chelsio: tabulate the update of the statistic counters
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  ************************************************************************/
46
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/ioport.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/init.h>
58 #include <linux/delay.h>
59 #include <linux/stddef.h>
60 #include <linux/ioctl.h>
61 #include <linux/timex.h>
62 #include <linux/sched.h>
63 #include <linux/ethtool.h>
64 #include <linux/workqueue.h>
65 #include <linux/if_vlan.h>
66 #include <linux/ip.h>
67 #include <linux/tcp.h>
68 #include <net/tcp.h>
69
70 #include <asm/system.h>
71 #include <asm/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/div64.h>
74 #include <asm/irq.h>
75
76 /* local include */
77 #include "s2io.h"
78 #include "s2io-regs.h"
79
80 #define DRV_VERSION "2.0.15.2"
81
82 /* S2io Driver name & version. */
83 static char s2io_driver_name[] = "Neterion";
84 static char s2io_driver_version[] = DRV_VERSION;
85
86 static int rxd_size[4] = {32,48,48,64};
87 static int rxd_count[4] = {127,85,85,63};
88
89 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
90 {
91         int ret;
92
93         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96         return ret;
97 }
98
99 /*
100  * Cards with following subsystem_id have a link state indication
101  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102  * macro below identifies these cards given the subsystem_id.
103  */
104 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105         (dev_type == XFRAME_I_DEVICE) ?                 \
106                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
108
109 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112 #define PANIC   1
113 #define LOW     2
114 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115 {
116         mac_info_t *mac_control;
117
118         mac_control = &sp->mac_control;
119         if (rxb_size <= rxd_count[sp->rxd_mode])
120                 return PANIC;
121         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122                 return  LOW;
123         return 0;
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"},
230         {"rmac_ttl_1519_4095_frms"},
231         {"rmac_ttl_4096_8191_frms"},
232         {"rmac_ttl_8192_max_frms"},
233         {"rmac_ttl_gt_max_frms"},
234         {"rmac_osized_alt_frms"},
235         {"rmac_jabber_alt_frms"},
236         {"rmac_gt_max_alt_frms"},
237         {"rmac_vlan_frms"},
238         {"rmac_len_discard"},
239         {"rmac_fcs_discard"},
240         {"rmac_pf_discard"},
241         {"rmac_da_discard"},
242         {"rmac_red_discard"},
243         {"rmac_rts_discard"},
244         {"rmac_ingm_full_discard"},
245         {"link_fault_cnt"},
246         {"\n DRIVER STATISTICS"},
247         {"single_bit_ecc_errs"},
248         {"double_bit_ecc_errs"},
249         {"parity_err_cnt"},
250         {"serious_err_cnt"},
251         {"soft_reset_cnt"},
252         {"fifo_full_cnt"},
253         {"ring_full_cnt"},
254         ("alarm_transceiver_temp_high"),
255         ("alarm_transceiver_temp_low"),
256         ("alarm_laser_bias_current_high"),
257         ("alarm_laser_bias_current_low"),
258         ("alarm_laser_output_power_high"),
259         ("alarm_laser_output_power_low"),
260         ("warn_transceiver_temp_high"),
261         ("warn_transceiver_temp_low"),
262         ("warn_laser_bias_current_high"),
263         ("warn_laser_bias_current_low"),
264         ("warn_laser_output_power_high"),
265         ("warn_laser_output_power_low"),
266         ("lro_aggregated_pkts"),
267         ("lro_flush_both_count"),
268         ("lro_out_of_sequence_pkts"),
269         ("lro_flush_due_to_max_pkts"),
270         ("lro_avg_aggr_pkts"),
271 };
272
273 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
278
279 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
280                         init_timer(&timer);                     \
281                         timer.function = handle;                \
282                         timer.data = (unsigned long) arg;       \
283                         mod_timer(&timer, (jiffies + exp))      \
284
285 /* Add the vlan */
286 static void s2io_vlan_rx_register(struct net_device *dev,
287                                         struct vlan_group *grp)
288 {
289         nic_t *nic = dev->priv;
290         unsigned long flags;
291
292         spin_lock_irqsave(&nic->tx_lock, flags);
293         nic->vlgrp = grp;
294         spin_unlock_irqrestore(&nic->tx_lock, flags);
295 }
296
297 /* Unregister the vlan */
298 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299 {
300         nic_t *nic = dev->priv;
301         unsigned long flags;
302
303         spin_lock_irqsave(&nic->tx_lock, flags);
304         if (nic->vlgrp)
305                 nic->vlgrp->vlan_devices[vid] = NULL;
306         spin_unlock_irqrestore(&nic->tx_lock, flags);
307 }
308
309 /*
310  * Constants to be programmed into the Xena's registers, to configure
311  * the XAUI.
