4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
8 #include <linux/config.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
36 DEFINE_SPINLOCK(swap_lock);
37 unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
41 static const char Bad_file[] = "Bad swap file entry ";
42 static const char Unused_file[] = "Unused swap file entry ";
43 static const char Bad_offset[] = "Bad swap offset entry ";
44 static const char Unused_offset[] = "Unused swap offset entry ";
46 struct swap_list_t swap_list = {-1, -1};
48 static struct swap_info_struct swap_info[MAX_SWAPFILES];
50 static DEFINE_MUTEX(swapon_mutex);
53 * We need this because the bdev->unplug_fn can sleep and we cannot
54 * hold swap_lock while calling the unplug_fn. And swap_lock
55 * cannot be turned into a mutex.
57 static DECLARE_RWSEM(swap_unplug_sem);
59 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
63 down_read(&swap_unplug_sem);
64 entry.val = page_private(page);
65 if (PageSwapCache(page)) {
66 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
67 struct backing_dev_info *bdi;
70 * If the page is removed from swapcache from under us (with a
71 * racy try_to_unuse/swapoff) we need an additional reference
72 * count to avoid reading garbage from page_private(page) above.
73 * If the WARN_ON triggers during a swapoff it maybe the race
74 * condition and it's harmless. However if it triggers without
75 * swapoff it signals a problem.
77 WARN_ON(page_count(page) <= 1);
79 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
80 blk_run_backing_dev(bdi, page);
82 up_read(&swap_unplug_sem);
85 #define SWAPFILE_CLUSTER 256
86 #define LATENCY_LIMIT 256
88 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90 unsigned long offset, last_in_cluster;
91 int latency_ration = LATENCY_LIMIT;
94 * We try to cluster swap pages by allocating them sequentially
95 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
96 * way, however, we resort to first-free allocation, starting
97 * a new cluster. This prevents us from scattering swap pages
98 * all over the entire swap partition, so that we reduce
99 * overall disk seek times between swap pages. -- sct
100 * But we do now try to find an empty cluster. -Andrea
103 si->flags += SWP_SCANNING;
104 if (unlikely(!si->cluster_nr)) {
105 si->cluster_nr = SWAPFILE_CLUSTER - 1;
106 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108 spin_unlock(&swap_lock);
110 offset = si->lowest_bit;
111 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113 /* Locate the first empty (unaligned) cluster */
114 for (; last_in_cluster <= si->highest_bit; offset++) {
115 if (si->swap_map[offset])
116 last_in_cluster = offset + SWAPFILE_CLUSTER;
117 else if (offset == last_in_cluster) {
118 spin_lock(&swap_lock);
119 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
122 if (unlikely(--latency_ration < 0)) {
124 latency_ration = LATENCY_LIMIT;
127 spin_lock(&swap_lock);
133 offset = si->cluster_next;
134 if (offset > si->highest_bit)
135 lowest: offset = si->lowest_bit;
136 checks: if (!(si->flags & SWP_WRITEOK))
138 if (!si->highest_bit)
140 if (!si->swap_map[offset]) {
141 if (offset == si->lowest_bit)
143 if (offset == si->highest_bit)
146 if (si->inuse_pages == si->pages) {
147 si->lowest_bit = si->max;
150 si->swap_map[offset] = 1;
151 si->cluster_next = offset + 1;
152 si->flags -= SWP_SCANNING;
156 spin_unlock(&swap_lock);
157 while (++offset <= si->highest_bit) {
158 if (!si->swap_map[offset]) {
159 spin_lock(&swap_lock);
162 if (unlikely(--latency_ration < 0)) {
164 latency_ration = LATENCY_LIMIT;
167 spin_lock(&swap_lock);
171 si->flags -= SWP_SCANNING;
175 swp_entry_t get_swap_page(void)
177 struct swap_info_struct *si;
182 spin_lock(&swap_lock);
183 if (nr_swap_pages <= 0)
187 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
188 si = swap_info + type;
191 (!wrapped && si->prio != swap_info[next].prio)) {
192 next = swap_list.head;
196 if (!si->highest_bit)
198 if (!(si->flags & SWP_WRITEOK))
201 swap_list.next = next;
202 offset = scan_swap_map(si);
204 spin_unlock(&swap_lock);
205 return swp_entry(type, offset);
207 next = swap_list.next;
212 spin_unlock(&swap_lock);
213 return (swp_entry_t) {0};
216 swp_entry_t get_swap_page_of_type(int type)
218 struct swap_info_struct *si;
221 spin_lock(&swap_lock);
222 si = swap_info + type;
223 if (si->flags & SWP_WRITEOK) {
225 offset = scan_swap_map(si);
227 spin_unlock(&swap_lock);
228 return swp_entry(type, offset);
232 spin_unlock(&swap_lock);
233 return (swp_entry_t) {0};
236 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238 struct swap_info_struct * p;
239 unsigned long offset, type;
243 type = swp_type(entry);
244 if (type >= nr_swapfiles)
246 p = & swap_info[type];
247 if (!(p->flags & SWP_USED))
249 offset = swp_offset(entry);
250 if (offset >= p->max)
252 if (!p->swap_map[offset])
254 spin_lock(&swap_lock);
258 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
261 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
264 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
267 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
272 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274 int count = p->swap_map[offset];
276 if (count < SWAP_MAP_MAX) {
278 p->swap_map[offset] = count;
280 if (offset < p->lowest_bit)
281 p->lowest_bit = offset;
282 if (offset > p->highest_bit)
283 p->highest_bit = offset;
284 if (p->prio > swap_info[swap_list.next].prio)
285 swap_list.next = p - swap_info;
294 * Caller has made sure that the swapdevice corresponding to entry
295 * is still around or has not been recycled.
