Merge branch 'sched-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip...
[linux-2.6] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44
45 #include "misc.h"
46 #include "vti.h"
47 #include "iodev.h"
48 #include "ioapic.h"
49 #include "lapic.h"
50 #include "irq.h"
51
52 static unsigned long kvm_vmm_base;
53 static unsigned long kvm_vsa_base;
54 static unsigned long kvm_vm_buffer;
55 static unsigned long kvm_vm_buffer_size;
56 unsigned long kvm_vmm_gp;
57
58 static long vp_env_info;
59
60 static struct kvm_vmm_info *kvm_vmm_info;
61
62 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
63
64 struct kvm_stats_debugfs_item debugfs_entries[] = {
65         { NULL }
66 };
67
68 static void kvm_flush_icache(unsigned long start, unsigned long len)
69 {
70         int l;
71
72         for (l = 0; l < (len + 32); l += 32)
73                 ia64_fc(start + l);
74
75         ia64_sync_i();
76         ia64_srlz_i();
77 }
78
79 static void kvm_flush_tlb_all(void)
80 {
81         unsigned long i, j, count0, count1, stride0, stride1, addr;
82         long flags;
83
84         addr    = local_cpu_data->ptce_base;
85         count0  = local_cpu_data->ptce_count[0];
86         count1  = local_cpu_data->ptce_count[1];
87         stride0 = local_cpu_data->ptce_stride[0];
88         stride1 = local_cpu_data->ptce_stride[1];
89
90         local_irq_save(flags);
91         for (i = 0; i < count0; ++i) {
92                 for (j = 0; j < count1; ++j) {
93                         ia64_ptce(addr);
94                         addr += stride1;
95                 }
96                 addr += stride0;
97         }
98         local_irq_restore(flags);
99         ia64_srlz_i();                  /* srlz.i implies srlz.d */
100 }
101
102 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
103 {
104         struct ia64_pal_retval iprv;
105
106         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
107                         (u64)opt_handler);
108
109         return iprv.status;
110 }
111
112 static  DEFINE_SPINLOCK(vp_lock);
113
114 void kvm_arch_hardware_enable(void *garbage)
115 {
116         long  status;
117         long  tmp_base;
118         unsigned long pte;
119         unsigned long saved_psr;
120         int slot;
121
122         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
123                                 PAGE_KERNEL));
124         local_irq_save(saved_psr);
125         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
126         local_irq_restore(saved_psr);
127         if (slot < 0)
128                 return;
129
130         spin_lock(&vp_lock);
131         status = ia64_pal_vp_init_env(kvm_vsa_base ?
132                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
133                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
134         if (status != 0) {
135                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
136                 return ;
137         }
138
139         if (!kvm_vsa_base) {
140                 kvm_vsa_base = tmp_base;
141                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
142         }
143         spin_unlock(&vp_lock);
144         ia64_ptr_entry(0x3, slot);
145 }
146
147 void kvm_arch_hardware_disable(void *garbage)
148 {
149
150         long status;
151         int slot;
152         unsigned long pte;
153         unsigned long saved_psr;
154         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
155
156         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
157                                 PAGE_KERNEL));
158
159         local_irq_save(saved_psr);
160         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
161         local_irq_restore(saved_psr);
162         if (slot < 0)
163                 return;
164
165         status = ia64_pal_vp_exit_env(host_iva);
166         if (status)
167                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
168                                 status);
169         ia64_ptr_entry(0x3, slot);
170 }
171
172 void kvm_arch_check_processor_compat(void *rtn)
173 {
174         *(int *)rtn = 0;
175 }
176
177 int kvm_dev_ioctl_check_extension(long ext)
178 {
179
180         int r;
181
182         switch (ext) {
183         case KVM_CAP_IRQCHIP:
184         case KVM_CAP_MP_STATE:
185         case KVM_CAP_IRQ_INJECT_STATUS:
186                 r = 1;
187                 break;
188         case KVM_CAP_COALESCED_MMIO:
189                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
190                 break;
191         case KVM_CAP_IOMMU:
192                 r = iommu_found();
193                 break;
194         default:
195                 r = 0;
196         }
197         return r;
198
199 }
200
201 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
202                                         gpa_t addr, int len, int is_write)
203 {
204         struct kvm_io_device *dev;
205
206         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
207
208         return dev;
209 }
210
211 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
212 {
213         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
214         kvm_run->hw.hardware_exit_reason = 1;
215         return 0;
216 }
217
218 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
219 {
220         struct kvm_mmio_req *p;
221         struct kvm_io_device *mmio_dev;
222
223         p = kvm_get_vcpu_ioreq(vcpu);
224
225         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
226                 goto mmio;
227         vcpu->mmio_needed = 1;
228         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
229         vcpu->mmio_size = kvm_run->mmio.len = p->size;
230         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
231
232         if (vcpu->mmio_is_write)
233                 memcpy(vcpu->mmio_data, &p->data, p->size);
234         memcpy(kvm_run->mmio.data, &p->data, p->size);
235         kvm_run->exit_reason = KVM_EXIT_MMIO;
236         return 0;
237 mmio:
238         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
239         if (mmio_dev) {
240                 if (!p->dir)
241                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
242                                                 &p->data);
243                 else
244                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
245                                                 &p->data);
246
247         } else
248                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
249         p->state = STATE_IORESP_READY;
250
251         return 1;
252 }
253
254 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
255 {
256         struct exit_ctl_data *p;
257
258         p = kvm_get_exit_data(vcpu);
259
260         if (p->exit_reason == EXIT_REASON_PAL_CALL)
261                 return kvm_pal_emul(vcpu, kvm_run);
262         else {
263                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
264                 kvm_run->hw.hardware_exit_reason = 2;
265                 return 0;
266         }
267 }
268
269 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
270 {
271         struct exit_ctl_data *p;
272
273         p = kvm_get_exit_data(vcpu);
274
275         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
276                 kvm_sal_emul(vcpu);
277                 return 1;
278         } else {
279                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
280                 kvm_run->hw.hardware_exit_reason = 3;
281                 return 0;
282         }
283
284 }
285
286 /*
287  *  offset: address offset to IPI space.
288  *  value:  deliver value.