312  */
313
314 #define END_SIGN        0x0
315 static const u64 herc_act_dtx_cfg[] = {
316         /* Set address */
317         0x8000051536750000ULL, 0x80000515367500E0ULL,
318         /* Write data */
319         0x8000051536750004ULL, 0x80000515367500E4ULL,
320         /* Set address */
321         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322         /* Write data */
323         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324         /* Set address */
325         0x801205150D440000ULL, 0x801205150D4400E0ULL,
326         /* Write data */
327         0x801205150D440004ULL, 0x801205150D4400E4ULL,
328         /* Set address */
329         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330         /* Write data */
331         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332         /* Done */
333         END_SIGN
334 };
335
336 static const u64 xena_dtx_cfg[] = {
337         /* Set address */
338         0x8000051500000000ULL, 0x80000515000000E0ULL,
339         /* Write data */
340         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341         /* Set address */
342         0x8001051500000000ULL, 0x80010515000000E0ULL,
343         /* Write data */
344         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345         /* Set address */
346         0x8002051500000000ULL, 0x80020515000000E0ULL,
347         /* Write data */
348         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
349         END_SIGN
350 };
351
352 /*
353  * Constants for Fixing the MacAddress problem seen mostly on
354  * Alpha machines.
355  */
356 static const u64 fix_mac[] = {
357         0x0060000000000000ULL, 0x0060600000000000ULL,
358         0x0040600000000000ULL, 0x0000600000000000ULL,
359         0x0020600000000000ULL, 0x0060600000000000ULL,
360         0x0020600000000000ULL, 0x0060600000000000ULL,
361         0x0020600000000000ULL, 0x0060600000000000ULL,
362         0x0020600000000000ULL, 0x0060600000000000ULL,
363         0x0020600000000000ULL, 0x0060600000000000ULL,
364         0x0020600000000000ULL, 0x0060600000000000ULL,
365         0x0020600000000000ULL, 0x0060600000000000ULL,
366         0x0020600000000000ULL, 0x0060600000000000ULL,
367         0x0020600000000000ULL, 0x0060600000000000ULL,
368         0x0020600000000000ULL, 0x0060600000000000ULL,
369         0x0020600000000000ULL, 0x0000600000000000ULL,
370         0x0040600000000000ULL, 0x0060600000000000ULL,
371         END_SIGN
372 };
373
374 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375 MODULE_LICENSE("GPL");
376 MODULE_VERSION(DRV_VERSION);
377
378
379 /* Module Loadable parameters. */
380 S2IO_PARM_INT(tx_fifo_num, 1);
381 S2IO_PARM_INT(rx_ring_num, 1);
382
383
384 S2IO_PARM_INT(rx_ring_mode, 1);
385 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386 S2IO_PARM_INT(rmac_pause_time, 0x100);
387 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389 S2IO_PARM_INT(shared_splits, 0);
390 S2IO_PARM_INT(tmac_util_period, 5);
391 S2IO_PARM_INT(rmac_util_period, 5);
392 S2IO_PARM_INT(bimodal, 0);
393 S2IO_PARM_INT(l3l4hdr_size, 128);
394 /* Frequency of Rx desc syncs expressed as power of 2 */
395 S2IO_PARM_INT(rxsync_frequency, 3);
396 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
397 S2IO_PARM_INT(intr_type, 0);
398 /* Large receive offload feature */
399 S2IO_PARM_INT(lro, 0);
400 /* Max pkts to be aggregated by LRO at one time. If not specified,
401  * aggregation happens until we hit max IP pkt size(64K)
402  */
403 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
404 #ifndef CONFIG_S2IO_NAPI
405 S2IO_PARM_INT(indicate_max_pkts, 0);
406 #endif
407
408 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
409     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
410 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
411     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
412 static unsigned int rts_frm_len[MAX_RX_RINGS] =
413     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
414
415 module_param_array(tx_fifo_len, uint, NULL, 0);
416 module_param_array(rx_ring_sz, uint, NULL, 0);
417 module_param_array(rts_frm_len, uint, NULL, 0);
418
419 /*
420  * S2IO device table.
