;
4838         cmd.host_command_sequence = 0;
4839         cmd.host_command_length = 0;
4840
4841         ipw2100_hw_send_command(priv, &cmd);
4842 #endif
4843         if (!batch_mode) {
4844                 err = ipw2100_enable_adapter(priv);
4845                 if (err)
4846                         return err;
4847         }
4848
4849         return 0;
4850 }
4851
4852 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4853                                 int batch_mode)
4854 {
4855         struct host_command cmd = {
4856                 .host_command = BASIC_TX_RATES,
4857                 .host_command_sequence = 0,
4858                 .host_command_length = 4
4859         };
4860         int err;
4861
4862         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4863
4864         if (!batch_mode) {
4865                 err = ipw2100_disable_adapter(priv);
4866                 if (err)
4867                         return err;
4868         }
4869
4870         /* Set BASIC TX Rate first */
4871         ipw2100_hw_send_command(priv, &cmd);
4872
4873         /* Set TX Rate */
4874         cmd.host_command = TX_RATES;
4875         ipw2100_hw_send_command(priv, &cmd);
4876
4877         /* Set MSDU TX Rate */
4878         cmd.host_command = MSDU_TX_RATES;
4879         ipw2100_hw_send_command(priv, &cmd);
4880
4881         if (!batch_mode) {
4882                 err = ipw2100_enable_adapter(priv);
4883                 if (err)
4884                         return err;
4885         }
4886
4887         priv->tx_rates = rate;
4888
4889         return 0;
4890 }
4891
4892 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4893 {
4894         struct host_command cmd = {
4895                 .host_command = POWER_MODE,
4896                 .host_command_sequence = 0,
4897                 .host_command_length = 4
4898         };
4899         int err;
4900
4901         cmd.host_command_parameters[0] = power_level;
4902
4903         err = ipw2100_hw_send_command(priv, &cmd);
4904         if (err)
4905                 return err;
4906
4907         if (power_level == IPW_POWER_MODE_CAM)
4908                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4909         else
4910                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4911
4912 #ifdef CONFIG_IPW2100_TX_POWER
4913         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4914                 /* Set beacon interval */
4915                 cmd.host_command = TX_POWER_INDEX;
4916                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4917
4918                 err = ipw2100_hw_send_command(priv, &cmd);
4919                 if (err)
4920                         return err;
4921         }
4922 #endif
4923
4924         return 0;
4925 }
4926
4927 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4928 {
4929         struct host_command cmd = {
4930                 .host_command = RTS_THRESHOLD,
4931                 .host_command_sequence = 0,
4932                 .host_command_length = 4
4933         };
4934         int err;
4935
4936         if (threshold & RTS_DISABLED)
4937                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4938         else
4939                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4940
4941         err = ipw2100_hw_send_command(priv, &cmd);
4942         if (err)
4943                 return err;
4944
4945         priv->rts_threshold = threshold;
4946
4947         return 0;
4948 }
4949
4950 #if 0
4951 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4952                                         u32 threshold, int batch_mode)
4953 {
4954         struct host_command cmd = {
4955                 .host_command = FRAG_THRESHOLD,
4956                 .host_command_sequence = 0,
4957                 .host_command_length = 4,
4958                 .host_command_parameters[0] = 0,
4959         };
4960         int err;
4961
4962         if (!batch_mode) {
4963                 err = ipw2100_disable_adapter(priv);
4964                 if (err)
4965                         return err;
4966         }
4967
4968         if (threshold == 0)
4969                 threshold = DEFAULT_FRAG_THRESHOLD;
4970         else {
4971                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4972                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4973         }
4974
4975         cmd.host_command_parameters[0] = threshold;
4976
4977         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4978
4979         err = ipw2100_hw_send_command(priv, &cmd);
4980
4981         if (!batch_mode)
4982                 ipw2100_enable_adapter(priv);
4983
4984         if (!err)
4985                 priv->frag_threshold = threshold;
4986
4987         return err;
4988 }
4989 #endif
4990
4991 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4992 {
4993         struct host_command cmd = {
4994                 .host_command = SHORT_RETRY_LIMIT,
4995                 .host_command_sequence = 0,
4996                 .host_command_length = 4
4997         };
4998         int err;
4999
5000         cmd.host_command_parameters[0] = retry;
5001
5002         err = ipw2100_hw_send_command(priv, &cmd);
5003         if (err)
5004                 return err;
5005
5006         priv->short_retry_limit = retry;
5007
5008         return 0;
5009 }
5010
5011 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5012 {
5013         struct host_command cmd = {
5014                 .host_command = LONG_RETRY_LIMIT,
5015                 .host_command_sequence = 0,
5016                 .host_command_length = 4
5017         };
5018         int err;
5019
5020         cmd.host_command_parameters[0] = retry;
5021
5022         err = ipw2100_hw_send_command(priv, &cmd);
5023         if (err)
5024                 return err;
5025
5026         priv->long_retry_limit = retry;
5027
5028         return 0;
5029 }
5030
5031 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5032                                        int batch_mode)
5033 {
5034         struct host_command cmd = {
5035                 .host_command = MANDATORY_BSSID,
5036                 .host_command_sequence = 0,
5037                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5038         };
5039         int err;
5040
5041 #ifdef CONFIG_IPW2100_DEBUG
5042         if (bssid != NULL)
5043                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5044                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5045                              bssid[5]);
5046         else
5047                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5048 #endif
5049         /* if BSSID is empty then we disable mandatory bssid mode */
5050         if (bssid != NULL)
5051                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5052
5053         if (!batch_mode) {
5054                 err = ipw2100_disable_adapter(priv);
5055                 if (err)
5056                         return err;
5057         }
5058
5059         err = ipw2100_hw_send_command(priv, &cmd);
5060
5061         if (!batch_mode)
5062                 ipw2100_enable_adapter(priv);
5063
5064         return err;
5065 }
5066
5067 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5068 {
5069         struct host_command cmd = {
5070                 .host_command = DISASSOCIATION_BSSID,
5071                 .host_command_sequence = 0,
5072                 .host_command_length = ETH_ALEN
5073         };
5074         int err;
5075         int len;
5076
5077         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5078
5079         len = ETH_ALEN;
5080         /* The Firmware currently ignores the BSSID and just disassociates from
5081          * the currently associated AP -- but in the off chance that a future
5082          * firmware does use the BSSID provided here, we go ahead and try and
5083          * set it to the currently associated AP's BSSID */
5084         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5085
5086         err = ipw2100_hw_send_command(priv, &cmd);
5087
5088         return err;
5089 }
5090
5091 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5092                               struct ipw2100_wpa_assoc_frame *, int)
5093     __attribute__ ((unused));
5094
5095 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5096                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5097                               int batch_mode)
5098 {
5099         struct host_command cmd = {
5100                 .host_command = SET_WPA_IE,
5101                 .host_command_sequence = 0,
5102                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5103         };
5104         int err;
5105
5106         IPW_DEBUG_HC("SET_WPA_IE\n");
5107
5108         if (!batch_mode) {
5109                 err = ipw2100_disable_adapter(priv);
5110                 if (err)
5111                         return err;
5112         }
5113
5114         memcpy(cmd.host_command_parameters, wpa_frame,
5115                sizeof(struct ipw2100_wpa_assoc_frame));
5116
5117         err = ipw2100_hw_send_command(priv, &cmd);
5118
5119         if (!batch_mode) {
5120                 if (ipw2100_enable_adapter(priv))
5121                         err = -EIO;
5122         }
5123
5124         return err;
5125 }
5126
5127 struct security_info_params {
5128         u32 allowed_ciphers;
5129         u16 version;
5130         u8 auth_mode;
5131         u8 replay_counters_number;
5132         u8 unicast_using_group;
5133 } __attribute__ ((packed));
5134
5135 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5136                                             int auth_mode,
5137                                             int security_level,
5138                                             int unicast_using_group,
5139                                             int batch_mode)
5140 {
5141         struct host_command cmd = {
5142                 .host_command = SET_SECURITY_INFORMATION,
5143                 .host_command_sequence = 0,
5144                 .host_command_length = sizeof(struct security_info_params)
5145         };
5146         struct security_info_params *security =
5147             (struct security_info_params *)&cmd.host_command_parameters;
5148         int err;
5149         memset(security, 0, sizeof(*security));
5150
5151         /* If shared key AP authentication is turned on, then we need to
5152          * configure the firmware to try and use it.
5153          *
5154          * Actual data encryption/decryption is handled by the host. */
5155         security->auth_mode = auth_mode;
5156         security->unicast_using_group = unicast_using_group;
5157
5158         switch (security_level) {
5159         default:
5160         case SEC_LEVEL_0:
5161                 security->allowed_ciphers = IPW_NONE_CIPHER;
5162                 break;
5163         case SEC_LEVEL_1:
5164                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5165                     IPW_WEP104_CIPHER;
5166                 break;
5167         case SEC_LEVEL_2:
5168                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5169                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5170                 break;
5171         case SEC_LEVEL_2_CKIP:
5172                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5173                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5174                 break;
5175         case SEC_LEVEL_3:
5176                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5177                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5178                 break;
5179         }
5180
5181         IPW_DEBUG_HC
5182             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5183              security->auth_mode, security->allowed_ciphers, security_level);
5184
5185         security->replay_counters_number = 0;
5186
5187         if (!batch_mode) {
5188                 err = ipw2100_disable_adapter(priv);
5189                 if (err)
5190                         return err;
5191         }
5192
5193         err = ipw2100_hw_send_command(priv, &cmd);
5194
5195         if (!batch_mode)
5196                 ipw2100_enable_adapter(priv);
5197
5198         return err;
5199 }
5200
5201 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5202 {
5203         struct host_command cmd = {
5204                 .host_command = TX_POWER_INDEX,
5205                 .host_command_sequence = 0,
5206                 .host_command_length = 4
5207         };
5208         int err = 0;
5209         u32 tmp = tx_power;
5210
5211         if (tx_power != IPW_TX_POWER_DEFAULT)
5212                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5213                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5214
5215         cmd.host_command_parameters[0] = tmp;
5216
5217         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5218                 err = ipw2100_hw_send_command(priv, &cmd);
5219         if (!err)
5220                 priv->tx_power = tx_power;
5221
5222         return 0;
5223 }
5224
5225 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5226                                             u32 interval, int batch_mode)
5227 {
5228         struct host_command cmd = {
5229                 .host_command = BEACON_INTERVAL,
5230                 .host_command_sequence = 0,
5231                 .host_command_length = 4
5232         };
5233         int err;
5234
5235         cmd.host_command_parameters[0] = interval;
5236
5237         IPW_DEBUG_INFO("enter\n");
5238
5239         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5240                 if (!batch_mode) {
5241                         err = ipw2100_disable_adapter(priv);
5242                         if (err)
5243                                 return err;
5244                 }
5245
5246                 ipw2100_hw_send_command(priv, &cmd);
5247
5248                 if (!batch_mode) {
5249                         err = ipw2100_enable_adapter(priv);
5250                         if (err)
5251                                 return err;
5252                 }
5253         }
5254
5255         IPW_DEBUG_INFO("exit\n");
5256
5257         return 0;
5258 }
5259
5260 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5261 {
5262         ipw2100_tx_initialize(priv);
5263         ipw2100_rx_initialize(priv);
5264         ipw2100_msg_initialize(priv);
5265 }
5266
5267 void ipw2100_queues_free(struct ipw2100_priv *priv)
5268 {
5269         ipw2100_tx_free(priv);
5270         ipw2100_rx_free(priv);
5271         ipw2100_msg_free(priv);
5272 }
5273
5274 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5275 {
5276         if (ipw2100_tx_allocate(priv) ||
5277             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5278                 goto fail;
5279
5280         return 0;
5281
5282       fail:
5283         ipw2100_tx_free(priv);
5284         ipw2100_rx_free(priv);
5285         ipw2100_msg_free(priv);
5286         return -ENOMEM;
5287 }
5288
5289 #define IPW_PRIVACY_CAPABLE 0x0008
5290
5291 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5292                                  int batch_mode)
5293 {
5294         struct host_command cmd = {
5295                 .host_command = WEP_FLAGS,
5296                 .host_command_sequence = 0,
5297                 .host_command_length = 4
5298         };
5299         int err;
5300
5301         cmd.host_command_parameters[0] = flags;
5302
5303         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5304
5305         if (!batch_mode) {
5306                 err = ipw2100_disable_adapter(priv);
5307                 if (err) {
5308                         printk(KERN_ERR DRV_NAME
5309                                ": %s: Could not disable adapter %d\n",
5310                                priv->net_dev->name, err);
5311                         return err;
5312                 }
5313         }
5314
5315         /* send cmd to firmware */
5316         err = ipw2100_hw_send_command(priv, &cmd);
5317
5318         if (!batch_mode)
5319                 ipw2100_enable_adapter(priv);
5320
5321         return err;
5322 }
5323
5324 struct ipw2100_wep_key {
5325         u8 idx;
5326         u8 len;
5327         u8 key[13];
5328 };
5329
5330 /* Macros to ease up priting WEP keys */
5331 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5332 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5333 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5334 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5335
5336 /**
5337  * Set a the wep key
5338  *
5339  * @priv: struct to work on
5340  * @idx: index of the key we want to set
5341  * @key: ptr to the key data to set
5342  * @len: length of the buffer at @key
5343  * @batch_mode: FIXME perform the operation in batch mode, not
5344  *              disabling the device.
5345  *
5346  * @returns 0 if OK, < 0 errno code on error.
5347  *
5348  * Fill out a command structure with the new wep key, length an
5349  * index and send it down the wire.