289  */
290 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
291                                 uint64_t vector)
292 {
293         switch (dm) {
294         case SAPIC_FIXED:
295                 kvm_apic_set_irq(vcpu, vector, 0);
296                 break;
297         case SAPIC_NMI:
298                 kvm_apic_set_irq(vcpu, 2, 0);
299                 break;
300         case SAPIC_EXTINT:
301                 kvm_apic_set_irq(vcpu, 0, 0);
302                 break;
303         case SAPIC_INIT:
304         case SAPIC_PMI:
305         default:
306                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
307                 break;
308         }
309 }
310
311 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
312                         unsigned long eid)
313 {
314         union ia64_lid lid;
315         int i;
316
317         for (i = 0; i < kvm->arch.online_vcpus; i++) {
318                 if (kvm->vcpus[i]) {
319                         lid.val = VCPU_LID(kvm->vcpus[i]);
320                         if (lid.id == id && lid.eid == eid)
321                                 return kvm->vcpus[i];
322                 }
323         }
324
325         return NULL;
326 }
327
328 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
329 {
330         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
331         struct kvm_vcpu *target_vcpu;
332         struct kvm_pt_regs *regs;
333         union ia64_ipi_a addr = p->u.ipi_data.addr;
334         union ia64_ipi_d data = p->u.ipi_data.data;
335
336         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
337         if (!target_vcpu)
338                 return handle_vm_error(vcpu, kvm_run);
339
340         if (!target_vcpu->arch.launched) {
341                 regs = vcpu_regs(target_vcpu);
342
343                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
344                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
345
346                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
347                 if (waitqueue_active(&target_vcpu->wq))
348                         wake_up_interruptible(&target_vcpu->wq);
349         } else {
350                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
351                 if (target_vcpu != vcpu)
352                         kvm_vcpu_kick(target_vcpu);
353         }
354
355         return 1;
356 }
357
358 struct call_data {
359         struct kvm_ptc_g ptc_g_data;
360         struct kvm_vcpu *vcpu;
361 };
362
363 static void vcpu_global_purge(void *info)
364 {
365         struct call_data *p = (struct call_data *)info;
366         struct kvm_vcpu *vcpu = p->vcpu;
367
368         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
369                 return;
370
371         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
372         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
373                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
374                                                         p->ptc_g_data;
375         } else {
376                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
377                 vcpu->arch.ptc_g_count = 0;
378                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
379         }
380 }
381
382 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
383 {
384         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
385         struct kvm *kvm = vcpu->kvm;
386         struct call_data call_data;
387         int i;
388
389         call_data.ptc_g_data = p->u.ptc_g_data;
390
391         for (i = 0; i < kvm->arch.online_vcpus; i++) {
392                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
393                                                 KVM_MP_STATE_UNINITIALIZED ||
394                                         vcpu == kvm->vcpus[i])
395                         continue;
396
397                 if (waitqueue_active(&kvm->vcpus[i]->wq))
398                         wake_up_interruptible(&kvm->vcpus[i]->wq);
399
400                 if (kvm->vcpus[i]->cpu != -1) {
401                         call_data.vcpu = kvm->vcpus[i];
402                         smp_call_function_single(kvm->vcpus[i]->cpu,
403                                         vcpu_global_purge, &call_data, 1);
404                 } else
405                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
406
407         }
408         return 1;
409 }
410
411 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
412 {
413         return 1;
414 }
415
416 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
417 {
418
419         ktime_t kt;
420         long itc_diff;
421         unsigned long vcpu_now_itc;
422         unsigned long expires;
423         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
424         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
425         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
426
427         if (irqchip_in_kernel(vcpu->kvm)) {
428
429                 vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
430
431                 if (time_after(vcpu_now_itc, vpd->itm)) {
432                         vcpu->arch.timer_check = 1;
433                         return 1;
434                 }
435                 itc_diff = vpd->itm - vcpu_now_itc;
436                 if (itc_diff < 0)
437                         itc_diff = -itc_diff;
438
439                 expires = div64_u64(itc_diff, cyc_per_usec);
440                 kt = ktime_set(0, 1000 * expires);
441
442                 vcpu->arch.ht_active = 1;
443                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
444
445                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
446                 kvm_vcpu_block(vcpu);
447                 hrtimer_cancel(p_ht);
448                 vcpu->arch.ht_active = 0;
449
450                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
451                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
452                                 vcpu->arch.mp_state =
453                                         KVM_MP_STATE_RUNNABLE;
454
455                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
456                         return -EINTR;
457                 return 1;
458         } else {
459                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
460                 return 0;
461         }
462 }
463
464 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
465                 struct kvm_run *kvm_run)
466 {
467         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
468         return 0;
469 }
470
471 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
472                 struct kvm_run *kvm_run)
473 {
474         return 1;
475 }
476
477 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
478                                 struct kvm_run *kvm_run)
479 {
480         printk("VMM: %s", vcpu->arch.log_buf);
481         return 1;
482 }
483
484 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
485                 struct kvm_run *kvm_run) = {
486         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
487         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
488         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
489         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
490         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
491         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
492         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
493         [EXIT_REASON_IPI]                   = handle_ipi,
494         [EXIT_REASON_PTC_G]                 = handle_global_purge,
495         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
496
497 };
498
499 static const int kvm_vti_max_exit_handlers =
500                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
501
502 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
503 {
504         struct exit_ctl_data *p_exit_data;
505
506         p_exit_data = kvm_get_exit_data(vcpu);
507         return p_exit_data->exit_reason;
508 }
509
510 /*
511  * The guest has exited.  See if we can fix it or if we need userspace
512  * assistance.
