md: handle_stripe5 - request io processing in raid5_run_ops
[linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK               (NR_HASH - 1)
68
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72  * order without overlap.  There may be several bio's per stripe+device, and
73  * a bio could span several devices.
74  * When walking this list for a particular stripe+device, we must never proceed
75  * beyond a bio that extends past this device, as the next bio might no longer
76  * be valid.
77  * This macro is used to determine the 'next' bio in the list, given the sector
78  * of the current stripe+device
79  */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82  * The following can be used to debug the driver
83  */
84 #define RAID5_PARANOIA  1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
100
101 static inline int raid6_next_disk(int disk, int raid_disks)
102 {
103         disk++;
104         return (disk < raid_disks) ? disk : 0;
105 }
106
107 static void return_io(struct bio *return_bi)
108 {
109         struct bio *bi = return_bi;
110         while (bi) {
111                 int bytes = bi->bi_size;
112
113                 return_bi = bi->bi_next;
114                 bi->bi_next = NULL;
115                 bi->bi_size = 0;
116                 bi->bi_end_io(bi, bytes,
117                               test_bit(BIO_UPTODATE, &bi->bi_flags)
118                                 ? 0 : -EIO);
119                 bi = return_bi;
120         }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127         if (atomic_dec_and_test(&sh->count)) {
128                 BUG_ON(!list_empty(&sh->lru));
129                 BUG_ON(atomic_read(&conf->active_stripes)==0);
130                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
132                                 list_add_tail(&sh->lru, &conf->delayed_list);
133                                 blk_plug_device(conf->mddev->queue);
134                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135                                    sh->bm_seq - conf->seq_write > 0) {
136                                 list_add_tail(&sh->lru, &conf->bitmap_list);
137                                 blk_plug_device(conf->mddev->queue);
138                         } else {
139                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140                                 list_add_tail(&sh->lru, &conf->handle_list);
141                         }
142                         md_wakeup_thread(conf->mddev->thread);
143                 } else {
144                         BUG_ON(sh->ops.pending);
145                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146                                 atomic_dec(&conf->preread_active_stripes);
147                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148                                         md_wakeup_thread(conf->mddev->thread);
149                         }
150                         atomic_dec(&conf->active_stripes);
151                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152                                 list_add_tail(&sh->lru, &conf->inactive_list);
153                                 wake_up(&conf->wait_for_stripe);
154                                 if (conf->retry_read_aligned)
155                                         md_wakeup_thread(conf->mddev->thread);
156                         }
157                 }
158         }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162         raid5_conf_t *conf = sh->raid_conf;
163         unsigned long flags;
164
165         spin_lock_irqsave(&conf->device_lock, flags);
166         __release_stripe(conf, sh);
167         spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172         pr_debug("remove_hash(), stripe %llu\n",
173                 (unsigned long long)sh->sector);
174
175         hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180         struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182         pr_debug("insert_hash(), stripe %llu\n",
183                 (unsigned long long)sh->sector);
184
185         CHECK_DEVLOCK();
186         hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193         struct stripe_head *sh = NULL;
194         struct list_head *first;
195
196         CHECK_DEVLOCK();
197         if (list_empty(&conf->inactive_list))
198                 goto out;
199         first = conf->inactive_list.next;
200         sh = list_entry(first, struct stripe_head, lru);
201         list_del_init(first);
202         remove_hash(sh);
203         atomic_inc(&conf->active_stripes);
204 out:
205         return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210         struct page *p;
211         int i;
212
213         for (i=0; i<num ; i++) {
214                 p = sh->dev[i].page;
215                 if (!p)
216                         continue;
217                 sh->dev[i].page = NULL;
218                 put_page(p);
219         }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224         int i;
225
226         for (i=0; i<num; i++) {
227                 struct page *page;
228
229                 if (!(page = alloc_page(GFP_KERNEL))) {
230                         return 1;
231                 }
232                 sh->dev[i].page = page;
233         }
234         return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241         raid5_conf_t *conf = sh->raid_conf;
242         int i;
243
244         BUG_ON(atomic_read(&sh->count) != 0);
245         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248         CHECK_DEVLOCK();
249         pr_debug("init_stripe called, stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         remove_hash(sh);
253
254         sh->sector = sector;
255         sh->pd_idx = pd_idx;
256         sh->state = 0;
257
258         sh->disks = disks;
259
260         for (i = sh->disks; i--; ) {
261                 struct r5dev *dev = &sh->dev[i];
262
263                 if (dev->toread || dev->read || dev->towrite || dev->written ||
264                     test_bit(R5_LOCKED, &dev->flags)) {
265                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266                                (unsigned long long)sh->sector, i, dev->toread,
267                                dev->read, dev->towrite, dev->written,
268                                test_bit(R5_LOCKED, &dev->flags));
269                         BUG();
270                 }
271                 dev->flags = 0;
272                 raid5_build_block(sh, i);
273         }
274         insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279         struct stripe_head *sh;
280         struct hlist_node *hn;
281
282         CHECK_DEVLOCK();
283         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285                 if (sh->sector == sector && sh->disks == disks)
286                         return sh;
287         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288         return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(request_queue_t *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295                                              int pd_idx, int noblock)
296 {
297         struct stripe_head *sh;
298
299         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301         spin_lock_irq(&conf->device_lock);
302
303         do {
304                 wait_event_lock_irq(conf->wait_for_stripe,
305                                     conf->quiesce == 0,
306                                     conf->device_lock, /* nothing */);
307                 sh = __find_stripe(conf, sector, disks);
308                 if (!sh) {
309                         if (!conf->inactive_blocked)
310                                 sh = get_free_stripe(conf);
311                         if (noblock && sh == NULL)
312                                 break;
313                         if (!sh) {
314                                 conf->inactive_blocked = 1;
315                                 wait_event_lock_irq(conf->wait_for_stripe,
316                                                     !list_empty(&conf->inactive_list) &&
317                                                     (atomic_read(&conf->active_stripes)
318                                                      < (conf->max_nr_stripes *3/4)
319                                                      || !conf->inactive_blocked),
320                                                     conf->device_lock,
321                                                     raid5_unplug_device(conf->mddev->queue)
322                                         );
323                                 conf->inactive_blocked = 0;
324                         } else
325                                 init_stripe(sh, sector, pd_idx, disks);
326                 } else {
327                         if (atomic_read(&sh->count)) {
328                           BUG_ON(!list_empty(&sh->lru));
329                         } else {
330                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
331                                         atomic_inc(&conf->active_stripes);
332                                 if (list_empty(&sh->lru) &&
333                                     !test_bit(STRIPE_EXPANDING, &sh->state))
334                                         BUG();
335                                 list_del_init(&sh->lru);
336                         }
337                 }
338         } while (sh == NULL);
339
340         if (sh)
341                 atomic_inc(&sh->count);
342
343         spin_unlock_irq(&conf->device_lock);
344         return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {                                                    \
350         if (test_bit(op, &sh->ops.pending) &&           \
351                 !test_bit(op, &sh->ops.complete)) {     \
352                 if (test_and_set_bit(op, &sh->ops.ack)) \
353                         clear_bit(op, &pend);           \
354                 else                                    \
355                         ack++;                          \
356         } else                                          \
357                 clear_bit(op, &pend);                   \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365         unsigned long pending;
366         int ack = 0;
367
368         pending = sh->ops.pending;
369
370         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372         test_and_ack_op(STRIPE_OP_PREXOR, pending);
373         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375         test_and_ack_op(STRIPE_OP_CHECK, pending);
376         if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377                 ack++;
378
379         sh->ops.count -= ack;
380         BUG_ON(sh->ops.count < 0);
381
382         return pending;
383 }
384
385 static int
386 raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
387 static int
388 raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
389
390 static void ops_run_io(struct stripe_head *sh)
391 {
392         raid5_conf_t *conf = sh->raid_conf;
393         int i, disks = sh->disks;
394
395         might_sleep();
396
397         for (i = disks; i--; ) {
398                 int rw;
399                 struct bio *bi;
400                 mdk_rdev_t *rdev;
401                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
402                         rw = WRITE;
403                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
404                         rw = READ;
405                 else
406                         continue;
407
408                 bi = &sh->dev[i].req;
409
410                 bi->bi_rw = rw;
411                 if (rw == WRITE)
412                         bi->bi_end_io = raid5_end_write_request;
413                 else
414                         bi->bi_end_io = raid5_end_read_request;
415
416                 rcu_read_lock();
417                 rdev = rcu_dereference(conf->disks[i].rdev);
418                 if (rdev && test_bit(Faulty, &rdev->flags))
419                         rdev = NULL;
420                 if (rdev)
421                         atomic_inc(&rdev->nr_pending);
422                 rcu_read_unlock();
423
424                 if (rdev) {
425                         if (test_bit(STRIPE_SYNCING, &sh->state) ||
426                                 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
427                                 test_bit(STRIPE_EXPAND_READY, &sh->state))
428                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
429
430                         bi->bi_bdev = rdev->bdev;
431                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
432                                 __FUNCTION__, (unsigned long long)sh->sector,
433                                 bi->bi_rw, i);
434                         atomic_inc(&sh->count);
435                         bi->bi_sector = sh->sector + rdev->data_offset;
436                         bi->bi_flags = 1 << BIO_UPTODATE;
437                         bi->bi_vcnt = 1;
438                         bi->bi_max_vecs = 1;
439                         bi->bi_idx = 0;
440                         bi->bi_io_vec = &sh->dev[i].vec;
441                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
442                         bi->bi_io_vec[0].bv_offset = 0;
443                         bi->bi_size = STRIPE_SIZE;
444                         bi->bi_next = NULL;
445                         if (rw == WRITE &&
446                             test_bit(R5_ReWrite, &sh->dev[i].flags))
447                                 atomic_add(STRIPE_SECTORS,
448                                         &rdev->corrected_errors);
449                         generic_make_request(bi);
450                 } else {
451                         if (rw == WRITE)
452                                 set_bit(STRIPE_DEGRADED, &sh->state);
453                         pr_debug("skip op %ld on disc %d for sector %llu\n",
454                                 bi->bi_rw, i, (unsigned long long)sh->sector);
455                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
456                         set_bit(STRIPE_HANDLE, &sh->state);
457                 }
458         }
459 }
460
461 static struct dma_async_tx_descriptor *
462 async_copy_data(int frombio, struct bio *bio, struct page *page,
463         sector_t sector, struct dma_async_tx_descriptor *tx)
464 {
465         struct bio_vec *bvl;
466         struct page *bio_page;
467         int i;
468         int page_offset;
469
470         if (bio->bi_sector >= sector)
471                 page_offset = (signed)(bio->bi_sector - sector) * 512;
472         else
473                 page_offset = (signed)(sector - bio->bi_sector) * -512;
474         bio_for_each_segment(bvl, bio, i) {
475                 int len = bio_iovec_idx(bio, i)->bv_len;
476                 int clen;
477                 int b_offset = 0;
478
479                 if (page_offset < 0) {
480                         b_offset = -page_offset;
481                         page_offset += b_offset;
482                         len -= b_offset;
483                 }
484
485                 if (len > 0 && page_offset + len > STRIPE_SIZE)
486                         clen = STRIPE_SIZE - page_offset;
487                 else
488                         clen = len;
489
490                 if (clen > 0) {
491                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
492                         bio_page = bio_iovec_idx(bio, i)->bv_page;
493                         if (frombio)
494                                 tx = async_memcpy(page, bio_page, page_offset,
495                                         b_offset, clen,
496                                         ASYNC_TX_DEP_ACK | ASYNC_TX_KMAP_SRC,
497                                         tx, NULL, NULL);
498                         else
499                                 tx = async_memcpy(bio_page, page, b_offset,
500                                         page_offset, clen,
501                                         ASYNC_TX_DEP_ACK | ASYNC_TX_KMAP_DST,
502                                         tx, NULL, NULL);
503                 }
504                 if (clen < len) /* hit end of page */
505                         break;
506                 page_offset +=  len;
507         }
508
509         return tx;
510 }
511
512 static void ops_complete_biofill(void *stripe_head_ref)
513 {
514         struct stripe_head *sh = stripe_head_ref;
515         struct bio *return_bi = NULL;
516         raid5_conf_t *conf = sh->raid_conf;
517         int i, more_to_read = 0;
518
519         pr_debug("%s: stripe %llu\n", __FUNCTION__,
520                 (unsigned long long)sh->sector);
521
522         /* clear completed biofills */
523         for (i = sh->disks; i--; ) {
524                 struct r5dev *dev = &sh->dev[i];
525                 /* check if this stripe has new incoming reads */
526                 if (dev->toread)
527                         more_to_read++;
528
529                 /* acknowledge completion of a biofill operation */
530                 /* and check if we need to reply to a read request
531                 */
532                 if (test_bit(R5_Wantfill, &dev->flags) && !dev->toread) {
533                         struct bio *rbi, *rbi2;
534                         clear_bit(R5_Wantfill, &dev->flags);
535
536                         /* The access to dev->read is outside of the
537                          * spin_lock_irq(&conf->device_lock), but is protected
538                          * by the STRIPE_OP_BIOFILL pending bit
539                          */
540                         BUG_ON(!dev->read);
541                         rbi = dev->read;
542                         dev->read = NULL;
543                         while (rbi && rbi->bi_sector <
544                                 dev->sector + STRIPE_SECTORS) {
545                                 rbi2 = r5_next_bio(rbi, dev->sector);
546                                 spin_lock_irq(&conf->device_lock);
547                                 if (--rbi->bi_phys_segments == 0) {
548                                         rbi->bi_next = return_bi;
549                                         return_bi = rbi;
550                                 }
551                                 spin_unlock_irq(&conf->device_lock);
552                                 rbi = rbi2;
553                         }
554                 }
555         }
556         clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
557         clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
558
559         return_io(return_bi);
560
561         if (more_to_read)
562                 set_bit(STRIPE_HANDLE, &sh->state);
563         release_stripe(sh);
564 }
565
566 static void ops_run_biofill(struct stripe_head *sh)
567 {
568         struct dma_async_tx_descriptor *tx = NULL;
569         raid5_conf_t *conf = sh->raid_conf;
570         int i;
571
572         pr_debug("%s: stripe %llu\n", __FUNCTION__,
573                 (unsigned long long)sh->sector);
574
575         for (i = sh->disks; i--; ) {
576                 struct r5dev *dev = &sh->dev[i];
577                 if (test_bit(R5_Wantfill, &dev->flags)) {
578                         struct bio *rbi;
579                         spin_lock_irq(&conf->device_lock);
580                         dev->read = rbi = dev->toread;
581                         dev->toread = NULL;
582                         spin_unlock_irq(&conf->device_lock);
583                         while (rbi && rbi->bi_sector <
584                                 dev->sector + STRIPE_SECTORS) {
585                                 tx = async_copy_data(0, rbi, dev->page,
586                                         dev->sector, tx);
587                                 rbi = r5_next_bio(rbi, dev->sector);
588                         }
589                 }
590         }
591
592         atomic_inc(&sh->count);
593         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594                 ops_complete_biofill, sh);
595 }
596
597 static void ops_complete_compute5(void *stripe_head_ref)
598 {
599         struct stripe_head *sh = stripe_head_ref;
600         int target = sh->ops.target;
601         struct r5dev *tgt = &sh->dev[target];
602
603         pr_debug("%s: stripe %llu\n", __FUNCTION__,
604                 (unsigned long long)sh->sector);
605
606         set_bit(R5_UPTODATE, &tgt->flags);
607         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608         clear_bit(R5_Wantcompute, &tgt->flags);
609         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610         set_bit(STRIPE_HANDLE, &sh->state);
611         release_stripe(sh);
612 }
613
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
616 {
617         /* kernel stack size limits the total number of disks */
618         int disks = sh->disks;
619         struct page *xor_srcs[disks];
620         int target = sh->ops.target;
621         struct r5dev *tgt = &sh->dev[target];
622         struct page *xor_dest = tgt->page;
623         int count = 0;
624         struct dma_async_tx_descriptor *tx;
625         int i;
626
627         pr_debug("%s: stripe %llu block: %d\n",
628                 __FUNCTION__, (unsigned long long)sh->sector, target);
629         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630
631         for (i = disks; i--; )
632                 if (i != target)
633                         xor_srcs[count++] = sh->dev[i].page;
634
635         atomic_inc(&sh->count);
636
637         if (unlikely(count == 1))
638                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639                         0, NULL, ops_complete_compute5, sh);
640         else
641                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642                         ASYNC_TX_XOR_ZERO_DST, NULL,
643                         ops_complete_compute5, sh);
644
645         /* ack now if postxor is not set to be run */
646         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
647                 async_tx_ack(tx);
648
649         return tx;
650 }
651
652 static void ops_complete_prexor(void *stripe_head_ref)
653 {
654         struct stripe_head *sh = stripe_head_ref;
655
656         pr_debug("%s: stripe %llu\n", __FUNCTION__,
657                 (unsigned long long)sh->sector);
658
659         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
660 }
661
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
664 {
665         /* kernel stack size limits the total number of disks */
666         int disks = sh->disks;
667         struct page *xor_srcs[disks];
668         int count = 0, pd_idx = sh->pd_idx, i;
669
670         /* existing parity data subtracted */
671         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
672
673         pr_debug("%s: stripe %llu\n", __FUNCTION__,
674                 (unsigned long long)sh->sector);
675
676         for (i = disks; i--; ) {
677                 struct r5dev *dev = &sh->dev[i];
678                 /* Only process blocks that are known to be uptodate */
679                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680                         xor_srcs[count++] = dev->page;
681         }
682
683         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685                 ops_complete_prexor, sh);
686
687         return tx;
688 }
689
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
692 {
693         int disks = sh->disks;
694         int pd_idx = sh->pd_idx, i;
695
696         /* check if prexor is active which means only process blocks
697          * that are part of a read-modify-write (Wantprexor)
698          */
699         int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
700
701         pr_debug("%s: stripe %llu\n", __FUNCTION__,
702                 (unsigned long long)sh->sector);
703