421  * This table lists all the devices that this driver supports.
422  */
423 static struct pci_device_id s2io_tbl[] __devinitdata = {
424         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
425          PCI_ANY_ID, PCI_ANY_ID},
426         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
427          PCI_ANY_ID, PCI_ANY_ID},
428         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
429          PCI_ANY_ID, PCI_ANY_ID},
430         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
431          PCI_ANY_ID, PCI_ANY_ID},
432         {0,}
433 };
434
435 MODULE_DEVICE_TABLE(pci, s2io_tbl);
436
437 static struct pci_driver s2io_driver = {
438       .name = "S2IO",
439       .id_table = s2io_tbl,
440       .probe = s2io_init_nic,
441       .remove = __devexit_p(s2io_rem_nic),
442 };
443
444 /* A simplifier macro used both by init and free shared_mem Fns(). */
445 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
446
447 /**
448  * init_shared_mem - Allocation and Initialization of Memory
449  * @nic: Device private variable.
450  * Description: The function allocates all the memory areas shared
451  * between the NIC and the driver. This includes Tx descriptors,
452  * Rx descriptors and the statistics block.
453  */
454
455 static int init_shared_mem(struct s2io_nic *nic)
456 {
457         u32 size;
458         void *tmp_v_addr, *tmp_v_addr_next;
459         dma_addr_t tmp_p_addr, tmp_p_addr_next;
460         RxD_block_t *pre_rxd_blk = NULL;
461         int i, j, blk_cnt, rx_sz, tx_sz;
462         int lst_size, lst_per_page;
463         struct net_device *dev = nic->dev;
464         unsigned long tmp;
465         buffAdd_t *ba;
466
467         mac_info_t *mac_control;
468         struct config_param *config;
469
470         mac_control = &nic->mac_control;
471         config = &nic->config;
472
473
474         /* Allocation and initialization of TXDLs in FIOFs */
475         size = 0;
476         for (i = 0; i < config->tx_fifo_num; i++) {
477                 size += config->tx_cfg[i].fifo_len;
478         }
479         if (size > MAX_AVAILABLE_TXDS) {
480                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
481                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
482                 return -EINVAL;
483         }
484
485         lst_size = (sizeof(TxD_t) * config->max_txds);
486         tx_sz = lst_size * size;
487         lst_per_page = PAGE_SIZE / lst_size;
488
489         for (i = 0; i < config->tx_fifo_num; i++) {
490                 int fifo_len = config->tx_cfg[i].fifo_len;
491                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
492                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
493                                                           GFP_KERNEL);
494                 if (!mac_control->fifos[i].list_info) {
495                         DBG_PRINT(ERR_DBG,
496                                   "Malloc failed for list_info\n");
497                         return -ENOMEM;
498                 }
499                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
500         }
501         for (i = 0; i < config->tx_fifo_num; i++) {
502                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
503                                                 lst_per_page);
504                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
506                     config->tx_cfg[i].fifo_len - 1;
507                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
509                     config->tx_cfg[i].fifo_len - 1;
510                 mac_control->fifos[i].fifo_no = i;
511                 mac_control->fifos[i].nic = nic;
512                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
513
514                 for (j = 0; j < page_num; j++) {
515                         int k = 0;
516                         dma_addr_t tmp_p;
517                         void *tmp_v;
518                         tmp_v = pci_alloc_consistent(nic->pdev,
519                                                      PAGE_SIZE, &tmp_p);
520                         if (!tmp_v) {
521                                 DBG_PRINT(ERR_DBG,
522                                           "pci_alloc_consistent ");
523                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
524                                 return -ENOMEM;
525                         }
526                         /* If we got a zero DMA address(can happen on
527                          * certain platforms like PPC), reallocate.