513  */
514 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
515 {
516         u32 exit_reason = kvm_get_exit_reason(vcpu);
517         vcpu->arch.last_exit = exit_reason;
518
519         if (exit_reason < kvm_vti_max_exit_handlers
520                         && kvm_vti_exit_handlers[exit_reason])
521                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
522         else {
523                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
524                 kvm_run->hw.hardware_exit_reason = exit_reason;
525         }
526         return 0;
527 }
528
529 static inline void vti_set_rr6(unsigned long rr6)
530 {
531         ia64_set_rr(RR6, rr6);
532         ia64_srlz_i();
533 }
534
535 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
536 {
537         unsigned long pte;
538         struct kvm *kvm = vcpu->kvm;
539         int r;
540
541         /*Insert a pair of tr to map vmm*/
542         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
543         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
544         if (r < 0)
545                 goto out;
546         vcpu->arch.vmm_tr_slot = r;
547         /*Insert a pairt of tr to map data of vm*/
548         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
549         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
550                                         pte, KVM_VM_DATA_SHIFT);
551         if (r < 0)
552                 goto out;
553         vcpu->arch.vm_tr_slot = r;
554         r = 0;
555 out:
556         return r;
557
558 }
559
560 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
561 {
562
563         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
564         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
565
566 }
567
568 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
569 {
570         int cpu = smp_processor_id();
571
572         if (vcpu->arch.last_run_cpu != cpu ||
573                         per_cpu(last_vcpu, cpu) != vcpu) {
574                 per_cpu(last_vcpu, cpu) = vcpu;
575                 vcpu->arch.last_run_cpu = cpu;
576                 kvm_flush_tlb_all();
577         }
578
579         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
580         vti_set_rr6(vcpu->arch.vmm_rr);
581         return kvm_insert_vmm_mapping(vcpu);
582 }
583 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
584 {
585         kvm_purge_vmm_mapping(vcpu);
586         vti_set_rr6(vcpu->arch.host_rr6);
587 }
588
589 static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
590 {
591         union context *host_ctx, *guest_ctx;
592         int r;
593
594         /*Get host and guest context with guest address space.*/
595         host_ctx = kvm_get_host_context(vcpu);
596         guest_ctx = kvm_get_guest_context(vcpu);
597
598         r = kvm_vcpu_pre_transition(vcpu);
599         if (r < 0)
600                 goto out;
601         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
602         kvm_vcpu_post_transition(vcpu);
603         r = 0;
604 out:
605         return r;
606 }
607
608 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
609 {
610         int r;
611
612 again:
613         preempt_disable();
614         local_irq_disable();
615
616         if (signal_pending(current)) {
617                 local_irq_enable();
618                 preempt_enable();
619                 r = -EINTR;
620                 kvm_run->exit_reason = KVM_EXIT_INTR;
621                 goto out;
622         }
623
624         vcpu->guest_mode = 1;
625         kvm_guest_enter();
626         down_read(&vcpu->kvm->slots_lock);
627         r = vti_vcpu_run(vcpu, kvm_run);
628         if (r < 0) {
629                 local_irq_enable();
630                 preempt_enable();
631                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
632                 goto out;
633         }
634
635         vcpu->arch.launched = 1;
636         vcpu->guest_mode = 0;
637         local_irq_enable();
638
639         /*
640          * We must have an instruction between local_irq_enable() and
641          * kvm_guest_exit(), so the timer interrupt isn't delayed by
642          * the interrupt shadow.  The stat.exits increment will do nicely.
643          * But we need to prevent reordering, hence this barrier():
644          */
645         barrier();
646         kvm_guest_exit();
647         up_read(&vcpu->kvm->slots_lock);
648         preempt_enable();
649
650         r = kvm_handle_exit(kvm_run, vcpu);
651
652         if (r > 0) {
653                 if (!need_resched())
654                         goto again;
655         }
656
657 out:
658         if (r > 0) {
659                 kvm_resched(vcpu);
660                 goto again;
661         }
662
663         return r;
664 }
665
666 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
667 {
668         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
669
670         if (!vcpu->mmio_is_write)
671                 memcpy(&p->data, vcpu->mmio_data, 8);
672         p->state = STATE_IORESP_READY;
673 }
674
675 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
676 {
677         int r;
678         sigset_t sigsaved;
679
680         vcpu_load(vcpu);
681
682         if (vcpu->sigset_active)
683                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
684
685         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
686                 kvm_vcpu_block(vcpu);
687                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
688                 r = -EAGAIN;
689                 goto out;
690         }
691
692         if (vcpu->mmio_needed) {
693                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
694                 kvm_set_mmio_data(vcpu);
695                 vcpu->mmio_read_completed = 1;
696                 vcpu->mmio_needed = 0;
697         }
698         r = __vcpu_run(vcpu, kvm_run);
699 out:
700         if (vcpu->sigset_active)
701                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
702
703         vcpu_put(vcpu);
704         return r;
705 }
706
707 static struct kvm *kvm_alloc_kvm(void)
708 {
709
710         struct kvm *kvm;
711         uint64_t  vm_base;
712
713         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
714
715         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
716
717         if (!vm_base)
718                 return ERR_PTR(-ENOMEM);
719
720         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
721         kvm = (struct kvm *)(vm_base +
722                         offsetof(struct kvm_vm_data, kvm_vm_struct));
723         kvm->arch.vm_base = vm_base;
724         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
725
726         return kvm;
727 }
728
729 struct kvm_io_range {
730         unsigned long start;
731         unsigned long size;
732         unsigned long type;
733 };
734
735 static const struct kvm_io_range io_ranges[] = {
736         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
737         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
738         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
739         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
740         {PIB_START, PIB_SIZE, GPFN_PIB},
741 };
742
743 static void kvm_build_io_pmt(struct kvm *kvm)
744 {
745         unsigned long i, j;
746
747         /* Mark I/O ranges */
748         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
749                                                         i++) {
750                 for (j = io_ranges[i].start;
751                                 j < io_ranges[i].start + io_ranges[i].size;
752                                 j += PAGE_SIZE)
753                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
754                                         io_ranges[i].type, 0);
755         }
756
757 }
758
759 /*Use unused rids to virtualize guest rid.*/
760 #define GUEST_PHYSICAL_RR0      0x1739