704         for (i = disks; i--; ) {
705                 struct r5dev *dev = &sh->dev[i];
706                 struct bio *chosen;
707                 int towrite;
708
709                 towrite = 0;
710                 if (prexor) { /* rmw */
711                         if (dev->towrite &&
712                             test_bit(R5_Wantprexor, &dev->flags))
713                                 towrite = 1;
714                 } else { /* rcw */
715                         if (i != pd_idx && dev->towrite &&
716                                 test_bit(R5_LOCKED, &dev->flags))
717                                 towrite = 1;
718                 }
719
720                 if (towrite) {
721                         struct bio *wbi;
722
723                         spin_lock(&sh->lock);
724                         chosen = dev->towrite;
725                         dev->towrite = NULL;
726                         BUG_ON(dev->written);
727                         wbi = dev->written = chosen;
728                         spin_unlock(&sh->lock);
729
730                         while (wbi && wbi->bi_sector <
731                                 dev->sector + STRIPE_SECTORS) {
732                                 tx = async_copy_data(1, wbi, dev->page,
733                                         dev->sector, tx);
734                                 wbi = r5_next_bio(wbi, dev->sector);
735                         }
736                 }
737         }
738
739         return tx;
740 }
741
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744         struct stripe_head *sh = stripe_head_ref;
745
746         pr_debug("%s: stripe %llu\n", __FUNCTION__,
747                 (unsigned long long)sh->sector);
748
749         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750         set_bit(STRIPE_HANDLE, &sh->state);
751         release_stripe(sh);
752 }
753
754 static void ops_complete_write(void *stripe_head_ref)
755 {
756         struct stripe_head *sh = stripe_head_ref;
757         int disks = sh->disks, i, pd_idx = sh->pd_idx;
758
759         pr_debug("%s: stripe %llu\n", __FUNCTION__,
760                 (unsigned long long)sh->sector);
761
762         for (i = disks; i--; ) {
763                 struct r5dev *dev = &sh->dev[i];
764                 if (dev->written || i == pd_idx)
765                         set_bit(R5_UPTODATE, &dev->flags);
766         }
767
768         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770
771         set_bit(STRIPE_HANDLE, &sh->state);
772         release_stripe(sh);
773 }
774
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777 {
778         /* kernel stack size limits the total number of disks */
779         int disks = sh->disks;
780         struct page *xor_srcs[disks];
781
782         int count = 0, pd_idx = sh->pd_idx, i;
783         struct page *xor_dest;
784         int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
785         unsigned long flags;
786         dma_async_tx_callback callback;
787
788         pr_debug("%s: stripe %llu\n", __FUNCTION__,
789                 (unsigned long long)sh->sector);
790
791         /* check if prexor is active which means only process blocks
792          * that are part of a read-modify-write (written)
793          */
794         if (prexor) {
795                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796                 for (i = disks; i--; ) {
797                         struct r5dev *dev = &sh->dev[i];
798                         if (dev->written)
799                                 xor_srcs[count++] = dev->page;
800                 }
801         } else {
802                 xor_dest = sh->dev[pd_idx].page;
803                 for (i = disks; i--; ) {
804                         struct r5dev *dev = &sh->dev[i];
805                         if (i != pd_idx)
806                                 xor_srcs[count++] = dev->page;
807                 }
808         }
809
810         /* check whether this postxor is part of a write */
811         callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812                 ops_complete_write : ops_complete_postxor;
813
814         /* 1/ if we prexor'd then the dest is reused as a source
815          * 2/ if we did not prexor then we are redoing the parity
816          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817          * for the synchronous xor case
818          */
819         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
821
822         atomic_inc(&sh->count);
823
824         if (unlikely(count == 1)) {
825                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827                         flags, tx, callback, sh);
828         } else
829                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830                         flags, tx, callback, sh);
831 }
832
833 static void ops_complete_check(void *stripe_head_ref)
834 {
835         struct stripe_head *sh = stripe_head_ref;
836         int pd_idx = sh->pd_idx;
837
838         pr_debug("%s: stripe %llu\n", __FUNCTION__,
839                 (unsigned long long)sh->sector);
840
841         if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842                 sh->ops.zero_sum_result == 0)
843                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
844
845         set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846         set_bit(STRIPE_HANDLE, &sh->state);
847         release_stripe(sh);
848 }
849
850 static void ops_run_check(struct stripe_head *sh)
851 {
852         /* kernel stack size limits the total number of disks */
853         int disks = sh->disks;
854         struct page *xor_srcs[disks];
855         struct dma_async_tx_descriptor *tx;
856
857         int count = 0, pd_idx = sh->pd_idx, i;
858         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
859
860         pr_debug("%s: stripe %llu\n", __FUNCTION__,
861                 (unsigned long long)sh->sector);
862
863         for (i = disks; i--; ) {
864                 struct r5dev *dev = &sh->dev[i];
865                 if (i != pd_idx)
866                         xor_srcs[count++] = dev->page;
867         }
868
869         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
871
872         if (tx)
873                 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
874         else
875                 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
876
877         atomic_inc(&sh->count);
878         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879                 ops_complete_check, sh);
880 }
881
882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
883 {
884         int overlap_clear = 0, i, disks = sh->disks;
885         struct dma_async_tx_descriptor *tx = NULL;
886
887         if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
888                 ops_run_biofill(sh);
889                 overlap_clear++;
890         }
891
892         if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893                 tx = ops_run_compute5(sh, pending);
894
895         if (test_bit(STRIPE_OP_PREXOR, &pending))
896                 tx = ops_run_prexor(sh, tx);
897
898         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899                 tx = ops_run_biodrain(sh, tx);
900                 overlap_clear++;
901         }
902
903         if (test_bit(STRIPE_OP_POSTXOR, &pending))
904                 ops_run_postxor(sh, tx);
905
906         if (test_bit(STRIPE_OP_CHECK, &pending))
907                 ops_run_check(sh);
908
909         if (test_bit(STRIPE_OP_IO, &pending))
910                 ops_run_io(sh);
911
912         if (overlap_clear)
913                 for (i = disks; i--; ) {
914                         struct r5dev *dev = &sh->dev[i];
915                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
916                                 wake_up(&sh->raid_conf->wait_for_overlap);
917                 }
918 }
919
920 static int grow_one_stripe(raid5_conf_t *conf)
921 {
922         struct stripe_head *sh;
923         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
924         if (!sh)
925                 return 0;
926         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927         sh->raid_conf = conf;
928         spin_lock_init(&sh->lock);
929
930         if (grow_buffers(sh, conf->raid_disks)) {
931                 shrink_buffers(sh, conf->raid_disks);
932                 kmem_cache_free(conf->slab_cache, sh);
933                 return 0;
934         }
935         sh->disks = conf->raid_disks;
936         /* we just created an active stripe so... */
937         atomic_set(&sh->count, 1);
938         atomic_inc(&conf->active_stripes);
939         INIT_LIST_HEAD(&sh->lru);
940         release_stripe(sh);
941         return 1;
942 }
943
944 static int grow_stripes(raid5_conf_t *conf, int num)
945 {
946         struct kmem_cache *sc;
947         int devs = conf->raid_disks;
948
949         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
951         conf->active_name = 0;
952         sc = kmem_cache_create(conf->cache_name[conf->active_name],
953                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
954                                0, 0, NULL, NULL);
955         if (!sc)
956                 return 1;
957         conf->slab_cache = sc;
958         conf->pool_size = devs;
959         while (num--)
960                 if (!grow_one_stripe(conf))
961                         return 1;
962         return 0;
963 }
964
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t *conf, int newsize)
967 {
968         /* Make all the stripes able to hold 'newsize' devices.
969          * New slots in each stripe get 'page' set to a new page.
970          *
971          * This happens in stages:
972          * 1/ create a new kmem_cache and allocate the required number of
973          *    stripe_heads.
974          * 2/ gather all the old stripe_heads and tranfer the pages across
975          *    to the new stripe_heads.  This will have the side effect of
976          *    freezing the array as once all stripe_heads have been collected,
977          *    no IO will be possible.  Old stripe heads are freed once their
978          *    pages have been transferred over, and the old kmem_cache is
979          *    freed when all stripes are done.
980          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
981          *    we simple return a failre status - no need to clean anything up.
982          * 4/ allocate new pages for the new slots in the new stripe_heads.
983          *    If this fails, we don't bother trying the shrink the
984          *    stripe_heads down again, we just leave them as they are.
985          *    As each stripe_head is processed the new one is released into
986          *    active service.
987          *
988          * Once step2 is started, we cannot afford to wait for a write,
989          * so we use GFP_NOIO allocations.
990          */
991         struct stripe_head *osh, *nsh;
992         LIST_HEAD(newstripes);
993         struct disk_info *ndisks;
994         int err = 0;
995         struct kmem_cache *sc;
996         int i;
997
998         if (newsize <= conf->pool_size)
999                 return 0; /* never bother to shrink */
1000
1001         md_allow_write(conf->mddev);
1002
1003         /* Step 1 */
1004         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1006                                0, 0, NULL, NULL);
1007         if (!sc)
1008                 return -ENOMEM;
1009
1010         for (i = conf->max_nr_stripes; i; i--) {
1011                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1012                 if (!nsh)
1013                         break;
1014
1015                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1016
1017                 nsh->raid_conf = conf;
1018                 spin_lock_init(&nsh->lock);
1019
1020                 list_add(&nsh->lru, &newstripes);
1021         }
1022         if (i) {
1023                 /* didn't get enough, give up */
1024                 while (!list_empty(&newstripes)) {
1025                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026                         list_del(&nsh->lru);
1027                         kmem_cache_free(sc, nsh);
1028                 }
1029                 kmem_cache_destroy(sc);
1030                 return -ENOMEM;
1031         }
1032         /* Step 2 - Must use GFP_NOIO now.
1033          * OK, we have enough stripes, start collecting inactive
1034          * stripes and copying them over
1035          */
1036         list_for_each_entry(nsh, &newstripes, lru) {
1037                 spin_lock_irq(&conf->device_lock);
1038                 wait_event_lock_irq(conf->wait_for_stripe,
1039                                     !list_empty(&conf->inactive_list),
1040                                     conf->device_lock,
1041                                     unplug_slaves(conf->mddev)
1042                         );
1043                 osh = get_free_stripe(conf);
1044                 spin_unlock_irq(&conf->device_lock);
1045                 atomic_set(&nsh->count, 1);
1046                 for(i=0; i<conf->pool_size; i++)
1047                         nsh->dev[i].page = osh->dev[i].page;
1048                 for( ; i<newsize; i++)
1049                         nsh->dev[i].page = NULL;
1050                 kmem_cache_free(conf->slab_cache, osh);
1051         }
1052         kmem_cache_destroy(conf->slab_cache);
1053
1054         /* Step 3.
1055          * At this point, we are holding all the stripes so the array
1056          * is completely stalled, so now is a good time to resize
1057          * conf->disks.
1058          */
1059         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1060         if (ndisks) {
1061                 for (i=0; i<conf->raid_disks; i++)
1062                         ndisks[i] = conf->disks[i];
1063                 kfree(conf->disks);
1064                 conf->disks = ndisks;
1065         } else
1066                 err = -ENOMEM;
1067
1068         /* Step 4, return new stripes to service */
1069         while(!list_empty(&newstripes)) {
1070                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071                 list_del_init(&nsh->lru);
1072                 for (i=conf->raid_disks; i < newsize; i++)
1073                         if (nsh->dev[i].page == NULL) {
1074                                 struct page *p = alloc_page(GFP_NOIO);
1075                                 nsh->dev[i].page = p;
1076                                 if (!p)
1077                                         err = -ENOMEM;
1078                         }
1079                 release_stripe(nsh);
1080         }
1081         /* critical section pass, GFP_NOIO no longer needed */
1082
1083         conf->slab_cache = sc;
1084         conf->active_name = 1-conf->active_name;
1085         conf->pool_size = newsize;
1086         return err;
1087 }
1088 #endif
1089
1090 static int drop_one_stripe(raid5_conf_t *conf)
1091 {
1092         struct stripe_head *sh;
1093
1094         spin_lock_irq(&conf->device_lock);
1095         sh = get_free_stripe(conf);
1096         spin_unlock_irq(&conf->device_lock);
1097         if (!sh)
1098                 return 0;
1099         BUG_ON(atomic_read(&sh->count));
1100         shrink_buffers(sh, conf->pool_size);
1101         kmem_cache_free(conf->slab_cache, sh);
1102         atomic_dec(&conf->active_stripes);
1103         return 1;
1104 }
1105
1106 static void shrink_stripes(raid5_conf_t *conf)
1107 {
1108         while (drop_one_stripe(conf))
1109                 ;
1110
1111         if (conf->slab_cache)
1112                 kmem_cache_destroy(conf->slab_cache);
1113         conf->slab_cache = NULL;
1114 }
1115
1116 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
1117                                    int error)
1118 {
1119         struct stripe_head *sh = bi->bi_private;
1120         raid5_conf_t *conf = sh->raid_conf;
1121         int disks = sh->disks, i;
1122         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1123         char b[BDEVNAME_SIZE];
1124         mdk_rdev_t *rdev;
1125
1126         if (bi->bi_size)
1127                 return 1;
1128
1129         for (i=0 ; i<disks; i++)
1130                 if (bi == &sh->dev[i].req)
1131                         break;
1132
1133         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1134                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1135                 uptodate);
1136         if (i == disks) {
1137                 BUG();
1138                 return 0;
1139         }
1140
1141         if (uptodate) {
1142                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1143                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1144                         rdev = conf->disks[i].rdev;
1145                         printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1146                                mdname(conf->mddev), STRIPE_SECTORS,
1147                                (unsigned long long)sh->sector + rdev->data_offset,
1148                                bdevname(rdev->bdev, b));
1149                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1150                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1151                 }
1152                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1153                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1154         } else {
1155                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1156                 int retry = 0;
1157                 rdev = conf->disks[i].rdev;
1158
1159                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1160                 atomic_inc(&rdev->read_errors);
1161                 if (conf->mddev->degraded)
1162                         printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1163                                mdname(conf->mddev),
1164                                (unsigned long long)sh->sector + rdev->data_offset,
1165                                bdn);
1166                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1167                         /* Oh, no!!! */
1168                         printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1169                                mdname(conf->mddev),
1170                                (unsigned long long)sh->sector + rdev->data_offset,
1171                                bdn);
1172                 else if (atomic_read(&rdev->read_errors)
1173                          > conf->max_nr_stripes)
1174                         printk(KERN_WARNING
1175                                "raid5:%s: Too many read errors, failing device %s.\n",
1176                                mdname(conf->mddev), bdn);
1177                 else
1178                         retry = 1;
1179                 if (retry)
1180                         set_bit(R5_ReadError, &sh->dev[i].flags);
1181                 else {
1182                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1183                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1184                         md_error(conf->mddev, rdev);
1185                 }
1186         }
1187         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1188         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1189         set_bit(STRIPE_HANDLE, &sh->state);
1190         release_stripe(sh);
1191         return 0;
1192 }
1193
1194 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
1195                                     int error)
1196 {
1197         struct stripe_head *sh = bi->bi_private;
1198         raid5_conf_t *conf = sh->raid_conf;
1199         int disks = sh->disks, i;
1200         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1201
1202         if (bi->bi_size)
1203                 return 1;
1204
1205         for (i=0 ; i<disks; i++)
1206                 if (bi == &sh->dev[i].req)
1207                         break;
1208
1209         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1210                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1211                 uptodate);
1212         if (i == disks) {
1213                 BUG();
1214                 return 0;
1215         }
1216
1217         if (!uptodate)
1218                 md_error(conf->mddev, conf->disks[i].rdev);
1219
1220         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1221         
1222         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1223         set_bit(STRIPE_HANDLE, &sh->state);
1224         release_stripe(sh);
1225         return 0;
1226 }
1227
1228
1229 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1230         
1231 static void raid5_build_block (struct stripe_head *sh, int i)
1232 {
1233         struct r5dev *dev = &sh->dev[i];
1234
1235         bio_init(&dev->req);
1236         dev->req.bi_io_vec = &dev->vec;
1237         dev->req.bi_vcnt++;
1238         dev->req.bi_max_vecs++;
1239         dev->vec.bv_page = dev->page;
1240         dev->vec.bv_len = STRIPE_SIZE;
1241         dev->vec.bv_offset = 0;
1242
1243         dev->req.bi_sector = sh->sector;
1244         dev->req.bi_private = sh;
1245
1246         dev->flags = 0;
1247         dev->sector = compute_blocknr(sh, i);
1248 }
1249
1250 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1251 {
1252         char b[BDEVNAME_SIZE];
1253         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1254         pr_debug("raid5: error called\n");
1255
1256         if (!test_bit(Faulty, &rdev->flags)) {
1257                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1258                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1259                         unsigned long flags;
1260                         spin_lock_irqsave(&conf->device_lock, flags);
1261                         mddev->degraded++;
1262                         spin_unlock_irqrestore(&conf->device_lock, flags);
1263                         /*
1264                          * if recovery was running, make sure it aborts.
1265                          */
1266                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1267                 }
1268                 set_bit(Faulty, &rdev->flags);
1269                 printk (KERN_ALERT
1270                         "raid5: Disk failure on %s, disabling device."
1271                         " Operation continuing on %d devices\n",
1272                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1273         }
1274 }
1275
1276 /*
1277  * Input: a 'big' sector number,
1278  * Output: index of the data and parity disk, and the sector # in them.
1279  */
1280 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1281                         unsigned int data_disks, unsigned int * dd_idx,
1282                         unsigned int * pd_idx, raid5_conf_t *conf)
1283 {
1284         long stripe;
1285         unsigned long chunk_number;
1286         unsigned int chunk_offset;
1287         sector_t new_sector;
1288         int sectors_per_chunk = conf->chunk_size >> 9;
1289
1290         /* First compute the information on this sector */
1291
1292         /*
1293          * Compute the chunk number and the sector offset inside the chunk
1294          */
1295         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1296         chunk_number = r_sector;
1297         BUG_ON(r_sector != chunk_number);
1298
1299         /*
1300          * Compute the stripe number
1301          */
1302         stripe = chunk_number / data_disks;
1303
1304         /*
1305          * Compute the data disk and parity disk indexes inside the stripe
1306          */
1307         *dd_idx = chunk_number % data_disks;
1308
1309         /*
1310          * Select the parity disk based on the user selected algorithm.