5350  */
5351 static int ipw2100_set_key(struct ipw2100_priv *priv,
5352                            int idx, char *key, int len, int batch_mode)
5353 {
5354         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5355         struct host_command cmd = {
5356                 .host_command = WEP_KEY_INFO,
5357                 .host_command_sequence = 0,
5358                 .host_command_length = sizeof(struct ipw2100_wep_key),
5359         };
5360         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5361         int err;
5362
5363         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5364                      idx, keylen, len);
5365
5366         /* NOTE: We don't check cached values in case the firmware was reset
5367          * or some other problem is occurring.  If the user is setting the key,
5368          * then we push the change */
5369
5370         wep_key->idx = idx;
5371         wep_key->len = keylen;
5372
5373         if (keylen) {
5374                 memcpy(wep_key->key, key, len);
5375                 memset(wep_key->key + len, 0, keylen - len);
5376         }
5377
5378         /* Will be optimized out on debug not being configured in */
5379         if (keylen == 0)
5380                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5381                               priv->net_dev->name, wep_key->idx);
5382         else if (keylen == 5)
5383                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5384                               priv->net_dev->name, wep_key->idx, wep_key->len,
5385                               WEP_STR_64(wep_key->key));
5386         else
5387                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5388                               "\n",
5389                               priv->net_dev->name, wep_key->idx, wep_key->len,
5390                               WEP_STR_128(wep_key->key));
5391
5392         if (!batch_mode) {
5393                 err = ipw2100_disable_adapter(priv);
5394                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5395                 if (err) {
5396                         printk(KERN_ERR DRV_NAME
5397                                ": %s: Could not disable adapter %d\n",
5398                                priv->net_dev->name, err);
5399                         return err;
5400                 }
5401         }
5402
5403         /* send cmd to firmware */
5404         err = ipw2100_hw_send_command(priv, &cmd);
5405
5406         if (!batch_mode) {
5407                 int err2 = ipw2100_enable_adapter(priv);
5408                 if (err == 0)
5409                         err = err2;
5410         }
5411         return err;
5412 }
5413
5414 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5415                                  int idx, int batch_mode)
5416 {
5417         struct host_command cmd = {
5418                 .host_command = WEP_KEY_INDEX,
5419                 .host_command_sequence = 0,
5420                 .host_command_length = 4,
5421                 .host_command_parameters = {idx},
5422         };
5423         int err;
5424
5425         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5426
5427         if (idx < 0 || idx > 3)
5428                 return -EINVAL;
5429
5430         if (!batch_mode) {
5431                 err = ipw2100_disable_adapter(priv);
5432                 if (err) {
5433                         printk(KERN_ERR DRV_NAME
5434                                ": %s: Could not disable adapter %d\n",
5435                                priv->net_dev->name, err);
5436                         return err;
5437                 }
5438         }
5439
5440         /* send cmd to firmware */
5441         err = ipw2100_hw_send_command(priv, &cmd);
5442
5443         if (!batch_mode)
5444                 ipw2100_enable_adapter(priv);
5445
5446         return err;
5447 }
5448
5449 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5450 {
5451         int i, err, auth_mode, sec_level, use_group;
5452
5453         if (!(priv->status & STATUS_RUNNING))
5454                 return 0;
5455
5456         if (!batch_mode) {
5457                 err = ipw2100_disable_adapter(priv);
5458                 if (err)
5459                         return err;
5460         }
5461
5462         if (!priv->ieee->sec.enabled) {
5463                 err =
5464                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5465                                                      SEC_LEVEL_0, 0, 1);
5466         } else {
5467                 auth_mode = IPW_AUTH_OPEN;
5468                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5469                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5470                                 auth_mode = IPW_AUTH_SHARED;
5471                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5472                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5473                 }
5474
5475                 sec_level = SEC_LEVEL_0;
5476                 if (priv->ieee->sec.flags & SEC_LEVEL)
5477                         sec_level = priv->ieee->sec.level;
5478
5479                 use_group = 0;
5480                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5481                         use_group = priv->ieee->sec.unicast_uses_group;
5482
5483                 err =
5484                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5485                                                      use_group, 1);
5486         }
5487
5488         if (err)
5489                 goto exit;
5490
5491         if (priv->ieee->sec.enabled) {
5492                 for (i = 0; i < 4; i++) {
5493                         if (!(priv->ieee->sec.flags & (1 << i))) {
5494                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5495                                 priv->ieee->sec.key_sizes[i] = 0;
5496                         } else {
5497                                 err = ipw2100_set_key(priv, i,
5498                                                       priv->ieee->sec.keys[i],
5499                                                       priv->ieee->sec.
5500                                                       key_sizes[i], 1);
5501                                 if (err)
5502                                         goto exit;
5503                         }
5504                 }
5505
5506                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5507         }
5508
5509         /* Always enable privacy so the Host can filter WEP packets if
5510          * encrypted data is sent up */
5511         err =
5512             ipw2100_set_wep_flags(priv,
5513                                   priv->ieee->sec.
5514                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5515         if (err)
5516                 goto exit;
5517
5518         priv->status &= ~STATUS_SECURITY_UPDATED;
5519
5520       exit:
5521         if (!batch_mode)
5522                 ipw2100_enable_adapter(priv);
5523
5524         return err;
5525 }
5526
5527 static void ipw2100_security_work(struct ipw2100_priv *priv)
5528 {
5529         /* If we happen to have reconnected before we get a chance to
5530          * process this, then update the security settings--which causes
5531          * a disassociation to occur */
5532         if (!(priv->status & STATUS_ASSOCIATED) &&
5533             priv->status & STATUS_SECURITY_UPDATED)
5534                 ipw2100_configure_security(priv, 0);
5535 }
5536
5537 static void shim__set_security(struct net_device *dev,
5538                                struct ieee80211_security *sec)
5539 {
5540         struct ipw2100_priv *priv = ieee80211_priv(dev);
5541         int i, force_update = 0;
5542
5543         mutex_lock(&priv->action_mutex);
5544         if (!(priv->status & STATUS_INITIALIZED))
5545                 goto done;
5546
5547         for (i = 0; i < 4; i++) {
5548                 if (sec->flags & (1 << i)) {
5549                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5550                         if (sec->key_sizes[i] == 0)
5551                                 priv->ieee->sec.flags &= ~(1 << i);
5552                         else
5553                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5554                                        sec->key_sizes[i]);
5555                         if (sec->level == SEC_LEVEL_1) {
5556                                 priv->ieee->sec.flags |= (1 << i);
5557                                 priv->status |= STATUS_SECURITY_UPDATED;
5558                         } else
5559                                 priv->ieee->sec.flags &= ~(1 << i);
5560                 }
5561         }
5562
5563         if ((sec->flags & SEC_ACTIVE_KEY) &&
5564             priv->ieee->sec.active_key != sec->active_key) {
5565                 if (sec->active_key <= 3) {
5566                         priv->ieee->sec.active_key = sec->active_key;
5567                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5568                 } else
5569                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5570
5571                 priv->status |= STATUS_SECURITY_UPDATED;
5572         }
5573
5574         if ((sec->flags & SEC_AUTH_MODE) &&
5575             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5576                 priv->ieee->sec.auth_mode = sec->auth_mode;
5577                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5578                 priv->status |= STATUS_SECURITY_UPDATED;
5579         }
5580
5581         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5582                 priv->ieee->sec.flags |= SEC_ENABLED;
5583                 priv->ieee->sec.enabled = sec->enabled;
5584                 priv->status |= STATUS_SECURITY_UPDATED;
5585                 force_update = 1;
5586         }
5587
5588         if (sec->flags & SEC_ENCRYPT)
5589                 priv->ieee->sec.encrypt = sec->encrypt;
5590
5591         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5592                 priv->ieee->sec.level = sec->level;
5593                 priv->ieee->sec.flags |= SEC_LEVEL;
5594                 priv->status |= STATUS_SECURITY_UPDATED;
5595         }
5596
5597         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5598                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5599                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5600                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5601                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5602                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5603                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5604                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5605                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5606                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5607
5608 /* As a temporary work around to enable WPA until we figure out why
5609  * wpa_supplicant toggles the security capability of the driver, which
5610  * forces a disassocation with force_update...
5611  *
5612  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5613         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5614                 ipw2100_configure_security(priv, 0);
5615       done:
5616         mutex_unlock(&priv->action_mutex);
5617 }
5618
5619 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5620 {
5621         int err;
5622         int batch_mode = 1;
5623         u8 *bssid;
5624
5625         IPW_DEBUG_INFO("enter\n");
5626
5627         err = ipw2100_disable_adapter(priv);
5628         if (err)
5629                 return err;
5630 #ifdef CONFIG_IPW2100_MONITOR
5631         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5632                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5633                 if (err)
5634                         return err;
5635
5636                 IPW_DEBUG_INFO("exit\n");
5637
5638                 return 0;
5639         }
5640 #endif                          /* CONFIG_IPW2100_MONITOR */
5641
5642         err = ipw2100_read_mac_address(priv);
5643         if (err)
5644                 return -EIO;
5645
5646         err = ipw2100_set_mac_address(priv, batch_mode);
5647         if (err)
5648                 return err;
5649
5650         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5651         if (err)
5652                 return err;
5653
5654         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5655                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5656                 if (err)
5657                         return err;
5658         }
5659
5660         err = ipw2100_system_config(priv, batch_mode);
5661         if (err)
5662                 return err;
5663
5664         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5665         if (err)
5666                 return err;
5667
5668         /* Default to power mode OFF */
5669         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5670         if (err)
5671                 return err;
5672
5673         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5674         if (err)
5675                 return err;
5676
5677         if (priv->config & CFG_STATIC_BSSID)
5678                 bssid = priv->bssid;
5679         else
5680                 bssid = NULL;
5681         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5682         if (err)
5683                 return err;
5684
5685         if (priv->config & CFG_STATIC_ESSID)
5686                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5687                                         batch_mode);
5688         else
5689                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5690         if (err)
5691                 return err;
5692
5693         err = ipw2100_configure_security(priv, batch_mode);
5694         if (err)
5695                 return err;
5696
5697         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5698                 err =
5699                     ipw2100_set_ibss_beacon_interval(priv,
5700                                                      priv->beacon_interval,
5701                                                      batch_mode);
5702                 if (err)
5703                         return err;
5704
5705                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5706                 if (err)
5707                         return err;
5708         }
5709
5710         /*
5711            err = ipw2100_set_fragmentation_threshold(
5712            priv, priv->frag_threshold, batch_mode);
5713            if (err)
5714            return err;
5715          */
5716
5717         IPW_DEBUG_INFO("exit\n");
5718
5719         return 0;
5720 }
5721
5722 /*************************************************************************
5723  *
5724  * EXTERNALLY CALLED METHODS
5725  *
5726  *************************************************************************/
5727
5728 /* This method is called by the network layer -- not to be confused with
5729  * ipw2100_set_mac_address() declared above called by this driver (and this
5730  * method as well) to talk to the firmware */
5731 static int ipw2100_set_address(struct net_device *dev, void *p)
5732 {
5733         struct ipw2100_priv *priv = ieee80211_priv(dev);
5734         struct sockaddr *addr = p;
5735         int err = 0;
5736
5737         if (!is_valid_ether_addr(addr->sa_data))
5738                 return -EADDRNOTAVAIL;
5739
5740         mutex_lock(&priv->action_mutex);
5741
5742         priv->config |= CFG_CUSTOM_MAC;
5743         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5744
5745         err = ipw2100_set_mac_address(priv, 0);
5746         if (err)
5747                 goto done;
5748
5749         priv->reset_backoff = 0;
5750         mutex_unlock(&priv->action_mutex);
5751         ipw2100_reset_adapter(priv);
5752         return 0;
5753
5754       done:
5755         mutex_unlock(&priv->action_mutex);
5756         return err;
5757 }
5758
5759 static int ipw2100_open(struct net_device *dev)
5760 {
5761         struct ipw2100_priv *priv = ieee80211_priv(dev);
5762         unsigned long flags;
5763         IPW_DEBUG_INFO("dev->open\n");
5764
5765         spin_lock_irqsave(&priv->low_lock, flags);
5766         if (priv->status & STATUS_ASSOCIATED) {
5767                 netif_carrier_on(dev);
5768                 netif_start_queue(dev);
5769         }
5770         spin_unlock_irqrestore(&priv->low_lock, flags);
5771
5772         return 0;
5773 }
5774
5775 static int ipw2100_close(struct net_device *dev)
5776 {
5777         struct ipw2100_priv *priv = ieee80211_priv(dev);
5778         unsigned long flags;
5779         struct list_head *element;
5780         struct ipw2100_tx_packet *packet;
5781
5782         IPW_DEBUG_INFO("enter\n");
5783
5784         spin_lock_irqsave(&priv->low_lock, flags);
5785
5786         if (priv->status & STATUS_ASSOCIATED)
5787                 netif_carrier_off(dev);
5788         netif_stop_queue(dev);
5789
5790         /* Flush the TX queue ... */
5791         while (!list_empty(&priv->tx_pend_list)) {
5792                 element = priv->tx_pend_list.next;
5793                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5794
5795                 list_del(element);