761 #define GUEST_PHYSICAL_RR4      0x2739
762 #define VMM_INIT_RR             0x1660
763
764 static void kvm_init_vm(struct kvm *kvm)
765 {
766         BUG_ON(!kvm);
767
768         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
769         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
770         kvm->arch.vmm_init_rr = VMM_INIT_RR;
771
772         /*
773          *Fill P2M entries for MMIO/IO ranges
774          */
775         kvm_build_io_pmt(kvm);
776
777         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
778
779         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
780         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
781 }
782
783 struct  kvm *kvm_arch_create_vm(void)
784 {
785         struct kvm *kvm = kvm_alloc_kvm();
786
787         if (IS_ERR(kvm))
788                 return ERR_PTR(-ENOMEM);
789         kvm_init_vm(kvm);
790
791         kvm->arch.online_vcpus = 0;
792
793         return kvm;
794
795 }
796
797 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
798                                         struct kvm_irqchip *chip)
799 {
800         int r;
801
802         r = 0;
803         switch (chip->chip_id) {
804         case KVM_IRQCHIP_IOAPIC:
805                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
806                                 sizeof(struct kvm_ioapic_state));
807                 break;
808         default:
809                 r = -EINVAL;
810                 break;
811         }
812         return r;
813 }
814
815 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
816 {
817         int r;
818
819         r = 0;
820         switch (chip->chip_id) {
821         case KVM_IRQCHIP_IOAPIC:
822                 memcpy(ioapic_irqchip(kvm),
823                                 &chip->chip.ioapic,
824                                 sizeof(struct kvm_ioapic_state));
825                 break;
826         default:
827                 r = -EINVAL;
828                 break;
829         }
830         return r;
831 }
832
833 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
834
835 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
836 {
837         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
838         int i;
839
840         vcpu_load(vcpu);
841
842         for (i = 0; i < 16; i++) {
843                 vpd->vgr[i] = regs->vpd.vgr[i];
844                 vpd->vbgr[i] = regs->vpd.vbgr[i];
845         }
846         for (i = 0; i < 128; i++)
847                 vpd->vcr[i] = regs->vpd.vcr[i];
848         vpd->vhpi = regs->vpd.vhpi;
849         vpd->vnat = regs->vpd.vnat;
850         vpd->vbnat = regs->vpd.vbnat;
851         vpd->vpsr = regs->vpd.vpsr;
852
853         vpd->vpr = regs->vpd.vpr;
854
855         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
856
857         RESTORE_REGS(mp_state);
858         RESTORE_REGS(vmm_rr);
859         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
860         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
861         RESTORE_REGS(itr_regions);
862         RESTORE_REGS(dtr_regions);
863         RESTORE_REGS(tc_regions);
864         RESTORE_REGS(irq_check);
865         RESTORE_REGS(itc_check);
866         RESTORE_REGS(timer_check);
867         RESTORE_REGS(timer_pending);
868         RESTORE_REGS(last_itc);
869         for (i = 0; i < 8; i++) {
870                 vcpu->arch.vrr[i] = regs->vrr[i];
871                 vcpu->arch.ibr[i] = regs->ibr[i];
872                 vcpu->arch.dbr[i] = regs->dbr[i];
873         }
874         for (i = 0; i < 4; i++)
875                 vcpu->arch.insvc[i] = regs->insvc[i];
876         RESTORE_REGS(xtp);
877         RESTORE_REGS(metaphysical_rr0);
878         RESTORE_REGS(metaphysical_rr4);
879         RESTORE_REGS(metaphysical_saved_rr0);
880         RESTORE_REGS(metaphysical_saved_rr4);
881         RESTORE_REGS(fp_psr);
882         RESTORE_REGS(saved_gp);
883
884         vcpu->arch.irq_new_pending = 1;
885         vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
886         set_bit(KVM_REQ_RESUME, &vcpu->requests);
887
888         vcpu_put(vcpu);
889
890         return 0;
891 }
892
893 long kvm_arch_vm_ioctl(struct file *filp,
894                 unsigned int ioctl, unsigned long arg)
895 {
896         struct kvm *kvm = filp->private_data;
897         void __user *argp = (void __user *)arg;
898         int r = -EINVAL;
899
900         switch (ioctl) {
901         case KVM_SET_MEMORY_REGION: {
902                 struct kvm_memory_region kvm_mem;
903                 struct kvm_userspace_memory_region kvm_userspace_mem;
904
905                 r = -EFAULT;
906                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
907                         goto out;
908                 kvm_userspace_mem.slot = kvm_mem.slot;
909                 kvm_userspace_mem.flags = kvm_mem.flags;
910                 kvm_userspace_mem.guest_phys_addr =
911                                         kvm_mem.guest_phys_addr;
912                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
913                 r = kvm_vm_ioctl_set_memory_region(kvm,
914                                         &kvm_userspace_mem, 0);
915                 if (r)
916                         goto out;
917                 break;
918                 }
919         case KVM_CREATE_IRQCHIP:
920                 r = -EFAULT;
921                 r = kvm_ioapic_init(kvm);
922                 if (r)
923                         goto out;
924                 r = kvm_setup_default_irq_routing(kvm);
925                 if (r) {
926                         kfree(kvm->arch.vioapic);
927                         goto out;
928                 }
929                 break;
930         case KVM_IRQ_LINE_STATUS:
931         case KVM_IRQ_LINE: {
932                 struct kvm_irq_level irq_event;
933
934                 r = -EFAULT;
935                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
936                         goto out;
937                 if (irqchip_in_kernel(kvm)) {
938                         __s32 status;
939                         mutex_lock(&kvm->lock);
940                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
941                                     irq_event.irq, irq_event.level);
942                         mutex_unlock(&kvm->lock);
943                         if (ioctl == KVM_IRQ_LINE_STATUS) {
944                                 irq_event.status = status;
945                                 if (copy_to_user(argp, &irq_event,
946                                                         sizeof irq_event))
947                                         goto out;
948                         }
949                         r = 0;
950                 }
951                 break;
952                 }
953         case KVM_GET_IRQCHIP: {
954                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
955                 struct kvm_irqchip chip;
956
957                 r = -EFAULT;
958                 if (copy_from_user(&chip, argp, sizeof chip))
959                                 goto out;
960                 r = -ENXIO;
961                 if (!irqchip_in_kernel(kvm))
962                         goto out;
963                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
964                 if (r)
965                         goto out;
966                 r = -EFAULT;
967                 if (copy_to_user(argp, &chip, sizeof chip))
968                                 goto out;
969                 r = 0;
970                 break;
971                 }
972         case KVM_SET_IRQCHIP: {
973                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
974                 struct kvm_irqchip chip;
975
976                 r = -EFAULT;
977                 if (copy_from_user(&chip, argp, sizeof chip))
978                                 goto out;
979                 r = -ENXIO;
980                 if (!irqchip_in_kernel(kvm))