297 void swap_free(swp_entry_t entry)
299 struct swap_info_struct * p;
301 p = swap_info_get(entry);
303 swap_entry_free(p, swp_offset(entry));
304 spin_unlock(&swap_lock);
309 * How many references to page are currently swapped out?
311 static inline int page_swapcount(struct page *page)
314 struct swap_info_struct *p;
317 entry.val = page_private(page);
318 p = swap_info_get(entry);
320 /* Subtract the 1 for the swap cache itself */
321 count = p->swap_map[swp_offset(entry)] - 1;
322 spin_unlock(&swap_lock);
328 * We can use this swap cache entry directly
329 * if there are no other references to it.
331 int can_share_swap_page(struct page *page)
335 BUG_ON(!PageLocked(page));
336 count = page_mapcount(page);
337 if (count <= 1 && PageSwapCache(page))
338 count += page_swapcount(page);
343 * Work out if there are any other processes sharing this
344 * swap cache page. Free it if you can. Return success.
346 int remove_exclusive_swap_page(struct page *page)
349 struct swap_info_struct * p;
352 BUG_ON(PagePrivate(page));
353 BUG_ON(!PageLocked(page));
355 if (!PageSwapCache(page))
357 if (PageWriteback(page))
359 if (page_count(page) != 2) /* 2: us + cache */
362 entry.val = page_private(page);
363 p = swap_info_get(entry);
367 /* Is the only swap cache user the cache itself? */
369 if (p->swap_map[swp_offset(entry)] == 1) {
370 /* Recheck the page count with the swapcache lock held.. */
371 write_lock_irq(&swapper_space.tree_lock);
372 if ((page_count(page) == 2) && !PageWriteback(page)) {
373 __delete_from_swap_cache(page);
377 write_unlock_irq(&swapper_space.tree_lock);
379 spin_unlock(&swap_lock);
383 page_cache_release(page);
390 * Free the swap entry like above, but also try to
391 * free the page cache entry if it is the last user.
393 void free_swap_and_cache(swp_entry_t entry)
395 struct swap_info_struct * p;
396 struct page *page = NULL;
398 p = swap_info_get(entry);
400 if (swap_entry_free(p, swp_offset(entry)) == 1) {
401 page = find_get_page(&swapper_space, entry.val);
402 if (page && unlikely(TestSetPageLocked(page))) {
403 page_cache_release(page);
407 spin_unlock(&swap_lock);
412 BUG_ON(PagePrivate(page));
413 one_user = (page_count(page) == 2);
414 /* Only cache user (+us), or swap space full? Free it! */
415 /* Also recheck PageSwapCache after page is locked (above) */
416 if (PageSwapCache(page) && !PageWriteback(page) &&
417 (one_user || vm_swap_full())) {
418 delete_from_swap_cache(page);
422 page_cache_release(page);
426 #ifdef CONFIG_SOFTWARE_SUSPEND
428 * Find the swap type that corresponds to given device (if any)
430 * This is needed for software suspend and is done in such a way that inode
431 * aliasing is allowed.
433 int swap_type_of(dev_t device)
437 spin_lock(&swap_lock);
438 for (i = 0; i < nr_swapfiles; i++) {
441 if (!(swap_info[i].flags & SWP_WRITEOK))
444 spin_unlock(&swap_lock);
447 inode = swap_info->swap_file->f_dentry->d_inode;
448 if (S_ISBLK(inode->i_mode) &&
449 device == MKDEV(imajor(inode), iminor(inode))) {
450 spin_unlock(&swap_lock);
454 spin_unlock(&swap_lock);
459 * Return either the total number of swap pages of given type, or the number
460 * of free pages of that type (depending on @free)
462 * This is needed for software suspend
464 unsigned int count_swap_pages(int type, int free)
468 if (type < nr_swapfiles) {
469 spin_lock(&swap_lock);
470 if (swap_info[type].flags & SWP_WRITEOK) {
471 n = swap_info[type].pages;
473 n -= swap_info[type].inuse_pages;
475 spin_unlock(&swap_lock);
482 * No need to decide whether this PTE shares the swap entry with others,
483 * just let do_wp_page work it out if a write is requested later - to
484 * force COW, vm_page_prot omits write permission from any private vma.