1311          */
1312         switch(conf->level) {
1313         case 4:
1314                 *pd_idx = data_disks;
1315                 break;
1316         case 5:
1317                 switch (conf->algorithm) {
1318                 case ALGORITHM_LEFT_ASYMMETRIC:
1319                         *pd_idx = data_disks - stripe % raid_disks;
1320                         if (*dd_idx >= *pd_idx)
1321                                 (*dd_idx)++;
1322                         break;
1323                 case ALGORITHM_RIGHT_ASYMMETRIC:
1324                         *pd_idx = stripe % raid_disks;
1325                         if (*dd_idx >= *pd_idx)
1326                                 (*dd_idx)++;
1327                         break;
1328                 case ALGORITHM_LEFT_SYMMETRIC:
1329                         *pd_idx = data_disks - stripe % raid_disks;
1330                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1331                         break;
1332                 case ALGORITHM_RIGHT_SYMMETRIC:
1333                         *pd_idx = stripe % raid_disks;
1334                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1335                         break;
1336                 default:
1337                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1338                                 conf->algorithm);
1339                 }
1340                 break;
1341         case 6:
1342
1343                 /**** FIX THIS ****/
1344                 switch (conf->algorithm) {
1345                 case ALGORITHM_LEFT_ASYMMETRIC:
1346                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1347                         if (*pd_idx == raid_disks-1)
1348                                 (*dd_idx)++;    /* Q D D D P */
1349                         else if (*dd_idx >= *pd_idx)
1350                                 (*dd_idx) += 2; /* D D P Q D */
1351                         break;
1352                 case ALGORITHM_RIGHT_ASYMMETRIC:
1353                         *pd_idx = stripe % raid_disks;
1354                         if (*pd_idx == raid_disks-1)
1355                                 (*dd_idx)++;    /* Q D D D P */
1356                         else if (*dd_idx >= *pd_idx)
1357                                 (*dd_idx) += 2; /* D D P Q D */
1358                         break;
1359                 case ALGORITHM_LEFT_SYMMETRIC:
1360                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1361                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1362                         break;
1363                 case ALGORITHM_RIGHT_SYMMETRIC:
1364                         *pd_idx = stripe % raid_disks;
1365                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1366                         break;
1367                 default:
1368                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1369                                 conf->algorithm);
1370                 }
1371                 break;
1372         }
1373
1374         /*
1375          * Finally, compute the new sector number
1376          */
1377         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1378         return new_sector;
1379 }
1380
1381
1382 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1383 {
1384         raid5_conf_t *conf = sh->raid_conf;
1385         int raid_disks = sh->disks;
1386         int data_disks = raid_disks - conf->max_degraded;
1387         sector_t new_sector = sh->sector, check;
1388         int sectors_per_chunk = conf->chunk_size >> 9;
1389         sector_t stripe;
1390         int chunk_offset;
1391         int chunk_number, dummy1, dummy2, dd_idx = i;
1392         sector_t r_sector;
1393
1394
1395         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1396         stripe = new_sector;
1397         BUG_ON(new_sector != stripe);
1398
1399         if (i == sh->pd_idx)
1400                 return 0;
1401         switch(conf->level) {
1402         case 4: break;
1403         case 5:
1404                 switch (conf->algorithm) {
1405                 case ALGORITHM_LEFT_ASYMMETRIC:
1406                 case ALGORITHM_RIGHT_ASYMMETRIC:
1407                         if (i > sh->pd_idx)
1408                                 i--;
1409                         break;
1410                 case ALGORITHM_LEFT_SYMMETRIC:
1411                 case ALGORITHM_RIGHT_SYMMETRIC:
1412                         if (i < sh->pd_idx)
1413                                 i += raid_disks;
1414                         i -= (sh->pd_idx + 1);
1415                         break;
1416                 default:
1417                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1418                                conf->algorithm);
1419                 }
1420                 break;
1421         case 6:
1422                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1423                         return 0; /* It is the Q disk */
1424                 switch (conf->algorithm) {
1425                 case ALGORITHM_LEFT_ASYMMETRIC:
1426                 case ALGORITHM_RIGHT_ASYMMETRIC:
1427                         if (sh->pd_idx == raid_disks-1)
1428                                 i--;    /* Q D D D P */
1429                         else if (i > sh->pd_idx)
1430                                 i -= 2; /* D D P Q D */
1431                         break;
1432                 case ALGORITHM_LEFT_SYMMETRIC:
1433                 case ALGORITHM_RIGHT_SYMMETRIC:
1434                         if (sh->pd_idx == raid_disks-1)
1435                                 i--; /* Q D D D P */
1436                         else {
1437                                 /* D D P Q D */
1438                                 if (i < sh->pd_idx)
1439                                         i += raid_disks;
1440                                 i -= (sh->pd_idx + 2);
1441                         }
1442                         break;
1443                 default:
1444                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1445                                 conf->algorithm);
1446                 }
1447                 break;
1448         }
1449
1450         chunk_number = stripe * data_disks + i;
1451         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1452
1453         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1454         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1455                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1456                 return 0;
1457         }
1458         return r_sector;
1459 }
1460
1461
1462
1463 /*
1464  * Copy data between a page in the stripe cache, and one or more bion
1465  * The page could align with the middle of the bio, or there could be
1466  * several bion, each with several bio_vecs, which cover part of the page
1467  * Multiple bion are linked together on bi_next.  There may be extras
1468  * at the end of this list.  We ignore them.
1469  */
1470 static void copy_data(int frombio, struct bio *bio,
1471                      struct page *page,
1472                      sector_t sector)
1473 {
1474         char *pa = page_address(page);
1475         struct bio_vec *bvl;
1476         int i;
1477         int page_offset;
1478
1479         if (bio->bi_sector >= sector)
1480                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1481         else
1482                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1483         bio_for_each_segment(bvl, bio, i) {
1484                 int len = bio_iovec_idx(bio,i)->bv_len;
1485                 int clen;
1486                 int b_offset = 0;
1487
1488                 if (page_offset < 0) {
1489                         b_offset = -page_offset;
1490                         page_offset += b_offset;
1491                         len -= b_offset;
1492                 }
1493
1494                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1495                         clen = STRIPE_SIZE - page_offset;
1496                 else clen = len;
1497
1498                 if (clen > 0) {
1499                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1500                         if (frombio)
1501                                 memcpy(pa+page_offset, ba+b_offset, clen);
1502                         else
1503                                 memcpy(ba+b_offset, pa+page_offset, clen);
1504                         __bio_kunmap_atomic(ba, KM_USER0);
1505                 }
1506                 if (clen < len) /* hit end of page */
1507                         break;
1508                 page_offset +=  len;
1509         }
1510 }
1511
1512 #define check_xor()     do {                                              \
1513                                 if (count == MAX_XOR_BLOCKS) {            \
1514                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1515                                 count = 0;                                \
1516                            }                                              \
1517                         } while(0)
1518
1519
1520 static void compute_block(struct stripe_head *sh, int dd_idx)
1521 {
1522         int i, count, disks = sh->disks;
1523         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1524
1525         pr_debug("compute_block, stripe %llu, idx %d\n",
1526                 (unsigned long long)sh->sector, dd_idx);
1527
1528         dest = page_address(sh->dev[dd_idx].page);
1529         memset(dest, 0, STRIPE_SIZE);
1530         count = 0;
1531         for (i = disks ; i--; ) {
1532                 if (i == dd_idx)
1533                         continue;
1534                 p = page_address(sh->dev[i].page);
1535                 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1536                         ptr[count++] = p;
1537                 else
1538                         printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
1539                                 " not present\n", dd_idx,
1540                                 (unsigned long long)sh->sector, i);
1541
1542                 check_xor();
1543         }
1544         if (count)
1545                 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1546         set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1547 }
1548
1549 static void compute_parity5(struct stripe_head *sh, int method)
1550 {
1551         raid5_conf_t *conf = sh->raid_conf;
1552         int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
1553         void *ptr[MAX_XOR_BLOCKS], *dest;
1554         struct bio *chosen;
1555
1556         pr_debug("compute_parity5, stripe %llu, method %d\n",
1557                 (unsigned long long)sh->sector, method);
1558
1559         count = 0;
1560         dest = page_address(sh->dev[pd_idx].page);
1561         switch(method) {
1562         case READ_MODIFY_WRITE:
1563                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1564                 for (i=disks ; i-- ;) {
1565                         if (i==pd_idx)
1566                                 continue;
1567                         if (sh->dev[i].towrite &&
1568                             test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1569                                 ptr[count++] = page_address(sh->dev[i].page);
1570                                 chosen = sh->dev[i].towrite;
1571                                 sh->dev[i].towrite = NULL;
1572
1573                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1574                                         wake_up(&conf->wait_for_overlap);
1575
1576                                 BUG_ON(sh->dev[i].written);
1577                                 sh->dev[i].written = chosen;
1578                                 check_xor();
1579                         }
1580                 }
1581                 break;
1582         case RECONSTRUCT_WRITE:
1583                 memset(dest, 0, STRIPE_SIZE);
1584                 for (i= disks; i-- ;)
1585                         if (i!=pd_idx && sh->dev[i].towrite) {
1586                                 chosen = sh->dev[i].towrite;
1587                                 sh->dev[i].towrite = NULL;
1588
1589                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1590                                         wake_up(&conf->wait_for_overlap);
1591
1592                                 BUG_ON(sh->dev[i].written);
1593                                 sh->dev[i].written = chosen;
1594                         }
1595                 break;
1596         case CHECK_PARITY:
1597                 break;
1598         }
1599         if (count) {
1600                 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1601                 count = 0;
1602         }
1603         
1604         for (i = disks; i--;)
1605                 if (sh->dev[i].written) {
1606                         sector_t sector = sh->dev[i].sector;
1607                         struct bio *wbi = sh->dev[i].written;
1608                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1609                                 copy_data(1, wbi, sh->dev[i].page, sector);
1610                                 wbi = r5_next_bio(wbi, sector);
1611                         }
1612
1613                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1614                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1615                 }
1616
1617         switch(method) {
1618         case RECONSTRUCT_WRITE:
1619         case CHECK_PARITY:
1620                 for (i=disks; i--;)
1621                         if (i != pd_idx) {
1622                                 ptr[count++] = page_address(sh->dev[i].page);
1623                                 check_xor();
1624                         }
1625                 break;
1626         case READ_MODIFY_WRITE:
1627                 for (i = disks; i--;)
1628                         if (sh->dev[i].written) {
1629                                 ptr[count++] = page_address(sh->dev[i].page);
1630                                 check_xor();
1631                         }
1632         }
1633         if (count)
1634                 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1635
1636         if (method != CHECK_PARITY) {
1637                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1638                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1639         } else
1640                 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1641 }
1642
1643 static void compute_parity6(struct stripe_head *sh, int method)
1644 {
1645         raid6_conf_t *conf = sh->raid_conf;
1646         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1647         struct bio *chosen;
1648         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1649         void *ptrs[disks];
1650
1651         qd_idx = raid6_next_disk(pd_idx, disks);
1652         d0_idx = raid6_next_disk(qd_idx, disks);
1653
1654         pr_debug("compute_parity, stripe %llu, method %d\n",
1655                 (unsigned long long)sh->sector, method);
1656
1657         switch(method) {
1658         case READ_MODIFY_WRITE:
1659                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1660         case RECONSTRUCT_WRITE:
1661                 for (i= disks; i-- ;)
1662                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1663                                 chosen = sh->dev[i].towrite;
1664                                 sh->dev[i].towrite = NULL;
1665
1666                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1667                                         wake_up(&conf->wait_for_overlap);
1668
1669                                 BUG_ON(sh->dev[i].written);
1670                                 sh->dev[i].written = chosen;
1671                         }
1672                 break;
1673         case CHECK_PARITY:
1674                 BUG();          /* Not implemented yet */
1675         }
1676
1677         for (i = disks; i--;)
1678                 if (sh->dev[i].written) {
1679                         sector_t sector = sh->dev[i].sector;
1680                         struct bio *wbi = sh->dev[i].written;
1681                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1682                                 copy_data(1, wbi, sh->dev[i].page, sector);
1683                                 wbi = r5_next_bio(wbi, sector);
1684                         }
1685
1686                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1687                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1688                 }
1689
1690 //      switch(method) {
1691 //      case RECONSTRUCT_WRITE:
1692 //      case CHECK_PARITY:
1693 //      case UPDATE_PARITY:
1694                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1695                 /* FIX: Is this ordering of drives even remotely optimal? */
1696                 count = 0;
1697                 i = d0_idx;
1698                 do {
1699                         ptrs[count++] = page_address(sh->dev[i].page);
1700                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1701                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1702                         i = raid6_next_disk(i, disks);
1703                 } while ( i != d0_idx );
1704 //              break;
1705 //      }
1706
1707         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1708
1709         switch(method) {
1710         case RECONSTRUCT_WRITE:
1711                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1712                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1713                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1714                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1715                 break;
1716         case UPDATE_PARITY:
1717                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1718                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1719                 break;
1720         }
1721 }
1722
1723
1724 /* Compute one missing block */
1725 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1726 {
1727         int i, count, disks = sh->disks;
1728         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1729         int pd_idx = sh->pd_idx;
1730         int qd_idx = raid6_next_disk(pd_idx, disks);
1731
1732         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1733                 (unsigned long long)sh->sector, dd_idx);
1734
1735         if ( dd_idx == qd_idx ) {
1736                 /* We're actually computing the Q drive */
1737                 compute_parity6(sh, UPDATE_PARITY);
1738         } else {
1739                 dest = page_address(sh->dev[dd_idx].page);
1740                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1741                 count = 0;
1742                 for (i = disks ; i--; ) {
1743                         if (i == dd_idx || i == qd_idx)
1744                                 continue;
1745                         p = page_address(sh->dev[i].page);
1746                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1747                                 ptr[count++] = p;
1748                         else
1749                                 printk("compute_block() %d, stripe %llu, %d"
1750                                        " not present\n", dd_idx,
1751                                        (unsigned long long)sh->sector, i);
1752
1753                         check_xor();
1754                 }
1755                 if (count)
1756                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1757                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1758                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1759         }
1760 }
1761
1762 /* Compute two missing blocks */
1763 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1764 {
1765         int i, count, disks = sh->disks;
1766         int pd_idx = sh->pd_idx;
1767         int qd_idx = raid6_next_disk(pd_idx, disks);
1768         int d0_idx = raid6_next_disk(qd_idx, disks);
1769         int faila, failb;
1770
1771         /* faila and failb are disk numbers relative to d0_idx */
1772         /* pd_idx become disks-2 and qd_idx become disks-1 */
1773         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1774         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1775
1776         BUG_ON(faila == failb);
1777         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1778
1779         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1780                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1781
1782         if ( failb == disks-1 ) {
1783                 /* Q disk is one of the missing disks */
1784                 if ( faila == disks-2 ) {
1785                         /* Missing P+Q, just recompute */
1786                         compute_parity6(sh, UPDATE_PARITY);
1787                         return;
1788                 } else {
1789                         /* We're missing D+Q; recompute D from P */
1790                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1791                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1792                         return;
1793                 }
1794         }
1795
1796         /* We're missing D+P or D+D; build pointer table */
1797         {
1798                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1799                 void *ptrs[disks];
1800
1801                 count = 0;
1802                 i = d0_idx;
1803                 do {
1804                         ptrs[count++] = page_address(sh->dev[i].page);
1805                         i = raid6_next_disk(i, disks);
1806                         if (i != dd_idx1 && i != dd_idx2 &&
1807                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1808                                 printk("compute_2 with missing block %d/%d\n", count, i);
1809                 } while ( i != d0_idx );
1810
1811                 if ( failb == disks-2 ) {
1812                         /* We're missing D+P. */
1813                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1814                 } else {
1815                         /* We're missing D+D. */
1816                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1817                 }
1818
1819                 /* Both the above update both missing blocks */
1820                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1821                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1822         }
1823 }
1824
1825 static int
1826 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1827 {
1828         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1829         int locked = 0;
1830
1831         if (rcw) {
1832                 /* if we are not expanding this is a proper write request, and
1833                  * there will be bios with new data to be drained into the
1834                  * stripe cache
1835                  */
1836                 if (!expand) {
1837                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1838                         sh->ops.count++;
1839                 }
1840
1841                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1842                 sh->ops.count++;
1843
1844                 for (i = disks; i--; ) {
1845                         struct r5dev *dev = &sh->dev[i];
1846
1847                         if (dev->towrite) {
1848                                 set_bit(R5_LOCKED, &dev->flags);
1849                                 if (!expand)
1850                                         clear_bit(R5_UPTODATE, &dev->flags);
1851                                 locked++;
1852                         }
1853                 }
1854         } else {
1855                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1856                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1857
1858                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1859                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1860                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1861
1862                 sh->ops.count += 3;
1863
1864                 for (i = disks; i--; ) {
1865                         struct r5dev *dev = &sh->dev[i];
1866                         if (i == pd_idx)
1867                                 continue;
1868
1869                         /* For a read-modify write there may be blocks that are
1870                          * locked for reading while others are ready to be
1871                          * written so we distinguish these blocks by the
1872                          * R5_Wantprexor bit
1873                          */
1874                         if (dev->towrite &&
1875                             (test_bit(R5_UPTODATE, &dev->flags) ||
1876                             test_bit(R5_Wantcompute, &dev->flags))) {
1877                                 set_bit(R5_Wantprexor, &dev->flags);
1878                                 set_bit(R5_LOCKED, &dev->flags);
1879                                 clear_bit(R5_UPTODATE, &dev->flags);
1880                                 locked++;
1881                         }
1882                 }
1883         }
1884
1885         /* keep the parity disk locked while asynchronous operations
1886          * are in flight
1887          */
1888         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1889         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1890         locked++;
1891
1892         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1893                 __FUNCTION__, (unsigned long long)sh->sector,
1894                 locked, sh->ops.pending);
1895
1896         return locked;
1897 }
1898
1899 /*
1900  * Each stripe/dev can have one or more bion attached.
1901  * toread/towrite point to the first in a chain.
1902  * The bi_next chain must be in order.
1903  */
1904 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1905 {
1906         struct bio **bip;
1907         raid5_conf_t *conf = sh->raid_conf;
1908         int firstwrite=0;
1909
1910         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1911                 (unsigned long long)bi->bi_sector,
1912                 (unsigned long long)sh->sector);
1913
1914
1915         spin_lock(&sh->lock);
1916         spin_lock_irq(&conf->device_lock);
1917         if (forwrite) {
1918                 bip = &sh->dev[dd_idx].towrite;
1919                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1920                         firstwrite = 1;
1921         } else
1922                 bip = &sh->dev[dd_idx].toread;
1923         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1924                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1925                         goto overlap;
1926                 bip = & (*bip)->bi_next;
1927         }
1928         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1929                 goto overlap;
1930
1931         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1932         if (*bip)
1933                 bi->bi_next = *bip;
1934         *bip = bi;
1935         bi->bi_phys_segments ++;
1936         spin_unlock_irq(&conf->device_lock);
1937         spin_unlock(&sh->lock);
1938
1939         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1940                 (unsigned long long)bi->bi_sector,
1941                 (unsigned long long)sh->sector, dd_idx);
1942
1943         if (conf->mddev->bitmap && firstwrite) {
1944                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1945                                   STRIPE_SECTORS, 0);
1946                 sh->bm_seq = conf->seq_flush+1;
1947                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1948         }
1949
1950         if (forwrite) {
1951                 /* check if page is covered */
1952                 sector_t sector = sh->dev[dd_idx].sector;
1953                 for (bi=sh->dev[dd_idx].towrite;
1954                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1955                              bi && bi->bi_sector <= sector;
1956                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1957                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1958                                 sector = bi->bi_sector + (bi->bi_size>>9);
1959                 }
1960                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1961                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1962         }
1963         return 1;
1964
1965  overlap:
1966         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1967         spin_unlock_irq(&conf->device_lock);
1968         spin_unlock(&sh->lock);
1969         return 0;
1970 }
1971
1972 static void end_reshape(raid5_conf_t *conf);
1973
1974 static int page_is_zero(struct page *p)
1975 {
1976         char *a = page_address(p);
1977         return ((*(u32*)a) == 0 &&
1978                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1979 }
1980
1981 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1982 {
1983         int sectors_per_chunk = conf->chunk_size >> 9;
1984         int pd_idx, dd_idx;
1985         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1986
1987         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1988                              *sectors_per_chunk + chunk_offset,
1989                              disks, disks - conf->max_degraded,
1990                              &dd_idx, &pd_idx, conf);
1991         return pd_idx;
1992 }
1993
1994 static void
1995 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1996                                 struct stripe_head_state *s, int disks,
1997                                 struct bio **return_bi)
1998 {
1999         int i;
2000         for (i = disks; i--; ) {
2001                 struct bio *bi;
2002                 int bitmap_end = 0;
2003
2004                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2005                         mdk_rdev_t *rdev;
2006                         rcu_read_lock();
2007                         rdev = rcu_dereference(conf->disks[i].rdev);
2008                         if (rdev && test_bit(In_sync, &rdev->flags))
2009                                 /* multiple read failures in one stripe */
2010                                 md_error(conf->mddev, rdev);
2011                         rcu_read_unlock();
2012                 }
2013                 spin_lock_irq(&conf->device_lock);
2014                 /* fail all writes first */
2015                 bi = sh->dev[i].towrite;
2016                 sh->dev[i].towrite = NULL;
2017                 if (bi) {
2018                         s->to_write--;
2019                         bitmap_end = 1;
2020                 }
2021
2022                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2023                         wake_up(&conf->wait_for_overlap);
2024
2025                 while (bi && bi->bi_sector <
2026                         sh->dev[i].sector + STRIPE_SECTORS) {
2027                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2028                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2029                         if (--bi->bi_phys_segments == 0) {
2030                                 md_write_end(conf->mddev);
2031                                 bi->bi_next = *return_bi;
2032                                 *return_bi = bi;
2033                         }
2034                         bi = nextbi;
2035                 }
2036                 /* and fail all 'written' */
2037                 bi = sh->dev[i].written;
2038                 sh->dev[i].written = NULL;
2039                 if (bi) bitmap_end = 1;
2040                 while (bi && bi->bi_sector <
2041                        sh->dev[i].sector + STRIPE_SECTORS) {
2042                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2043                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2044                         if (--bi->bi_phys_segments == 0) {
2045                                 md_write_end(conf->mddev);
2046                                 bi->bi_next = *return_bi;
2047                                 *return_bi = bi;
2048                         }
2049                         bi = bi2;
2050                 }
2051
2052                 /* fail any reads if this device is non-operational and
2053                  * the data has not reached the cache yet.