5796                 DEC_STAT(&priv->tx_pend_stat);
5797
5798                 ieee80211_txb_free(packet->info.d_struct.txb);
5799                 packet->info.d_struct.txb = NULL;
5800
5801                 list_add_tail(element, &priv->tx_free_list);
5802                 INC_STAT(&priv->tx_free_stat);
5803         }
5804         spin_unlock_irqrestore(&priv->low_lock, flags);
5805
5806         IPW_DEBUG_INFO("exit\n");
5807
5808         return 0;
5809 }
5810
5811 /*
5812  * TODO:  Fix this function... its just wrong
5813  */
5814 static void ipw2100_tx_timeout(struct net_device *dev)
5815 {
5816         struct ipw2100_priv *priv = ieee80211_priv(dev);
5817
5818         priv->ieee->stats.tx_errors++;
5819
5820 #ifdef CONFIG_IPW2100_MONITOR
5821         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5822                 return;
5823 #endif
5824
5825         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5826                        dev->name);
5827         schedule_reset(priv);
5828 }
5829
5830 /*
5831  * TODO: reimplement it so that it reads statistics
5832  *       from the adapter using ordinal tables
5833  *       instead of/in addition to collecting them
5834  *       in the driver
5835  */
5836 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5837 {
5838         struct ipw2100_priv *priv = ieee80211_priv(dev);
5839
5840         return &priv->ieee->stats;
5841 }
5842
5843 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5844 {
5845         /* This is called when wpa_supplicant loads and closes the driver
5846          * interface. */
5847         priv->ieee->wpa_enabled = value;
5848         return 0;
5849 }
5850
5851 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5852 {
5853
5854         struct ieee80211_device *ieee = priv->ieee;
5855         struct ieee80211_security sec = {
5856                 .flags = SEC_AUTH_MODE,
5857         };
5858         int ret = 0;
5859
5860         if (value & IW_AUTH_ALG_SHARED_KEY) {
5861                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5862                 ieee->open_wep = 0;
5863         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5864                 sec.auth_mode = WLAN_AUTH_OPEN;
5865                 ieee->open_wep = 1;
5866         } else if (value & IW_AUTH_ALG_LEAP) {
5867                 sec.auth_mode = WLAN_AUTH_LEAP;
5868                 ieee->open_wep = 1;
5869         } else
5870                 return -EINVAL;
5871
5872         if (ieee->set_security)
5873                 ieee->set_security(ieee->dev, &sec);
5874         else
5875                 ret = -EOPNOTSUPP;
5876
5877         return ret;
5878 }
5879
5880 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5881                                     char *wpa_ie, int wpa_ie_len)
5882 {
5883
5884         struct ipw2100_wpa_assoc_frame frame;
5885
5886         frame.fixed_ie_mask = 0;
5887
5888         /* copy WPA IE */
5889         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5890         frame.var_ie_len = wpa_ie_len;
5891
5892         /* make sure WPA is enabled */
5893         ipw2100_wpa_enable(priv, 1);
5894         ipw2100_set_wpa_ie(priv, &frame, 0);
5895 }
5896
5897 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5898                                     struct ethtool_drvinfo *info)
5899 {
5900         struct ipw2100_priv *priv = ieee80211_priv(dev);
5901         char fw_ver[64], ucode_ver[64];
5902
5903         strcpy(info->driver, DRV_NAME);
5904         strcpy(info->version, DRV_VERSION);
5905
5906         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5907         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5908
5909         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5910                  fw_ver, priv->eeprom_version, ucode_ver);
5911
5912         strcpy(info->bus_info, pci_name(priv->pci_dev));
5913 }
5914
5915 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5916 {
5917         struct ipw2100_priv *priv = ieee80211_priv(dev);
5918         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5919 }
5920
5921 static const struct ethtool_ops ipw2100_ethtool_ops = {
5922         .get_link = ipw2100_ethtool_get_link,
5923         .get_drvinfo = ipw_ethtool_get_drvinfo,
5924 };
5925
5926 static void ipw2100_hang_check(void *adapter)
5927 {
5928         struct ipw2100_priv *priv = adapter;
5929         unsigned long flags;
5930         u32 rtc = 0xa5a5a5a5;
5931         u32 len = sizeof(rtc);
5932         int restart = 0;
5933
5934         spin_lock_irqsave(&priv->low_lock, flags);
5935
5936         if (priv->fatal_error != 0) {
5937                 /* If fatal_error is set then we need to restart */
5938                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5939                                priv->net_dev->name);
5940
5941                 restart = 1;
5942         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5943                    (rtc == priv->last_rtc)) {
5944                 /* Check if firmware is hung */
5945                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5946                                priv->net_dev->name);
5947
5948                 restart = 1;
5949         }
5950
5951         if (restart) {
5952                 /* Kill timer */
5953                 priv->stop_hang_check = 1;
5954                 priv->hangs++;
5955
5956                 /* Restart the NIC */
5957                 schedule_reset(priv);
5958         }
5959
5960         priv->last_rtc = rtc;
5961
5962         if (!priv->stop_hang_check)
5963                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5964
5965         spin_unlock_irqrestore(&priv->low_lock, flags);
5966 }
5967
5968 static void ipw2100_rf_kill(void *adapter)
5969 {
5970         struct ipw2100_priv *priv = adapter;
5971         unsigned long flags;
5972
5973         spin_lock_irqsave(&priv->low_lock, flags);
5974
5975         if (rf_kill_active(priv)) {
5976                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5977                 if (!priv->stop_rf_kill)
5978                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5979                 goto exit_unlock;
5980         }
5981
5982         /* RF Kill is now disabled, so bring the device back up */
5983
5984         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5985                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5986                                   "device\n");
5987                 schedule_reset(priv);
5988         } else
5989                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5990                                   "enabled\n");
5991
5992       exit_unlock:
5993         spin_unlock_irqrestore(&priv->low_lock, flags);
5994 }
5995
5996 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5997
5998 /* Look into using netdev destructor to shutdown ieee80211? */
5999
6000 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6001                                                void __iomem * base_addr,
6002                                                unsigned long mem_start,
6003                                                unsigned long mem_len)
6004 {
6005         struct ipw2100_priv *priv;
6006         struct net_device *dev;
6007
6008         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6009         if (!dev)
6010                 return NULL;
6011         priv = ieee80211_priv(dev);
6012         priv->ieee = netdev_priv(dev);
6013         priv->pci_dev = pci_dev;
6014         priv->net_dev = dev;
6015
6016         priv->ieee->hard_start_xmit = ipw2100_tx;
6017         priv->ieee->set_security = shim__set_security;
6018
6019         priv->ieee->perfect_rssi = -20;
6020         priv->ieee->worst_rssi = -85;
6021
6022         dev->open = ipw2100_open;
6023         dev->stop = ipw2100_close;
6024         dev->init = ipw2100_net_init;
6025         dev->get_stats = ipw2100_stats;
6026         dev->ethtool_ops = &ipw2100_ethtool_ops;
6027         dev->tx_timeout = ipw2100_tx_timeout;
6028         dev->wireless_handlers = &ipw2100_wx_handler_def;
6029         priv->wireless_data.ieee80211 = priv->ieee;
6030         dev->wireless_data = &priv->wireless_data;
6031         dev->set_mac_address = ipw2100_set_address;
6032         dev->watchdog_timeo = 3 * HZ;
6033         dev->irq = 0;
6034
6035         dev->base_addr = (unsigned long)base_addr;
6036         dev->mem_start = mem_start;
6037         dev->mem_end = dev->mem_start + mem_len - 1;
6038
6039         /* NOTE: We don't use the wireless_handlers hook
6040          * in dev as the system will start throwing WX requests
6041          * to us before we're actually initialized and it just
6042          * ends up causing problems.  So, we just handle
6043          * the WX extensions through the ipw2100_ioctl interface */
6044
6045         /* memset() puts everything to 0, so we only have explicitely set
6046          * those values that need to be something else */
6047
6048         /* If power management is turned on, default to AUTO mode */
6049         priv->power_mode = IPW_POWER_AUTO;
6050
6051 #ifdef CONFIG_IPW2100_MONITOR
6052         priv->config |= CFG_CRC_CHECK;
6053 #endif
6054         priv->ieee->wpa_enabled = 0;
6055         priv->ieee->drop_unencrypted = 0;
6056         priv->ieee->privacy_invoked = 0;
6057         priv->ieee->ieee802_1x = 1;
6058
6059         /* Set module parameters */
6060         switch (mode) {
6061         case 1:
6062                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6063                 break;
6064 #ifdef CONFIG_IPW2100_MONITOR
6065         case 2:
6066                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6067                 break;
6068 #endif
6069         default:
6070         case 0:
6071                 priv->ieee->iw_mode = IW_MODE_INFRA;
6072                 break;
6073         }
6074
6075         if (disable == 1)
6076                 priv->status |= STATUS_RF_KILL_SW;
6077
6078         if (channel != 0 &&
6079             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6080                 priv->config |= CFG_STATIC_CHANNEL;
6081                 priv->channel = channel;
6082         }
6083
6084         if (associate)
6085                 priv->config |= CFG_ASSOCIATE;
6086
6087         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6088         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6089         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6090         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6091         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6092         priv->tx_power = IPW_TX_POWER_DEFAULT;
6093         priv->tx_rates = DEFAULT_TX_RATES;
6094
6095         strcpy(priv->nick, "ipw2100");
6096
6097         spin_lock_init(&priv->low_lock);
6098         mutex_init(&priv->action_mutex);
6099         mutex_init(&priv->adapter_mutex);
6100
6101         init_waitqueue_head(&priv->wait_command_queue);
6102
6103         netif_carrier_off(dev);
6104
6105         INIT_LIST_HEAD(&priv->msg_free_list);
6106         INIT_LIST_HEAD(&priv->msg_pend_list);
6107         INIT_STAT(&priv->msg_free_stat);
6108         INIT_STAT(&priv->msg_pend_stat);
6109
6110         INIT_LIST_HEAD(&priv->tx_free_list);
6111         INIT_LIST_HEAD(&priv->tx_pend_list);
6112         INIT_STAT(&priv->tx_free_stat);
6113         INIT_STAT(&priv->tx_pend_stat);
6114
6115         INIT_LIST_HEAD(&priv->fw_pend_list);
6116         INIT_STAT(&priv->fw_pend_stat);
6117
6118         priv->workqueue = create_workqueue(DRV_NAME);
6119
6120         INIT_WORK(&priv->reset_work,
6121                   (void (*)(void *))ipw2100_reset_adapter, priv);
6122         INIT_WORK(&priv->security_work,
6123                   (void (*)(void *))ipw2100_security_work, priv);
6124         INIT_WORK(&priv->wx_event_work,
6125                   (void (*)(void *))ipw2100_wx_event_work, priv);
6126         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6127         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6128
6129         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6130                      ipw2100_irq_tasklet, (unsigned long)priv);
6131
6132         /* NOTE:  We do not start the deferred work for status checks yet */
6133         priv->stop_rf_kill = 1;
6134         priv->stop_hang_check = 1;
6135
6136         return dev;
6137 }
6138
6139 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6140                                 const struct pci_device_id *ent)
6141 {
6142         unsigned long mem_start, mem_len, mem_flags;
6143         void __iomem *base_addr = NULL;
6144         struct net_device *dev = NULL;
6145         struct ipw2100_priv *priv = NULL;
6146         int err = 0;
6147         int registered = 0;
6148         u32 val;
6149
6150         IPW_DEBUG_INFO("enter\n");
6151
6152         mem_start = pci_resource_start(pci_dev, 0);
6153         mem_len = pci_resource_len(pci_dev, 0);
6154         mem_flags = pci_resource_flags(pci_dev, 0);
6155
6156         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6157                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6158                 err = -ENODEV;
6159                 goto fail;
6160         }
6161
6162         base_addr = ioremap_nocache(mem_start, mem_len);
6163         if (!base_addr) {
6164                 printk(KERN_WARNING DRV_NAME
6165                        "Error calling ioremap_nocache.\n");
6166                 err = -EIO;
6167                 goto fail;
6168         }
6169
6170         /* allocate and initialize our net_device */
6171         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6172         if (!dev) {
6173                 printk(KERN_WARNING DRV_NAME
6174                        "Error calling ipw2100_alloc_device.\n");
6175                 err = -ENOMEM;
6176                 goto fail;
6177         }
6178
6179         /* set up PCI mappings for device */
6180         err = pci_enable_device(pci_dev);
6181         if (err) {
6182                 printk(KERN_WARNING DRV_NAME
6183                        "Error calling pci_enable_device.\n");
6184                 return err;
6185         }
6186
6187         priv = ieee80211_priv(dev);
6188
6189         pci_set_master(pci_dev);
6190         pci_set_drvdata(pci_dev, priv);
6191
6192         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6193         if (err) {
6194                 printk(KERN_WARNING DRV_NAME
6195                        "Error calling pci_set_dma_mask.\n");
6196                 pci_disable_device(pci_dev);
6197                 return err;
6198         }
6199
6200         err = pci_request_regions(pci_dev, DRV_NAME);
6201         if (err) {
6202                 printk(KERN_WARNING DRV_NAME
6203                        "Error calling pci_request_regions.\n");
6204                 pci_disable_device(pci_dev);
6205                 return err;
6206         }
6207
6208         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6209          * PCI Tx retries from interfering with C3 CPU state */
6210         pci_read_config_dword(pci_dev, 0x40, &val);
6211         if ((val & 0x0000ff00) != 0)
6212                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6213
6214         pci_set_power_state(pci_dev, PCI_D0);
6215
6216         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6217                 printk(KERN_WARNING DRV_NAME
6218                        "Device not found via register read.\n");
6219                 err = -ENODEV;
6220                 goto fail;
6221         }
6222
6223         SET_NETDEV_DEV(dev, &pci_dev->dev);
6224
6225         /* Force interrupts to be shut off on the device */
6226         priv->status |= STATUS_INT_ENABLED;
6227         ipw2100_disable_interrupts(priv);
6228
6229         /* Allocate and initialize the Tx/Rx queues and lists */
6230         if (ipw2100_queues_allocate(priv)) {
6231                 printk(KERN_WARNING DRV_NAME
6232                        "Error calilng ipw2100_queues_allocate.\n");
6233                 err = -ENOMEM;
6234                 goto fail;
6235         }
6236         ipw2100_queues_initialize(priv);
6237
6238         err = request_irq(pci_dev->irq,
6239                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6240         if (err) {
6241                 printk(KERN_WARNING DRV_NAME
6242                        "Error calling request_irq: %d.\n", pci_dev->irq);
6243                 goto fail;
6244         }
6245         dev->irq = pci_dev->irq;
6246
6247         IPW_DEBUG_INFO("Attempting to register device...\n");
6248
6249         SET_MODULE_OWNER(dev);
6250
6251         printk(KERN_INFO DRV_NAME
6252                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6253
6254         /* Bring up the interface.  Pre 0.46, after we registered the
6255          * network device we would call ipw2100_up.  This introduced a race
6256          * condition with newer hotplug configurations (network was coming
6257          * up and making calls before the device was initialized).
6258          *
6259          * If we called ipw2100_up before we registered the device, then the
6260          * device name wasn't registered.  So, we instead use the net_dev->init
6261          * member to call a function that then just turns and calls ipw2100_up.