486 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
487 unsigned long addr, swp_entry_t entry, struct page *page)
489 inc_mm_counter(vma->vm_mm, anon_rss);
491 set_pte_at(vma->vm_mm, addr, pte,
492 pte_mkold(mk_pte(page, vma->vm_page_prot)));
493 page_add_anon_rmap(page, vma, addr);
496 * Move the page to the active list so it is not
497 * immediately swapped out again after swapon.
502 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
503 unsigned long addr, unsigned long end,
504 swp_entry_t entry, struct page *page)
506 pte_t swp_pte = swp_entry_to_pte(entry);
511 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
514 * swapoff spends a _lot_ of time in this loop!
515 * Test inline before going to call unuse_pte.
517 if (unlikely(pte_same(*pte, swp_pte))) {
518 unuse_pte(vma, pte++, addr, entry, page);
522 } while (pte++, addr += PAGE_SIZE, addr != end);
523 pte_unmap_unlock(pte - 1, ptl);
527 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
528 unsigned long addr, unsigned long end,
529 swp_entry_t entry, struct page *page)
534 pmd = pmd_offset(pud, addr);
536 next = pmd_addr_end(addr, end);
537 if (pmd_none_or_clear_bad(pmd))
539 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
541 } while (pmd++, addr = next, addr != end);
545 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
546 unsigned long addr, unsigned long end,
547 swp_entry_t entry, struct page *page)
552 pud = pud_offset(pgd, addr);
554 next = pud_addr_end(addr, end);
555 if (pud_none_or_clear_bad(pud))
557 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
559 } while (pud++, addr = next, addr != end);
563 static int unuse_vma(struct vm_area_struct *vma,
564 swp_entry_t entry, struct page *page)
567 unsigned long addr, end, next;
570 addr = page_address_in_vma(page, vma);
574 end = addr + PAGE_SIZE;
576 addr = vma->vm_start;
580 pgd = pgd_offset(vma->vm_mm, addr);
582 next = pgd_addr_end(addr, end);
583 if (pgd_none_or_clear_bad(pgd))
585 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
587 } while (pgd++, addr = next, addr != end);
591 static int unuse_mm(struct mm_struct *mm,
592 swp_entry_t entry, struct page *page)
594 struct vm_area_struct *vma;
596 if (!down_read_trylock(&mm->mmap_sem)) {
598 * Activate page so shrink_cache is unlikely to unmap its
599 * ptes while lock is dropped, so swapoff can make progress.
603 down_read(&mm->mmap_sem);
606 for (vma = mm->mmap; vma; vma = vma->vm_next) {
607 if (vma->anon_vma && unuse_vma(vma, entry, page))
610 up_read(&mm->mmap_sem);
612 * Currently unuse_mm cannot fail, but leave error handling
613 * at call sites for now, since we change it from time to time.
618 #ifdef CONFIG_MIGRATION
619 int remove_vma_swap(struct vm_area_struct *vma, struct page *page)
621 swp_entry_t entry = { .val = page_private(page) };
623 return unuse_vma(vma, entry, page);
628 * Scan swap_map from current position to next entry still in use.
629 * Recycle to start on reaching the end, returning 0 when empty.
631 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
634 unsigned int max = si->max;
635 unsigned int i = prev;
639 * No need for swap_lock here: we're just looking
640 * for whether an entry is in use, not modifying it; false
641 * hits are okay, and sys_swapoff() has already prevented new
642 * allocations from this area (while holding swap_lock).
651 * No entries in use at top of swap_map,
652 * loop back to start and recheck there.
658 count = si->swap_map[i];
659 if (count && count != SWAP_MAP_BAD)
666 * We completely avoid races by reading each swap page in advance,
667 * and then search for the process using it. All the necessary
668 * page table adjustments can then be made atomically.
670 static int try_to_unuse(unsigned int type)
672 struct swap_info_struct * si = &swap_info[type];
673 struct mm_struct *start_mm;
674 unsigned short *swap_map;
675 unsigned short swcount;
680 int reset_overflow = 0;
684 * When searching mms for an entry, a good strategy is to
685 * start at the first mm we freed the previous entry from
686 * (though actually we don't notice whether we or coincidence
687 * freed the entry). Initialize this start_mm with a hold.
689 * A simpler strategy would be to start at the last mm we
690 * freed the previous entry from; but that would take less
691 * advantage of mmlist ordering, which clusters forked mms
692 * together, child after parent. If we race with dup_mmap(), we
693 * prefer to resolve parent before child, lest we miss entries
694 * duplicated after we scanned child: using last mm would invert
695 * that. Though it's only a serious concern when an overflowed
696 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
699 atomic_inc(&init_mm.mm_users);
702 * Keep on scanning until all entries have gone. Usually,
703 * one pass through swap_map is enough, but not necessarily:
704 * there are races when an instance of an entry might be missed.