528                          * Store virtual address of page we don't want,
529                          * to be freed later.
530                          */
531                         if (!tmp_p) {
532                                 mac_control->zerodma_virt_addr = tmp_v;
533                                 DBG_PRINT(INIT_DBG,
534                                 "%s: Zero DMA address for TxDL. ", dev->name);
535                                 DBG_PRINT(INIT_DBG,
536                                 "Virtual address %p\n", tmp_v);
537                                 tmp_v = pci_alloc_consistent(nic->pdev,
538                                                      PAGE_SIZE, &tmp_p);
539                                 if (!tmp_v) {
540                                         DBG_PRINT(ERR_DBG,
541                                           "pci_alloc_consistent ");
542                                         DBG_PRINT(ERR_DBG, "failed for TxDL\n");
543                                         return -ENOMEM;
544                                 }
545                         }
546                         while (k < lst_per_page) {
547                                 int l = (j * lst_per_page) + k;
548                                 if (l == config->tx_cfg[i].fifo_len)
549                                         break;
550                                 mac_control->fifos[i].list_info[l].list_virt_addr =
551                                     tmp_v + (k * lst_size);
552                                 mac_control->fifos[i].list_info[l].list_phy_addr =
553                                     tmp_p + (k * lst_size);
554                                 k++;
555                         }
556                 }
557         }
558
559         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
560         if (!nic->ufo_in_band_v)
561                 return -ENOMEM;
562
563         /* Allocation and initialization of RXDs in Rings */
564         size = 0;
565         for (i = 0; i < config->rx_ring_num; i++) {
566                 if (config->rx_cfg[i].num_rxd %
567                     (rxd_count[nic->rxd_mode] + 1)) {
568                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
569                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
570                                   i);
571                         DBG_PRINT(ERR_DBG, "RxDs per Block");
572                         return FAILURE;
573                 }
574                 size += config->rx_cfg[i].num_rxd;
575                 mac_control->rings[i].block_count =
576                         config->rx_cfg[i].num_rxd /
577                         (rxd_count[nic->rxd_mode] + 1 );
578                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
579                         mac_control->rings[i].block_count;
580         }
581         if (nic->rxd_mode == RXD_MODE_1)
582                 size = (size * (sizeof(RxD1_t)));
583         else
584                 size = (size * (sizeof(RxD3_t)));
585         rx_sz = size;
586
587         for (i = 0; i < config->rx_ring_num; i++) {
588                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
589                 mac_control->rings[i].rx_curr_get_info.offset = 0;
590                 mac_control->rings[i].rx_curr_get_info.ring_len =
591                     config->rx_cfg[i].num_rxd - 1;
592                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
593                 mac_control->rings[i].rx_curr_put_info.offset = 0;
594                 mac_control->rings[i].rx_curr_put_info.ring_len =
595                     config->rx_cfg[i].num_rxd - 1;
596                 mac_control->rings[i].nic = nic;
597                 mac_control->rings[i].ring_no = i;
598
599                 blk_cnt = config->rx_cfg[i].num_rxd /
600                                 (rxd_count[nic->rxd_mode] + 1);
601                 /*  Allocating all the Rx blocks */
602                 for (j = 0; j < blk_cnt; j++) {
603                         rx_block_info_t *rx_blocks;
604                         int l;
605
606                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
607                         size = SIZE_OF_BLOCK; //size is always page size
608                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
609                                                           &tmp_p_addr);
610                         if (tmp_v_addr == NULL) {
611                                 /*
612                                  * In case of failure, free_shared_mem()
613                                  * is called, which should free any
614                                  * memory that was alloced till the
615                                  * failure happened.