6262          * net_dev->init is called after name allocation but before the
6263          * notifier chain is called */
6264         err = register_netdev(dev);
6265         if (err) {
6266                 printk(KERN_WARNING DRV_NAME
6267                        "Error calling register_netdev.\n");
6268                 goto fail;
6269         }
6270
6271         mutex_lock(&priv->action_mutex);
6272         registered = 1;
6273
6274         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6275
6276         /* perform this after register_netdev so that dev->name is set */
6277         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6278         if (err)
6279                 goto fail_unlock;
6280
6281         /* If the RF Kill switch is disabled, go ahead and complete the
6282          * startup sequence */
6283         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6284                 /* Enable the adapter - sends HOST_COMPLETE */
6285                 if (ipw2100_enable_adapter(priv)) {
6286                         printk(KERN_WARNING DRV_NAME
6287                                ": %s: failed in call to enable adapter.\n",
6288                                priv->net_dev->name);
6289                         ipw2100_hw_stop_adapter(priv);
6290                         err = -EIO;
6291                         goto fail_unlock;
6292                 }
6293
6294                 /* Start a scan . . . */
6295                 ipw2100_set_scan_options(priv);
6296                 ipw2100_start_scan(priv);
6297         }
6298
6299         IPW_DEBUG_INFO("exit\n");
6300
6301         priv->status |= STATUS_INITIALIZED;
6302
6303         mutex_unlock(&priv->action_mutex);
6304
6305         return 0;
6306
6307       fail_unlock:
6308         mutex_unlock(&priv->action_mutex);
6309
6310       fail:
6311         if (dev) {
6312                 if (registered)
6313                         unregister_netdev(dev);
6314
6315                 ipw2100_hw_stop_adapter(priv);
6316
6317                 ipw2100_disable_interrupts(priv);
6318
6319                 if (dev->irq)
6320                         free_irq(dev->irq, priv);
6321
6322                 ipw2100_kill_workqueue(priv);
6323
6324                 /* These are safe to call even if they weren't allocated */
6325                 ipw2100_queues_free(priv);
6326                 sysfs_remove_group(&pci_dev->dev.kobj,
6327                                    &ipw2100_attribute_group);
6328
6329                 free_ieee80211(dev);
6330                 pci_set_drvdata(pci_dev, NULL);
6331         }
6332
6333         if (base_addr)
6334                 iounmap(base_addr);
6335
6336         pci_release_regions(pci_dev);
6337         pci_disable_device(pci_dev);
6338
6339         return err;
6340 }
6341
6342 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6343 {
6344         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6345         struct net_device *dev;
6346
6347         if (priv) {
6348                 mutex_lock(&priv->action_mutex);
6349
6350                 priv->status &= ~STATUS_INITIALIZED;
6351
6352                 dev = priv->net_dev;
6353                 sysfs_remove_group(&pci_dev->dev.kobj,
6354                                    &ipw2100_attribute_group);
6355
6356 #ifdef CONFIG_PM
6357                 if (ipw2100_firmware.version)
6358                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6359 #endif
6360                 /* Take down the hardware */
6361                 ipw2100_down(priv);
6362
6363                 /* Release the mutex so that the network subsystem can
6364                  * complete any needed calls into the driver... */
6365                 mutex_unlock(&priv->action_mutex);
6366
6367                 /* Unregister the device first - this results in close()
6368                  * being called if the device is open.  If we free storage
6369                  * first, then close() will crash. */
6370                 unregister_netdev(dev);
6371
6372                 /* ipw2100_down will ensure that there is no more pending work
6373                  * in the workqueue's, so we can safely remove them now. */
6374                 ipw2100_kill_workqueue(priv);
6375
6376                 ipw2100_queues_free(priv);
6377
6378                 /* Free potential debugging firmware snapshot */
6379                 ipw2100_snapshot_free(priv);
6380
6381                 if (dev->irq)
6382                         free_irq(dev->irq, priv);
6383
6384                 if (dev->base_addr)
6385                         iounmap((void __iomem *)dev->base_addr);
6386
6387                 free_ieee80211(dev);
6388         }
6389
6390         pci_release_regions(pci_dev);
6391         pci_disable_device(pci_dev);
6392
6393         IPW_DEBUG_INFO("exit\n");
6394 }
6395
6396 #ifdef CONFIG_PM
6397 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6398 {
6399         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6400         struct net_device *dev = priv->net_dev;
6401
6402         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6403
6404         mutex_lock(&priv->action_mutex);
6405         if (priv->status & STATUS_INITIALIZED) {
6406                 /* Take down the device; powers it off, etc. */
6407                 ipw2100_down(priv);
6408         }
6409
6410         /* Remove the PRESENT state of the device */
6411         netif_device_detach(dev);
6412
6413         pci_save_state(pci_dev);
6414         pci_disable_device(pci_dev);
6415         pci_set_power_state(pci_dev, PCI_D3hot);
6416
6417         mutex_unlock(&priv->action_mutex);
6418
6419         return 0;
6420 }
6421
6422 static int ipw2100_resume(struct pci_dev *pci_dev)
6423 {
6424         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6425         struct net_device *dev = priv->net_dev;
6426         u32 val;
6427
6428         if (IPW2100_PM_DISABLED)
6429                 return 0;
6430
6431         mutex_lock(&priv->action_mutex);
6432
6433         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6434
6435         pci_set_power_state(pci_dev, PCI_D0);
6436         pci_enable_device(pci_dev);
6437         pci_restore_state(pci_dev);
6438
6439         /*
6440          * Suspend/Resume resets the PCI configuration space, so we have to
6441          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6442          * from interfering with C3 CPU state. pci_restore_state won't help
6443          * here since it only restores the first 64 bytes pci config header.
6444          */
6445         pci_read_config_dword(pci_dev, 0x40, &val);
6446         if ((val & 0x0000ff00) != 0)
6447                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6448
6449         /* Set the device back into the PRESENT state; this will also wake
6450          * the queue of needed */
6451         netif_device_attach(dev);
6452
6453         /* Bring the device back up */
6454         if (!(priv->status & STATUS_RF_KILL_SW))
6455                 ipw2100_up(priv, 0);
6456
6457         mutex_unlock(&priv->action_mutex);
6458
6459         return 0;
6460 }
6461 #endif
6462
6463 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6464
6465 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6466         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6467         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6468         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6469         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6470         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6471         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6472         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6473         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6474         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6475         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6476         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6477         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6478         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6479
6480         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6481         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6482         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6483         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6484         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6485
6486         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6487         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6488         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6489         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6490         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6491         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6492         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6493
6494         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6495
6496         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6497         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6498         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6499         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6500         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6501         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6502         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6503
6504         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6505         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6506         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6507         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6508         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6509         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6510
6511         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6512         {0,},
6513 };
6514
6515 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6516
6517 static struct pci_driver ipw2100_pci_driver = {
6518         .name = DRV_NAME,
6519         .id_table = ipw2100_pci_id_table,
6520         .probe = ipw2100_pci_init_one,
6521         .remove = __devexit_p(ipw2100_pci_remove_one),
6522 #ifdef CONFIG_PM
6523         .suspend = ipw2100_suspend,
6524         .resume = ipw2100_resume,
6525 #endif
6526 };
6527
6528 /**
6529  * Initialize the ipw2100 driver/module
6530  *
6531  * @returns 0 if ok, < 0 errno node con error.
6532  *
6533  * Note: we cannot init the /proc stuff until the PCI driver is there,
6534  * or we risk an unlikely race condition on someone accessing
6535  * uninitialized data in the PCI dev struct through /proc.
6536  */
6537 static int __init ipw2100_init(void)
6538 {
6539         int ret;
6540
6541         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6542         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6543
6544         ret = pci_register_driver(&ipw2100_pci_driver);
6545         if (ret)
6546                 goto out;
6547
6548         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6549 #ifdef CONFIG_IPW2100_DEBUG
6550         ipw2100_debug_level = debug;
6551         ret = driver_create_file(&ipw2100_pci_driver.driver,
6552                                  &driver_attr_debug_level);
6553 #endif
6554
6555 out:
6556         return ret;
6557 }
6558
6559 /**
6560  * Cleanup ipw2100 driver registration
6561  */
6562 static void __exit ipw2100_exit(void)
6563 {
6564         /* FIXME: IPG: check that we have no instances of the devices open */
6565 #ifdef CONFIG_IPW2100_DEBUG
6566         driver_remove_file(&ipw2100_pci_driver.driver,
6567                            &driver_attr_debug_level);
6568 #endif
6569         pci_unregister_driver(&ipw2100_pci_driver);
6570         remove_acceptable_latency("ipw2100");
6571 }
6572
6573 module_init(ipw2100_init);
6574 module_exit(ipw2100_exit);
6575
6576 #define WEXT_USECHANNELS 1
6577
6578 static const long ipw2100_frequencies[] = {
6579         2412, 2417, 2422, 2427,
6580         2432, 2437, 2442, 2447,
6581         2452, 2457, 2462, 2467,
6582         2472, 2484
6583 };
6584
6585 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6586                     sizeof(ipw2100_frequencies[0]))
6587
6588 static const long ipw2100_rates_11b[] = {
6589         1000000,
6590         2000000,
6591         5500000,
6592         11000000
6593 };
6594
6595 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6596
6597 static int ipw2100_wx_get_name(struct net_device *dev,
6598                                struct iw_request_info *info,
6599                                union iwreq_data *wrqu, char *extra)
6600 {
6601         /*
6602          * This can be called at any time.  No action lock required
6603          */
6604
6605         struct ipw2100_priv *priv = ieee80211_priv(dev);
6606         if (!(priv->status & STATUS_ASSOCIATED))
6607                 strcpy(wrqu->name, "unassociated");
6608         else
6609                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6610
6611         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6612         return 0;
6613 }
6614
6615 static int ipw2100_wx_set_freq(struct net_device *dev,
6616                                struct iw_request_info *info,
6617                                union iwreq_data *wrqu, char *extra)
6618 {
6619         struct ipw2100_priv *priv = ieee80211_priv(dev);
6620         struct iw_freq *fwrq = &wrqu->freq;
6621         int err = 0;
6622
6623         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6624                 return -EOPNOTSUPP;
6625
6626         mutex_lock(&priv->action_mutex);
6627         if (!(priv->status & STATUS_INITIALIZED)) {
6628                 err = -EIO;
6629                 goto done;
6630         }
6631
6632         /* if setting by freq convert to channel */
6633         if (fwrq->e == 1) {
6634                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6635                         int f = fwrq->m / 100000;
6636                         int c = 0;
6637
6638                         while ((c < REG_MAX_CHANNEL) &&
6639                                (f != ipw2100_frequencies[c]))
6640                                 c++;
6641
6642                         /* hack to fall through */
6643                         fwrq->e = 0;
6644                         fwrq->m = c + 1;
6645                 }
6646         }
6647
6648         if (fwrq->e > 0 || fwrq->m > 1000) {
6649                 err = -EOPNOTSUPP;
6650                 goto done;
6651         } else {                /* Set the channel */
6652                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6653                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6654         }
6655
6656       done:
6657         mutex_unlock(&priv->action_mutex);
6658         return err;
6659 }
6660
6661 static int ipw2100_wx_get_freq(struct net_device *dev,
6662                                struct iw_request_info *info,
6663                                union iwreq_data *wrqu, char *extra)
6664 {
6665         /*
6666          * This can be called at any time.  No action lock required
6667          */
6668
6669         struct ipw2100_priv *priv = ieee80211_priv(dev);
6670
6671         wrqu->freq.e = 0;
6672
6673         /* If we are associated, trying to associate, or have a statically
6674          * configured CHANNEL then return that; otherwise return ANY */
6675         if (priv->config & CFG_STATIC_CHANNEL ||
6676             priv->status & STATUS_ASSOCIATED)
6677                 wrqu->freq.m = priv->channel;
6678         else
6679                 wrqu->freq.m = 0;
6680
6681         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6682         return 0;
6683
6684 }
6685
6686 static int ipw2100_wx_set_mode(struct net_device *dev,
6687                                struct iw_request_info *info,
6688                                union iwreq_data *wrqu, char *extra)
6689 {
6690         struct ipw2100_priv *priv = ieee80211_priv(dev);
6691         int err = 0;
6692
6693         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6694
6695         if (wrqu->mode == priv->ieee->iw_mode)
6696                 return 0;
6697
6698         mutex_lock(&priv->action_mutex);
6699         if (!(priv->status & STATUS_INITIALIZED)) {
6700                 err = -EIO;
6701                 goto done;
6702         }
6703
6704         switch (wrqu->mode) {
6705 #ifdef CONFIG_IPW2100_MONITOR
6706         case IW_MODE_MONITOR:
6707                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6708                 break;
6709 #endif                          /* CONFIG_IPW2100_MONITOR */
6710         case IW_MODE_ADHOC:
6711                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6712                 break;
6713         case IW_MODE_INFRA:
6714         case IW_MODE_AUTO:
6715         default:
6716                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6717                 break;
6718         }
6719
6720       done:
6721         mutex_unlock(&priv->action_mutex);
6722         return err;
6723 }
6724
6725 static int ipw2100_wx_get_mode(struct net_device *dev,
6726                                struct iw_request_info *info,
6727                                union iwreq_data *wrqu, char *extra)
6728 {
6729         /*
6730          * This can be called at any time.  No action lock required
6731          */
6732
6733         struct ipw2100_priv *priv = ieee80211_priv(dev);
6734
6735         wrqu->mode = priv->ieee->iw_mode;
6736         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6737
6738         return 0;
6739 }
6740
6741 #define POWER_MODES 5
6742
6743 /* Values are in microsecond */
6744 static const s32 timeout_duration[POWER_MODES] = {
6745         350000,
6746         250000,
6747         75000,
6748         37000,
6749         25000,
6750 };
6751
6752 static const s32 period_duration[POWER_MODES] = {
6753         400000,
6754         700000,
6755         1000000,
6756         1000000,
6757         1000000
6758 };
6759
6760 static int ipw2100_wx_get_range(struct net_device *dev,
6761                                 struct iw_request_info *info,
6762                                 union iwreq_data *wrqu, char *extra)
6763 {
6764         /*
6765          * This can be called at any time.  No action lock required
6766          */
6767
6768         struct ipw2100_priv *priv = ieee80211_priv(dev);
6769         struct iw_range *range = (struct iw_range *)extra;
6770         u16 val;
6771         int i, level;
6772
6773         wrqu->data.length = sizeof(*range);
6774         memset(range, 0, sizeof(*range));
6775
6776         /* Let's try to keep this struct in the same order as in
6777          * linux/include/wireless.h
6778          */
6779
6780         /* TODO: See what values we can set, and remove the ones we can't
6781          * set, or fill them with some default data.