706 while ((i = find_next_to_unuse(si, i)) != 0) {
707 if (signal_pending(current)) {
713 * Get a page for the entry, using the existing swap
714 * cache page if there is one. Otherwise, get a clean
715 * page and read the swap into it.
717 swap_map = &si->swap_map[i];
718 entry = swp_entry(type, i);
719 page = read_swap_cache_async(entry, NULL, 0);
722 * Either swap_duplicate() failed because entry
723 * has been freed independently, and will not be
724 * reused since sys_swapoff() already disabled
725 * allocation from here, or alloc_page() failed.
734 * Don't hold on to start_mm if it looks like exiting.
736 if (atomic_read(&start_mm->mm_users) == 1) {
739 atomic_inc(&init_mm.mm_users);
743 * Wait for and lock page. When do_swap_page races with
744 * try_to_unuse, do_swap_page can handle the fault much
745 * faster than try_to_unuse can locate the entry. This
746 * apparently redundant "wait_on_page_locked" lets try_to_unuse
747 * defer to do_swap_page in such a case - in some tests,
748 * do_swap_page and try_to_unuse repeatedly compete.
750 wait_on_page_locked(page);
751 wait_on_page_writeback(page);
753 wait_on_page_writeback(page);
756 * Remove all references to entry.
757 * Whenever we reach init_mm, there's no address space
758 * to search, but use it as a reminder to search shmem.
763 if (start_mm == &init_mm)
764 shmem = shmem_unuse(entry, page);
766 retval = unuse_mm(start_mm, entry, page);
769 int set_start_mm = (*swap_map >= swcount);
770 struct list_head *p = &start_mm->mmlist;
771 struct mm_struct *new_start_mm = start_mm;
772 struct mm_struct *prev_mm = start_mm;
773 struct mm_struct *mm;
775 atomic_inc(&new_start_mm->mm_users);
776 atomic_inc(&prev_mm->mm_users);
777 spin_lock(&mmlist_lock);
778 while (*swap_map > 1 && !retval &&
779 (p = p->next) != &start_mm->mmlist) {
780 mm = list_entry(p, struct mm_struct, mmlist);
781 if (atomic_inc_return(&mm->mm_users) == 1) {
782 atomic_dec(&mm->mm_users);
785 spin_unlock(&mmlist_lock);
794 else if (mm == &init_mm) {
796 shmem = shmem_unuse(entry, page);
798 retval = unuse_mm(mm, entry, page);
799 if (set_start_mm && *swap_map < swcount) {
801 atomic_inc(&mm->mm_users);
805 spin_lock(&mmlist_lock);
807 spin_unlock(&mmlist_lock);
810 start_mm = new_start_mm;
814 page_cache_release(page);
819 * How could swap count reach 0x7fff when the maximum
820 * pid is 0x7fff, and there's no way to repeat a swap
821 * page within an mm (except in shmem, where it's the
822 * shared object which takes the reference count)?
823 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
825 * If that's wrong, then we should worry more about
826 * exit_mmap() and do_munmap() cases described above:
827 * we might be resetting SWAP_MAP_MAX too early here.
828 * We know "Undead"s can happen, they're okay, so don't
829 * report them; but do report if we reset SWAP_MAP_MAX.
831 if (*swap_map == SWAP_MAP_MAX) {
832 spin_lock(&swap_lock);
834 spin_unlock(&swap_lock);
839 * If a reference remains (rare), we would like to leave
840 * the page in the swap cache; but try_to_unmap could
841 * then re-duplicate the entry once we drop page lock,
842 * so we might loop indefinitely; also, that page could
843 * not be swapped out to other storage meanwhile. So:
844 * delete from cache even if there's another reference,
845 * after ensuring that the data has been saved to disk -
846 * since if the reference remains (rarer), it will be
847 * read from disk into another page. Splitting into two
848 * pages would be incorrect if swap supported "shared
849 * private" pages, but they are handled by tmpfs files.
851 * Note shmem_unuse already deleted a swappage from
852 * the swap cache, unless the move to filepage failed:
853 * in which case it left swappage in cache, lowered its
854 * swap count to pass quickly through the loops above,
855 * and now we must reincrement count to try again later.
857 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
858 struct writeback_control wbc = {
859 .sync_mode = WB_SYNC_NONE,
862 swap_writepage(page, &wbc);
864 wait_on_page_writeback(page);
866 if (PageSwapCache(page)) {
868 swap_duplicate(entry);
870 delete_from_swap_cache(page);
874 * So we could skip searching mms once swap count went
875 * to 1, we did not mark any present ptes as dirty: must
876 * mark page dirty so shrink_list will preserve it.
880 page_cache_release(page);
883 * Make sure that we aren't completely killing
884 * interactive performance.