616                                  */
617                                 rx_blocks->block_virt_addr = tmp_v_addr;
618                                 return -ENOMEM;
619                         }
620                         memset(tmp_v_addr, 0, size);
621                         rx_blocks->block_virt_addr = tmp_v_addr;
622                         rx_blocks->block_dma_addr = tmp_p_addr;
623                         rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
624                                                   rxd_count[nic->rxd_mode],
625                                                   GFP_KERNEL);
626                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
627                                 rx_blocks->rxds[l].virt_addr =
628                                         rx_blocks->block_virt_addr +
629                                         (rxd_size[nic->rxd_mode] * l);
630                                 rx_blocks->rxds[l].dma_addr =
631                                         rx_blocks->block_dma_addr +
632                                         (rxd_size[nic->rxd_mode] * l);
633                         }
634                 }
635                 /* Interlinking all Rx Blocks */
636                 for (j = 0; j < blk_cnt; j++) {
637                         tmp_v_addr =
638                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
639                         tmp_v_addr_next =
640                                 mac_control->rings[i].rx_blocks[(j + 1) %
641                                               blk_cnt].block_virt_addr;
642                         tmp_p_addr =
643                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
644                         tmp_p_addr_next =
645                                 mac_control->rings[i].rx_blocks[(j + 1) %
646                                               blk_cnt].block_dma_addr;
647
648                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
649                         pre_rxd_blk->reserved_2_pNext_RxD_block =
650                             (unsigned long) tmp_v_addr_next;
651                         pre_rxd_blk->pNext_RxD_Blk_physical =
652                             (u64) tmp_p_addr_next;
653                 }
654         }
655         if (nic->rxd_mode >= RXD_MODE_3A) {
656                 /*
657                  * Allocation of Storages for buffer addresses in 2BUFF mode
658                  * and the buffers as well.
659                  */
660                 for (i = 0; i < config->rx_ring_num; i++) {
661                         blk_cnt = config->rx_cfg[i].num_rxd /
662                            (rxd_count[nic->rxd_mode]+ 1);
663                         mac_control->rings[i].ba =
664                                 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
665                                      GFP_KERNEL);
666                         if (!mac_control->rings[i].ba)
667                                 return -ENOMEM;
668                         for (j = 0; j < blk_cnt; j++) {
669                                 int k = 0;
670                                 mac_control->rings[i].ba[j] =
671                                         kmalloc((sizeof(buffAdd_t) *
672                                                 (rxd_count[nic->rxd_mode] + 1)),
673                                                 GFP_KERNEL);
674                                 if (!mac_control->rings[i].ba[j])
675                                         return -ENOMEM;
676                                 while (k != rxd_count[nic->rxd_mode]) {
677                                         ba = &mac_control->rings[i].ba[j][k];
678
679                                         ba->ba_0_org = (void *) kmalloc
680                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
681                                         if (!ba->ba_0_org)
682                                                 return -ENOMEM;
683                                         tmp = (unsigned long)ba->ba_0_org;
684                                         tmp += ALIGN_SIZE;
685                                         tmp &= ~((unsigned long) ALIGN_SIZE);
686                                         ba->ba_0 = (void *) tmp;
687
688                                         ba->ba_1_org = (void *) kmalloc
689                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
690                                         if (!ba->ba_1_org)
691                                                 return -ENOMEM;
692                                         tmp = (unsigned long) ba->ba_1_org;
693                                         tmp += ALIGN_SIZE;
694                                         tmp &= ~((unsigned long) ALIGN_SIZE);
695                                         ba->ba_1 = (void *) tmp;
696                                         k++;
697                                 }
698                         }
699                 }
700         }
701
702         /* Allocation and initialization of Statistics block */
703         size = sizeof(StatInfo_t);
704         mac_control->stats_mem = pci_alloc_consistent
705             (nic->pdev, size, &mac_control->stats_mem_phy);
706
707         if (!mac_control->stats_mem) {
708                 /*
709                  * In case of failure, free_shared_mem() is called, which
710                  * should free any memory that was alloced till the
711                  * failure happened.