981                         goto out;
982                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
983                 if (r)
984                         goto out;
985                 r = 0;
986                 break;
987                 }
988         default:
989                 ;
990         }
991 out:
992         return r;
993 }
994
995 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
996                 struct kvm_sregs *sregs)
997 {
998         return -EINVAL;
999 }
1000
1001 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1002                 struct kvm_sregs *sregs)
1003 {
1004         return -EINVAL;
1005
1006 }
1007 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1008                 struct kvm_translation *tr)
1009 {
1010
1011         return -EINVAL;
1012 }
1013
1014 static int kvm_alloc_vmm_area(void)
1015 {
1016         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1017                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1018                                 get_order(KVM_VMM_SIZE));
1019                 if (!kvm_vmm_base)
1020                         return -ENOMEM;
1021
1022                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1023                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1024
1025                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1026                                 kvm_vmm_base, kvm_vm_buffer);
1027         }
1028
1029         return 0;
1030 }
1031
1032 static void kvm_free_vmm_area(void)
1033 {
1034         if (kvm_vmm_base) {
1035                 /*Zero this area before free to avoid bits leak!!*/
1036                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1037                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1038                 kvm_vmm_base  = 0;
1039                 kvm_vm_buffer = 0;
1040                 kvm_vsa_base = 0;
1041         }
1042 }
1043
1044 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1045 {
1046 }
1047
1048 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1049 {
1050         int i;
1051         union cpuid3_t cpuid3;
1052         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1053
1054         if (IS_ERR(vpd))
1055                 return PTR_ERR(vpd);
1056
1057         /* CPUID init */
1058         for (i = 0; i < 5; i++)
1059                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1060
1061         /* Limit the CPUID number to 5 */
1062         cpuid3.value = vpd->vcpuid[3];
1063         cpuid3.number = 4;      /* 5 - 1 */
1064         vpd->vcpuid[3] = cpuid3.value;
1065
1066         /*Set vac and vdc fields*/
1067         vpd->vac.a_from_int_cr = 1;
1068         vpd->vac.a_to_int_cr = 1;
1069         vpd->vac.a_from_psr = 1;
1070         vpd->vac.a_from_cpuid = 1;
1071         vpd->vac.a_cover = 1;
1072         vpd->vac.a_bsw = 1;
1073         vpd->vac.a_int = 1;
1074         vpd->vdc.d_vmsw = 1;
1075
1076         /*Set virtual buffer*/
1077         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1078
1079         return 0;
1080 }
1081
1082 static int vti_create_vp(struct kvm_vcpu *vcpu)
1083 {
1084         long ret;
1085         struct vpd *vpd = vcpu->arch.vpd;
1086         unsigned long  vmm_ivt;
1087
1088         vmm_ivt = kvm_vmm_info->vmm_ivt;
1089
1090         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1091
1092         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1093
1094         if (ret) {
1095                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1096                 return -EINVAL;
1097         }
1098         return 0;
1099 }
1100
1101 static void init_ptce_info(struct kvm_vcpu *vcpu)
1102 {
1103         ia64_ptce_info_t ptce = {0};
1104
1105         ia64_get_ptce(&ptce);
1106         vcpu->arch.ptce_base = ptce.base;
1107         vcpu->arch.ptce_count[0] = ptce.count[0];
1108         vcpu->arch.ptce_count[1] = ptce.count[1];
1109         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1110         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1111 }
1112
1113 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1114 {
1115         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1116
1117         if (hrtimer_cancel(p_ht))
1118                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1119 }
1120
1121 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1122 {
1123         struct kvm_vcpu *vcpu;
1124         wait_queue_head_t *q;
1125
1126         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1127         q = &vcpu->wq;
1128
1129         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1130                 goto out;
1131
1132         if (waitqueue_active(q))
1133                 wake_up_interruptible(q);
1134
1135 out:
1136         vcpu->arch.timer_fired = 1;
1137         vcpu->arch.timer_check = 1;
1138         return HRTIMER_NORESTART;
1139 }
1140
1141 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1142
1143 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1144 {
1145         struct kvm_vcpu *v;
1146         int r;
1147         int i;
1148         long itc_offset;
1149         struct kvm *kvm = vcpu->kvm;
1150         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1151
1152         union context *p_ctx = &vcpu->arch.guest;
1153         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1154
1155         /*Init vcpu context for first run.*/
1156         if (IS_ERR(vmm_vcpu))
1157                 return PTR_ERR(vmm_vcpu);
1158
1159         if (vcpu->vcpu_id == 0) {
1160                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1161
1162                 /*Set entry address for first run.*/
1163                 regs->cr_iip = PALE_RESET_ENTRY;
1164
1165                 /*Initialize itc offset for vcpus*/
1166                 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1167                 for (i = 0; i < kvm->arch.online_vcpus; i++) {
1168                         v = (struct kvm_vcpu *)((char *)vcpu +
1169                                         sizeof(struct kvm_vcpu_data) * i);
1170                         v->arch.itc_offset = itc_offset;
1171                         v->arch.last_itc = 0;
1172                 }
1173         } else
1174                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1175
1176         r = -ENOMEM;
1177         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1178         if (!vcpu->arch.apic)
1179                 goto out;
1180         vcpu->arch.apic->vcpu = vcpu;
1181
1182         p_ctx->gr[1] = 0;
1183         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1184         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1185         p_ctx->psr = 0x1008522000UL;
1186         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1187         p_ctx->caller_unat = 0;
1188         p_ctx->pr = 0x0;
1189         p_ctx->ar[36] = 0x0; /*unat*/
1190         p_ctx->ar[19] = 0x0; /*rnat*/
1191         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1192                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1193         p_ctx->ar[64] = 0x0; /*pfs*/
1194         p_ctx->cr[0] = 0x7e04UL;
1195         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1196         p_ctx->cr[8] = 0x3c;
1197
1198         /*Initilize region register*/
1199         p_ctx->rr[0] = 0x30;
1200         p_ctx->rr[1] = 0x30;
1201         p_ctx->rr[2] = 0x30;
1202         p_ctx->rr[3] = 0x30;
1203         p_ctx->rr[4] = 0x30;
1204         p_ctx->rr[5] = 0x30;
1205         p_ctx->rr[7] = 0x30;
1206
1207         /*Initilize branch register 0*/
1208         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1209
1210         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1211         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1212         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1213