2054                  */
2055                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2056                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2057                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2058                         bi = sh->dev[i].toread;
2059                         sh->dev[i].toread = NULL;
2060                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2061                                 wake_up(&conf->wait_for_overlap);
2062                         if (bi) s->to_read--;
2063                         while (bi && bi->bi_sector <
2064                                sh->dev[i].sector + STRIPE_SECTORS) {
2065                                 struct bio *nextbi =
2066                                         r5_next_bio(bi, sh->dev[i].sector);
2067                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2068                                 if (--bi->bi_phys_segments == 0) {
2069                                         bi->bi_next = *return_bi;
2070                                         *return_bi = bi;
2071                                 }
2072                                 bi = nextbi;
2073                         }
2074                 }
2075                 spin_unlock_irq(&conf->device_lock);
2076                 if (bitmap_end)
2077                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2078                                         STRIPE_SECTORS, 0, 0);
2079         }
2080
2081 }
2082
2083 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
2084  * to process
2085  */
2086 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
2087                         struct stripe_head_state *s, int disk_idx, int disks)
2088 {
2089         struct r5dev *dev = &sh->dev[disk_idx];
2090         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2091
2092         /* don't schedule compute operations or reads on the parity block while
2093          * a check is in flight
2094          */
2095         if ((disk_idx == sh->pd_idx) &&
2096              test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2097                 return ~0;
2098
2099         /* is the data in this block needed, and can we get it? */
2100         if (!test_bit(R5_LOCKED, &dev->flags) &&
2101             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
2102             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2103              s->syncing || s->expanding || (s->failed &&
2104              (failed_dev->toread || (failed_dev->towrite &&
2105              !test_bit(R5_OVERWRITE, &failed_dev->flags)
2106              ))))) {
2107                 /* 1/ We would like to get this block, possibly by computing it,
2108                  * but we might not be able to.
2109                  *
2110                  * 2/ Since parity check operations potentially make the parity
2111                  * block !uptodate it will need to be refreshed before any
2112                  * compute operations on data disks are scheduled.
2113                  *
2114                  * 3/ We hold off parity block re-reads until check operations
2115                  * have quiesced.
2116                  */
2117                 if ((s->uptodate == disks - 1) &&
2118                     !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2119                         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2120                         set_bit(R5_Wantcompute, &dev->flags);
2121                         sh->ops.target = disk_idx;
2122                         s->req_compute = 1;
2123                         sh->ops.count++;
2124                         /* Careful: from this point on 'uptodate' is in the eye
2125                          * of raid5_run_ops which services 'compute' operations
2126                          * before writes. R5_Wantcompute flags a block that will
2127                          * be R5_UPTODATE by the time it is needed for a
2128                          * subsequent operation.
2129                          */
2130                         s->uptodate++;
2131                         return 0; /* uptodate + compute == disks */
2132                 } else if ((s->uptodate < disks - 1) &&
2133                         test_bit(R5_Insync, &dev->flags)) {
2134                         /* Note: we hold off compute operations while checks are
2135                          * in flight, but we still prefer 'compute' over 'read'
2136                          * hence we only read if (uptodate < * disks-1)
2137                          */
2138                         set_bit(R5_LOCKED, &dev->flags);
2139                         set_bit(R5_Wantread, &dev->flags);
2140                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2141                                 sh->ops.count++;
2142                         s->locked++;
2143                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2144                                 s->syncing);
2145                 }
2146         }
2147
2148         return ~0;
2149 }
2150
2151 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2152                         struct stripe_head_state *s, int disks)
2153 {
2154         int i;
2155
2156         /* Clear completed compute operations.  Parity recovery
2157          * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2158          * later on in this routine
2159          */
2160         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2161                 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2162                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2163                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2164                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2165         }
2166
2167         /* look for blocks to read/compute, skip this if a compute
2168          * is already in flight, or if the stripe contents are in the
2169          * midst of changing due to a write
2170          */
2171         if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2172                 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2173                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2174                 for (i = disks; i--; )
2175                         if (__handle_issuing_new_read_requests5(
2176                                 sh, s, i, disks) == 0)
2177                                 break;
2178         }
2179         set_bit(STRIPE_HANDLE, &sh->state);
2180 }
2181
2182 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2183                         struct stripe_head_state *s, struct r6_state *r6s,
2184                         int disks)
2185 {
2186         int i;
2187         for (i = disks; i--; ) {
2188                 struct r5dev *dev = &sh->dev[i];
2189                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2190                     !test_bit(R5_UPTODATE, &dev->flags) &&
2191                     (dev->toread || (dev->towrite &&
2192                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2193                      s->syncing || s->expanding ||
2194                      (s->failed >= 1 &&
2195                       (sh->dev[r6s->failed_num[0]].toread ||
2196                        s->to_write)) ||
2197                      (s->failed >= 2 &&
2198                       (sh->dev[r6s->failed_num[1]].toread ||
2199                        s->to_write)))) {
2200                         /* we would like to get this block, possibly
2201                          * by computing it, but we might not be able to
2202                          */
2203                         if (s->uptodate == disks-1) {
2204                                 pr_debug("Computing stripe %llu block %d\n",
2205                                        (unsigned long long)sh->sector, i);
2206                                 compute_block_1(sh, i, 0);
2207                                 s->uptodate++;
2208                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2209                                 /* Computing 2-failure is *very* expensive; only
2210                                  * do it if failed >= 2
2211                                  */
2212                                 int other;
2213                                 for (other = disks; other--; ) {
2214                                         if (other == i)
2215                                                 continue;
2216                                         if (!test_bit(R5_UPTODATE,
2217                                               &sh->dev[other].flags))
2218                                                 break;
2219                                 }
2220                                 BUG_ON(other < 0);
2221                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2222                                        (unsigned long long)sh->sector,
2223                                        i, other);
2224                                 compute_block_2(sh, i, other);
2225                                 s->uptodate += 2;
2226                         } else if (test_bit(R5_Insync, &dev->flags)) {
2227                                 set_bit(R5_LOCKED, &dev->flags);
2228                                 set_bit(R5_Wantread, &dev->flags);
2229                                 s->locked++;
2230                                 pr_debug("Reading block %d (sync=%d)\n",
2231                                         i, s->syncing);
2232                         }
2233                 }
2234         }
2235         set_bit(STRIPE_HANDLE, &sh->state);
2236 }
2237
2238
2239 /* handle_completed_write_requests
2240  * any written block on an uptodate or failed drive can be returned.
2241  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2242  * never LOCKED, so we don't need to test 'failed' directly.
2243  */
2244 static void handle_completed_write_requests(raid5_conf_t *conf,
2245         struct stripe_head *sh, int disks, struct bio **return_bi)
2246 {
2247         int i;
2248         struct r5dev *dev;
2249
2250         for (i = disks; i--; )
2251                 if (sh->dev[i].written) {
2252                         dev = &sh->dev[i];
2253                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2254                                 test_bit(R5_UPTODATE, &dev->flags)) {
2255                                 /* We can return any write requests */
2256                                 struct bio *wbi, *wbi2;
2257                                 int bitmap_end = 0;
2258                                 pr_debug("Return write for disc %d\n", i);
2259                                 spin_lock_irq(&conf->device_lock);
2260                                 wbi = dev->written;
2261                                 dev->written = NULL;
2262                                 while (wbi && wbi->bi_sector <
2263                                         dev->sector + STRIPE_SECTORS) {
2264                                         wbi2 = r5_next_bio(wbi, dev->sector);
2265                                         if (--wbi->bi_phys_segments == 0) {
2266                                                 md_write_end(conf->mddev);
2267                                                 wbi->bi_next = *return_bi;
2268                                                 *return_bi = wbi;
2269                                         }
2270                                         wbi = wbi2;
2271                                 }
2272                                 if (dev->towrite == NULL)
2273                                         bitmap_end = 1;
2274                                 spin_unlock_irq(&conf->device_lock);
2275                                 if (bitmap_end)
2276                                         bitmap_endwrite(conf->mddev->bitmap,
2277                                                         sh->sector,
2278                                                         STRIPE_SECTORS,
2279                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2280                                                         0);
2281                         }
2282                 }
2283 }
2284
2285 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2286                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2287 {
2288         int rmw = 0, rcw = 0, i;
2289         for (i = disks; i--; ) {
2290                 /* would I have to read this buffer for read_modify_write */
2291                 struct r5dev *dev = &sh->dev[i];
2292                 if ((dev->towrite || i == sh->pd_idx) &&
2293                     !test_bit(R5_LOCKED, &dev->flags) &&
2294                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2295                       test_bit(R5_Wantcompute, &dev->flags))) {
2296                         if (test_bit(R5_Insync, &dev->flags))
2297                                 rmw++;
2298                         else
2299                                 rmw += 2*disks;  /* cannot read it */
2300                 }
2301                 /* Would I have to read this buffer for reconstruct_write */
2302                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2303                     !test_bit(R5_LOCKED, &dev->flags) &&
2304                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2305                     test_bit(R5_Wantcompute, &dev->flags))) {
2306                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2307                         else
2308                                 rcw += 2*disks;
2309                 }
2310         }
2311         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2312                 (unsigned long long)sh->sector, rmw, rcw);
2313         set_bit(STRIPE_HANDLE, &sh->state);
2314         if (rmw < rcw && rmw > 0)
2315                 /* prefer read-modify-write, but need to get some data */
2316                 for (i = disks; i--; ) {
2317                         struct r5dev *dev = &sh->dev[i];
2318                         if ((dev->towrite || i == sh->pd_idx) &&
2319                             !test_bit(R5_LOCKED, &dev->flags) &&
2320                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2321                             test_bit(R5_Wantcompute, &dev->flags)) &&
2322                             test_bit(R5_Insync, &dev->flags)) {
2323                                 if (
2324                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2325                                         pr_debug("Read_old block "
2326                                                 "%d for r-m-w\n", i);
2327                                         set_bit(R5_LOCKED, &dev->flags);
2328                                         set_bit(R5_Wantread, &dev->flags);
2329                                         if (!test_and_set_bit(
2330                                                 STRIPE_OP_IO, &sh->ops.pending))
2331                                                 sh->ops.count++;
2332                                         s->locked++;
2333                                 } else {
2334                                         set_bit(STRIPE_DELAYED, &sh->state);
2335                                         set_bit(STRIPE_HANDLE, &sh->state);
2336                                 }
2337                         }
2338                 }
2339         if (rcw <= rmw && rcw > 0)
2340                 /* want reconstruct write, but need to get some data */
2341                 for (i = disks; i--; ) {
2342                         struct r5dev *dev = &sh->dev[i];
2343                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2344                             i != sh->pd_idx &&
2345                             !test_bit(R5_LOCKED, &dev->flags) &&
2346                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2347                             test_bit(R5_Wantcompute, &dev->flags)) &&
2348                             test_bit(R5_Insync, &dev->flags)) {
2349                                 if (
2350                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2351                                         pr_debug("Read_old block "
2352                                                 "%d for Reconstruct\n", i);
2353                                         set_bit(R5_LOCKED, &dev->flags);
2354                                         set_bit(R5_Wantread, &dev->flags);
2355                                         if (!test_and_set_bit(
2356                                                 STRIPE_OP_IO, &sh->ops.pending))
2357                                                 sh->ops.count++;
2358                                         s->locked++;
2359                                 } else {
2360                                         set_bit(STRIPE_DELAYED, &sh->state);
2361                                         set_bit(STRIPE_HANDLE, &sh->state);
2362                                 }
2363                         }
2364                 }
2365         /* now if nothing is locked, and if we have enough data,
2366          * we can start a write request
2367          */
2368         /* since handle_stripe can be called at any time we need to handle the
2369          * case where a compute block operation has been submitted and then a
2370          * subsequent call wants to start a write request.  raid5_run_ops only
2371          * handles the case where compute block and postxor are requested
2372          * simultaneously.  If this is not the case then new writes need to be
2373          * held off until the compute completes.
2374          */
2375         if ((s->req_compute ||
2376             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2377                 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2378                 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2379                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2380 }
2381
2382 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2383                 struct stripe_head *sh, struct stripe_head_state *s,
2384                 struct r6_state *r6s, int disks)
2385 {
2386         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2387         int qd_idx = r6s->qd_idx;
2388         for (i = disks; i--; ) {
2389                 struct r5dev *dev = &sh->dev[i];
2390                 /* Would I have to read this buffer for reconstruct_write */
2391                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2392                     && i != pd_idx && i != qd_idx
2393                     && (!test_bit(R5_LOCKED, &dev->flags)
2394                             ) &&
2395                     !test_bit(R5_UPTODATE, &dev->flags)) {
2396                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2397                         else {
2398                                 pr_debug("raid6: must_compute: "
2399                                         "disk %d flags=%#lx\n", i, dev->flags);
2400                                 must_compute++;
2401                         }
2402                 }
2403         }
2404         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2405                (unsigned long long)sh->sector, rcw, must_compute);
2406         set_bit(STRIPE_HANDLE, &sh->state);
2407
2408         if (rcw > 0)
2409                 /* want reconstruct write, but need to get some data */
2410                 for (i = disks; i--; ) {
2411                         struct r5dev *dev = &sh->dev[i];
2412                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2413                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2414                             && !test_bit(R5_LOCKED, &dev->flags) &&
2415                             !test_bit(R5_UPTODATE, &dev->flags) &&
2416                             test_bit(R5_Insync, &dev->flags)) {
2417                                 if (
2418                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2419                                         pr_debug("Read_old stripe %llu "
2420                                                 "block %d for Reconstruct\n",
2421                                              (unsigned long long)sh->sector, i);
2422                                         set_bit(R5_LOCKED, &dev->flags);
2423                                         set_bit(R5_Wantread, &dev->flags);
2424                                         s->locked++;
2425                                 } else {
2426                                         pr_debug("Request delayed stripe %llu "
2427                                                 "block %d for Reconstruct\n",
2428                                              (unsigned long long)sh->sector, i);
2429                                         set_bit(STRIPE_DELAYED, &sh->state);
2430                                         set_bit(STRIPE_HANDLE, &sh->state);
2431                                 }
2432                         }
2433                 }
2434         /* now if nothing is locked, and if we have enough data, we can start a
2435          * write request
2436          */
2437         if (s->locked == 0 && rcw == 0 &&
2438             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2439                 if (must_compute > 0) {
2440                         /* We have failed blocks and need to compute them */
2441                         switch (s->failed) {
2442                         case 0:
2443                                 BUG();
2444                         case 1:
2445                                 compute_block_1(sh, r6s->failed_num[0], 0);
2446                                 break;
2447                         case 2:
2448                                 compute_block_2(sh, r6s->failed_num[0],
2449                                                 r6s->failed_num[1]);
2450                                 break;
2451                         default: /* This request should have been failed? */
2452                                 BUG();
2453                         }
2454                 }
2455
2456                 pr_debug("Computing parity for stripe %llu\n",
2457                         (unsigned long long)sh->sector);
2458                 compute_parity6(sh, RECONSTRUCT_WRITE);
2459                 /* now every locked buffer is ready to be written */
2460                 for (i = disks; i--; )
2461                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2462                                 pr_debug("Writing stripe %llu block %d\n",
2463                                        (unsigned long long)sh->sector, i);
2464                                 s->locked++;
2465                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2466                         }
2467                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2468                 set_bit(STRIPE_INSYNC, &sh->state);
2469
2470                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2471                         atomic_dec(&conf->preread_active_stripes);
2472                         if (atomic_read(&conf->preread_active_stripes) <
2473                             IO_THRESHOLD)
2474                                 md_wakeup_thread(conf->mddev->thread);
2475                 }
2476         }
2477 }
2478
2479 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2480                                 struct stripe_head_state *s, int disks)
2481 {
2482         set_bit(STRIPE_HANDLE, &sh->state);
2483         /* Take one of the following actions:
2484          * 1/ start a check parity operation if (uptodate == disks)
2485          * 2/ finish a check parity operation and act on the result
2486          * 3/ skip to the writeback section if we previously
2487          *    initiated a recovery operation
2488          */
2489         if (s->failed == 0 &&
2490             !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2491                 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2492                         BUG_ON(s->uptodate != disks);
2493                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2494                         sh->ops.count++;
2495                         s->uptodate--;
2496                 } else if (
2497                        test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2498                         clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2499                         clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2500
2501                         if (sh->ops.zero_sum_result == 0)
2502                                 /* parity is correct (on disc,
2503                                  * not in buffer any more)
2504                                  */
2505                                 set_bit(STRIPE_INSYNC, &sh->state);
2506                         else {
2507                                 conf->mddev->resync_mismatches +=
2508                                         STRIPE_SECTORS;
2509                                 if (test_bit(
2510                                      MD_RECOVERY_CHECK, &conf->mddev->recovery))
2511                                         /* don't try to repair!! */
2512                                         set_bit(STRIPE_INSYNC, &sh->state);
2513                                 else {
2514                                         set_bit(STRIPE_OP_COMPUTE_BLK,
2515                                                 &sh->ops.pending);
2516                                         set_bit(STRIPE_OP_MOD_REPAIR_PD,
2517                                                 &sh->ops.pending);
2518                                         set_bit(R5_Wantcompute,
2519                                                 &sh->dev[sh->pd_idx].flags);
2520                                         sh->ops.target = sh->pd_idx;
2521                                         sh->ops.count++;
2522                                         s->uptodate++;
2523                                 }
2524                         }
2525                 }
2526         }
2527
2528         /* check if we can clear a parity disk reconstruct */
2529         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2530                 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2531
2532                 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2533                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2534                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2535                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2536         }
2537
2538         /* Wait for check parity and compute block operations to complete
2539          * before write-back
2540          */
2541         if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2542                 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2543                 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2544                 struct r5dev *dev;
2545                 /* either failed parity check, or recovery is happening */
2546                 if (s->failed == 0)
2547                         s->failed_num = sh->pd_idx;
2548                 dev = &sh->dev[s->failed_num];
2549                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2550                 BUG_ON(s->uptodate != disks);
2551
2552                 set_bit(R5_LOCKED, &dev->flags);
2553                 set_bit(R5_Wantwrite, &dev->flags);
2554                 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2555                         sh->ops.count++;
2556
2557                 clear_bit(STRIPE_DEGRADED, &sh->state);
2558                 s->locked++;
2559                 set_bit(STRIPE_INSYNC, &sh->state);
2560         }
2561 }
2562
2563
2564 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2565                                 struct stripe_head_state *s,
2566                                 struct r6_state *r6s, struct page *tmp_page,
2567                                 int disks)
2568 {
2569         int update_p = 0, update_q = 0;
2570         struct r5dev *dev;
2571         int pd_idx = sh->pd_idx;
2572         int qd_idx = r6s->qd_idx;
2573
2574         set_bit(STRIPE_HANDLE, &sh->state);
2575
2576         BUG_ON(s->failed > 2);
2577         BUG_ON(s->uptodate < disks);
2578         /* Want to check and possibly repair P and Q.