890 if (reset_overflow) {
891 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
898 * After a successful try_to_unuse, if no swap is now in use, we know
899 * we can empty the mmlist. swap_lock must be held on entry and exit.
900 * Note that mmlist_lock nests inside swap_lock, and an mm must be
901 * added to the mmlist just after page_duplicate - before would be racy.
903 static void drain_mmlist(void)
905 struct list_head *p, *next;
908 for (i = 0; i < nr_swapfiles; i++)
909 if (swap_info[i].inuse_pages)
911 spin_lock(&mmlist_lock);
912 list_for_each_safe(p, next, &init_mm.mmlist)
914 spin_unlock(&mmlist_lock);
918 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
919 * corresponds to page offset `offset'.
921 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
923 struct swap_extent *se = sis->curr_swap_extent;
924 struct swap_extent *start_se = se;
927 struct list_head *lh;
929 if (se->start_page <= offset &&
930 offset < (se->start_page + se->nr_pages)) {
931 return se->start_block + (offset - se->start_page);
934 if (lh == &sis->extent_list)
936 se = list_entry(lh, struct swap_extent, list);
937 sis->curr_swap_extent = se;
938 BUG_ON(se == start_se); /* It *must* be present */
943 * Free all of a swapdev's extent information
945 static void destroy_swap_extents(struct swap_info_struct *sis)
947 while (!list_empty(&sis->extent_list)) {
948 struct swap_extent *se;
950 se = list_entry(sis->extent_list.next,
951 struct swap_extent, list);
958 * Add a block range (and the corresponding page range) into this swapdev's
959 * extent list. The extent list is kept sorted in page order.
961 * This function rather assumes that it is called in ascending page order.
964 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
965 unsigned long nr_pages, sector_t start_block)
967 struct swap_extent *se;
968 struct swap_extent *new_se;
969 struct list_head *lh;
971 lh = sis->extent_list.prev; /* The highest page extent */
972 if (lh != &sis->extent_list) {
973 se = list_entry(lh, struct swap_extent, list);
974 BUG_ON(se->start_page + se->nr_pages != start_page);
975 if (se->start_block + se->nr_pages == start_block) {
977 se->nr_pages += nr_pages;
983 * No merge. Insert a new extent, preserving ordering.
985 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
988 new_se->start_page = start_page;
989 new_se->nr_pages = nr_pages;
990 new_se->start_block = start_block;
992 list_add_tail(&new_se->list, &sis->extent_list);
997 * A `swap extent' is a simple thing which maps a contiguous range of pages
998 * onto a contiguous range of disk blocks. An ordered list of swap extents
999 * is built at swapon time and is then used at swap_writepage/swap_readpage
1000 * time for locating where on disk a page belongs.
1002 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1003 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1004 * swap files identically.
1006 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1007 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1008 * swapfiles are handled *identically* after swapon time.
1010 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1011 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1012 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1013 * requirements, they are simply tossed out - we will never use those blocks
1016 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1017 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1018 * which will scribble on the fs.
1020 * The amount of disk space which a single swap extent represents varies.
1021 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1022 * extents in the list. To avoid much list walking, we cache the previous
1023 * search location in `curr_swap_extent', and start new searches from there.
1024 * This is extremely effective. The average number of iterations in
1025 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1027 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1029 struct inode *inode;
1030 unsigned blocks_per_page;
1031 unsigned long page_no;
1033 sector_t probe_block;
1034 sector_t last_block;
1035 sector_t lowest_block = -1;
1036 sector_t highest_block = 0;
1040 inode = sis->swap_file->f_mapping->host;
1041 if (S_ISBLK(inode->i_mode)) {
1042 ret = add_swap_extent(sis, 0, sis->max, 0);
1047 blkbits = inode->i_blkbits;
1048 blocks_per_page = PAGE_SIZE >> blkbits;
1051 * Map all the blocks into the extent list. This code doesn't try
1056 last_block = i_size_read(inode) >> blkbits;
1057 while ((probe_block + blocks_per_page) <= last_block &&
1058 page_no < sis->max) {
1059 unsigned block_in_page;
1060 sector_t first_block;
1062 first_block = bmap(inode, probe_block);
1063 if (first_block == 0)
1067 * It must be PAGE_SIZE aligned on-disk
1069 if (first_block & (blocks_per_page - 1)) {
1074 for (block_in_page = 1; block_in_page < blocks_per_page;