712                  */
713                 return -ENOMEM;
714         }
715         mac_control->stats_mem_sz = size;
716
717         tmp_v_addr = mac_control->stats_mem;
718         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
719         memset(tmp_v_addr, 0, size);
720         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
721                   (unsigned long long) tmp_p_addr);
722
723         return SUCCESS;
724 }
725
726 /**
727  * free_shared_mem - Free the allocated Memory
728  * @nic:  Device private variable.
729  * Description: This function is to free all memory locations allocated by
730  * the init_shared_mem() function and return it to the kernel.
731  */
732
733 static void free_shared_mem(struct s2io_nic *nic)
734 {
735         int i, j, blk_cnt, size;
736         void *tmp_v_addr;
737         dma_addr_t tmp_p_addr;
738         mac_info_t *mac_control;
739         struct config_param *config;
740         int lst_size, lst_per_page;
741         struct net_device *dev = nic->dev;
742
743         if (!nic)
744                 return;
745
746         mac_control = &nic->mac_control;
747         config = &nic->config;
748
749         lst_size = (sizeof(TxD_t) * config->max_txds);
750         lst_per_page = PAGE_SIZE / lst_size;
751
752         for (i = 0; i < config->tx_fifo_num; i++) {
753                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
754                                                 lst_per_page);
755                 for (j = 0; j < page_num; j++) {
756                         int mem_blks = (j * lst_per_page);
757                         if (!mac_control->fifos[i].list_info)
758                                 return;
759                         if (!mac_control->fifos[i].list_info[mem_blks].
760                                  list_virt_addr)
761                                 break;
762                         pci_free_consistent(nic->pdev, PAGE_SIZE,
763                                             mac_control->fifos[i].
764                                             list_info[mem_blks].
765                                             list_virt_addr,
766                                             mac_control->fifos[i].
767                                             list_info[mem_blks].
768                                             list_phy_addr);
769                 }
770                 /* If we got a zero DMA address during allocation,
771                  * free the page now
772                  */
773                 if (mac_control->zerodma_virt_addr) {
774                         pci_free_consistent(nic->pdev, PAGE_SIZE,
775                                             mac_control->zerodma_virt_addr,
776                                             (dma_addr_t)0);
777                         DBG_PRINT(INIT_DBG,
778                                 "%s: Freeing TxDL with zero DMA addr. ",
779                                 dev->name);
780                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
781                                 mac_control->zerodma_virt_addr);
782                 }
783                 kfree(mac_control->fifos[i].list_info);
784         }
785
786         size = SIZE_OF_BLOCK;
787         for (i = 0; i < config->rx_ring_num; i++) {
788                 blk_cnt = mac_control->rings[i].block_count;
789                 for (j = 0; j < blk_cnt; j++) {
790                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
791                                 block_virt_addr;
792                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
793                                 block_dma_addr;
794                         if (tmp_v_addr == NULL)
795                                 break;
796                         pci_free_consistent(nic->pdev, size,
797                                             tmp_v_addr, tmp_p_addr);
798                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
799                 }
800         }
801
802         if (nic->rxd_mode >= RXD_MODE_3A) {
803                 /* Freeing buffer storage addresses in 2BUFF mode. */
804                 for (i = 0; i < config->rx_ring_num; i++) {
805                         blk_cnt = config->rx_cfg[i].num_rxd /
806                             (rxd_count[nic->rxd_mode] + 1);
807                         for (j = 0; j < blk_cnt; j++) {
808                                 int k = 0;
809                                 if (!mac_control->rings[i].ba[j])
810                                         continue;
811                                 while (k != rxd_count[nic->rxd_mode]) {