2579          * However there could be one 'failed' device, in which
2580          * case we can only check one of them, possibly using the
2581          * other to generate missing data
2582          */
2583
2584         /* If !tmp_page, we cannot do the calculations,
2585          * but as we have set STRIPE_HANDLE, we will soon be called
2586          * by stripe_handle with a tmp_page - just wait until then.
2587          */
2588         if (tmp_page) {
2589                 if (s->failed == r6s->q_failed) {
2590                         /* The only possible failed device holds 'Q', so it
2591                          * makes sense to check P (If anything else were failed,
2592                          * we would have used P to recreate it).
2593                          */
2594                         compute_block_1(sh, pd_idx, 1);
2595                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2596                                 compute_block_1(sh, pd_idx, 0);
2597                                 update_p = 1;
2598                         }
2599                 }
2600                 if (!r6s->q_failed && s->failed < 2) {
2601                         /* q is not failed, and we didn't use it to generate
2602                          * anything, so it makes sense to check it
2603                          */
2604                         memcpy(page_address(tmp_page),
2605                                page_address(sh->dev[qd_idx].page),
2606                                STRIPE_SIZE);
2607                         compute_parity6(sh, UPDATE_PARITY);
2608                         if (memcmp(page_address(tmp_page),
2609                                    page_address(sh->dev[qd_idx].page),
2610                                    STRIPE_SIZE) != 0) {
2611                                 clear_bit(STRIPE_INSYNC, &sh->state);
2612                                 update_q = 1;
2613                         }
2614                 }
2615                 if (update_p || update_q) {
2616                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2617                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2618                                 /* don't try to repair!! */
2619                                 update_p = update_q = 0;
2620                 }
2621
2622                 /* now write out any block on a failed drive,
2623                  * or P or Q if they need it
2624                  */
2625
2626                 if (s->failed == 2) {
2627                         dev = &sh->dev[r6s->failed_num[1]];
2628                         s->locked++;
2629                         set_bit(R5_LOCKED, &dev->flags);
2630                         set_bit(R5_Wantwrite, &dev->flags);
2631                 }
2632                 if (s->failed >= 1) {
2633                         dev = &sh->dev[r6s->failed_num[0]];
2634                         s->locked++;
2635                         set_bit(R5_LOCKED, &dev->flags);
2636                         set_bit(R5_Wantwrite, &dev->flags);
2637                 }
2638
2639                 if (update_p) {
2640                         dev = &sh->dev[pd_idx];
2641                         s->locked++;
2642                         set_bit(R5_LOCKED, &dev->flags);
2643                         set_bit(R5_Wantwrite, &dev->flags);
2644                 }
2645                 if (update_q) {
2646                         dev = &sh->dev[qd_idx];
2647                         s->locked++;
2648                         set_bit(R5_LOCKED, &dev->flags);
2649                         set_bit(R5_Wantwrite, &dev->flags);
2650                 }
2651                 clear_bit(STRIPE_DEGRADED, &sh->state);
2652
2653                 set_bit(STRIPE_INSYNC, &sh->state);
2654         }
2655 }
2656
2657 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2658                                 struct r6_state *r6s)
2659 {
2660         int i;
2661
2662         /* We have read all the blocks in this stripe and now we need to
2663          * copy some of them into a target stripe for expand.
2664          */
2665         struct dma_async_tx_descriptor *tx = NULL;
2666         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2667         for (i = 0; i < sh->disks; i++)
2668                 if (i != sh->pd_idx && (r6s && i != r6s->qd_idx)) {
2669                         int dd_idx, pd_idx, j;
2670                         struct stripe_head *sh2;
2671
2672                         sector_t bn = compute_blocknr(sh, i);
2673                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2674                                                 conf->raid_disks -
2675                                                 conf->max_degraded, &dd_idx,
2676                                                 &pd_idx, conf);
2677                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2678                                                 pd_idx, 1);
2679                         if (sh2 == NULL)
2680                                 /* so far only the early blocks of this stripe
2681                                  * have been requested.  When later blocks
2682                                  * get requested, we will try again
2683                                  */
2684                                 continue;
2685                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2686                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2687                                 /* must have already done this block */
2688                                 release_stripe(sh2);
2689                                 continue;
2690                         }
2691
2692                         /* place all the copies on one channel */
2693                         tx = async_memcpy(sh2->dev[dd_idx].page,
2694                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2695                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2696
2697                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2698                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2699                         for (j = 0; j < conf->raid_disks; j++)
2700                                 if (j != sh2->pd_idx &&
2701                                     (r6s && j != r6s->qd_idx) &&
2702                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2703                                         break;
2704                         if (j == conf->raid_disks) {
2705                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2706                                 set_bit(STRIPE_HANDLE, &sh2->state);
2707                         }
2708                         release_stripe(sh2);
2709
2710                         /* done submitting copies, wait for them to complete */
2711                         if (i + 1 >= sh->disks) {
2712                                 async_tx_ack(tx);
2713                                 dma_wait_for_async_tx(tx);
2714                         }
2715                 }
2716 }
2717
2718 /*
2719  * handle_stripe - do things to a stripe.
2720  *
2721  * We lock the stripe and then examine the state of various bits
2722  * to see what needs to be done.
2723  * Possible results:
2724  *    return some read request which now have data
2725  *    return some write requests which are safely on disc
2726  *    schedule a read on some buffers
2727  *    schedule a write of some buffers
2728  *    return confirmation of parity correctness
2729  *
2730  * buffers are taken off read_list or write_list, and bh_cache buffers
2731  * get BH_Lock set before the stripe lock is released.
2732  *
2733  */
2734
2735 static void handle_stripe5(struct stripe_head *sh)
2736 {
2737         raid5_conf_t *conf = sh->raid_conf;
2738         int disks = sh->disks, i;
2739         struct bio *return_bi = NULL;
2740         struct stripe_head_state s;
2741         struct r5dev *dev;
2742         unsigned long pending = 0;
2743
2744         memset(&s, 0, sizeof(s));
2745         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2746                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2747                 atomic_read(&sh->count), sh->pd_idx,
2748                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2749
2750         spin_lock(&sh->lock);
2751         clear_bit(STRIPE_HANDLE, &sh->state);
2752         clear_bit(STRIPE_DELAYED, &sh->state);
2753
2754         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2755         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2756         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2757         /* Now to look around and see what can be done */
2758
2759         rcu_read_lock();
2760         for (i=disks; i--; ) {
2761                 mdk_rdev_t *rdev;
2762                 struct r5dev *dev = &sh->dev[i];
2763                 clear_bit(R5_Insync, &dev->flags);
2764
2765                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2766                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2767                         dev->towrite, dev->written);
2768
2769                 /* maybe we can request a biofill operation
2770                  *
2771                  * new wantfill requests are only permitted while
2772                  * STRIPE_OP_BIOFILL is clear
2773                  */
2774                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2775                         !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2776                         set_bit(R5_Wantfill, &dev->flags);
2777
2778                 /* now count some things */
2779                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2780                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2781                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2782
2783                 if (test_bit(R5_Wantfill, &dev->flags))
2784                         s.to_fill++;
2785                 else if (dev->toread)
2786                         s.to_read++;
2787                 if (dev->towrite) {
2788                         s.to_write++;
2789                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2790                                 s.non_overwrite++;
2791                 }
2792                 if (dev->written)
2793                         s.written++;
2794                 rdev = rcu_dereference(conf->disks[i].rdev);
2795                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2796                         /* The ReadError flag will just be confusing now */
2797                         clear_bit(R5_ReadError, &dev->flags);
2798                         clear_bit(R5_ReWrite, &dev->flags);
2799                 }
2800                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2801                     || test_bit(R5_ReadError, &dev->flags)) {
2802                         s.failed++;
2803                         s.failed_num = i;
2804                 } else
2805                         set_bit(R5_Insync, &dev->flags);
2806         }
2807         rcu_read_unlock();
2808
2809         if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2810                 sh->ops.count++;
2811
2812         pr_debug("locked=%d uptodate=%d to_read=%d"
2813                 " to_write=%d failed=%d failed_num=%d\n",
2814                 s.locked, s.uptodate, s.to_read, s.to_write,
2815                 s.failed, s.failed_num);
2816         /* check if the array has lost two devices and, if so, some requests might
2817          * need to be failed
2818          */
2819         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2820                 handle_requests_to_failed_array(conf, sh, &s, disks,
2821                                                 &return_bi);
2822         if (s.failed > 1 && s.syncing) {
2823                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2824                 clear_bit(STRIPE_SYNCING, &sh->state);
2825                 s.syncing = 0;
2826         }
2827
2828         /* might be able to return some write requests if the parity block
2829          * is safe, or on a failed drive
2830          */
2831         dev = &sh->dev[sh->pd_idx];
2832         if ( s.written &&
2833              ((test_bit(R5_Insync, &dev->flags) &&
2834                !test_bit(R5_LOCKED, &dev->flags) &&
2835                test_bit(R5_UPTODATE, &dev->flags)) ||
2836                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2837                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2838
2839         /* Now we might consider reading some blocks, either to check/generate
2840          * parity, or to satisfy requests
2841          * or to load a block that is being partially written.
2842          */
2843         if (s.to_read || s.non_overwrite ||
2844             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2845             test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2846                 handle_issuing_new_read_requests5(sh, &s, disks);
2847
2848         /* Now we check to see if any write operations have recently
2849          * completed
2850          */
2851
2852         /* leave prexor set until postxor is done, allows us to distinguish
2853          * a rmw from a rcw during biodrain
2854          */
2855         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2856                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2857
2858                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2859                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2860                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2861
2862                 for (i = disks; i--; )
2863                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2864         }
2865
2866         /* if only POSTXOR is set then this is an 'expand' postxor */
2867         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2868                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2869
2870                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2871                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2872                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2873
2874                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2875                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2876                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2877
2878                 /* All the 'written' buffers and the parity block are ready to
2879                  * be written back to disk
2880                  */
2881                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2882                 for (i = disks; i--; ) {
2883                         dev = &sh->dev[i];
2884                         if (test_bit(R5_LOCKED, &dev->flags) &&
2885                                 (i == sh->pd_idx || dev->written)) {
2886                                 pr_debug("Writing block %d\n", i);
2887                                 set_bit(R5_Wantwrite, &dev->flags);
2888                                 if (!test_and_set_bit(
2889                                     STRIPE_OP_IO, &sh->ops.pending))
2890                                         sh->ops.count++;
2891                                 if (!test_bit(R5_Insync, &dev->flags) ||
2892                                     (i == sh->pd_idx && s.failed == 0))
2893                                         set_bit(STRIPE_INSYNC, &sh->state);
2894                         }
2895                 }
2896                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2897                         atomic_dec(&conf->preread_active_stripes);
2898                         if (atomic_read(&conf->preread_active_stripes) <
2899                                 IO_THRESHOLD)
2900                                 md_wakeup_thread(conf->mddev->thread);
2901                 }
2902         }
2903
2904         /* Now to consider new write requests and what else, if anything
2905          * should be read.  We do not handle new writes when:
2906          * 1/ A 'write' operation (copy+xor) is already in flight.
2907          * 2/ A 'check' operation is in flight, as it may clobber the parity
2908          *    block.
2909          */
2910         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2911                           !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2912                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2913
2914         /* maybe we need to check and possibly fix the parity for this stripe
2915          * Any reads will already have been scheduled, so we just see if enough
2916          * data is available.  The parity check is held off while parity
2917          * dependent operations are in flight.
2918          */
2919         if ((s.syncing && s.locked == 0 &&
2920              !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2921              !test_bit(STRIPE_INSYNC, &sh->state)) ||
2922               test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2923               test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2924                 handle_parity_checks5(conf, sh, &s, disks);
2925
2926         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2927                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2928                 clear_bit(STRIPE_SYNCING, &sh->state);
2929         }
2930
2931         /* If the failed drive is just a ReadError, then we might need to progress
2932          * the repair/check process
2933          */
2934         if (s.failed == 1 && !conf->mddev->ro &&
2935             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2936             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2937             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2938                 ) {
2939                 dev = &sh->dev[s.failed_num];
2940                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2941                         set_bit(R5_Wantwrite, &dev->flags);
2942                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2943                                 sh->ops.count++;
2944                         set_bit(R5_ReWrite, &dev->flags);
2945                         set_bit(R5_LOCKED, &dev->flags);
2946                         s.locked++;
2947                 } else {
2948                         /* let's read it back */
2949                         set_bit(R5_Wantread, &dev->flags);
2950                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2951                                 sh->ops.count++;
2952                         set_bit(R5_LOCKED, &dev->flags);
2953                         s.locked++;
2954                 }
2955         }
2956
2957         /* Finish postxor operations initiated by the expansion
2958          * process
2959          */
2960         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2961                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2962
2963                 clear_bit(STRIPE_EXPANDING, &sh->state);
2964
2965                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2966                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2967                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2968
2969                 for (i = conf->raid_disks; i--; ) {
2970                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2971                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2972                                 sh->ops.count++;
2973                 }
2974         }
2975
2976         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2977                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2978                 /* Need to write out all blocks after computing parity */
2979                 sh->disks = conf->raid_disks;
2980                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2981                         conf->raid_disks);
2982                 s.locked += handle_write_operations5(sh, 0, 1);
2983         } else if (s.expanded &&
2984                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2985                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2986                 atomic_dec(&conf->reshape_stripes);
2987                 wake_up(&conf->wait_for_overlap);
2988                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2989         }
2990
2991         if (s.expanding && s.locked == 0)
2992                 handle_stripe_expansion(conf, sh, NULL);
2993
2994         if (sh->ops.count)
2995                 pending = get_stripe_work(sh);
2996
2997         spin_unlock(&sh->lock);
2998
2999         if (pending)
3000                 raid5_run_ops(sh, pending);
3001
3002         return_io(return_bi);
3003
3004 }
3005
3006 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
3007 {
3008         raid6_conf_t *conf = sh->raid_conf;
3009         int disks = sh->disks;
3010         struct bio *return_bi = NULL;
3011         int i, pd_idx = sh->pd_idx;
3012         struct stripe_head_state s;
3013         struct r6_state r6s;
3014         struct r5dev *dev, *pdev, *qdev;
3015
3016         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
3017         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3018                 "pd_idx=%d, qd_idx=%d\n",
3019                (unsigned long long)sh->sector, sh->state,
3020                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
3021         memset(&s, 0, sizeof(s));
3022
3023         spin_lock(&sh->lock);
3024         clear_bit(STRIPE_HANDLE, &sh->state);
3025         clear_bit(STRIPE_DELAYED, &sh->state);
3026
3027         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3028         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3029         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3030         /* Now to look around and see what can be done */
3031
3032         rcu_read_lock();
3033         for (i=disks; i--; ) {
3034                 mdk_rdev_t *rdev;
3035                 dev = &sh->dev[i];
3036                 clear_bit(R5_Insync, &dev->flags);
3037
3038                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3039                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3040                 /* maybe we can reply to a read */
3041                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3042                         struct bio *rbi, *rbi2;
3043                         pr_debug("Return read for disc %d\n", i);
3044                         spin_lock_irq(&conf->device_lock);
3045                         rbi = dev->toread;
3046                         dev->toread = NULL;
3047                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3048                                 wake_up(&conf->wait_for_overlap);
3049                         spin_unlock_irq(&conf->device_lock);
3050                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3051                                 copy_data(0, rbi, dev->page, dev->sector);
3052                                 rbi2 = r5_next_bio(rbi, dev->sector);
3053                                 spin_lock_irq(&conf->device_lock);
3054                                 if (--rbi->bi_phys_segments == 0) {
3055                                         rbi->bi_next = return_bi;
3056                                         return_bi = rbi;
3057                                 }
3058                                 spin_unlock_irq(&conf->device_lock);
3059                                 rbi = rbi2;
3060                         }
3061                 }
3062
3063                 /* now count some things */
3064                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3065                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3066
3067
3068                 if (dev->toread)
3069                         s.to_read++;
3070                 if (dev->towrite) {
3071                         s.to_write++;
3072                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3073                                 s.non_overwrite++;
3074                 }
3075                 if (dev->written)
3076                         s.written++;
3077                 rdev = rcu_dereference(conf->disks[i].rdev);
3078                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3079                         /* The ReadError flag will just be confusing now */
3080                         clear_bit(R5_ReadError, &dev->flags);
3081                         clear_bit(R5_ReWrite, &dev->flags);
3082                 }
3083                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3084                     || test_bit(R5_ReadError, &dev->flags)) {
3085                         if (s.failed < 2)
3086                                 r6s.failed_num[s.failed] = i;
3087                         s.failed++;
3088                 } else
3089                         set_bit(R5_Insync, &dev->flags);
3090         }
3091         rcu_read_unlock();
3092         pr_debug("locked=%d uptodate=%d to_read=%d"
3093                " to_write=%d failed=%d failed_num=%d,%d\n",
3094                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3095                r6s.failed_num[0], r6s.failed_num[1]);
3096         /* check if the array has lost >2 devices and, if so, some requests
3097          * might need to be failed
3098          */
3099         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3100                 handle_requests_to_failed_array(conf, sh, &s, disks,
3101                                                 &return_bi);
3102         if (s.failed > 2 && s.syncing) {
3103                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3104                 clear_bit(STRIPE_SYNCING, &sh->state);
3105                 s.syncing = 0;
3106         }
3107
3108         /*
3109          * might be able to return some write requests if the parity blocks
3110          * are safe, or on a failed drive
3111          */
3112         pdev = &sh->dev[pd_idx];
3113         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3114                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3115         qdev = &sh->dev[r6s.qd_idx];
3116         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3117                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3118
3119         if ( s.written &&
3120              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3121                              && !test_bit(R5_LOCKED, &pdev->flags)
3122                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3123              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3124                              && !test_bit(R5_LOCKED, &qdev->flags)
3125                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3126                 handle_completed_write_requests(conf, sh, disks, &return_bi);
3127
3128         /* Now we might consider reading some blocks, either to check/generate
3129          * parity, or to satisfy requests
3130          * or to load a block that is being partially written.