6782          */
6783
6784         /* ~5 Mb/s real (802.11b) */
6785         range->throughput = 5 * 1000 * 1000;
6786
6787 //      range->sensitivity;     /* signal level threshold range */
6788
6789         range->max_qual.qual = 100;
6790         /* TODO: Find real max RSSI and stick here */
6791         range->max_qual.level = 0;
6792         range->max_qual.noise = 0;
6793         range->max_qual.updated = 7;    /* Updated all three */
6794
6795         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6796         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6797         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6798         range->avg_qual.noise = 0;
6799         range->avg_qual.updated = 7;    /* Updated all three */
6800
6801         range->num_bitrates = RATE_COUNT;
6802
6803         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6804                 range->bitrate[i] = ipw2100_rates_11b[i];
6805         }
6806
6807         range->min_rts = MIN_RTS_THRESHOLD;
6808         range->max_rts = MAX_RTS_THRESHOLD;
6809         range->min_frag = MIN_FRAG_THRESHOLD;
6810         range->max_frag = MAX_FRAG_THRESHOLD;
6811
6812         range->min_pmp = period_duration[0];    /* Minimal PM period */
6813         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6814         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6815         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6816
6817         /* How to decode max/min PM period */
6818         range->pmp_flags = IW_POWER_PERIOD;
6819         /* How to decode max/min PM period */
6820         range->pmt_flags = IW_POWER_TIMEOUT;
6821         /* What PM options are supported */
6822         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6823
6824         range->encoding_size[0] = 5;
6825         range->encoding_size[1] = 13;   /* Different token sizes */
6826         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6827         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6828 //      range->encoding_login_index;            /* token index for login token */
6829
6830         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6831                 range->txpower_capa = IW_TXPOW_DBM;
6832                 range->num_txpower = IW_MAX_TXPOWER;
6833                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6834                      i < IW_MAX_TXPOWER;
6835                      i++, level -=
6836                      ((IPW_TX_POWER_MAX_DBM -
6837                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6838                         range->txpower[i] = level / 16;
6839         } else {
6840                 range->txpower_capa = 0;
6841                 range->num_txpower = 0;
6842         }
6843
6844         /* Set the Wireless Extension versions */
6845         range->we_version_compiled = WIRELESS_EXT;
6846         range->we_version_source = 18;
6847
6848 //      range->retry_capa;      /* What retry options are supported */
6849 //      range->retry_flags;     /* How to decode max/min retry limit */
6850 //      range->r_time_flags;    /* How to decode max/min retry life */
6851 //      range->min_retry;       /* Minimal number of retries */
6852 //      range->max_retry;       /* Maximal number of retries */
6853 //      range->min_r_time;      /* Minimal retry lifetime */
6854 //      range->max_r_time;      /* Maximal retry lifetime */
6855
6856         range->num_channels = FREQ_COUNT;
6857
6858         val = 0;
6859         for (i = 0; i < FREQ_COUNT; i++) {
6860                 // TODO: Include only legal frequencies for some countries
6861 //              if (local->channel_mask & (1 << i)) {
6862                 range->freq[val].i = i + 1;
6863                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6864                 range->freq[val].e = 1;
6865                 val++;
6866 //              }
6867                 if (val == IW_MAX_FREQUENCIES)
6868                         break;
6869         }
6870         range->num_frequency = val;
6871
6872         /* Event capability (kernel + driver) */
6873         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6874                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6875         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6876
6877         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6878                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6879
6880         IPW_DEBUG_WX("GET Range\n");
6881
6882         return 0;
6883 }
6884
6885 static int ipw2100_wx_set_wap(struct net_device *dev,
6886                               struct iw_request_info *info,
6887                               union iwreq_data *wrqu, char *extra)
6888 {
6889         struct ipw2100_priv *priv = ieee80211_priv(dev);
6890         int err = 0;
6891
6892         static const unsigned char any[] = {
6893                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6894         };
6895         static const unsigned char off[] = {
6896                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6897         };
6898
6899         // sanity checks
6900         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6901                 return -EINVAL;
6902
6903         mutex_lock(&priv->action_mutex);
6904         if (!(priv->status & STATUS_INITIALIZED)) {
6905                 err = -EIO;
6906                 goto done;
6907         }
6908
6909         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6910             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6911                 /* we disable mandatory BSSID association */
6912                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6913                 priv->config &= ~CFG_STATIC_BSSID;
6914                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6915                 goto done;
6916         }
6917
6918         priv->config |= CFG_STATIC_BSSID;
6919         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6920
6921         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6922
6923         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6924                      wrqu->ap_addr.sa_data[0] & 0xff,
6925                      wrqu->ap_addr.sa_data[1] & 0xff,
6926                      wrqu->ap_addr.sa_data[2] & 0xff,
6927                      wrqu->ap_addr.sa_data[3] & 0xff,
6928                      wrqu->ap_addr.sa_data[4] & 0xff,
6929                      wrqu->ap_addr.sa_data[5] & 0xff);
6930
6931       done:
6932         mutex_unlock(&priv->action_mutex);
6933         return err;
6934 }
6935
6936 static int ipw2100_wx_get_wap(struct net_device *dev,
6937                               struct iw_request_info *info,
6938                               union iwreq_data *wrqu, char *extra)
6939 {
6940         /*
6941          * This can be called at any time.  No action lock required
6942          */
6943
6944         struct ipw2100_priv *priv = ieee80211_priv(dev);
6945
6946         /* If we are associated, trying to associate, or have a statically
6947          * configured BSSID then return that; otherwise return ANY */
6948         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6949                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6950                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6951         } else
6952                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6953
6954         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6955                      MAC_ARG(wrqu->ap_addr.sa_data));
6956         return 0;
6957 }
6958
6959 static int ipw2100_wx_set_essid(struct net_device *dev,
6960                                 struct iw_request_info *info,
6961                                 union iwreq_data *wrqu, char *extra)
6962 {
6963         struct ipw2100_priv *priv = ieee80211_priv(dev);
6964         char *essid = "";       /* ANY */
6965         int length = 0;
6966         int err = 0;
6967
6968         mutex_lock(&priv->action_mutex);
6969         if (!(priv->status & STATUS_INITIALIZED)) {
6970                 err = -EIO;
6971                 goto done;
6972         }
6973
6974         if (wrqu->essid.flags && wrqu->essid.length) {
6975                 length = wrqu->essid.length;
6976                 essid = extra;
6977         }
6978
6979         if (length == 0) {
6980                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6981                 priv->config &= ~CFG_STATIC_ESSID;
6982                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6983                 goto done;
6984         }
6985
6986         length = min(length, IW_ESSID_MAX_SIZE);
6987
6988         priv->config |= CFG_STATIC_ESSID;
6989
6990         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6991                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6992                 err = 0;
6993                 goto done;
6994         }
6995
6996         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6997                      length);
6998
6999         priv->essid_len = length;
7000         memcpy(priv->essid, essid, priv->essid_len);
7001
7002         err = ipw2100_set_essid(priv, essid, length, 0);
7003
7004       done:
7005         mutex_unlock(&priv->action_mutex);
7006         return err;
7007 }
7008
7009 static int ipw2100_wx_get_essid(struct net_device *dev,
7010                                 struct iw_request_info *info,
7011                                 union iwreq_data *wrqu, char *extra)
7012 {
7013         /*
7014          * This can be called at any time.  No action lock required
7015          */
7016
7017         struct ipw2100_priv *priv = ieee80211_priv(dev);
7018
7019         /* If we are associated, trying to associate, or have a statically
7020          * configured ESSID then return that; otherwise return ANY */
7021         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7022                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7023                              escape_essid(priv->essid, priv->essid_len));
7024                 memcpy(extra, priv->essid, priv->essid_len);
7025                 wrqu->essid.length = priv->essid_len;
7026                 wrqu->essid.flags = 1;  /* active */
7027         } else {
7028                 IPW_DEBUG_WX("Getting essid: ANY\n");
7029                 wrqu->essid.length = 0;
7030                 wrqu->essid.flags = 0;  /* active */
7031         }
7032
7033         return 0;
7034 }
7035
7036 static int ipw2100_wx_set_nick(struct net_device *dev,
7037                                struct iw_request_info *info,
7038                                union iwreq_data *wrqu, char *extra)
7039 {
7040         /*
7041          * This can be called at any time.  No action lock required
7042          */
7043
7044         struct ipw2100_priv *priv = ieee80211_priv(dev);
7045
7046         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7047                 return -E2BIG;
7048
7049         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7050         memset(priv->nick, 0, sizeof(priv->nick));
7051         memcpy(priv->nick, extra, wrqu->data.length);
7052
7053         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7054
7055         return 0;
7056 }
7057
7058 static int ipw2100_wx_get_nick(struct net_device *dev,
7059                                struct iw_request_info *info,
7060                                union iwreq_data *wrqu, char *extra)
7061 {
7062         /*
7063          * This can be called at any time.  No action lock required
7064          */
7065
7066         struct ipw2100_priv *priv = ieee80211_priv(dev);
7067
7068         wrqu->data.length = strlen(priv->nick);
7069         memcpy(extra, priv->nick, wrqu->data.length);
7070         wrqu->data.flags = 1;   /* active */
7071
7072         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7073
7074         return 0;
7075 }
7076
7077 static int ipw2100_wx_set_rate(struct net_device *dev,
7078                                struct iw_request_info *info,
7079                                union iwreq_data *wrqu, char *extra)
7080 {
7081         struct ipw2100_priv *priv = ieee80211_priv(dev);
7082         u32 target_rate = wrqu->bitrate.value;
7083         u32 rate;
7084         int err = 0;
7085
7086         mutex_lock(&priv->action_mutex);
7087         if (!(priv->status & STATUS_INITIALIZED)) {
7088                 err = -EIO;
7089                 goto done;
7090         }
7091
7092         rate = 0;
7093
7094         if (target_rate == 1000000 ||
7095             (!wrqu->bitrate.fixed && target_rate > 1000000))
7096                 rate |= TX_RATE_1_MBIT;
7097         if (target_rate == 2000000 ||
7098             (!wrqu->bitrate.fixed && target_rate > 2000000))
7099                 rate |= TX_RATE_2_MBIT;
7100         if (target_rate == 5500000 ||
7101             (!wrqu->bitrate.fixed && target_rate > 5500000))
7102                 rate |= TX_RATE_5_5_MBIT;
7103         if (target_rate == 11000000 ||
7104             (!wrqu->bitrate.fixed && target_rate > 11000000))
7105                 rate |= TX_RATE_11_MBIT;
7106         if (rate == 0)
7107                 rate = DEFAULT_TX_RATES;
7108
7109         err = ipw2100_set_tx_rates(priv, rate, 0);
7110
7111         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7112       done:
7113         mutex_unlock(&priv->action_mutex);
7114         return err;
7115 }
7116
7117 static int ipw2100_wx_get_rate(struct net_device *dev,
7118                                struct iw_request_info *info,
7119                                union iwreq_data *wrqu, char *extra)
7120 {
7121         struct ipw2100_priv *priv = ieee80211_priv(dev);
7122         int val;
7123         int len = sizeof(val);
7124         int err = 0;
7125
7126         if (!(priv->status & STATUS_ENABLED) ||
7127             priv->status & STATUS_RF_KILL_MASK ||
7128             !(priv->status & STATUS_ASSOCIATED)) {
7129                 wrqu->bitrate.value = 0;
7130                 return 0;
7131         }
7132
7133         mutex_lock(&priv->action_mutex);
7134         if (!(priv->status & STATUS_INITIALIZED)) {
7135                 err = -EIO;
7136                 goto done;
7137         }
7138
7139         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7140         if (err) {
7141                 IPW_DEBUG_WX("failed querying ordinals.\n");
7142                 return err;
7143         }
7144
7145         switch (val & TX_RATE_MASK) {
7146         case TX_RATE_1_MBIT:
7147                 wrqu->bitrate.value = 1000000;
7148                 break;
7149         case TX_RATE_2_MBIT:
7150                 wrqu->bitrate.value = 2000000;
7151                 break;
7152         case TX_RATE_5_5_MBIT:
7153                 wrqu->bitrate.value = 5500000;
7154                 break;
7155         case TX_RATE_11_MBIT:
7156                 wrqu->bitrate.value = 11000000;
7157                 break;
7158         default:
7159                 wrqu->bitrate.value = 0;
7160         }
7161
7162         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7163
7164       done:
7165         mutex_unlock(&priv->action_mutex);
7166         return err;
7167 }
7168
7169 static int ipw2100_wx_set_rts(struct net_device *dev,
7170                               struct iw_request_info *info,
7171                               union iwreq_data *wrqu, char *extra)
7172 {
7173         struct ipw2100_priv *priv = ieee80211_priv(dev);
7174         int value, err;
7175
7176         /* Auto RTS not yet supported */
7177         if (wrqu->rts.fixed == 0)
7178                 return -EINVAL;
7179
7180         mutex_lock(&priv->action_mutex);
7181         if (!(priv->status & STATUS_INITIALIZED)) {
7182                 err = -EIO;
7183                 goto done;
7184         }
7185
7186         if (wrqu->rts.disabled)
7187                 value = priv->rts_threshold | RTS_DISABLED;
7188         else {
7189                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7190                         err = -EINVAL;
7191                         goto done;
7192                 }
7193                 value = wrqu->rts.value;
7194         }
7195
7196         err = ipw2100_set_rts_threshold(priv, value);
7197
7198         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7199       done:
7200         mutex_unlock(&priv->action_mutex);
7201         return err;
7202 }
7203
7204 static int ipw2100_wx_get_rts(struct net_device *dev,
7205                               struct iw_request_info *info,
7206                               union iwreq_data *wrqu, char *extra)
7207 {
7208         /*
7209          * This can be called at any time.  No action lock required
7210          */
7211
7212         struct ipw2100_priv *priv = ieee80211_priv(dev);
7213
7214         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7215         wrqu->rts.fixed = 1;    /* no auto select */
7216