1078 block = bmap(inode, probe_block + block_in_page);
1081 if (block != first_block + block_in_page) {
1088 first_block >>= (PAGE_SHIFT - blkbits);
1089 if (page_no) { /* exclude the header page */
1090 if (first_block < lowest_block)
1091 lowest_block = first_block;
1092 if (first_block > highest_block)
1093 highest_block = first_block;
1097 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1099 ret = add_swap_extent(sis, page_no, 1, first_block);
1104 probe_block += blocks_per_page;
1109 *span = 1 + highest_block - lowest_block;
1111 page_no = 1; /* force Empty message */
1113 sis->pages = page_no - 1;
1114 sis->highest_bit = page_no - 1;
1116 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1117 struct swap_extent, list);
1120 printk(KERN_ERR "swapon: swapfile has holes\n");
1126 #if 0 /* We don't need this yet */
1127 #include <linux/backing-dev.h>
1128 int page_queue_congested(struct page *page)
1130 struct backing_dev_info *bdi;
1132 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1134 if (PageSwapCache(page)) {
1135 swp_entry_t entry = { .val = page_private(page) };
1136 struct swap_info_struct *sis;
1138 sis = get_swap_info_struct(swp_type(entry));
1139 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1141 bdi = page->mapping->backing_dev_info;
1142 return bdi_write_congested(bdi);
1146 asmlinkage long sys_swapoff(const char __user * specialfile)
1148 struct swap_info_struct * p = NULL;
1149 unsigned short *swap_map;
1150 struct file *swap_file, *victim;
1151 struct address_space *mapping;
1152 struct inode *inode;
1157 if (!capable(CAP_SYS_ADMIN))
1160 pathname = getname(specialfile);
1161 err = PTR_ERR(pathname);
1162 if (IS_ERR(pathname))
1165 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1167 err = PTR_ERR(victim);
1171 mapping = victim->f_mapping;
1173 spin_lock(&swap_lock);
1174 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1175 p = swap_info + type;
1176 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1177 if (p->swap_file->f_mapping == mapping)
1184 spin_unlock(&swap_lock);
1187 if (!security_vm_enough_memory(p->pages))
1188 vm_unacct_memory(p->pages);
1191 spin_unlock(&swap_lock);
1195 swap_list.head = p->next;
1197 swap_info[prev].next = p->next;
1199 if (type == swap_list.next) {
1200 /* just pick something that's safe... */
1201 swap_list.next = swap_list.head;
1203 nr_swap_pages -= p->pages;
1204 total_swap_pages -= p->pages;
1205 p->flags &= ~SWP_WRITEOK;
1206 spin_unlock(&swap_lock);
1208 current->flags |= PF_SWAPOFF;
1209 err = try_to_unuse(type);
1210 current->flags &= ~PF_SWAPOFF;
1213 /* re-insert swap space back into swap_list */
1214 spin_lock(&swap_lock);
1215 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1216 if (p->prio >= swap_info[i].prio)
1220 swap_list.head = swap_list.next = p - swap_info;
1222 swap_info[prev].next = p - swap_info;
1223 nr_swap_pages += p->pages;
1224 total_swap_pages += p->pages;
1225 p->flags |= SWP_WRITEOK;
1226 spin_unlock(&swap_lock);
1230 /* wait for any unplug function to finish */
1231 down_write(&swap_unplug_sem);
1232 up_write(&swap_unplug_sem);
1234 destroy_swap_extents(p);
1235 mutex_lock(&swapon_mutex);
1236 spin_lock(&swap_lock);
1239 /* wait for anyone still in scan_swap_map */
1240 p->highest_bit = 0; /* cuts scans short */
1241 while (p->flags >= SWP_SCANNING) {
1242 spin_unlock(&swap_lock);
1243 schedule_timeout_uninterruptible(1);
1244 spin_lock(&swap_lock);
1247 swap_file = p->swap_file;
1248 p->swap_file = NULL;
1250 swap_map = p->swap_map;
1253 spin_unlock(&swap_lock);
1254 mutex_unlock(&swapon_mutex);
1256 inode = mapping->host;
1257 if (S_ISBLK(inode->i_mode)) {
1258 struct block_device *bdev = I_BDEV(inode);
1259 set_blocksize(bdev, p->old_block_size);
1262 mutex_lock(&inode->i_mutex);
1263 inode->i_flags &= ~S_SWAPFILE;
1264 mutex_unlock(&inode->i_mutex);
1266 filp_close(swap_file, NULL);
1270 filp_close(victim, NULL);
1275 #ifdef CONFIG_PROC_FS
1277 static void *swap_start(struct seq_file *swap, loff_t *pos)
1279 struct swap_info_struct *ptr = swap_info;
1283 mutex_lock(&swapon_mutex);
1285 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1286 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1295 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1297 struct swap_info_struct *ptr = v;
1298 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1300 for (++ptr; ptr < endptr; ptr++) {
1301 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1310 static void swap_stop(struct seq_file *swap, void *v)
1312 mutex_unlock(&swapon_mutex);
1315 static int swap_show(struct seq_file *swap, void *v)
1317 struct swap_info_struct *ptr = v;
1322 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1324 file = ptr->swap_file;
1325 len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\");
1326 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1327 len < 40 ? 40 - len : 1, " ",