3131          */
3132         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3133             (s.syncing && (s.uptodate < disks)) || s.expanding)
3134                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3135
3136         /* now to consider writing and what else, if anything should be read */
3137         if (s.to_write)
3138                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3139
3140         /* maybe we need to check and possibly fix the parity for this stripe
3141          * Any reads will already have been scheduled, so we just see if enough
3142          * data is available
3143          */
3144         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3145                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3146
3147         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3148                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3149                 clear_bit(STRIPE_SYNCING, &sh->state);
3150         }
3151
3152         /* If the failed drives are just a ReadError, then we might need
3153          * to progress the repair/check process
3154          */
3155         if (s.failed <= 2 && !conf->mddev->ro)
3156                 for (i = 0; i < s.failed; i++) {
3157                         dev = &sh->dev[r6s.failed_num[i]];
3158                         if (test_bit(R5_ReadError, &dev->flags)
3159                             && !test_bit(R5_LOCKED, &dev->flags)
3160                             && test_bit(R5_UPTODATE, &dev->flags)
3161                                 ) {
3162                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3163                                         set_bit(R5_Wantwrite, &dev->flags);
3164                                         set_bit(R5_ReWrite, &dev->flags);
3165                                         set_bit(R5_LOCKED, &dev->flags);
3166                                 } else {
3167                                         /* let's read it back */
3168                                         set_bit(R5_Wantread, &dev->flags);
3169                                         set_bit(R5_LOCKED, &dev->flags);
3170                                 }
3171                         }
3172                 }
3173
3174         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3175                 /* Need to write out all blocks after computing P&Q */
3176                 sh->disks = conf->raid_disks;
3177                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3178                                              conf->raid_disks);
3179                 compute_parity6(sh, RECONSTRUCT_WRITE);
3180                 for (i = conf->raid_disks ; i-- ;  ) {
3181                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3182                         s.locked++;
3183                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3184                 }
3185                 clear_bit(STRIPE_EXPANDING, &sh->state);
3186         } else if (s.expanded) {
3187                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3188                 atomic_dec(&conf->reshape_stripes);
3189                 wake_up(&conf->wait_for_overlap);
3190                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3191         }
3192
3193         if (s.expanding && s.locked == 0)
3194                 handle_stripe_expansion(conf, sh, &r6s);
3195
3196         spin_unlock(&sh->lock);
3197
3198         return_io(return_bi);
3199
3200         for (i=disks; i-- ;) {
3201                 int rw;
3202                 struct bio *bi;
3203                 mdk_rdev_t *rdev;
3204                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3205                         rw = WRITE;
3206                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3207                         rw = READ;
3208                 else
3209                         continue;
3210
3211                 bi = &sh->dev[i].req;
3212
3213                 bi->bi_rw = rw;
3214                 if (rw == WRITE)
3215                         bi->bi_end_io = raid5_end_write_request;
3216                 else
3217                         bi->bi_end_io = raid5_end_read_request;
3218
3219                 rcu_read_lock();
3220                 rdev = rcu_dereference(conf->disks[i].rdev);
3221                 if (rdev && test_bit(Faulty, &rdev->flags))
3222                         rdev = NULL;
3223                 if (rdev)
3224                         atomic_inc(&rdev->nr_pending);
3225                 rcu_read_unlock();
3226
3227                 if (rdev) {
3228                         if (s.syncing || s.expanding || s.expanded)
3229                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3230
3231                         bi->bi_bdev = rdev->bdev;
3232                         pr_debug("for %llu schedule op %ld on disc %d\n",
3233                                 (unsigned long long)sh->sector, bi->bi_rw, i);
3234                         atomic_inc(&sh->count);
3235                         bi->bi_sector = sh->sector + rdev->data_offset;
3236                         bi->bi_flags = 1 << BIO_UPTODATE;
3237                         bi->bi_vcnt = 1;
3238                         bi->bi_max_vecs = 1;
3239                         bi->bi_idx = 0;
3240                         bi->bi_io_vec = &sh->dev[i].vec;
3241                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3242                         bi->bi_io_vec[0].bv_offset = 0;
3243                         bi->bi_size = STRIPE_SIZE;
3244                         bi->bi_next = NULL;
3245                         if (rw == WRITE &&
3246                             test_bit(R5_ReWrite, &sh->dev[i].flags))
3247                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3248                         generic_make_request(bi);
3249                 } else {
3250                         if (rw == WRITE)
3251                                 set_bit(STRIPE_DEGRADED, &sh->state);
3252                         pr_debug("skip op %ld on disc %d for sector %llu\n",
3253                                 bi->bi_rw, i, (unsigned long long)sh->sector);
3254                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
3255                         set_bit(STRIPE_HANDLE, &sh->state);
3256                 }
3257         }
3258 }
3259
3260 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3261 {
3262         if (sh->raid_conf->level == 6)
3263                 handle_stripe6(sh, tmp_page);
3264         else
3265                 handle_stripe5(sh);
3266 }
3267
3268
3269
3270 static void raid5_activate_delayed(raid5_conf_t *conf)
3271 {
3272         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3273                 while (!list_empty(&conf->delayed_list)) {
3274                         struct list_head *l = conf->delayed_list.next;
3275                         struct stripe_head *sh;
3276                         sh = list_entry(l, struct stripe_head, lru);
3277                         list_del_init(l);
3278                         clear_bit(STRIPE_DELAYED, &sh->state);
3279                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3280                                 atomic_inc(&conf->preread_active_stripes);
3281                         list_add_tail(&sh->lru, &conf->handle_list);
3282                 }
3283         }
3284 }
3285
3286 static void activate_bit_delay(raid5_conf_t *conf)
3287 {
3288         /* device_lock is held */
3289         struct list_head head;
3290         list_add(&head, &conf->bitmap_list);
3291         list_del_init(&conf->bitmap_list);
3292         while (!list_empty(&head)) {
3293                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3294                 list_del_init(&sh->lru);
3295                 atomic_inc(&sh->count);
3296                 __release_stripe(conf, sh);
3297         }
3298 }
3299
3300 static void unplug_slaves(mddev_t *mddev)
3301 {
3302         raid5_conf_t *conf = mddev_to_conf(mddev);
3303         int i;
3304
3305         rcu_read_lock();
3306         for (i=0; i<mddev->raid_disks; i++) {
3307                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3308                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3309                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
3310
3311                         atomic_inc(&rdev->nr_pending);
3312                         rcu_read_unlock();
3313
3314                         if (r_queue->unplug_fn)
3315                                 r_queue->unplug_fn(r_queue);
3316
3317                         rdev_dec_pending(rdev, mddev);
3318                         rcu_read_lock();
3319                 }
3320         }
3321         rcu_read_unlock();
3322 }
3323
3324 static void raid5_unplug_device(request_queue_t *q)
3325 {
3326         mddev_t *mddev = q->queuedata;
3327         raid5_conf_t *conf = mddev_to_conf(mddev);
3328         unsigned long flags;
3329
3330         spin_lock_irqsave(&conf->device_lock, flags);
3331
3332         if (blk_remove_plug(q)) {
3333                 conf->seq_flush++;
3334                 raid5_activate_delayed(conf);
3335         }
3336         md_wakeup_thread(mddev->thread);
3337
3338         spin_unlock_irqrestore(&conf->device_lock, flags);
3339
3340         unplug_slaves(mddev);
3341 }
3342
3343 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
3344                              sector_t *error_sector)
3345 {
3346         mddev_t *mddev = q->queuedata;
3347         raid5_conf_t *conf = mddev_to_conf(mddev);
3348         int i, ret = 0;
3349
3350         rcu_read_lock();
3351         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
3352                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3353                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
3354                         struct block_device *bdev = rdev->bdev;
3355                         request_queue_t *r_queue = bdev_get_queue(bdev);
3356
3357                         if (!r_queue->issue_flush_fn)
3358                                 ret = -EOPNOTSUPP;
3359                         else {
3360                                 atomic_inc(&rdev->nr_pending);
3361                                 rcu_read_unlock();
3362                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3363                                                               error_sector);
3364                                 rdev_dec_pending(rdev, mddev);
3365                                 rcu_read_lock();
3366                         }
3367                 }
3368         }
3369         rcu_read_unlock();
3370         return ret;
3371 }
3372
3373 static int raid5_congested(void *data, int bits)
3374 {
3375         mddev_t *mddev = data;
3376         raid5_conf_t *conf = mddev_to_conf(mddev);
3377
3378         /* No difference between reads and writes.  Just check
3379          * how busy the stripe_cache is
3380          */
3381         if (conf->inactive_blocked)
3382                 return 1;
3383         if (conf->quiesce)
3384                 return 1;
3385         if (list_empty_careful(&conf->inactive_list))
3386                 return 1;
3387
3388         return 0;
3389 }
3390
3391 /* We want read requests to align with chunks where possible,
3392  * but write requests don't need to.
3393  */
3394 static int raid5_mergeable_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *biovec)
3395 {
3396         mddev_t *mddev = q->queuedata;
3397         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3398         int max;
3399         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3400         unsigned int bio_sectors = bio->bi_size >> 9;
3401
3402         if (bio_data_dir(bio) == WRITE)
3403                 return biovec->bv_len; /* always allow writes to be mergeable */
3404
3405         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3406         if (max < 0) max = 0;
3407         if (max <= biovec->bv_len && bio_sectors == 0)
3408                 return biovec->bv_len;
3409         else
3410                 return max;
3411 }
3412
3413
3414 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3415 {
3416         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3417         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3418         unsigned int bio_sectors = bio->bi_size >> 9;
3419
3420         return  chunk_sectors >=
3421                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3422 }
3423
3424 /*
3425  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3426  *  later sampled by raid5d.
3427  */
3428 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3429 {
3430         unsigned long flags;
3431
3432         spin_lock_irqsave(&conf->device_lock, flags);
3433
3434         bi->bi_next = conf->retry_read_aligned_list;
3435         conf->retry_read_aligned_list = bi;
3436
3437         spin_unlock_irqrestore(&conf->device_lock, flags);
3438         md_wakeup_thread(conf->mddev->thread);
3439 }
3440
3441
3442 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3443 {
3444         struct bio *bi;
3445
3446         bi = conf->retry_read_aligned;
3447         if (bi) {
3448                 conf->retry_read_aligned = NULL;
3449                 return bi;
3450         }
3451         bi = conf->retry_read_aligned_list;
3452         if(bi) {
3453                 conf->retry_read_aligned_list = bi->bi_next;
3454                 bi->bi_next = NULL;
3455                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3456                 bi->bi_hw_segments = 0; /* count of processed stripes */
3457         }
3458
3459         return bi;
3460 }
3461
3462
3463 /*
3464  *  The "raid5_align_endio" should check if the read succeeded and if it
3465  *  did, call bio_endio on the original bio (having bio_put the new bio
3466  *  first).
3467  *  If the read failed..
3468  */
3469 static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
3470 {
3471         struct bio* raid_bi  = bi->bi_private;
3472         mddev_t *mddev;
3473         raid5_conf_t *conf;
3474         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3475         mdk_rdev_t *rdev;
3476
3477         if (bi->bi_size)
3478                 return 1;
3479         bio_put(bi);
3480
3481         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3482         conf = mddev_to_conf(mddev);
3483         rdev = (void*)raid_bi->bi_next;
3484         raid_bi->bi_next = NULL;
3485
3486         rdev_dec_pending(rdev, conf->mddev);
3487
3488         if (!error && uptodate) {
3489                 bio_endio(raid_bi, bytes, 0);
3490                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3491                         wake_up(&conf->wait_for_stripe);
3492                 return 0;
3493         }
3494
3495
3496         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3497
3498         add_bio_to_retry(raid_bi, conf);
3499         return 0;
3500 }
3501
3502 static int bio_fits_rdev(struct bio *bi)
3503 {
3504         request_queue_t *q = bdev_get_queue(bi->bi_bdev);
3505
3506         if ((bi->bi_size>>9) > q->max_sectors)
3507                 return 0;
3508         blk_recount_segments(q, bi);
3509         if (bi->bi_phys_segments > q->max_phys_segments ||
3510             bi->bi_hw_segments > q->max_hw_segments)
3511                 return 0;
3512
3513         if (q->merge_bvec_fn)
3514                 /* it's too hard to apply the merge_bvec_fn at this stage,
3515                  * just just give up
3516                  */
3517                 return 0;
3518
3519         return 1;
3520 }
3521
3522
3523 static int chunk_aligned_read(request_queue_t *q, struct bio * raid_bio)
3524 {
3525         mddev_t *mddev = q->queuedata;
3526         raid5_conf_t *conf = mddev_to_conf(mddev);
3527         const unsigned int raid_disks = conf->raid_disks;
3528         const unsigned int data_disks = raid_disks - conf->max_degraded;
3529         unsigned int dd_idx, pd_idx;
3530         struct bio* align_bi;
3531         mdk_rdev_t *rdev;
3532
3533         if (!in_chunk_boundary(mddev, raid_bio)) {
3534                 pr_debug("chunk_aligned_read : non aligned\n");
3535                 return 0;
3536         }
3537         /*
3538          * use bio_clone to make a copy of the bio
3539          */
3540         align_bi = bio_clone(raid_bio, GFP_NOIO);
3541         if (!align_bi)
3542                 return 0;
3543         /*
3544          *   set bi_end_io to a new function, and set bi_private to the
3545          *     original bio.
3546          */
3547         align_bi->bi_end_io  = raid5_align_endio;
3548         align_bi->bi_private = raid_bio;
3549         /*
3550          *      compute position
3551          */
3552         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3553                                         raid_disks,
3554                                         data_disks,
3555                                         &dd_idx,
3556                                         &pd_idx,
3557                                         conf);
3558
3559         rcu_read_lock();
3560         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3561         if (rdev && test_bit(In_sync, &rdev->flags)) {
3562                 atomic_inc(&rdev->nr_pending);
3563                 rcu_read_unlock();
3564                 raid_bio->bi_next = (void*)rdev;
3565                 align_bi->bi_bdev =  rdev->bdev;
3566                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3567                 align_bi->bi_sector += rdev->data_offset;
3568
3569                 if (!bio_fits_rdev(align_bi)) {
3570                         /* too big in some way */
3571                         bio_put(align_bi);
3572                         rdev_dec_pending(rdev, mddev);
3573                         return 0;
3574                 }
3575
3576                 spin_lock_irq(&conf->device_lock);
3577                 wait_event_lock_irq(conf->wait_for_stripe,
3578                                     conf->quiesce == 0,
3579                                     conf->device_lock, /* nothing */);
3580                 atomic_inc(&conf->active_aligned_reads);
3581                 spin_unlock_irq(&conf->device_lock);
3582
3583                 generic_make_request(align_bi);
3584                 return 1;
3585         } else {
3586                 rcu_read_unlock();
3587                 bio_put(align_bi);
3588                 return 0;
3589         }
3590 }
3591
3592
3593 static int make_request(request_queue_t *q, struct bio * bi)
3594 {
3595         mddev_t *mddev = q->queuedata;
3596         raid5_conf_t *conf = mddev_to_conf(mddev);
3597         unsigned int dd_idx, pd_idx;
3598         sector_t new_sector;
3599         sector_t logical_sector, last_sector;
3600         struct stripe_head *sh;
3601         const int rw = bio_data_dir(bi);
3602         int remaining;
3603
3604         if (unlikely(bio_barrier(bi))) {
3605                 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
3606                 return 0;
3607         }
3608
3609         md_write_start(mddev, bi);
3610
3611         disk_stat_inc(mddev->gendisk, ios[rw]);
3612         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3613
3614         if (rw == READ &&
3615              mddev->reshape_position == MaxSector &&
3616              chunk_aligned_read(q,bi))
3617                 return 0;
3618
3619         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3620         last_sector = bi->bi_sector + (bi->bi_size>>9);
3621         bi->bi_next = NULL;
3622         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3623
3624         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3625                 DEFINE_WAIT(w);
3626                 int disks, data_disks;
3627
3628         retry:
3629                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3630                 if (likely(conf->expand_progress == MaxSector))
3631                         disks = conf->raid_disks;
3632                 else {
3633                         /* spinlock is needed as expand_progress may be
3634                          * 64bit on a 32bit platform, and so it might be
3635                          * possible to see a half-updated value
3636                          * Ofcourse expand_progress could change after
3637                          * the lock is dropped, so once we get a reference
3638                          * to the stripe that we think it is, we will have
3639                          * to check again.
3640                          */
3641                         spin_lock_irq(&conf->device_lock);
3642                         disks = conf->raid_disks;
3643                         if (logical_sector >= conf->expand_progress)
3644                                 disks = conf->previous_raid_disks;
3645                         else {
3646                                 if (logical_sector >= conf->expand_lo) {
3647                                         spin_unlock_irq(&conf->device_lock);
3648                                         schedule();
3649                                         goto retry;
3650                                 }
3651                         }
3652                         spin_unlock_irq(&conf->device_lock);
3653                 }
3654                 data_disks = disks - conf->max_degraded;
3655
3656                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3657                                                   &dd_idx, &pd_idx, conf);
3658                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3659                         (unsigned long long)new_sector, 
3660                         (unsigned long long)logical_sector);
3661
3662                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3663                 if (sh) {
3664                         if (unlikely(conf->expand_progress != MaxSector)) {
3665                                 /* expansion might have moved on while waiting for a
3666                                  * stripe, so we must do the range check again.
3667                                  * Expansion could still move past after this
3668                                  * test, but as we are holding a reference to
3669                                  * 'sh', we know that if that happens,
3670                                  *  STRIPE_EXPANDING will get set and the expansion
3671                                  * won't proceed until we finish with the stripe.
3672                                  */
3673                                 int must_retry = 0;
3674                                 spin_lock_irq(&conf->device_lock);
3675                                 if (logical_sector <  conf->expand_progress &&
3676                                     disks == conf->previous_raid_disks)
3677                                         /* mismatch, need to try again */
3678                                         must_retry = 1;
3679                                 spin_unlock_irq(&conf->device_lock);
3680                                 if (must_retry) {
3681                                         release_stripe(sh);
3682                                         goto retry;
3683                                 }
3684                         }
3685                         /* FIXME what if we get a false positive because these
3686                          * are being updated.
3687                          */
3688                         if (logical_sector >= mddev->suspend_lo &&
3689                             logical_sector < mddev->suspend_hi) {
3690                                 release_stripe(sh);
3691                                 schedule();
3692                                 goto retry;
3693                         }
3694
3695                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3696                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3697                                 /* Stripe is busy expanding or
3698                                  * add failed due to overlap.  Flush everything
3699                                  * and wait a while
3700                                  */
3701                                 raid5_unplug_device(mddev->queue);
3702                                 release_stripe(sh);
3703                                 schedule();
3704                                 goto retry;
3705                         }
3706                         finish_wait(&conf->wait_for_overlap, &w);
3707                         handle_stripe(sh, NULL);
3708                         release_stripe(sh);
3709                 } else {
3710                         /* cannot get stripe for read-ahead, just give-up */
3711                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3712                         finish_wait(&conf->wait_for_overlap, &w);
3713                         break;
3714                 }
3715                         
3716         }
3717         spin_lock_irq(&conf->device_lock);
3718         remaining = --bi->bi_phys_segments;
3719         spin_unlock_irq(&conf->device_lock);
3720         if (remaining == 0) {
3721                 int bytes = bi->bi_size;
3722
3723                 if ( rw == WRITE )
3724                         md_write_end(mddev);
3725                 bi->bi_size = 0;
3726                 bi->bi_end_io(bi, bytes,
3727                               test_bit(BIO_UPTODATE, &bi->bi_flags)
3728                                 ? 0 : -EIO);
3729         }
3730         return 0;
3731 }
3732
3733 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3734 {
3735         /* reshaping is quite different to recovery/resync so it is
3736          * handled quite separately ... here.
3737          *
3738          * On each call to sync_request, we gather one chunk worth of
3739          * destination stripes and flag them as expanding.
3740          * Then we find all the source stripes and request reads.
3741          * As the reads complete, handle_stripe will copy the data
3742          * into the destination stripe and release that stripe.