1214         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1215         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1216
1217         vcpu->arch.last_run_cpu = -1;
1218         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1219         vcpu->arch.vsa_base = kvm_vsa_base;
1220         vcpu->arch.__gp = kvm_vmm_gp;
1221         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1222         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1223         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1224         init_ptce_info(vcpu);
1225
1226         r = 0;
1227 out:
1228         return r;
1229 }
1230
1231 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1232 {
1233         unsigned long psr;
1234         int r;
1235
1236         local_irq_save(psr);
1237         r = kvm_insert_vmm_mapping(vcpu);
1238         if (r)
1239                 goto fail;
1240         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1241         if (r)
1242                 goto fail;
1243
1244         r = vti_init_vpd(vcpu);
1245         if (r) {
1246                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1247                 goto uninit;
1248         }
1249
1250         r = vti_create_vp(vcpu);
1251         if (r)
1252                 goto uninit;
1253
1254         kvm_purge_vmm_mapping(vcpu);
1255         local_irq_restore(psr);
1256
1257         return 0;
1258 uninit:
1259         kvm_vcpu_uninit(vcpu);
1260 fail:
1261         local_irq_restore(psr);
1262         return r;
1263 }
1264
1265 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1266                 unsigned int id)
1267 {
1268         struct kvm_vcpu *vcpu;
1269         unsigned long vm_base = kvm->arch.vm_base;
1270         int r;
1271         int cpu;
1272
1273         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1274
1275         r = -EINVAL;
1276         if (id >= KVM_MAX_VCPUS) {
1277                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1278                                 KVM_MAX_VCPUS);
1279                 goto fail;
1280         }
1281
1282         r = -ENOMEM;
1283         if (!vm_base) {
1284                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1285                 goto fail;
1286         }
1287         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1288                                         vcpu_data[id].vcpu_struct));
1289         vcpu->kvm = kvm;
1290
1291         cpu = get_cpu();
1292         vti_vcpu_load(vcpu, cpu);
1293         r = vti_vcpu_setup(vcpu, id);
1294         put_cpu();
1295
1296         if (r) {
1297                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1298                 goto fail;
1299         }
1300
1301         kvm->arch.online_vcpus++;
1302
1303         return vcpu;
1304 fail:
1305         return ERR_PTR(r);
1306 }
1307
1308 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1309 {
1310         return 0;
1311 }
1312
1313 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1314 {
1315         return -EINVAL;
1316 }
1317
1318 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1319 {
1320         return -EINVAL;
1321 }
1322
1323 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1324                                         struct kvm_guest_debug *dbg)
1325 {
1326         return -EINVAL;
1327 }
1328
1329 static void free_kvm(struct kvm *kvm)
1330 {
1331         unsigned long vm_base = kvm->arch.vm_base;
1332
1333         if (vm_base) {
1334                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1335                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1336         }
1337
1338 }
1339
1340 static void kvm_release_vm_pages(struct kvm *kvm)
1341 {
1342         struct kvm_memory_slot *memslot;
1343         int i, j;
1344         unsigned long base_gfn;
1345
1346         for (i = 0; i < kvm->nmemslots; i++) {
1347                 memslot = &kvm->memslots[i];
1348                 base_gfn = memslot->base_gfn;
1349
1350                 for (j = 0; j < memslot->npages; j++) {
1351                         if (memslot->rmap[j])
1352                                 put_page((struct page *)memslot->rmap[j]);
1353                 }
1354         }
1355 }
1356
1357 void kvm_arch_sync_events(struct kvm *kvm)
1358 {
1359 }
1360
1361 void kvm_arch_destroy_vm(struct kvm *kvm)
1362 {
1363         kvm_iommu_unmap_guest(kvm);
1364 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1365         kvm_free_all_assigned_devices(kvm);
1366 #endif
1367         kfree(kvm->arch.vioapic);
1368         kvm_release_vm_pages(kvm);
1369         kvm_free_physmem(kvm);
1370         free_kvm(kvm);
1371 }
1372
1373 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1374 {
1375 }
1376
1377 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1378 {
1379         if (cpu != vcpu->cpu) {
1380                 vcpu->cpu = cpu;
1381                 if (vcpu->arch.ht_active)
1382                         kvm_migrate_hlt_timer(vcpu);
1383         }
1384 }
1385
1386 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1387
1388 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1389 {
1390         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1391         int i;
1392
1393         vcpu_load(vcpu);
1394
1395         for (i = 0; i < 16; i++) {
1396                 regs->vpd.vgr[i] = vpd->vgr[i];
1397                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1398         }
1399         for (i = 0; i < 128; i++)
1400                 regs->vpd.vcr[i] = vpd->vcr[i];
1401         regs->vpd.vhpi = vpd->vhpi;
1402         regs->vpd.vnat = vpd->vnat;
1403         regs->vpd.vbnat = vpd->vbnat;
1404         regs->vpd.vpsr = vpd->vpsr;
1405         regs->vpd.vpr = vpd->vpr;
1406
1407         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1408
1409         SAVE_REGS(mp_state);
1410         SAVE_REGS(vmm_rr);
1411         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1412         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1413         SAVE_REGS(itr_regions);
1414         SAVE_REGS(dtr_regions);
1415         SAVE_REGS(tc_regions);
1416         SAVE_REGS(irq_check);
1417         SAVE_REGS(itc_check);
1418         SAVE_REGS(timer_check);
1419         SAVE_REGS(timer_pending);
1420         SAVE_REGS(last_itc);
1421         for (i = 0; i < 8; i++) {
1422                 regs->vrr[i] = vcpu->arch.vrr[i];
1423                 regs->ibr[i] = vcpu->arch.ibr[i];
1424                 regs->dbr[i] = vcpu->arch.dbr[i];
1425         }
1426         for (i = 0; i < 4; i++)
1427                 regs->insvc[i] = vcpu->arch.insvc[i];
1428         regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1429         SAVE_REGS(xtp);
1430         SAVE_REGS(metaphysical_rr0);
1431         SAVE_REGS(metaphysical_rr4);
1432         SAVE_REGS(metaphysical_saved_rr0);
1433         SAVE_REGS(metaphysical_saved_rr4);
1434         SAVE_REGS(fp_psr);
1435         SAVE_REGS(saved_gp);
1436
1437         vcpu_put(vcpu);
1438         return 0;
1439 }
1440
1441 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1442                                   struct kvm_ia64_vcpu_stack *stack)
1443 {
1444         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1445         return 0;
1446 }
1447
1448 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1449                                   struct kvm_ia64_vcpu_stack *stack)
1450 {
1451         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1452                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1453
1454         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1455         return 0;
1456 }
1457
1458 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1459 {
1460
1461         hrtimer_cancel(&vcpu->arch.hlt_timer);
1462         kfree(vcpu->arch.apic);
1463 }
1464
1465
1466 long kvm_arch_vcpu_ioctl(struct file *filp,
1467                          unsigned int ioctl, unsigned long arg)