7217         /* If RTS is set to the default value, then it is disabled */
7218         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7219
7220         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7221
7222         return 0;
7223 }
7224
7225 static int ipw2100_wx_set_txpow(struct net_device *dev,
7226                                 struct iw_request_info *info,
7227                                 union iwreq_data *wrqu, char *extra)
7228 {
7229         struct ipw2100_priv *priv = ieee80211_priv(dev);
7230         int err = 0, value;
7231         
7232         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7233                 return -EINPROGRESS;
7234
7235         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7236                 return 0;
7237
7238         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7239                 return -EINVAL;
7240
7241         if (wrqu->txpower.fixed == 0)
7242                 value = IPW_TX_POWER_DEFAULT;
7243         else {
7244                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7245                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7246                         return -EINVAL;
7247
7248                 value = wrqu->txpower.value;
7249         }
7250
7251         mutex_lock(&priv->action_mutex);
7252         if (!(priv->status & STATUS_INITIALIZED)) {
7253                 err = -EIO;
7254                 goto done;
7255         }
7256
7257         err = ipw2100_set_tx_power(priv, value);
7258
7259         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7260
7261       done:
7262         mutex_unlock(&priv->action_mutex);
7263         return err;
7264 }
7265
7266 static int ipw2100_wx_get_txpow(struct net_device *dev,
7267                                 struct iw_request_info *info,
7268                                 union iwreq_data *wrqu, char *extra)
7269 {
7270         /*
7271          * This can be called at any time.  No action lock required
7272          */
7273
7274         struct ipw2100_priv *priv = ieee80211_priv(dev);
7275
7276         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7277
7278         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7279                 wrqu->txpower.fixed = 0;
7280                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7281         } else {
7282                 wrqu->txpower.fixed = 1;
7283                 wrqu->txpower.value = priv->tx_power;
7284         }
7285
7286         wrqu->txpower.flags = IW_TXPOW_DBM;
7287
7288         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7289
7290         return 0;
7291 }
7292
7293 static int ipw2100_wx_set_frag(struct net_device *dev,
7294                                struct iw_request_info *info,
7295                                union iwreq_data *wrqu, char *extra)
7296 {
7297         /*
7298          * This can be called at any time.  No action lock required
7299          */
7300
7301         struct ipw2100_priv *priv = ieee80211_priv(dev);
7302
7303         if (!wrqu->frag.fixed)
7304                 return -EINVAL;
7305
7306         if (wrqu->frag.disabled) {
7307                 priv->frag_threshold |= FRAG_DISABLED;
7308                 priv->ieee->fts = DEFAULT_FTS;
7309         } else {
7310                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7311                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7312                         return -EINVAL;
7313
7314                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7315                 priv->frag_threshold = priv->ieee->fts;
7316         }
7317
7318         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7319
7320         return 0;
7321 }
7322
7323 static int ipw2100_wx_get_frag(struct net_device *dev,
7324                                struct iw_request_info *info,
7325                                union iwreq_data *wrqu, char *extra)
7326 {
7327         /*
7328          * This can be called at any time.  No action lock required
7329          */
7330
7331         struct ipw2100_priv *priv = ieee80211_priv(dev);
7332         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7333         wrqu->frag.fixed = 0;   /* no auto select */
7334         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7335
7336         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7337
7338         return 0;
7339 }
7340
7341 static int ipw2100_wx_set_retry(struct net_device *dev,
7342                                 struct iw_request_info *info,
7343                                 union iwreq_data *wrqu, char *extra)
7344 {
7345         struct ipw2100_priv *priv = ieee80211_priv(dev);
7346         int err = 0;
7347
7348         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7349                 return -EINVAL;
7350
7351         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7352                 return 0;
7353
7354         mutex_lock(&priv->action_mutex);
7355         if (!(priv->status & STATUS_INITIALIZED)) {
7356                 err = -EIO;
7357                 goto done;
7358         }
7359
7360         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7361                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7362                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7363                              wrqu->retry.value);
7364                 goto done;
7365         }
7366
7367         if (wrqu->retry.flags & IW_RETRY_LONG) {
7368                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7369                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7370                              wrqu->retry.value);
7371                 goto done;
7372         }
7373
7374         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7375         if (!err)
7376                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7377
7378         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7379
7380       done:
7381         mutex_unlock(&priv->action_mutex);
7382         return err;
7383 }
7384
7385 static int ipw2100_wx_get_retry(struct net_device *dev,
7386                                 struct iw_request_info *info,
7387                                 union iwreq_data *wrqu, char *extra)
7388 {
7389         /*
7390          * This can be called at any time.  No action lock required
7391          */
7392
7393         struct ipw2100_priv *priv = ieee80211_priv(dev);
7394
7395         wrqu->retry.disabled = 0;       /* can't be disabled */
7396
7397         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7398                 return -EINVAL;
7399
7400         if (wrqu->retry.flags & IW_RETRY_LONG) {
7401                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7402                 wrqu->retry.value = priv->long_retry_limit;
7403         } else {
7404                 wrqu->retry.flags =
7405                     (priv->short_retry_limit !=
7406                      priv->long_retry_limit) ?
7407                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7408
7409                 wrqu->retry.value = priv->short_retry_limit;
7410         }
7411
7412         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7413
7414         return 0;
7415 }
7416
7417 static int ipw2100_wx_set_scan(struct net_device *dev,
7418                                struct iw_request_info *info,
7419                                union iwreq_data *wrqu, char *extra)
7420 {
7421         struct ipw2100_priv *priv = ieee80211_priv(dev);
7422         int err = 0;
7423
7424         mutex_lock(&priv->action_mutex);
7425         if (!(priv->status & STATUS_INITIALIZED)) {
7426                 err = -EIO;
7427                 goto done;
7428         }
7429
7430         IPW_DEBUG_WX("Initiating scan...\n");
7431         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7432                 IPW_DEBUG_WX("Start scan failed.\n");
7433
7434                 /* TODO: Mark a scan as pending so when hardware initialized
7435                  *       a scan starts */
7436         }
7437
7438       done:
7439         mutex_unlock(&priv->action_mutex);
7440         return err;
7441 }
7442
7443 static int ipw2100_wx_get_scan(struct net_device *dev,
7444                                struct iw_request_info *info,
7445                                union iwreq_data *wrqu, char *extra)
7446 {
7447         /*
7448          * This can be called at any time.  No action lock required
7449          */
7450
7451         struct ipw2100_priv *priv = ieee80211_priv(dev);
7452         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7453 }
7454
7455 /*
7456  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7457  */
7458 static int ipw2100_wx_set_encode(struct net_device *dev,
7459                                  struct iw_request_info *info,
7460                                  union iwreq_data *wrqu, char *key)
7461 {
7462         /*
7463          * No check of STATUS_INITIALIZED required
7464          */
7465
7466         struct ipw2100_priv *priv = ieee80211_priv(dev);
7467         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7468 }
7469
7470 static int ipw2100_wx_get_encode(struct net_device *dev,
7471                                  struct iw_request_info *info,
7472                                  union iwreq_data *wrqu, char *key)
7473 {
7474         /*
7475          * This can be called at any time.  No action lock required
7476          */
7477
7478         struct ipw2100_priv *priv = ieee80211_priv(dev);
7479         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7480 }
7481
7482 static int ipw2100_wx_set_power(struct net_device *dev,
7483                                 struct iw_request_info *info,
7484                                 union iwreq_data *wrqu, char *extra)
7485 {
7486         struct ipw2100_priv *priv = ieee80211_priv(dev);
7487         int err = 0;
7488
7489         mutex_lock(&priv->action_mutex);
7490         if (!(priv->status & STATUS_INITIALIZED)) {
7491                 err = -EIO;
7492                 goto done;
7493         }
7494
7495         if (wrqu->power.disabled) {
7496                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7497                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7498                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7499                 goto done;
7500         }
7501
7502         switch (wrqu->power.flags & IW_POWER_MODE) {
7503         case IW_POWER_ON:       /* If not specified */
7504         case IW_POWER_MODE:     /* If set all mask */
7505         case IW_POWER_ALL_R:    /* If explicitely state all */
7506                 break;
7507         default:                /* Otherwise we don't support it */
7508                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7509                              wrqu->power.flags);
7510                 err = -EOPNOTSUPP;
7511                 goto done;
7512         }
7513
7514         /* If the user hasn't specified a power management mode yet, default
7515          * to BATTERY */
7516         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7517         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7518
7519         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7520
7521       done:
7522         mutex_unlock(&priv->action_mutex);
7523         return err;
7524
7525 }
7526
7527 static int ipw2100_wx_get_power(struct net_device *dev,
7528                                 struct iw_request_info *info,
7529                                 union iwreq_data *wrqu, char *extra)
7530 {
7531         /*
7532          * This can be called at any time.  No action lock required
7533          */
7534
7535         struct ipw2100_priv *priv = ieee80211_priv(dev);
7536
7537         if (!(priv->power_mode & IPW_POWER_ENABLED))
7538                 wrqu->power.disabled = 1;
7539         else {
7540                 wrqu->power.disabled = 0;
7541                 wrqu->power.flags = 0;
7542         }
7543
7544         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7545
7546         return 0;
7547 }
7548
7549 /*
7550  * WE-18 WPA support
7551  */
7552
7553 /* SIOCSIWGENIE */
7554 static int ipw2100_wx_set_genie(struct net_device *dev,
7555                                 struct iw_request_info *info,
7556                                 union iwreq_data *wrqu, char *extra)
7557 {
7558
7559         struct ipw2100_priv *priv = ieee80211_priv(dev);
7560         struct ieee80211_device *ieee = priv->ieee;
7561         u8 *buf;
7562
7563         if (!ieee->wpa_enabled)
7564                 return -EOPNOTSUPP;
7565
7566         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7567             (wrqu->data.length && extra == NULL))
7568                 return -EINVAL;
7569
7570         if (wrqu->data.length) {
7571                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7572                 if (buf == NULL)
7573                         return -ENOMEM;
7574
7575                 memcpy(buf, extra, wrqu->data.length);
7576                 kfree(ieee->wpa_ie);
7577                 ieee->wpa_ie = buf;
7578                 ieee->wpa_ie_len = wrqu->data.length;
7579         } else {
7580                 kfree(ieee->wpa_ie);
7581                 ieee->wpa_ie = NULL;
7582                 ieee->wpa_ie_len = 0;
7583         }
7584
7585         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7586
7587         return 0;
7588 }
7589
7590 /* SIOCGIWGENIE */
7591 static int ipw2100_wx_get_genie(struct net_device *dev,
7592                                 struct iw_request_info *info,
7593                                 union iwreq_data *wrqu, char *extra)
7594 {
7595         struct ipw2100_priv *priv = ieee80211_priv(dev);
7596         struct ieee80211_device *ieee = priv->ieee;
7597
7598         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7599                 wrqu->data.length = 0;
7600                 return 0;
7601         }
7602
7603         if (wrqu->data.length < ieee->wpa_ie_len)
7604                 return -E2BIG;
7605
7606         wrqu->data.length = ieee->wpa_ie_len;
7607         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7608
7609         return 0;
7610 }
7611
7612 /* SIOCSIWAUTH */
7613 static int ipw2100_wx_set_auth(struct net_device *dev,
7614                                struct iw_request_info *info,
7615                                union iwreq_data *wrqu, char *extra)
7616 {
7617         struct ipw2100_priv *priv = ieee80211_priv(dev);
7618         struct ieee80211_device *ieee = priv->ieee;
7619         struct iw_param *param = &wrqu->param;
7620         struct ieee80211_crypt_data *crypt;
7621         unsigned long flags;
7622         int ret = 0;
7623
7624         switch (param->flags & IW_AUTH_INDEX) {
7625         case IW_AUTH_WPA_VERSION:
7626         case IW_AUTH_CIPHER_PAIRWISE:
7627         case IW_AUTH_CIPHER_GROUP:
7628         case IW_AUTH_KEY_MGMT:
7629                 /*
7630                  * ipw2200 does not use these parameters
7631                  */
7632                 break;
7633
7634         case IW_AUTH_TKIP_COUNTERMEASURES:
7635                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7636                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7637                         break;
7638
7639                 flags = crypt->ops->get_flags(crypt->priv);
7640
7641                 if (param->value)
7642                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7643                 else
7644                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7645
7646                 crypt->ops->set_flags(flags, crypt->priv);
7647
7648                 break;
7649
7650         case IW_AUTH_DROP_UNENCRYPTED:{
7651                         /* HACK:
7652                          *
7653                          * wpa_supplicant calls set_wpa_enabled when the driver
7654                          * is loaded and unloaded, regardless of if WPA is being
7655                          * used.  No other calls are made which can be used to
7656                          * determine if encryption will be used or not prior to
7657                          * association being expected.  If encryption is not being
7658                          * used, drop_unencrypted is set to false, else true -- we
7659                          * can use this to determine if the CAP_PRIVACY_ON bit should
7660                          * be set.
7661                          */
7662                         struct ieee80211_security sec = {
7663                                 .flags = SEC_ENABLED,
7664                                 .enabled = param->value,
7665                         };
7666                         priv->ieee->drop_unencrypted = param->value;
7667                         /* We only change SEC_LEVEL for open mode. Others
7668                          * are set by ipw_wpa_set_encryption.