812                                         buffAdd_t *ba =
813                                                 &mac_control->rings[i].ba[j][k];
814                                         kfree(ba->ba_0_org);
815                                         kfree(ba->ba_1_org);
816                                         k++;
817                                 }
818                                 kfree(mac_control->rings[i].ba[j]);
819                         }
820                         kfree(mac_control->rings[i].ba);
821                 }
822         }
823
824         if (mac_control->stats_mem) {
825                 pci_free_consistent(nic->pdev,
826                                     mac_control->stats_mem_sz,
827                                     mac_control->stats_mem,
828                                     mac_control->stats_mem_phy);
829         }
830         if (nic->ufo_in_band_v)
831                 kfree(nic->ufo_in_band_v);
832 }
833
834 /**
835  * s2io_verify_pci_mode -
836  */
837
838 static int s2io_verify_pci_mode(nic_t *nic)
839 {
840         XENA_dev_config_t __iomem *bar0 = nic->bar0;
841         register u64 val64 = 0;
842         int     mode;
843
844         val64 = readq(&bar0->pci_mode);
845         mode = (u8)GET_PCI_MODE(val64);
846
847         if ( val64 & PCI_MODE_UNKNOWN_MODE)
848                 return -1;      /* Unknown PCI mode */
849         return mode;
850 }
851
852 #define NEC_VENID   0x1033
853 #define NEC_DEVID   0x0125
854 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
855 {
856         struct pci_dev *tdev = NULL;
857         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
858                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
859                         if (tdev->bus == s2io_pdev->bus->parent)
860                                 pci_dev_put(tdev);
861                                 return 1;
862                 }
863         }
864         return 0;
865 }
866
867 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
868 /**
869  * s2io_print_pci_mode -
870  */
871 static int s2io_print_pci_mode(nic_t *nic)
872 {
873         XENA_dev_config_t __iomem *bar0 = nic->bar0;
874         register u64 val64 = 0;
875         int     mode;
876         struct config_param *config = &nic->config;
877
878         val64 = readq(&bar0->pci_mode);
879         mode = (u8)GET_PCI_MODE(val64);
880
881         if ( val64 & PCI_MODE_UNKNOWN_MODE)
882                 return -1;      /* Unknown PCI mode */
883
884         config->bus_speed = bus_speed[mode];
885
886         if (s2io_on_nec_bridge(nic->pdev)) {
887                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
888                                                         nic->dev->name);
889                 return mode;
890         }
891
892         if (val64 & PCI_MODE_32_BITS) {
893                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
894         } else {
895                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
896         }
897
898         switch(mode) {
899                 case PCI_MODE_PCI_33:
900                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
901                         break;
902                 case PCI_MODE_PCI_66:
903                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
904                         break;
905                 case PCI_MODE_PCIX_M1_66:
906                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
907                         break;
908                 case PCI_MODE_PCIX_M1_100:
909                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
910                         break;
911                 case PCI_MODE_PCIX_M1_133:
912                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
913                         break;
914                 case PCI_MODE_PCIX_M2_66:
915                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
916                         break;
917                 case PCI_MODE_PCIX_M2_100:
918                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
919                         break;
920                 case PCI_MODE_PCIX_M2_133:
921                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
922                         break;
923                 default:
924                         return -1;      /* Unsupported bus speed */
925         }
926
927         return mode;
928 }
929
930 /**
931  *  init_nic - Initialization of hardware
932  *  @nic: device peivate variable
933  *  Description: The function sequentially configures every block
934  *  of the H/W from their reset values.