1468 {
1469         struct kvm_vcpu *vcpu = filp->private_data;
1470         void __user *argp = (void __user *)arg;
1471         struct kvm_ia64_vcpu_stack *stack = NULL;
1472         long r;
1473
1474         switch (ioctl) {
1475         case KVM_IA64_VCPU_GET_STACK: {
1476                 struct kvm_ia64_vcpu_stack __user *user_stack;
1477                 void __user *first_p = argp;
1478
1479                 r = -EFAULT;
1480                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1481                         goto out;
1482
1483                 if (!access_ok(VERIFY_WRITE, user_stack,
1484                                sizeof(struct kvm_ia64_vcpu_stack))) {
1485                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1486                                "Illegal user destination address for stack\n");
1487                         goto out;
1488                 }
1489                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1490                 if (!stack) {
1491                         r = -ENOMEM;
1492                         goto out;
1493                 }
1494
1495                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1496                 if (r)
1497                         goto out;
1498
1499                 if (copy_to_user(user_stack, stack,
1500                                  sizeof(struct kvm_ia64_vcpu_stack)))
1501                         goto out;
1502
1503                 break;
1504         }
1505         case KVM_IA64_VCPU_SET_STACK: {
1506                 struct kvm_ia64_vcpu_stack __user *user_stack;
1507                 void __user *first_p = argp;
1508
1509                 r = -EFAULT;
1510                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1511                         goto out;
1512
1513                 if (!access_ok(VERIFY_READ, user_stack,
1514                             sizeof(struct kvm_ia64_vcpu_stack))) {
1515                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1516                                "Illegal user address for stack\n");
1517                         goto out;
1518                 }
1519                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1520                 if (!stack) {
1521                         r = -ENOMEM;
1522                         goto out;
1523                 }
1524                 if (copy_from_user(stack, user_stack,
1525                                    sizeof(struct kvm_ia64_vcpu_stack)))
1526                         goto out;
1527
1528                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1529                 break;
1530         }
1531
1532         default:
1533                 r = -EINVAL;
1534         }
1535
1536 out:
1537         kfree(stack);
1538         return r;
1539 }
1540
1541 int kvm_arch_set_memory_region(struct kvm *kvm,
1542                 struct kvm_userspace_memory_region *mem,
1543                 struct kvm_memory_slot old,
1544                 int user_alloc)
1545 {
1546         unsigned long i;
1547         unsigned long pfn;
1548         int npages = mem->memory_size >> PAGE_SHIFT;
1549         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1550         unsigned long base_gfn = memslot->base_gfn;
1551
1552         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1553                 return -ENOMEM;
1554
1555         for (i = 0; i < npages; i++) {
1556                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1557                 if (!kvm_is_mmio_pfn(pfn)) {
1558                         kvm_set_pmt_entry(kvm, base_gfn + i,
1559                                         pfn << PAGE_SHIFT,
1560                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1561                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1562                 } else {
1563                         kvm_set_pmt_entry(kvm, base_gfn + i,
1564                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1565                                         _PAGE_MA_UC);
1566                         memslot->rmap[i] = 0;
1567                         }
1568         }
1569
1570         return 0;
1571 }
1572
1573 void kvm_arch_flush_shadow(struct kvm *kvm)
1574 {
1575 }
1576
1577 long kvm_arch_dev_ioctl(struct file *filp,
1578                         unsigned int ioctl, unsigned long arg)
1579 {
1580         return -EINVAL;
1581 }
1582
1583 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1584 {
1585         kvm_vcpu_uninit(vcpu);
1586 }
1587
1588 static int vti_cpu_has_kvm_support(void)
1589 {
1590         long  avail = 1, status = 1, control = 1;
1591         long ret;
1592
1593         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1594         if (ret)
1595                 goto out;
1596
1597         if (!(avail & PAL_PROC_VM_BIT))
1598                 goto out;
1599
1600         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1601
1602         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1603         if (ret)
1604                 goto out;
1605         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1606
1607         if (!(vp_env_info & VP_OPCODE)) {
1608                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1609                                 "vm_env_info:0x%lx\n", vp_env_info);
1610         }
1611
1612         return 1;
1613 out:
1614         return 0;
1615 }
1616
1617 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1618                                                 struct module *module)
1619 {
1620         unsigned long module_base;
1621         unsigned long vmm_size;
1622
1623         unsigned long vmm_offset, func_offset, fdesc_offset;
1624         struct fdesc *p_fdesc;
1625
1626         BUG_ON(!module);
1627
1628         if (!kvm_vmm_base) {
1629                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1630                 return -EFAULT;
1631         }
1632
1633         /*Calculate new position of relocated vmm module.*/
1634         module_base = (unsigned long)module->module_core;
1635         vmm_size = module->core_size;
1636         if (unlikely(vmm_size > KVM_VMM_SIZE))
1637                 return -EFAULT;
1638
1639         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1640         kvm_flush_icache(kvm_vmm_base, vmm_size);
1641
1642         /*Recalculate kvm_vmm_info based on new VMM*/
1643         vmm_offset = vmm_info->vmm_ivt - module_base;
1644         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1645         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1646                         kvm_vmm_info->vmm_ivt);
1647
1648         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1649         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1650                                                         fdesc_offset);
1651         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1652         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1653         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1654         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1655
1656         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1657                         KVM_VMM_BASE+func_offset);
1658
1659         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1660         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1661                         fdesc_offset);
1662         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1663         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1664         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1665         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1666
1667         kvm_vmm_gp = p_fdesc->gp;
1668
1669         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1670                                                 kvm_vmm_info->vmm_entry);