7669                          */
7670                         if (!param->value) {
7671                                 sec.flags |= SEC_LEVEL;
7672                                 sec.level = SEC_LEVEL_0;
7673                         } else {
7674                                 sec.flags |= SEC_LEVEL;
7675                                 sec.level = SEC_LEVEL_1;
7676                         }
7677                         if (priv->ieee->set_security)
7678                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7679                         break;
7680                 }
7681
7682         case IW_AUTH_80211_AUTH_ALG:
7683                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7684                 break;
7685
7686         case IW_AUTH_WPA_ENABLED:
7687                 ret = ipw2100_wpa_enable(priv, param->value);
7688                 break;
7689
7690         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7691                 ieee->ieee802_1x = param->value;
7692                 break;
7693
7694                 //case IW_AUTH_ROAMING_CONTROL:
7695         case IW_AUTH_PRIVACY_INVOKED:
7696                 ieee->privacy_invoked = param->value;
7697                 break;
7698
7699         default:
7700                 return -EOPNOTSUPP;
7701         }
7702         return ret;
7703 }
7704
7705 /* SIOCGIWAUTH */
7706 static int ipw2100_wx_get_auth(struct net_device *dev,
7707                                struct iw_request_info *info,
7708                                union iwreq_data *wrqu, char *extra)
7709 {
7710         struct ipw2100_priv *priv = ieee80211_priv(dev);
7711         struct ieee80211_device *ieee = priv->ieee;
7712         struct ieee80211_crypt_data *crypt;
7713         struct iw_param *param = &wrqu->param;
7714         int ret = 0;
7715
7716         switch (param->flags & IW_AUTH_INDEX) {
7717         case IW_AUTH_WPA_VERSION:
7718         case IW_AUTH_CIPHER_PAIRWISE:
7719         case IW_AUTH_CIPHER_GROUP:
7720         case IW_AUTH_KEY_MGMT:
7721                 /*
7722                  * wpa_supplicant will control these internally
7723                  */
7724                 ret = -EOPNOTSUPP;
7725                 break;
7726
7727         case IW_AUTH_TKIP_COUNTERMEASURES:
7728                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7729                 if (!crypt || !crypt->ops->get_flags) {
7730                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7731                                           "crypt not set!\n");
7732                         break;
7733                 }
7734
7735                 param->value = (crypt->ops->get_flags(crypt->priv) &
7736                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7737
7738                 break;
7739
7740         case IW_AUTH_DROP_UNENCRYPTED:
7741                 param->value = ieee->drop_unencrypted;
7742                 break;
7743
7744         case IW_AUTH_80211_AUTH_ALG:
7745                 param->value = priv->ieee->sec.auth_mode;
7746                 break;
7747
7748         case IW_AUTH_WPA_ENABLED:
7749                 param->value = ieee->wpa_enabled;
7750                 break;
7751
7752         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7753                 param->value = ieee->ieee802_1x;
7754                 break;
7755
7756         case IW_AUTH_ROAMING_CONTROL:
7757         case IW_AUTH_PRIVACY_INVOKED:
7758                 param->value = ieee->privacy_invoked;
7759                 break;
7760
7761         default:
7762                 return -EOPNOTSUPP;
7763         }
7764         return 0;
7765 }
7766
7767 /* SIOCSIWENCODEEXT */
7768 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7769                                     struct iw_request_info *info,
7770                                     union iwreq_data *wrqu, char *extra)
7771 {
7772         struct ipw2100_priv *priv = ieee80211_priv(dev);
7773         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7774 }
7775
7776 /* SIOCGIWENCODEEXT */
7777 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7778                                     struct iw_request_info *info,
7779                                     union iwreq_data *wrqu, char *extra)
7780 {
7781         struct ipw2100_priv *priv = ieee80211_priv(dev);
7782         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7783 }
7784
7785 /* SIOCSIWMLME */
7786 static int ipw2100_wx_set_mlme(struct net_device *dev,
7787                                struct iw_request_info *info,
7788                                union iwreq_data *wrqu, char *extra)
7789 {
7790         struct ipw2100_priv *priv = ieee80211_priv(dev);
7791         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7792         u16 reason;
7793
7794         reason = cpu_to_le16(mlme->reason_code);
7795
7796         switch (mlme->cmd) {
7797         case IW_MLME_DEAUTH:
7798                 // silently ignore
7799                 break;
7800
7801         case IW_MLME_DISASSOC:
7802                 ipw2100_disassociate_bssid(priv);
7803                 break;
7804
7805         default:
7806                 return -EOPNOTSUPP;
7807         }
7808         return 0;
7809 }
7810
7811 /*
7812  *
7813  * IWPRIV handlers
7814  *
7815  */
7816 #ifdef CONFIG_IPW2100_MONITOR
7817 static int ipw2100_wx_set_promisc(struct net_device *dev,
7818                                   struct iw_request_info *info,
7819                                   union iwreq_data *wrqu, char *extra)
7820 {
7821         struct ipw2100_priv *priv = ieee80211_priv(dev);
7822         int *parms = (int *)extra;
7823         int enable = (parms[0] > 0);
7824         int err = 0;
7825
7826         mutex_lock(&priv->action_mutex);
7827         if (!(priv->status & STATUS_INITIALIZED)) {
7828                 err = -EIO;
7829                 goto done;
7830         }
7831
7832         if (enable) {
7833                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7834                         err = ipw2100_set_channel(priv, parms[1], 0);
7835                         goto done;
7836                 }
7837                 priv->channel = parms[1];
7838                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7839         } else {
7840                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7841                         err = ipw2100_switch_mode(priv, priv->last_mode);
7842         }
7843       done:
7844         mutex_unlock(&priv->action_mutex);
7845         return err;
7846 }
7847
7848 static int ipw2100_wx_reset(struct net_device *dev,
7849                             struct iw_request_info *info,
7850                             union iwreq_data *wrqu, char *extra)
7851 {
7852         struct ipw2100_priv *priv = ieee80211_priv(dev);
7853         if (priv->status & STATUS_INITIALIZED)
7854                 schedule_reset(priv);
7855         return 0;
7856 }
7857
7858 #endif
7859
7860 static int ipw2100_wx_set_powermode(struct net_device *dev,
7861                                     struct iw_request_info *info,
7862                                     union iwreq_data *wrqu, char *extra)
7863 {
7864         struct ipw2100_priv *priv = ieee80211_priv(dev);
7865         int err = 0, mode = *(int *)extra;
7866
7867         mutex_lock(&priv->action_mutex);
7868         if (!(priv->status & STATUS_INITIALIZED)) {
7869                 err = -EIO;
7870                 goto done;
7871         }
7872
7873         if ((mode < 1) || (mode > POWER_MODES))
7874                 mode = IPW_POWER_AUTO;
7875
7876         if (priv->power_mode != mode)
7877                 err = ipw2100_set_power_mode(priv, mode);
7878       done:
7879         mutex_unlock(&priv->action_mutex);
7880         return err;
7881 }
7882
7883 #define MAX_POWER_STRING 80
7884 static int ipw2100_wx_get_powermode(struct net_device *dev,
7885                                     struct iw_request_info *info,
7886                                     union iwreq_data *wrqu, char *extra)
7887 {
7888         /*
7889          * This can be called at any time.  No action lock required
7890          */
7891
7892         struct ipw2100_priv *priv = ieee80211_priv(dev);
7893         int level = IPW_POWER_LEVEL(priv->power_mode);
7894         s32 timeout, period;
7895
7896         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7897                 snprintf(extra, MAX_POWER_STRING,
7898                          "Power save level: %d (Off)", level);
7899         } else {
7900                 switch (level) {
7901                 case IPW_POWER_MODE_CAM:
7902                         snprintf(extra, MAX_POWER_STRING,
7903                                  "Power save level: %d (None)", level);
7904                         break;
7905                 case IPW_POWER_AUTO:
7906                         snprintf(extra, MAX_POWER_STRING,
7907                                  "Power save level: %d (Auto)", 0);
7908                         break;
7909                 default:
7910                         timeout = timeout_duration[level - 1] / 1000;
7911                         period = period_duration[level - 1] / 1000;
7912                         snprintf(extra, MAX_POWER_STRING,
7913                                  "Power save level: %d "
7914                                  "(Timeout %dms, Period %dms)",
7915                                  level, timeout, period);
7916                 }
7917         }
7918
7919         wrqu->data.length = strlen(extra) + 1;
7920
7921         return 0;
7922 }
7923
7924 static int ipw2100_wx_set_preamble(struct net_device *dev,
7925                                    struct iw_request_info *info,
7926                                    union iwreq_data *wrqu, char *extra)
7927 {
7928         struct ipw2100_priv *priv = ieee80211_priv(dev);
7929         int err, mode = *(int *)extra;
7930
7931         mutex_lock(&priv->action_mutex);
7932         if (!(priv->status & STATUS_INITIALIZED)) {
7933                 err = -EIO;
7934                 goto done;
7935         }
7936
7937         if (mode == 1)
7938                 priv->config |= CFG_LONG_PREAMBLE;
7939         else if (mode == 0)
7940                 priv->config &= ~CFG_LONG_PREAMBLE;
7941         else {
7942                 err = -EINVAL;
7943                 goto done;
7944         }
7945
7946         err = ipw2100_system_config(priv, 0);
7947
7948       done:
7949         mutex_unlock(&priv->action_mutex);
7950         return err;
7951 }
7952
7953 static int ipw2100_wx_get_preamble(struct net_device *dev,
7954                                    struct iw_request_info *info,
7955                                    union iwreq_data *wrqu, char *extra)
7956 {
7957         /*
7958          * This can be called at any time.  No action lock required
7959          */
7960
7961         struct ipw2100_priv *priv = ieee80211_priv(dev);
7962
7963         if (priv->config & CFG_LONG_PREAMBLE)
7964                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7965         else
7966                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7967
7968         return 0;
7969 }
7970
7971 #ifdef CONFIG_IPW2100_MONITOR
7972 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7973                                     struct iw_request_info *info,
7974                                     union iwreq_data *wrqu, char *extra)
7975 {
7976         struct ipw2100_priv *priv = ieee80211_priv(dev);
7977         int err, mode = *(int *)extra;
7978
7979         mutex_lock(&priv->action_mutex);
7980         if (!(priv->status & STATUS_INITIALIZED)) {
7981                 err = -EIO;
7982                 goto done;
7983         }
7984
7985         if (mode == 1)
7986                 priv->config |= CFG_CRC_CHECK;
7987         else if (mode == 0)
7988                 priv->config &= ~CFG_CRC_CHECK;
7989         else {
7990                 err = -EINVAL;
7991                 goto done;
7992         }
7993         err = 0;
7994
7995       done:
7996         mutex_unlock(&priv->action_mutex);
7997         return err;
7998 }
7999
8000 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8001                                     struct iw_request_info *info,
8002                                     union iwreq_data *wrqu, char *extra)
8003 {
8004         /*
8005          * This can be called at any time.  No action lock required
8006          */
8007
8008         struct ipw2100_priv *priv = ieee80211_priv(dev);
8009
8010         if (priv->config & CFG_CRC_CHECK)
8011                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8012         else
8013                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8014
8015         return 0;
8016 }
8017 #endif                          /* CONFIG_IPW2100_MONITOR */
8018
8019 static iw_handler ipw2100_wx_handlers[] = {
8020         NULL,                   /* SIOCSIWCOMMIT */
8021         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8022         NULL,                   /* SIOCSIWNWID */
8023         NULL,                   /* SIOCGIWNWID */
8024         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8025         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8026         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8027         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8028         NULL,                   /* SIOCSIWSENS */
8029         NULL,                   /* SIOCGIWSENS */
8030         NULL,                   /* SIOCSIWRANGE */
8031         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8032         NULL,                   /* SIOCSIWPRIV */
8033         NULL,                   /* SIOCGIWPRIV */
8034         NULL,                   /* SIOCSIWSTATS */
8035         NULL,                   /* SIOCGIWSTATS */
8036         NULL,                   /* SIOCSIWSPY */
8037         NULL,                   /* SIOCGIWSPY */
8038         NULL,                   /* SIOCGIWTHRSPY */
8039         NULL,                   /* SIOCWIWTHRSPY */
8040         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8041         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8042         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8043         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8044         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8045         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8046         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8047         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8048         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8049         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8050         NULL,                   /* -- hole -- */
8051         NULL,                   /* -- hole -- */
8052         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8053         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8054         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8055         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8056         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8057         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8058         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8059         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8060         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8061         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8062         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8063         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8064         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8065         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8066         NULL,                   /* -- hole -- */
8067         NULL,                   /* -- hole -- */
8068         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8069         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8070         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8071         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8072         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8073         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8074         NULL,                   /* SIOCSIWPMKSA */
8075 };
8076
8077 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8078 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8079 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8080 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8081 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8082 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8083 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8084 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8085
8086 static const struct iw_priv_args ipw2100_private_args[] = {
8087
8088 #ifdef CONFIG_IPW2100_MONITOR
8089         {
8090          IPW2100_PRIV_SET_MONITOR,
8091          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8092         {
8093          IPW2100_PRIV_RESET,
8094          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8095 #endif                          /* CONFIG_IPW2100_MONITOR */
8096
8097         {
8098          IPW2100_PRIV_SET_POWER,
8099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8100         {
8101          IPW2100_PRIV_GET_POWER,
8102          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8103          "get_power"},
8104         {
8105          IPW2100_PRIV_SET_LONGPREAMBLE,
8106          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8107         {
8108          IPW2100_PRIV_GET_LONGPREAMBLE,
8109          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8110 #ifdef CONFIG_IPW2100_MONITOR
8111         {
8112          IPW2100_PRIV_SET_CRC_CHECK,
8113          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8114         {
8115          IPW2100_PRIV_GET_CRC_CHECK,
8116          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8117 #endif                          /* CONFIG_IPW2100_MONITOR */
8118 };
8119
8120 static iw_handler ipw2100_private_handler[] = {
8121 #ifdef CONFIG_IPW2100_MONITOR
8122         ipw2100_wx_set_promisc,
8123         ipw2100_wx_reset,
8124 #else                           /* CONFIG_IPW2100_MONITOR */
8125         NULL,
8126         NULL,
8127 #endif                          /* CONFIG_IPW2100_MONITOR */
8128         ipw2100_wx_set_powermode,
8129         ipw2100_wx_get_powermode,
8130         ipw2100_wx_set_preamble,
8131         ipw2100_wx_get_preamble,
8132 #ifdef CONFIG_IPW2100_MONITOR
8133         ipw2100_wx_set_crc_check,
8134         ipw2100_wx_get_crc_check,
8135 #else                           /* CONFIG_IPW2100_MONITOR */
8136         NULL,
8137         NULL,
8138 #endif                          /* CONFIG_IPW2100_MONITOR */
8139 };
8140
8141 /*
8142  * Get wireless statistics.