1328 S_ISBLK(file->f_dentry->d_inode->i_mode) ?
1329 "partition" : "file\t",
1330 ptr->pages << (PAGE_SHIFT - 10),
1331 ptr->inuse_pages << (PAGE_SHIFT - 10),
1336 static struct seq_operations swaps_op = {
1337 .start = swap_start,
1343 static int swaps_open(struct inode *inode, struct file *file)
1345 return seq_open(file, &swaps_op);
1348 static struct file_operations proc_swaps_operations = {
1351 .llseek = seq_lseek,
1352 .release = seq_release,
1355 static int __init procswaps_init(void)
1357 struct proc_dir_entry *entry;
1359 entry = create_proc_entry("swaps", 0, NULL);
1361 entry->proc_fops = &proc_swaps_operations;
1364 __initcall(procswaps_init);
1365 #endif /* CONFIG_PROC_FS */
1368 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1370 * The swapon system call
1372 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1374 struct swap_info_struct * p;
1376 struct block_device *bdev = NULL;
1377 struct file *swap_file = NULL;
1378 struct address_space *mapping;
1382 static int least_priority;
1383 union swap_header *swap_header = NULL;
1384 int swap_header_version;
1385 unsigned int nr_good_pages = 0;
1388 unsigned long maxpages = 1;
1390 unsigned short *swap_map;
1391 struct page *page = NULL;
1392 struct inode *inode = NULL;
1395 if (!capable(CAP_SYS_ADMIN))
1397 spin_lock(&swap_lock);
1399 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1400 if (!(p->flags & SWP_USED))
1404 * Test if adding another swap device is possible. There are
1405 * two limiting factors: 1) the number of bits for the swap
1406 * type swp_entry_t definition and 2) the number of bits for
1407 * the swap type in the swap ptes as defined by the different
1408 * architectures. To honor both limitations a swap entry
1409 * with swap offset 0 and swap type ~0UL is created, encoded
1410 * to a swap pte, decoded to a swp_entry_t again and finally
1411 * the swap type part is extracted. This will mask all bits
1412 * from the initial ~0UL that can't be encoded in either the
1413 * swp_entry_t or the architecture definition of a swap pte.
1415 if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1416 spin_unlock(&swap_lock);
1419 if (type >= nr_swapfiles)
1420 nr_swapfiles = type+1;
1421 INIT_LIST_HEAD(&p->extent_list);
1422 p->flags = SWP_USED;
1423 p->swap_file = NULL;
1424 p->old_block_size = 0;
1431 if (swap_flags & SWAP_FLAG_PREFER) {
1433 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1435 p->prio = --least_priority;
1437 spin_unlock(&swap_lock);
1438 name = getname(specialfile);
1439 error = PTR_ERR(name);
1444 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1445 error = PTR_ERR(swap_file);
1446 if (IS_ERR(swap_file)) {
1451 p->swap_file = swap_file;
1452 mapping = swap_file->f_mapping;
1453 inode = mapping->host;
1456 for (i = 0; i < nr_swapfiles; i++) {
1457 struct swap_info_struct *q = &swap_info[i];
1459 if (i == type || !q->swap_file)
1461 if (mapping == q->swap_file->f_mapping)
1466 if (S_ISBLK(inode->i_mode)) {
1467 bdev = I_BDEV(inode);
1468 error = bd_claim(bdev, sys_swapon);
1474 p->old_block_size = block_size(bdev);
1475 error = set_blocksize(bdev, PAGE_SIZE);
1479 } else if (S_ISREG(inode->i_mode)) {
1480 p->bdev = inode->i_sb->s_bdev;
1481 mutex_lock(&inode->i_mutex);
1483 if (IS_SWAPFILE(inode)) {
1491 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1494 * Read the swap header.