1671         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1672                                                 KVM_VMM_BASE + func_offset);
1673
1674         return 0;
1675 }
1676
1677 int kvm_arch_init(void *opaque)
1678 {
1679         int r;
1680         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1681
1682         if (!vti_cpu_has_kvm_support()) {
1683                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1684                 r = -EOPNOTSUPP;
1685                 goto out;
1686         }
1687
1688         if (kvm_vmm_info) {
1689                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1690                 r = -EEXIST;
1691                 goto out;
1692         }
1693
1694         r = -ENOMEM;
1695         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1696         if (!kvm_vmm_info)
1697                 goto out;
1698
1699         if (kvm_alloc_vmm_area())
1700                 goto out_free0;
1701
1702         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1703         if (r)
1704                 goto out_free1;
1705
1706         return 0;
1707
1708 out_free1:
1709         kvm_free_vmm_area();
1710 out_free0:
1711         kfree(kvm_vmm_info);
1712 out:
1713         return r;
1714 }
1715
1716 void kvm_arch_exit(void)
1717 {
1718         kvm_free_vmm_area();
1719         kfree(kvm_vmm_info);
1720         kvm_vmm_info = NULL;
1721 }
1722
1723 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1724                 struct kvm_dirty_log *log)
1725 {
1726         struct kvm_memory_slot *memslot;
1727         int r, i;
1728         long n, base;
1729         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1730                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1731
1732         r = -EINVAL;
1733         if (log->slot >= KVM_MEMORY_SLOTS)
1734                 goto out;
1735
1736         memslot = &kvm->memslots[log->slot];
1737         r = -ENOENT;
1738         if (!memslot->dirty_bitmap)
1739                 goto out;
1740
1741         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1742         base = memslot->base_gfn / BITS_PER_LONG;
1743
1744         for (i = 0; i < n/sizeof(long); ++i) {
1745                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1746                 dirty_bitmap[base + i] = 0;
1747         }
1748         r = 0;
1749 out:
1750         return r;
1751 }
1752
1753 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1754                 struct kvm_dirty_log *log)
1755 {
1756         int r;
1757         int n;
1758         struct kvm_memory_slot *memslot;
1759         int is_dirty = 0;
1760
1761         spin_lock(&kvm->arch.dirty_log_lock);
1762
1763         r = kvm_ia64_sync_dirty_log(kvm, log);
1764         if (r)
1765                 goto out;
1766
1767         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1768         if (r)
1769                 goto out;
1770
1771         /* If nothing is dirty, don't bother messing with page tables. */
1772         if (is_dirty) {
1773                 kvm_flush_remote_tlbs(kvm);
1774                 memslot = &kvm->memslots[log->slot];
1775                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1776                 memset(memslot->dirty_bitmap, 0, n);
1777         }
1778         r = 0;
1779 out:
1780         spin_unlock(&kvm->arch.dirty_log_lock);
1781         return r;
1782 }
1783
1784 int kvm_arch_hardware_setup(void)
1785 {
1786         return 0;
1787 }
1788
1789 void kvm_arch_hardware_unsetup(void)
1790 {
1791 }
1792
1793 static void vcpu_kick_intr(void *info)
1794 {
1795 #ifdef DEBUG
1796         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1797         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1798 #endif
1799 }
1800
1801 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1802 {
1803         int ipi_pcpu = vcpu->cpu;
1804         int cpu = get_cpu();
1805
1806         if (waitqueue_active(&vcpu->wq))
1807                 wake_up_interruptible(&vcpu->wq);
1808
1809         if (vcpu->guest_mode && cpu != ipi_pcpu)
1810                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1811         put_cpu();
1812 }
1813
1814 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
1815 {
1816
1817         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1818
1819         if (!test_and_set_bit(vec, &vpd->irr[0])) {
1820                 vcpu->arch.irq_new_pending = 1;
1821                 kvm_vcpu_kick(vcpu);
1822                 return 1;
1823         }
1824         return 0;
1825 }
1826
1827 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1828 {
1829         return apic->vcpu->vcpu_id == dest;
1830 }
1831
1832 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1833 {
1834         return 0;
1835 }
1836
1837 struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
1838                                        unsigned long bitmap)
1839 {
1840         struct kvm_vcpu *lvcpu = kvm->vcpus[0];
1841         int i;
1842
1843         for (i = 1; i < kvm->arch.online_vcpus; i++) {
1844                 if (!kvm->vcpus[i])
1845                         continue;
1846                 if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
1847                         lvcpu = kvm->vcpus[i];
1848         }
1849
1850         return lvcpu;
1851 }
1852
1853 static int find_highest_bits(int *dat)
1854 {
1855         u32  bits, bitnum;
1856         int i;
1857
1858         /* loop for all 256 bits */
1859         for (i = 7; i >= 0 ; i--) {
1860                 bits = dat[i];
1861                 if (bits) {
1862                         bitnum = fls(bits);
1863                         return i * 32 + bitnum - 1;
1864                 }
1865         }
1866
1867         return -1;
1868 }
1869
1870 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1871 {
1872     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1873
1874     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1875                 return NMI_VECTOR;
1876     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1877                 return ExtINT_VECTOR;
1878
1879     return find_highest_bits((int *)&vpd->irr[0]);
1880 }
1881
1882 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1883 {
1884         if (kvm_highest_pending_irq(vcpu) != -1)
1885                 return 1;
1886         return 0;
1887 }
1888
1889 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1890 {
1891         return vcpu->arch.timer_fired;
1892 }
1893
1894 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1895 {
1896         return gfn;
1897 }
1898
1899 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1900 {
1901         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1902 }
1903
1904 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1905                                     struct kvm_mp_state *mp_state)
1906 {
1907         vcpu_load(vcpu);
1908         mp_state->mp_state = vcpu->arch.mp_state;
1909         vcpu_put(vcpu);
1910         return 0;
1911 }
1912
1913 static int vcpu_reset(struct kvm_vcpu *vcpu)
1914 {
1915         int r;
1916         long psr;
1917         local_irq_save(psr);
1918         r = kvm_insert_vmm_mapping(vcpu);
1919         if (r)
1920                 goto fail;
1921
1922         vcpu->arch.launched = 0;
1923         kvm_arch_vcpu_uninit(vcpu);
1924         r = kvm_arch_vcpu_init(vcpu);
1925         if (r)
1926                 goto fail;
1927
1928         kvm_purge_vmm_mapping(vcpu);
1929         r = 0;
1930 fail:
1931         local_irq_restore(psr);
1932         return r;
1933 }
1934
1935 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1936                                     struct kvm_mp_state *mp_state)
1937 {
1938         int r = 0;
1939
1940         vcpu_load(vcpu);
1941         vcpu->arch.mp_state = mp_state->mp_state;
1942         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1943                 r = vcpu_reset(vcpu);
1944         vcpu_put(vcpu);
1945         return r;
1946 }