3743          */
3744         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3745         struct stripe_head *sh;
3746         int pd_idx;
3747         sector_t first_sector, last_sector;
3748         int raid_disks = conf->previous_raid_disks;
3749         int data_disks = raid_disks - conf->max_degraded;
3750         int new_data_disks = conf->raid_disks - conf->max_degraded;
3751         int i;
3752         int dd_idx;
3753         sector_t writepos, safepos, gap;
3754
3755         if (sector_nr == 0 &&
3756             conf->expand_progress != 0) {
3757                 /* restarting in the middle, skip the initial sectors */
3758                 sector_nr = conf->expand_progress;
3759                 sector_div(sector_nr, new_data_disks);
3760                 *skipped = 1;
3761                 return sector_nr;
3762         }
3763
3764         /* we update the metadata when there is more than 3Meg
3765          * in the block range (that is rather arbitrary, should
3766          * probably be time based) or when the data about to be
3767          * copied would over-write the source of the data at
3768          * the front of the range.
3769          * i.e. one new_stripe forward from expand_progress new_maps
3770          * to after where expand_lo old_maps to
3771          */
3772         writepos = conf->expand_progress +
3773                 conf->chunk_size/512*(new_data_disks);
3774         sector_div(writepos, new_data_disks);
3775         safepos = conf->expand_lo;
3776         sector_div(safepos, data_disks);
3777         gap = conf->expand_progress - conf->expand_lo;
3778
3779         if (writepos >= safepos ||
3780             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3781                 /* Cannot proceed until we've updated the superblock... */
3782                 wait_event(conf->wait_for_overlap,
3783                            atomic_read(&conf->reshape_stripes)==0);
3784                 mddev->reshape_position = conf->expand_progress;
3785                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3786                 md_wakeup_thread(mddev->thread);
3787                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3788                            kthread_should_stop());
3789                 spin_lock_irq(&conf->device_lock);
3790                 conf->expand_lo = mddev->reshape_position;
3791                 spin_unlock_irq(&conf->device_lock);
3792                 wake_up(&conf->wait_for_overlap);
3793         }
3794
3795         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3796                 int j;
3797                 int skipped = 0;
3798                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3799                 sh = get_active_stripe(conf, sector_nr+i,
3800                                        conf->raid_disks, pd_idx, 0);
3801                 set_bit(STRIPE_EXPANDING, &sh->state);
3802                 atomic_inc(&conf->reshape_stripes);
3803                 /* If any of this stripe is beyond the end of the old
3804                  * array, then we need to zero those blocks
3805                  */
3806                 for (j=sh->disks; j--;) {
3807                         sector_t s;
3808                         if (j == sh->pd_idx)
3809                                 continue;
3810                         if (conf->level == 6 &&
3811                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3812                                 continue;
3813                         s = compute_blocknr(sh, j);
3814                         if (s < (mddev->array_size<<1)) {
3815                                 skipped = 1;
3816                                 continue;
3817                         }
3818                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3819                         set_bit(R5_Expanded, &sh->dev[j].flags);
3820                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3821                 }
3822                 if (!skipped) {
3823                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3824                         set_bit(STRIPE_HANDLE, &sh->state);
3825                 }
3826                 release_stripe(sh);
3827         }
3828         spin_lock_irq(&conf->device_lock);
3829         conf->expand_progress = (sector_nr + i) * new_data_disks;
3830         spin_unlock_irq(&conf->device_lock);
3831         /* Ok, those stripe are ready. We can start scheduling
3832          * reads on the source stripes.
3833          * The source stripes are determined by mapping the first and last
3834          * block on the destination stripes.
3835          */
3836         first_sector =
3837                 raid5_compute_sector(sector_nr*(new_data_disks),
3838                                      raid_disks, data_disks,
3839                                      &dd_idx, &pd_idx, conf);
3840         last_sector =
3841                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3842                                      *(new_data_disks) -1,
3843                                      raid_disks, data_disks,
3844                                      &dd_idx, &pd_idx, conf);
3845         if (last_sector >= (mddev->size<<1))
3846                 last_sector = (mddev->size<<1)-1;
3847         while (first_sector <= last_sector) {
3848                 pd_idx = stripe_to_pdidx(first_sector, conf,
3849                                          conf->previous_raid_disks);
3850                 sh = get_active_stripe(conf, first_sector,
3851                                        conf->previous_raid_disks, pd_idx, 0);
3852                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3853                 set_bit(STRIPE_HANDLE, &sh->state);
3854                 release_stripe(sh);
3855                 first_sector += STRIPE_SECTORS;
3856         }
3857         return conf->chunk_size>>9;
3858 }
3859
3860 /* FIXME go_faster isn't used */
3861 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3862 {
3863         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3864         struct stripe_head *sh;
3865         int pd_idx;
3866         int raid_disks = conf->raid_disks;
3867         sector_t max_sector = mddev->size << 1;
3868         int sync_blocks;
3869         int still_degraded = 0;
3870         int i;
3871
3872         if (sector_nr >= max_sector) {
3873                 /* just being told to finish up .. nothing much to do */
3874                 unplug_slaves(mddev);
3875                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3876                         end_reshape(conf);
3877                         return 0;
3878                 }
3879
3880                 if (mddev->curr_resync < max_sector) /* aborted */
3881                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3882                                         &sync_blocks, 1);
3883                 else /* completed sync */
3884                         conf->fullsync = 0;
3885                 bitmap_close_sync(mddev->bitmap);
3886
3887                 return 0;
3888         }
3889
3890         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3891                 return reshape_request(mddev, sector_nr, skipped);
3892
3893         /* if there is too many failed drives and we are trying
3894          * to resync, then assert that we are finished, because there is
3895          * nothing we can do.
3896          */
3897         if (mddev->degraded >= conf->max_degraded &&
3898             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3899                 sector_t rv = (mddev->size << 1) - sector_nr;
3900                 *skipped = 1;
3901                 return rv;
3902         }
3903         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3904             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3905             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3906                 /* we can skip this block, and probably more */
3907                 sync_blocks /= STRIPE_SECTORS;
3908                 *skipped = 1;
3909                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3910         }
3911
3912         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3913         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3914         if (sh == NULL) {
3915                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3916                 /* make sure we don't swamp the stripe cache if someone else
3917                  * is trying to get access
3918                  */
3919                 schedule_timeout_uninterruptible(1);
3920         }
3921         /* Need to check if array will still be degraded after recovery/resync
3922          * We don't need to check the 'failed' flag as when that gets set,
3923          * recovery aborts.
3924          */
3925         for (i=0; i<mddev->raid_disks; i++)
3926                 if (conf->disks[i].rdev == NULL)
3927                         still_degraded = 1;
3928
3929         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3930
3931         spin_lock(&sh->lock);
3932         set_bit(STRIPE_SYNCING, &sh->state);
3933         clear_bit(STRIPE_INSYNC, &sh->state);
3934         spin_unlock(&sh->lock);
3935
3936         handle_stripe(sh, NULL);
3937         release_stripe(sh);
3938
3939         return STRIPE_SECTORS;
3940 }
3941
3942 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3943 {
3944         /* We may not be able to submit a whole bio at once as there
3945          * may not be enough stripe_heads available.
3946          * We cannot pre-allocate enough stripe_heads as we may need
3947          * more than exist in the cache (if we allow ever large chunks).
3948          * So we do one stripe head at a time and record in
3949          * ->bi_hw_segments how many have been done.
3950          *
3951          * We *know* that this entire raid_bio is in one chunk, so
3952          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3953          */
3954         struct stripe_head *sh;
3955         int dd_idx, pd_idx;
3956         sector_t sector, logical_sector, last_sector;
3957         int scnt = 0;
3958         int remaining;
3959         int handled = 0;
3960
3961         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3962         sector = raid5_compute_sector(  logical_sector,
3963                                         conf->raid_disks,
3964                                         conf->raid_disks - conf->max_degraded,
3965                                         &dd_idx,
3966                                         &pd_idx,
3967                                         conf);
3968         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3969
3970         for (; logical_sector < last_sector;
3971              logical_sector += STRIPE_SECTORS,
3972                      sector += STRIPE_SECTORS,
3973                      scnt++) {
3974
3975                 if (scnt < raid_bio->bi_hw_segments)
3976                         /* already done this stripe */
3977                         continue;
3978
3979                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3980
3981                 if (!sh) {
3982                         /* failed to get a stripe - must wait */
3983                         raid_bio->bi_hw_segments = scnt;
3984                         conf->retry_read_aligned = raid_bio;
3985                         return handled;
3986                 }
3987
3988                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3989                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3990                         release_stripe(sh);
3991                         raid_bio->bi_hw_segments = scnt;
3992                         conf->retry_read_aligned = raid_bio;
3993                         return handled;
3994                 }
3995
3996                 handle_stripe(sh, NULL);
3997                 release_stripe(sh);
3998                 handled++;
3999         }
4000         spin_lock_irq(&conf->device_lock);
4001         remaining = --raid_bio->bi_phys_segments;
4002         spin_unlock_irq(&conf->device_lock);
4003         if (remaining == 0) {
4004                 int bytes = raid_bio->bi_size;
4005
4006                 raid_bio->bi_size = 0;
4007                 raid_bio->bi_end_io(raid_bio, bytes,
4008                               test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
4009                                 ? 0 : -EIO);
4010         }
4011         if (atomic_dec_and_test(&conf->active_aligned_reads))
4012                 wake_up(&conf->wait_for_stripe);
4013         return handled;
4014 }
4015
4016
4017
4018 /*
4019  * This is our raid5 kernel thread.
4020  *
4021  * We scan the hash table for stripes which can be handled now.
4022  * During the scan, completed stripes are saved for us by the interrupt
4023  * handler, so that they will not have to wait for our next wakeup.
4024  */
4025 static void raid5d (mddev_t *mddev)
4026 {
4027         struct stripe_head *sh;
4028         raid5_conf_t *conf = mddev_to_conf(mddev);
4029         int handled;
4030
4031         pr_debug("+++ raid5d active\n");
4032
4033         md_check_recovery(mddev);
4034
4035         handled = 0;
4036         spin_lock_irq(&conf->device_lock);
4037         while (1) {
4038                 struct list_head *first;
4039                 struct bio *bio;
4040
4041                 if (conf->seq_flush != conf->seq_write) {
4042                         int seq = conf->seq_flush;
4043                         spin_unlock_irq(&conf->device_lock);
4044                         bitmap_unplug(mddev->bitmap);
4045                         spin_lock_irq(&conf->device_lock);
4046                         conf->seq_write = seq;
4047                         activate_bit_delay(conf);
4048                 }
4049
4050                 if (list_empty(&conf->handle_list) &&
4051                     atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
4052                     !blk_queue_plugged(mddev->queue) &&
4053                     !list_empty(&conf->delayed_list))
4054                         raid5_activate_delayed(conf);
4055
4056                 while ((bio = remove_bio_from_retry(conf))) {
4057                         int ok;
4058                         spin_unlock_irq(&conf->device_lock);
4059                         ok = retry_aligned_read(conf, bio);
4060                         spin_lock_irq(&conf->device_lock);
4061                         if (!ok)
4062                                 break;
4063                         handled++;
4064                 }
4065
4066                 if (list_empty(&conf->handle_list)) {
4067                         async_tx_issue_pending_all();
4068                         break;
4069                 }
4070
4071                 first = conf->handle_list.next;
4072                 sh = list_entry(first, struct stripe_head, lru);
4073
4074                 list_del_init(first);
4075                 atomic_inc(&sh->count);
4076                 BUG_ON(atomic_read(&sh->count)!= 1);
4077                 spin_unlock_irq(&conf->device_lock);
4078                 
4079                 handled++;
4080                 handle_stripe(sh, conf->spare_page);
4081                 release_stripe(sh);
4082
4083                 spin_lock_irq(&conf->device_lock);
4084         }
4085         pr_debug("%d stripes handled\n", handled);
4086
4087         spin_unlock_irq(&conf->device_lock);
4088
4089         unplug_slaves(mddev);
4090
4091         pr_debug("--- raid5d inactive\n");
4092 }
4093
4094 static ssize_t
4095 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4096 {
4097         raid5_conf_t *conf = mddev_to_conf(mddev);
4098         if (conf)
4099                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4100         else
4101                 return 0;
4102 }
4103
4104 static ssize_t
4105 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4106 {
4107         raid5_conf_t *conf = mddev_to_conf(mddev);
4108         char *end;
4109         int new;
4110         if (len >= PAGE_SIZE)
4111                 return -EINVAL;
4112         if (!conf)
4113                 return -ENODEV;
4114
4115         new = simple_strtoul(page, &end, 10);
4116         if (!*page || (*end && *end != '\n') )
4117                 return -EINVAL;
4118         if (new <= 16 || new > 32768)
4119                 return -EINVAL;
4120         while (new < conf->max_nr_stripes) {
4121                 if (drop_one_stripe(conf))
4122                         conf->max_nr_stripes--;
4123                 else
4124                         break;
4125         }
4126         md_allow_write(mddev);
4127         while (new > conf->max_nr_stripes) {
4128                 if (grow_one_stripe(conf))
4129                         conf->max_nr_stripes++;
4130                 else break;
4131         }
4132         return len;
4133 }
4134
4135 static struct md_sysfs_entry
4136 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4137                                 raid5_show_stripe_cache_size,
4138                                 raid5_store_stripe_cache_size);
4139
4140 static ssize_t
4141 stripe_cache_active_show(mddev_t *mddev, char *page)
4142 {
4143         raid5_conf_t *conf = mddev_to_conf(mddev);
4144         if (conf)
4145                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4146         else
4147                 return 0;
4148 }
4149
4150 static struct md_sysfs_entry
4151 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4152
4153 static struct attribute *raid5_attrs[] =  {
4154         &raid5_stripecache_size.attr,
4155         &raid5_stripecache_active.attr,
4156         NULL,
4157 };
4158 static struct attribute_group raid5_attrs_group = {
4159         .name = NULL,
4160         .attrs = raid5_attrs,
4161 };
4162
4163 static int run(mddev_t *mddev)
4164 {
4165         raid5_conf_t *conf;
4166         int raid_disk, memory;
4167         mdk_rdev_t *rdev;
4168         struct disk_info *disk;
4169         struct list_head *tmp;
4170         int working_disks = 0;
4171
4172         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4173                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4174                        mdname(mddev), mddev->level);
4175                 return -EIO;
4176         }
4177
4178         if (mddev->reshape_position != MaxSector) {
4179                 /* Check that we can continue the reshape.
4180                  * Currently only disks can change, it must
4181                  * increase, and we must be past the point where
4182                  * a stripe over-writes itself
4183                  */
4184                 sector_t here_new, here_old;
4185                 int old_disks;
4186                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4187
4188                 if (mddev->new_level != mddev->level ||
4189                     mddev->new_layout != mddev->layout ||
4190                     mddev->new_chunk != mddev->chunk_size) {
4191                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4192                                "required - aborting.\n",
4193                                mdname(mddev));
4194                         return -EINVAL;
4195                 }
4196                 if (mddev->delta_disks <= 0) {
4197                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4198                                "(reduce disks) required - aborting.\n",
4199                                mdname(mddev));
4200                         return -EINVAL;
4201                 }
4202                 old_disks = mddev->raid_disks - mddev->delta_disks;
4203                 /* reshape_position must be on a new-stripe boundary, and one
4204                  * further up in new geometry must map after here in old
4205                  * geometry.
4206                  */
4207                 here_new = mddev->reshape_position;
4208                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4209                                (mddev->raid_disks - max_degraded))) {
4210                         printk(KERN_ERR "raid5: reshape_position not "
4211                                "on a stripe boundary\n");
4212                         return -EINVAL;
4213                 }
4214                 /* here_new is the stripe we will write to */
4215                 here_old = mddev->reshape_position;
4216                 sector_div(here_old, (mddev->chunk_size>>9)*
4217                            (old_disks-max_degraded));
4218                 /* here_old is the first stripe that we might need to read
4219                  * from */
4220                 if (here_new >= here_old) {
4221                         /* Reading from the same stripe as writing to - bad */
4222                         printk(KERN_ERR "raid5: reshape_position too early for "
4223                                "auto-recovery - aborting.\n");
4224                         return -EINVAL;
4225                 }
4226                 printk(KERN_INFO "raid5: reshape will continue\n");
4227                 /* OK, we should be able to continue; */
4228         }
4229
4230
4231         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4232         if ((conf = mddev->private) == NULL)
4233                 goto abort;
4234         if (mddev->reshape_position == MaxSector) {
4235                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4236         } else {
4237                 conf->raid_disks = mddev->raid_disks;
4238                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4239         }
4240
4241         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4242                               GFP_KERNEL);
4243         if (!conf->disks)
4244                 goto abort;
4245
4246         conf->mddev = mddev;
4247
4248         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4249                 goto abort;
4250
4251         if (mddev->level == 6) {
4252                 conf->spare_page = alloc_page(GFP_KERNEL);
4253                 if (!conf->spare_page)
4254                         goto abort;
4255         }
4256         spin_lock_init(&conf->device_lock);
4257         init_waitqueue_head(&conf->wait_for_stripe);
4258         init_waitqueue_head(&conf->wait_for_overlap);
4259         INIT_LIST_HEAD(&conf->handle_list);
4260         INIT_LIST_HEAD(&conf->delayed_list);
4261         INIT_LIST_HEAD(&conf->bitmap_list);
4262         INIT_LIST_HEAD(&conf->inactive_list);
4263         atomic_set(&conf->active_stripes, 0);
4264         atomic_set(&conf->preread_active_stripes, 0);
4265         atomic_set(&conf->active_aligned_reads, 0);
4266
4267         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4268
4269         ITERATE_RDEV(mddev,rdev,tmp) {
4270                 raid_disk = rdev->raid_disk;
4271                 if (raid_disk >= conf->raid_disks
4272                     || raid_disk < 0)
4273                         continue;
4274                 disk = conf->disks + raid_disk;
4275
4276                 disk->rdev = rdev;
4277
4278                 if (test_bit(In_sync, &rdev->flags)) {
4279                         char b[BDEVNAME_SIZE];
4280                         printk(KERN_INFO "raid5: device %s operational as raid"
4281                                 " disk %d\n", bdevname(rdev->bdev,b),
4282                                 raid_disk);
4283                         working_disks++;
4284                 }
4285         }
4286
4287         /*
4288          * 0 for a fully functional array, 1 or 2 for a degraded array.