8143  * Called by /proc/net/wireless
8144  * Also called by SIOCGIWSTATS
8145  */
8146 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8147 {
8148         enum {
8149                 POOR = 30,
8150                 FAIR = 60,
8151                 GOOD = 80,
8152                 VERY_GOOD = 90,
8153                 EXCELLENT = 95,
8154                 PERFECT = 100
8155         };
8156         int rssi_qual;
8157         int tx_qual;
8158         int beacon_qual;
8159
8160         struct ipw2100_priv *priv = ieee80211_priv(dev);
8161         struct iw_statistics *wstats;
8162         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8163         u32 ord_len = sizeof(u32);
8164
8165         if (!priv)
8166                 return (struct iw_statistics *)NULL;
8167
8168         wstats = &priv->wstats;
8169
8170         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8171          * ipw2100_wx_wireless_stats seems to be called before fw is
8172          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8173          * and associated; if not associcated, the values are all meaningless
8174          * anyway, so set them all to NULL and INVALID */
8175         if (!(priv->status & STATUS_ASSOCIATED)) {
8176                 wstats->miss.beacon = 0;
8177                 wstats->discard.retries = 0;
8178                 wstats->qual.qual = 0;
8179                 wstats->qual.level = 0;
8180                 wstats->qual.noise = 0;
8181                 wstats->qual.updated = 7;
8182                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8183                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8184                 return wstats;
8185         }
8186
8187         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8188                                 &missed_beacons, &ord_len))
8189                 goto fail_get_ordinal;
8190
8191         /* If we don't have a connection the quality and level is 0 */
8192         if (!(priv->status & STATUS_ASSOCIATED)) {
8193                 wstats->qual.qual = 0;
8194                 wstats->qual.level = 0;
8195         } else {
8196                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8197                                         &rssi, &ord_len))
8198                         goto fail_get_ordinal;
8199                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8200                 if (rssi < 10)
8201                         rssi_qual = rssi * POOR / 10;
8202                 else if (rssi < 15)
8203                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8204                 else if (rssi < 20)
8205                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8206                 else if (rssi < 30)
8207                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8208                             10 + GOOD;
8209                 else
8210                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8211                             10 + VERY_GOOD;
8212
8213                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8214                                         &tx_retries, &ord_len))
8215                         goto fail_get_ordinal;
8216
8217                 if (tx_retries > 75)
8218                         tx_qual = (90 - tx_retries) * POOR / 15;
8219                 else if (tx_retries > 70)
8220                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8221                 else if (tx_retries > 65)
8222                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8223                 else if (tx_retries > 50)
8224                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8225                             15 + GOOD;
8226                 else
8227                         tx_qual = (50 - tx_retries) *
8228                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8229
8230                 if (missed_beacons > 50)
8231                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8232                 else if (missed_beacons > 40)
8233                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8234                             10 + POOR;
8235                 else if (missed_beacons > 32)
8236                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8237                             18 + FAIR;
8238                 else if (missed_beacons > 20)
8239                         beacon_qual = (32 - missed_beacons) *
8240                             (VERY_GOOD - GOOD) / 20 + GOOD;
8241                 else
8242                         beacon_qual = (20 - missed_beacons) *
8243                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8244
8245                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8246
8247 #ifdef CONFIG_IPW2100_DEBUG
8248                 if (beacon_qual == quality)
8249                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8250                 else if (tx_qual == quality)
8251                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8252                 else if (quality != 100)
8253                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8254                 else
8255                         IPW_DEBUG_WX("Quality not clamped.\n");
8256 #endif
8257
8258                 wstats->qual.qual = quality;
8259                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8260         }
8261
8262         wstats->qual.noise = 0;
8263         wstats->qual.updated = 7;
8264         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8265
8266         /* FIXME: this is percent and not a # */
8267         wstats->miss.beacon = missed_beacons;
8268
8269         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8270                                 &tx_failures, &ord_len))
8271                 goto fail_get_ordinal;
8272         wstats->discard.retries = tx_failures;
8273
8274         return wstats;
8275
8276       fail_get_ordinal:
8277         IPW_DEBUG_WX("failed querying ordinals.\n");
8278
8279         return (struct iw_statistics *)NULL;
8280 }
8281
8282 static struct iw_handler_def ipw2100_wx_handler_def = {
8283         .standard = ipw2100_wx_handlers,
8284         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8285         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8286         .num_private_args = sizeof(ipw2100_private_args) /
8287             sizeof(struct iw_priv_args),
8288         .private = (iw_handler *) ipw2100_private_handler,
8289         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8290         .get_wireless_stats = ipw2100_wx_wireless_stats,
8291 };
8292
8293 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8294 {
8295         union iwreq_data wrqu;
8296         int len = ETH_ALEN;
8297
8298         if (priv->status & STATUS_STOPPING)
8299                 return;
8300
8301         mutex_lock(&priv->action_mutex);
8302
8303         IPW_DEBUG_WX("enter\n");
8304
8305         mutex_unlock(&priv->action_mutex);
8306
8307         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8308
8309         /* Fetch BSSID from the hardware */
8310         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8311             priv->status & STATUS_RF_KILL_MASK ||
8312             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8313                                 &priv->bssid, &len)) {
8314                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8315         } else {
8316                 /* We now have the BSSID, so can finish setting to the full
8317                  * associated state */
8318                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8319                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8320                 priv->status &= ~STATUS_ASSOCIATING;
8321                 priv->status |= STATUS_ASSOCIATED;
8322                 netif_carrier_on(priv->net_dev);
8323                 netif_wake_queue(priv->net_dev);
8324         }
8325
8326         if (!(priv->status & STATUS_ASSOCIATED)) {
8327                 IPW_DEBUG_WX("Configuring ESSID\n");
8328                 mutex_lock(&priv->action_mutex);
8329                 /* This is a disassociation event, so kick the firmware to
8330                  * look for another AP */
8331                 if (priv->config & CFG_STATIC_ESSID)
8332                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8333                                           0);
8334                 else
8335                         ipw2100_set_essid(priv, NULL, 0, 0);
8336                 mutex_unlock(&priv->action_mutex);
8337         }
8338
8339         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8340 }
8341
8342 #define IPW2100_FW_MAJOR_VERSION 1
8343 #define IPW2100_FW_MINOR_VERSION 3
8344
8345 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8346 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8347
8348 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8349                              IPW2100_FW_MAJOR_VERSION)
8350
8351 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8352 "." __stringify(IPW2100_FW_MINOR_VERSION)
8353
8354 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8355
8356 /*
8357
8358 BINARY FIRMWARE HEADER FORMAT
8359
8360 offset      length   desc
8361 0           2        version
8362 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8363 4           4        fw_len
8364 8           4        uc_len
8365 C           fw_len   firmware data
8366 12 + fw_len uc_len   microcode data
8367
8368 */
8369
8370 struct ipw2100_fw_header {
8371         short version;
8372         short mode;
8373         unsigned int fw_size;
8374         unsigned int uc_size;
8375 } __attribute__ ((packed));
8376
8377 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8378 {
8379         struct ipw2100_fw_header *h =
8380             (struct ipw2100_fw_header *)fw->fw_entry->data;
8381
8382         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8383                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8384                        "(detected version id of %u). "
8385                        "See Documentation/networking/README.ipw2100\n",
8386                        h->version);
8387                 return 1;
8388         }
8389
8390         fw->version = h->version;
8391         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8392         fw->fw.size = h->fw_size;
8393         fw->uc.data = fw->fw.data + h->fw_size;
8394         fw->uc.size = h->uc_size;
8395
8396         return 0;
8397 }
8398
8399 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8400                                 struct ipw2100_fw *fw)
8401 {
8402         char *fw_name;
8403         int rc;
8404
8405         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8406                        priv->net_dev->name);
8407
8408         switch (priv->ieee->iw_mode) {
8409         case IW_MODE_ADHOC:
8410                 fw_name = IPW2100_FW_NAME("-i");
8411                 break;
8412 #ifdef CONFIG_IPW2100_MONITOR
8413         case IW_MODE_MONITOR:
8414                 fw_name = IPW2100_FW_NAME("-p");
8415                 break;
8416 #endif
8417         case IW_MODE_INFRA:
8418         default:
8419                 fw_name = IPW2100_FW_NAME("");
8420                 break;
8421         }
8422
8423         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8424
8425         if (rc < 0) {
8426                 printk(KERN_ERR DRV_NAME ": "
8427                        "%s: Firmware '%s' not available or load failed.\n",
8428                        priv->net_dev->name, fw_name);
8429                 return rc;
8430         }
8431         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8432                        fw->fw_entry->size);
8433
8434         ipw2100_mod_firmware_load(fw);
8435
8436         return 0;
8437 }
8438
8439 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8440                                      struct ipw2100_fw *fw)
8441 {
8442         fw->version = 0;
8443         if (fw->fw_entry)
8444                 release_firmware(fw->fw_entry);
8445         fw->fw_entry = NULL;
8446 }
8447
8448 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8449                                  size_t max)
8450 {
8451         char ver[MAX_FW_VERSION_LEN];
8452         u32 len = MAX_FW_VERSION_LEN;
8453         u32 tmp;
8454         int i;
8455         /* firmware version is an ascii string (max len of 14) */
8456         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8457                 return -EIO;
8458         tmp = max;
8459         if (len >= max)
8460                 len = max - 1;
8461         for (i = 0; i < len; i++)
8462                 buf[i] = ver[i];
8463         buf[i] = '\0';
8464         return tmp;
8465 }
8466
8467 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8468                                     size_t max)
8469 {
8470         u32 ver;
8471         u32 len = sizeof(ver);
8472         /* microcode version is a 32 bit integer */
8473         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8474                 return -EIO;
8475         return snprintf(buf, max, "%08X", ver);
8476 }
8477
8478 /*
8479  * On exit, the firmware will have been freed from the fw list
8480  */
8481 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8482 {
8483         /* firmware is constructed of N contiguous entries, each entry is
8484          * structured as:
8485          *
8486          * offset    sie         desc
8487          * 0         4           address to write to
8488          * 4         2           length of data run
8489          * 6         length      data
8490          */
8491         unsigned int addr;
8492         unsigned short len;
8493
8494         const unsigned char *firmware_data = fw->fw.data;
8495         unsigned int firmware_data_left = fw->fw.size;
8496
8497         while (firmware_data_left > 0) {
8498                 addr = *(u32 *) (firmware_data);
8499                 firmware_data += 4;
8500                 firmware_data_left -= 4;
8501
8502                 len = *(u16 *) (firmware_data);
8503                 firmware_data += 2;
8504                 firmware_data_left -= 2;
8505
8506                 if (len > 32) {
8507                         printk(KERN_ERR DRV_NAME ": "
8508                                "Invalid firmware run-length of %d bytes\n",
8509                                len);
8510                         return -EINVAL;
8511                 }
8512
8513                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8514                 firmware_data += len;
8515                 firmware_data_left -= len;
8516         }
8517
8518         return 0;
8519 }
8520
8521 struct symbol_alive_response {
8522         u8 cmd_id;
8523         u8 seq_num;
8524         u8 ucode_rev;
8525         u8 eeprom_valid;
8526         u16 valid_flags;
8527         u8 IEEE_addr[6];
8528         u16 flags;
8529         u16 pcb_rev;
8530         u16 clock_settle_time;  // 1us LSB
8531         u16 powerup_settle_time;        // 1us LSB
8532         u16 hop_settle_time;    // 1us LSB
8533         u8 date[3];             // month, day, year
8534         u8 time[2];             // hours, minutes
8535         u8 ucode_valid;
8536 };
8537
8538 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8539                                   struct ipw2100_fw *fw)
8540 {
8541         struct net_device *dev = priv->net_dev;
8542         const unsigned char *microcode_data = fw->uc.data;
8543         unsigned int microcode_data_left = fw->uc.size;
8544         void __iomem *reg = (void __iomem *)dev->base_addr;
8545
8546         struct symbol_alive_response response;
8547         int i, j;
8548         u8 data;
8549
8550         /* Symbol control */
8551         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8552         readl(reg);
8553         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8554         readl(reg);
8555
8556         /* HW config */
8557         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8558         readl(reg);
8559         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8560         readl(reg);
8561
8562         /* EN_CS_ACCESS bit to reset control store pointer */
8563         write_nic_byte(dev, 0x210000, 0x40);
8564         readl(reg);
8565         write_nic_byte(dev, 0x210000, 0x0);
8566         readl(reg);
8567         write_nic_byte(dev, 0x210000, 0x40);
8568         readl(reg);
8569
8570         /* copy microcode from buffer into Symbol */
8571
8572         while (microcode_data_left > 0) {
8573                 write_nic_byte(dev, 0x210010, *microcode_data++);
8574                 write_nic_byte(dev, 0x210010, *microcode_data++);
8575                 microcode_data_left -= 2;
8576         }
8577
8578         /* EN_CS_ACCESS bit to reset the control store pointer */
8579         write_nic_byte(dev, 0x210000, 0x0);
8580         readl(reg);
8581
8582         /* Enable System (Reg 0)
8583          * first enable causes garbage in RX FIFO */
8584         write_nic_byte(dev, 0x210000, 0x0);
8585         readl(reg);
8586         write_nic_byte(dev, 0x210000, 0x80);
8587         readl(reg);
8588
8589         /* Reset External Baseband Reg */
8590         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8591         readl(reg);
8592         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8593         readl(reg);
8594
8595         /* HW Config (Reg 5) */
8596         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8597         readl(reg);
8598         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8599         readl(reg);
8600
8601         /* Enable System (Reg 0)
8602          * second enable should be OK */
8603         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8604         readl(reg);
8605         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8606
8607         /* check Symbol is enabled - upped this from 5 as it wasn't always
8608          * catching the update */
8609         for (i = 0; i < 10; i++) {
8610                 udelay(10);
8611
8612                 /* check Dino is enabled bit */
8613                 read_nic_byte(dev, 0x210000, &data);
8614                 if (data & 0x1)
8615                         break;
8616         }
8617
8618         if (i == 10) {
8619                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8620                        dev->name);
8621                 return -EIO;
8622         }
8623
8624         /* Get Symbol alive response */
8625         for (i = 0; i < 30; i++) {
8626                 /* Read alive response structure */
8627                 for (j = 0;
8628                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8629                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8630
8631                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8632                         break;
8633                 udelay(10);
8634         }
8635
8636         if (i == 30) {
8637                 printk(KERN_ERR DRV_NAME
8638                        ": %s: No response from Symbol - hw not alive\n",
8639                        dev->name);
8640                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8641                 return -EIO;
8642         }
8643
8644         return 0;
8645 }