1496 if (!mapping->a_ops->readpage) {
1500 page = read_cache_page(mapping, 0,
1501 (filler_t *)mapping->a_ops->readpage, swap_file);
1503 error = PTR_ERR(page);
1506 wait_on_page_locked(page);
1507 if (!PageUptodate(page))
1510 swap_header = page_address(page);
1512 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1513 swap_header_version = 1;
1514 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1515 swap_header_version = 2;
1517 printk(KERN_ERR "Unable to find swap-space signature\n");
1522 switch (swap_header_version) {
1524 printk(KERN_ERR "version 0 swap is no longer supported. "
1525 "Use mkswap -v1 %s\n", name);
1529 /* Check the swap header's sub-version and the size of
1530 the swap file and bad block lists */
1531 if (swap_header->info.version != 1) {
1533 "Unable to handle swap header version %d\n",
1534 swap_header->info.version);
1540 p->cluster_next = 1;
1543 * Find out how many pages are allowed for a single swap
1544 * device. There are two limiting factors: 1) the number of
1545 * bits for the swap offset in the swp_entry_t type and
1546 * 2) the number of bits in the a swap pte as defined by
1547 * the different architectures. In order to find the
1548 * largest possible bit mask a swap entry with swap type 0
1549 * and swap offset ~0UL is created, encoded to a swap pte,
1550 * decoded to a swp_entry_t again and finally the swap
1551 * offset is extracted. This will mask all the bits from
1552 * the initial ~0UL mask that can't be encoded in either
1553 * the swp_entry_t or the architecture definition of a
1556 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1557 if (maxpages > swap_header->info.last_page)
1558 maxpages = swap_header->info.last_page;
1559 p->highest_bit = maxpages - 1;
1564 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1566 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1569 /* OK, set up the swap map and apply the bad block list */
1570 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1576 memset(p->swap_map, 0, maxpages * sizeof(short));
1577 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1578 int page_nr = swap_header->info.badpages[i];
1579 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1582 p->swap_map[page_nr] = SWAP_MAP_BAD;
1584 nr_good_pages = swap_header->info.last_page -
1585 swap_header->info.nr_badpages -
1586 1 /* header page */;
1591 if (swapfilesize && maxpages > swapfilesize) {
1593 "Swap area shorter than signature indicates\n");
1597 if (nr_good_pages) {
1598 p->swap_map[0] = SWAP_MAP_BAD;
1600 p->pages = nr_good_pages;
1601 nr_extents = setup_swap_extents(p, &span);
1602 if (nr_extents < 0) {
1606 nr_good_pages = p->pages;
1608 if (!nr_good_pages) {
1609 printk(KERN_WARNING "Empty swap-file\n");
1614 mutex_lock(&swapon_mutex);
1615 spin_lock(&swap_lock);
1616 p->flags = SWP_ACTIVE;
1617 nr_swap_pages += nr_good_pages;
1618 total_swap_pages += nr_good_pages;
1620 printk(KERN_INFO "Adding %uk swap on %s. "
1621 "Priority:%d extents:%d across:%lluk\n",
1622 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1623 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1625 /* insert swap space into swap_list: */
1627 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1628 if (p->prio >= swap_info[i].prio) {
1635 swap_list.head = swap_list.next = p - swap_info;
1637 swap_info[prev].next = p - swap_info;
1639 spin_unlock(&swap_lock);
1640 mutex_unlock(&swapon_mutex);
1645 set_blocksize(bdev, p->old_block_size);
1648 destroy_swap_extents(p);
1650 spin_lock(&swap_lock);
1651 swap_map = p->swap_map;
1652 p->swap_file = NULL;
1655 if (!(swap_flags & SWAP_FLAG_PREFER))
1657 spin_unlock(&swap_lock);
1660 filp_close(swap_file, NULL);
1662 if (page && !IS_ERR(page)) {
1664 page_cache_release(page);
1670 inode->i_flags |= S_SWAPFILE;
1671 mutex_unlock(&inode->i_mutex);
1676 void si_swapinfo(struct sysinfo *val)
1679 unsigned long nr_to_be_unused = 0;
1681 spin_lock(&swap_lock);
1682 for (i = 0; i < nr_swapfiles; i++) {
1683 if (!(swap_info[i].flags & SWP_USED) ||
1684 (swap_info[i].flags & SWP_WRITEOK))
1686 nr_to_be_unused += swap_info[i].inuse_pages;
1688 val->freeswap = nr_swap_pages + nr_to_be_unused;
1689 val->totalswap = total_swap_pages + nr_to_be_unused;
1690 spin_unlock(&swap_lock);
1694 * Verify that a swap entry is valid and increment its swap map count.
1696 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1697 * "permanent", but will be reclaimed by the next swapoff.
1699 int swap_duplicate(swp_entry_t entry)
1701 struct swap_info_struct * p;
1702 unsigned long offset, type;
1705 type = swp_type(entry);
1706 if (type >= nr_swapfiles)
1708 p = type + swap_info;
1709 offset = swp_offset(entry);
1711 spin_lock(&swap_lock);
1712 if (offset < p->max && p->swap_map[offset]) {
1713 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1714 p->swap_map[offset]++;
1716 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1717 if (swap_overflow++ < 5)
1718 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1719 p->swap_map[offset] = SWAP_MAP_MAX;
1723 spin_unlock(&swap_lock);
1728 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1732 struct swap_info_struct *
1733 get_swap_info_struct(unsigned type)
1735 return &swap_info[type];
1739 * swap_lock prevents swap_map being freed. Don't grab an extra
1740 * reference on the swaphandle, it doesn't matter if it becomes unused.
1742 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1744 int ret = 0, i = 1 << page_cluster;
1746 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1748 if (!page_cluster) /* no readahead */
1750 toff = (swp_offset(entry) >> page_cluster) << page_cluster;
1751 if (!toff) /* first page is swap header */
1755 spin_lock(&swap_lock);
1757 /* Don't read-ahead past the end of the swap area */
1758 if (toff >= swapdev->max)
1760 /* Don't read in free or bad pages */
1761 if (!swapdev->swap_map[toff])
1763 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1768 spin_unlock(&swap_lock);