4289          */
4290         mddev->degraded = conf->raid_disks - working_disks;
4291         conf->mddev = mddev;
4292         conf->chunk_size = mddev->chunk_size;
4293         conf->level = mddev->level;
4294         if (conf->level == 6)
4295                 conf->max_degraded = 2;
4296         else
4297                 conf->max_degraded = 1;
4298         conf->algorithm = mddev->layout;
4299         conf->max_nr_stripes = NR_STRIPES;
4300         conf->expand_progress = mddev->reshape_position;
4301
4302         /* device size must be a multiple of chunk size */
4303         mddev->size &= ~(mddev->chunk_size/1024 -1);
4304         mddev->resync_max_sectors = mddev->size << 1;
4305
4306         if (conf->level == 6 && conf->raid_disks < 4) {
4307                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4308                        mdname(mddev), conf->raid_disks);
4309                 goto abort;
4310         }
4311         if (!conf->chunk_size || conf->chunk_size % 4) {
4312                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4313                         conf->chunk_size, mdname(mddev));
4314                 goto abort;
4315         }
4316         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4317                 printk(KERN_ERR 
4318                         "raid5: unsupported parity algorithm %d for %s\n",
4319                         conf->algorithm, mdname(mddev));
4320                 goto abort;
4321         }
4322         if (mddev->degraded > conf->max_degraded) {
4323                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4324                         " (%d/%d failed)\n",
4325                         mdname(mddev), mddev->degraded, conf->raid_disks);
4326                 goto abort;
4327         }
4328
4329         if (mddev->degraded > 0 &&
4330             mddev->recovery_cp != MaxSector) {
4331                 if (mddev->ok_start_degraded)
4332                         printk(KERN_WARNING
4333                                "raid5: starting dirty degraded array: %s"
4334                                "- data corruption possible.\n",
4335                                mdname(mddev));
4336                 else {
4337                         printk(KERN_ERR
4338                                "raid5: cannot start dirty degraded array for %s\n",
4339                                mdname(mddev));
4340                         goto abort;
4341                 }
4342         }
4343
4344         {
4345                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4346                 if (!mddev->thread) {
4347                         printk(KERN_ERR 
4348                                 "raid5: couldn't allocate thread for %s\n",
4349                                 mdname(mddev));
4350                         goto abort;
4351                 }
4352         }
4353         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4354                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4355         if (grow_stripes(conf, conf->max_nr_stripes)) {
4356                 printk(KERN_ERR 
4357                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4358                 shrink_stripes(conf);
4359                 md_unregister_thread(mddev->thread);
4360                 goto abort;
4361         } else
4362                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4363                         memory, mdname(mddev));
4364
4365         if (mddev->degraded == 0)
4366                 printk("raid5: raid level %d set %s active with %d out of %d"
4367                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4368                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4369                         conf->algorithm);
4370         else
4371                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4372                         " out of %d devices, algorithm %d\n", conf->level,
4373                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4374                         mddev->raid_disks, conf->algorithm);
4375
4376         print_raid5_conf(conf);
4377
4378         if (conf->expand_progress != MaxSector) {
4379                 printk("...ok start reshape thread\n");
4380                 conf->expand_lo = conf->expand_progress;
4381                 atomic_set(&conf->reshape_stripes, 0);
4382                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4383                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4384                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4385                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4386                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4387                                                         "%s_reshape");
4388         }
4389
4390         /* read-ahead size must cover two whole stripes, which is
4391          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4392          */
4393         {
4394                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4395                 int stripe = data_disks *
4396                         (mddev->chunk_size / PAGE_SIZE);
4397                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4398                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4399         }
4400
4401         /* Ok, everything is just fine now */
4402         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4403                 printk(KERN_WARNING
4404                        "raid5: failed to create sysfs attributes for %s\n",
4405                        mdname(mddev));
4406
4407         mddev->queue->unplug_fn = raid5_unplug_device;
4408         mddev->queue->issue_flush_fn = raid5_issue_flush;
4409         mddev->queue->backing_dev_info.congested_data = mddev;
4410         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4411
4412         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4413                                             conf->max_degraded);
4414
4415         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4416
4417         return 0;
4418 abort:
4419         if (conf) {
4420                 print_raid5_conf(conf);
4421                 safe_put_page(conf->spare_page);
4422                 kfree(conf->disks);
4423                 kfree(conf->stripe_hashtbl);
4424                 kfree(conf);
4425         }
4426         mddev->private = NULL;
4427         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4428         return -EIO;
4429 }
4430
4431
4432
4433 static int stop(mddev_t *mddev)
4434 {
4435         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4436
4437         md_unregister_thread(mddev->thread);
4438         mddev->thread = NULL;
4439         shrink_stripes(conf);
4440         kfree(conf->stripe_hashtbl);
4441         mddev->queue->backing_dev_info.congested_fn = NULL;
4442         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4443         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4444         kfree(conf->disks);
4445         kfree(conf);
4446         mddev->private = NULL;
4447         return 0;
4448 }
4449
4450 #ifdef DEBUG
4451 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4452 {
4453         int i;
4454
4455         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4456                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4457         seq_printf(seq, "sh %llu,  count %d.\n",
4458                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4459         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4460         for (i = 0; i < sh->disks; i++) {
4461                 seq_printf(seq, "(cache%d: %p %ld) ",
4462                            i, sh->dev[i].page, sh->dev[i].flags);
4463         }
4464         seq_printf(seq, "\n");
4465 }
4466
4467 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4468 {
4469         struct stripe_head *sh;
4470         struct hlist_node *hn;
4471         int i;
4472
4473         spin_lock_irq(&conf->device_lock);
4474         for (i = 0; i < NR_HASH; i++) {
4475                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4476                         if (sh->raid_conf != conf)
4477                                 continue;
4478                         print_sh(seq, sh);
4479                 }
4480         }
4481         spin_unlock_irq(&conf->device_lock);
4482 }
4483 #endif
4484
4485 static void status (struct seq_file *seq, mddev_t *mddev)
4486 {
4487         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4488         int i;
4489
4490         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4491         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4492         for (i = 0; i < conf->raid_disks; i++)
4493                 seq_printf (seq, "%s",
4494                                conf->disks[i].rdev &&
4495                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4496         seq_printf (seq, "]");
4497 #ifdef DEBUG
4498         seq_printf (seq, "\n");
4499         printall(seq, conf);
4500 #endif
4501 }
4502
4503 static void print_raid5_conf (raid5_conf_t *conf)
4504 {
4505         int i;
4506         struct disk_info *tmp;
4507
4508         printk("RAID5 conf printout:\n");
4509         if (!conf) {
4510                 printk("(conf==NULL)\n");
4511                 return;
4512         }
4513         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4514                  conf->raid_disks - conf->mddev->degraded);
4515
4516         for (i = 0; i < conf->raid_disks; i++) {
4517                 char b[BDEVNAME_SIZE];
4518                 tmp = conf->disks + i;
4519                 if (tmp->rdev)
4520                 printk(" disk %d, o:%d, dev:%s\n",
4521                         i, !test_bit(Faulty, &tmp->rdev->flags),
4522                         bdevname(tmp->rdev->bdev,b));
4523         }
4524 }
4525
4526 static int raid5_spare_active(mddev_t *mddev)
4527 {
4528         int i;
4529         raid5_conf_t *conf = mddev->private;
4530         struct disk_info *tmp;
4531
4532         for (i = 0; i < conf->raid_disks; i++) {
4533                 tmp = conf->disks + i;
4534                 if (tmp->rdev
4535                     && !test_bit(Faulty, &tmp->rdev->flags)
4536                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4537                         unsigned long flags;
4538                         spin_lock_irqsave(&conf->device_lock, flags);
4539                         mddev->degraded--;
4540                         spin_unlock_irqrestore(&conf->device_lock, flags);
4541                 }
4542         }
4543         print_raid5_conf(conf);
4544         return 0;
4545 }
4546
4547 static int raid5_remove_disk(mddev_t *mddev, int number)
4548 {
4549         raid5_conf_t *conf = mddev->private;
4550         int err = 0;
4551         mdk_rdev_t *rdev;
4552         struct disk_info *p = conf->disks + number;
4553
4554         print_raid5_conf(conf);
4555         rdev = p->rdev;
4556         if (rdev) {
4557                 if (test_bit(In_sync, &rdev->flags) ||
4558                     atomic_read(&rdev->nr_pending)) {
4559                         err = -EBUSY;
4560                         goto abort;
4561                 }
4562                 p->rdev = NULL;
4563                 synchronize_rcu();
4564                 if (atomic_read(&rdev->nr_pending)) {
4565                         /* lost the race, try later */
4566                         err = -EBUSY;
4567                         p->rdev = rdev;
4568                 }
4569         }
4570 abort:
4571
4572         print_raid5_conf(conf);
4573         return err;
4574 }
4575
4576 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4577 {
4578         raid5_conf_t *conf = mddev->private;
4579         int found = 0;
4580         int disk;
4581         struct disk_info *p;
4582
4583         if (mddev->degraded > conf->max_degraded)
4584                 /* no point adding a device */
4585                 return 0;
4586
4587         /*
4588          * find the disk ... but prefer rdev->saved_raid_disk
4589          * if possible.
4590          */
4591         if (rdev->saved_raid_disk >= 0 &&
4592             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4593                 disk = rdev->saved_raid_disk;
4594         else
4595                 disk = 0;
4596         for ( ; disk < conf->raid_disks; disk++)
4597                 if ((p=conf->disks + disk)->rdev == NULL) {
4598                         clear_bit(In_sync, &rdev->flags);
4599                         rdev->raid_disk = disk;
4600                         found = 1;
4601                         if (rdev->saved_raid_disk != disk)
4602                                 conf->fullsync = 1;
4603                         rcu_assign_pointer(p->rdev, rdev);
4604                         break;
4605                 }
4606         print_raid5_conf(conf);
4607         return found;
4608 }
4609
4610 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4611 {
4612         /* no resync is happening, and there is enough space
4613          * on all devices, so we can resize.
4614          * We need to make sure resync covers any new space.
4615          * If the array is shrinking we should possibly wait until
4616          * any io in the removed space completes, but it hardly seems
4617          * worth it.
4618          */
4619         raid5_conf_t *conf = mddev_to_conf(mddev);
4620
4621         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4622         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4623         set_capacity(mddev->gendisk, mddev->array_size << 1);
4624         mddev->changed = 1;
4625         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4626                 mddev->recovery_cp = mddev->size << 1;
4627                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4628         }
4629         mddev->size = sectors /2;
4630         mddev->resync_max_sectors = sectors;
4631         return 0;
4632 }
4633
4634 #ifdef CONFIG_MD_RAID5_RESHAPE
4635 static int raid5_check_reshape(mddev_t *mddev)
4636 {
4637         raid5_conf_t *conf = mddev_to_conf(mddev);
4638         int err;
4639
4640         if (mddev->delta_disks < 0 ||
4641             mddev->new_level != mddev->level)
4642                 return -EINVAL; /* Cannot shrink array or change level yet */
4643         if (mddev->delta_disks == 0)
4644                 return 0; /* nothing to do */
4645
4646         /* Can only proceed if there are plenty of stripe_heads.
4647          * We need a minimum of one full stripe,, and for sensible progress
4648          * it is best to have about 4 times that.
4649          * If we require 4 times, then the default 256 4K stripe_heads will
4650          * allow for chunk sizes up to 256K, which is probably OK.
4651          * If the chunk size is greater, user-space should request more
4652          * stripe_heads first.
4653          */
4654         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4655             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4656                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4657                        (mddev->chunk_size / STRIPE_SIZE)*4);
4658                 return -ENOSPC;
4659         }
4660
4661         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4662         if (err)
4663                 return err;
4664
4665         if (mddev->degraded > conf->max_degraded)
4666                 return -EINVAL;
4667         /* looks like we might be able to manage this */
4668         return 0;
4669 }
4670
4671 static int raid5_start_reshape(mddev_t *mddev)
4672 {
4673         raid5_conf_t *conf = mddev_to_conf(mddev);
4674         mdk_rdev_t *rdev;
4675         struct list_head *rtmp;
4676         int spares = 0;
4677         int added_devices = 0;
4678         unsigned long flags;
4679
4680         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4681                 return -EBUSY;
4682
4683         ITERATE_RDEV(mddev, rdev, rtmp)
4684                 if (rdev->raid_disk < 0 &&
4685                     !test_bit(Faulty, &rdev->flags))
4686                         spares++;
4687
4688         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4689                 /* Not enough devices even to make a degraded array
4690                  * of that size
4691                  */
4692                 return -EINVAL;
4693
4694         atomic_set(&conf->reshape_stripes, 0);
4695         spin_lock_irq(&conf->device_lock);
4696         conf->previous_raid_disks = conf->raid_disks;
4697         conf->raid_disks += mddev->delta_disks;
4698         conf->expand_progress = 0;
4699         conf->expand_lo = 0;
4700         spin_unlock_irq(&conf->device_lock);
4701
4702         /* Add some new drives, as many as will fit.
4703          * We know there are enough to make the newly sized array work.
4704          */
4705         ITERATE_RDEV(mddev, rdev, rtmp)
4706                 if (rdev->raid_disk < 0 &&
4707                     !test_bit(Faulty, &rdev->flags)) {
4708                         if (raid5_add_disk(mddev, rdev)) {
4709                                 char nm[20];
4710                                 set_bit(In_sync, &rdev->flags);
4711                                 added_devices++;
4712                                 rdev->recovery_offset = 0;
4713                                 sprintf(nm, "rd%d", rdev->raid_disk);
4714                                 if (sysfs_create_link(&mddev->kobj,
4715                                                       &rdev->kobj, nm))
4716                                         printk(KERN_WARNING
4717                                                "raid5: failed to create "
4718                                                " link %s for %s\n",
4719                                                nm, mdname(mddev));
4720                         } else
4721                                 break;
4722                 }
4723
4724         spin_lock_irqsave(&conf->device_lock, flags);
4725         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4726         spin_unlock_irqrestore(&conf->device_lock, flags);
4727         mddev->raid_disks = conf->raid_disks;
4728         mddev->reshape_position = 0;
4729         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4730
4731         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4732         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4733         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4734         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4735         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4736                                                 "%s_reshape");
4737         if (!mddev->sync_thread) {
4738                 mddev->recovery = 0;
4739                 spin_lock_irq(&conf->device_lock);
4740                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4741                 conf->expand_progress = MaxSector;
4742                 spin_unlock_irq(&conf->device_lock);
4743                 return -EAGAIN;
4744         }
4745         md_wakeup_thread(mddev->sync_thread);
4746         md_new_event(mddev);
4747         return 0;
4748 }
4749 #endif
4750
4751 static void end_reshape(raid5_conf_t *conf)
4752 {
4753         struct block_device *bdev;
4754
4755         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4756                 conf->mddev->array_size = conf->mddev->size *
4757                         (conf->raid_disks - conf->max_degraded);
4758                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4759                 conf->mddev->changed = 1;
4760
4761                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4762                 if (bdev) {
4763                         mutex_lock(&bdev->bd_inode->i_mutex);
4764                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4765                         mutex_unlock(&bdev->bd_inode->i_mutex);
4766                         bdput(bdev);
4767                 }
4768                 spin_lock_irq(&conf->device_lock);
4769                 conf->expand_progress = MaxSector;
4770                 spin_unlock_irq(&conf->device_lock);
4771                 conf->mddev->reshape_position = MaxSector;
4772
4773                 /* read-ahead size must cover two whole stripes, which is
4774                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4775                  */
4776                 {
4777                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4778                         int stripe = data_disks *
4779                                 (conf->mddev->chunk_size / PAGE_SIZE);
4780                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4781                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4782                 }
4783         }
4784 }
4785
4786 static void raid5_quiesce(mddev_t *mddev, int state)
4787 {
4788         raid5_conf_t *conf = mddev_to_conf(mddev);
4789
4790         switch(state) {
4791         case 2: /* resume for a suspend */
4792                 wake_up(&conf->wait_for_overlap);
4793                 break;
4794
4795         case 1: /* stop all writes */
4796                 spin_lock_irq(&conf->device_lock);
4797                 conf->quiesce = 1;
4798                 wait_event_lock_irq(conf->wait_for_stripe,
4799                                     atomic_read(&conf->active_stripes) == 0 &&
4800                                     atomic_read(&conf->active_aligned_reads) == 0,
4801                                     conf->device_lock, /* nothing */);
4802                 spin_unlock_irq(&conf->device_lock);
4803                 break;
4804
4805         case 0: /* re-enable writes */
4806                 spin_lock_irq(&conf->device_lock);
4807                 conf->quiesce = 0;
4808                 wake_up(&conf->wait_for_stripe);
4809                 wake_up(&conf->wait_for_overlap);
4810                 spin_unlock_irq(&conf->device_lock);
4811                 break;
4812         }
4813 }
4814
4815 static struct mdk_personality raid6_personality =
4816 {
4817         .name           = "raid6",
4818         .level          = 6,
4819         .owner          = THIS_MODULE,
4820         .make_request   = make_request,
4821         .run            = run,
4822         .stop           = stop,
4823         .status         = status,
4824         .error_handler  = error,
4825         .hot_add_disk   = raid5_add_disk,
4826         .hot_remove_disk= raid5_remove_disk,
4827         .spare_active   = raid5_spare_active,
4828         .sync_request   = sync_request,
4829         .resize         = raid5_resize,
4830 #ifdef CONFIG_MD_RAID5_RESHAPE
4831         .check_reshape  = raid5_check_reshape,
4832         .start_reshape  = raid5_start_reshape,
4833 #endif
4834         .quiesce        = raid5_quiesce,
4835 };
4836 static struct mdk_personality raid5_personality =
4837 {
4838         .name           = "raid5",
4839         .level          = 5,
4840         .owner          = THIS_MODULE,
4841         .make_request   = make_request,
4842         .run            = run,
4843         .stop           = stop,
4844         .status         = status,
4845         .error_handler  = error,
4846         .hot_add_disk   = raid5_add_disk,
4847         .hot_remove_disk= raid5_remove_disk,
4848         .spare_active   = raid5_spare_active,
4849         .sync_request   = sync_request,
4850         .resize         = raid5_resize,
4851 #ifdef CONFIG_MD_RAID5_RESHAPE
4852         .check_reshape  = raid5_check_reshape,
4853         .start_reshape  = raid5_start_reshape,
4854 #endif
4855         .quiesce        = raid5_quiesce,
4856 };
4857
4858 static struct mdk_personality raid4_personality =
4859 {
4860         .name           = "raid4",
4861         .level          = 4,
4862         .owner          = THIS_MODULE,
4863         .make_request   = make_request,
4864         .run            = run,
4865         .stop           = stop,
4866         .status         = status,
4867         .error_handler  = error,
4868         .hot_add_disk   = raid5_add_disk,
4869         .hot_remove_disk= raid5_remove_disk,
4870         .spare_active   = raid5_spare_active,
4871         .sync_request   = sync_request,
4872         .resize         = raid5_resize,
4873 #ifdef CONFIG_MD_RAID5_RESHAPE
4874         .check_reshape  = raid5_check_reshape,
4875         .start_reshape  = raid5_start_reshape,
4876 #endif
4877         .quiesce        = raid5_quiesce,
4878 };
4879
4880 static int __init raid5_init(void)
4881 {
4882         int e;
4883
4884         e = raid6_select_algo();
4885         if ( e )
4886                 return e;
4887         register_md_personality(&raid6_personality);
4888         register_md_personality(&raid5_personality);
4889         register_md_personality(&raid4_personality);
4890         return 0;
4891 }
4892
4893 static void raid5_exit(void)
4894 {
4895         unregister_md_personality(&raid6_personality);
4896         unregister_md_personality(&raid5_personality);
4897         unregister_md_personality(&raid4_personality);
4898 }
4899
4900 module_init(raid5_init);
4901 module_exit(raid5_exit);
4902 MODULE_LICENSE("GPL");
4903 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4904 MODULE_ALIAS("md-raid5");
4905 MODULE_ALIAS("md-raid4");
4906 MODULE_ALIAS("md-level-5");
4907 MODULE_ALIAS("md-level-4");
4908 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4909 MODULE_ALIAS("md-raid6");
4910 MODULE_ALIAS("md-level-6");
4911
4912 /* This used to be two separate modules, they were: */
4913 MODULE_ALIAS("raid5");
4914 MODULE_ALIAS("raid6");