935  *  Return Value:  SUCCESS on success and
936  *  '-1' on failure (endian settings incorrect).
937  */
938
939 static int init_nic(struct s2io_nic *nic)
940 {
941         XENA_dev_config_t __iomem *bar0 = nic->bar0;
942         struct net_device *dev = nic->dev;
943         register u64 val64 = 0;
944         void __iomem *add;
945         u32 time;
946         int i, j;
947         mac_info_t *mac_control;
948         struct config_param *config;
949         int dtx_cnt = 0;
950         unsigned long long mem_share;
951         int mem_size;
952
953         mac_control = &nic->mac_control;
954         config = &nic->config;
955
956         /* to set the swapper controle on the card */
957         if(s2io_set_swapper(nic)) {
958                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
959                 return -1;
960         }
961
962         /*
963          * Herc requires EOI to be removed from reset before XGXS, so..
964          */
965         if (nic->device_type & XFRAME_II_DEVICE) {
966                 val64 = 0xA500000000ULL;
967                 writeq(val64, &bar0->sw_reset);
968                 msleep(500);
969                 val64 = readq(&bar0->sw_reset);
970         }
971
972         /* Remove XGXS from reset state */
973         val64 = 0;
974         writeq(val64, &bar0->sw_reset);
975         msleep(500);
976         val64 = readq(&bar0->sw_reset);
977
978         /*  Enable Receiving broadcasts */
979         add = &bar0->mac_cfg;
980         val64 = readq(&bar0->mac_cfg);
981         val64 |= MAC_RMAC_BCAST_ENABLE;
982         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
983         writel((u32) val64, add);
984         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
985         writel((u32) (val64 >> 32), (add + 4));
986
987         /* Read registers in all blocks */
988         val64 = readq(&bar0->mac_int_mask);
989         val64 = readq(&bar0->mc_int_mask);
990         val64 = readq(&bar0->xgxs_int_mask);
991
992         /*  Set MTU */
993         val64 = dev->mtu;
994         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
995
996         if (nic->device_type & XFRAME_II_DEVICE) {
997                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
998                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
999                                           &bar0->dtx_control, UF);
1000                         if (dtx_cnt & 0x1)
1001                                 msleep(1); /* Necessary!! */
1002                         dtx_cnt++;
1003                 }
1004         } else {
1005                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1006                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1007                                           &bar0->dtx_control, UF);
1008                         val64 = readq(&bar0->dtx_control);
1009                         dtx_cnt++;
1010                 }
1011         }
1012
1013         /*  Tx DMA Initialization */
1014         val64 = 0;
1015         writeq(val64, &bar0->tx_fifo_partition_0);
1016         writeq(val64, &bar0->tx_fifo_partition_1);
1017         writeq(val64, &bar0->tx_fifo_partition_2);
1018         writeq(val64, &bar0->tx_fifo_partition_3);
1019
1020
1021         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1022                 val64 |=
1023                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1024                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1025                                     ((i * 32) + 5), 3);
1026
1027                 if (i == (config->tx_fifo_num - 1)) {
1028                         if (i % 2 == 0)
1029                                 i++;
1030                 }
1031
1032                 switch (i) {
1033                 case 1:
1034                         writeq(val64, &bar0->tx_fifo_partition_0);
1035                         val64 = 0;
1036                         break;
1037                 case 3:
1038                         writeq(val64, &bar0->tx_fifo_partition_1);
1039                         val64 = 0;
1040                         break;
1041                 case 5:
1042                         writeq(val64, &bar0->tx_fifo_partition_2);
1043                         val64 = 0;
1044                         break;
1045                 case 7:
1046                         writeq(val64, &bar0->tx_fifo_partition_3);
1047                         break;
1048                 }
1049         }
1050
1051         /*
1052          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1053          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1054          */
1055         if ((nic->device_type == XFRAME_I_DEVICE) &&
1056                 (get_xena_rev_id(nic->pdev) < 4))
1057                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1058
1059         val64 = readq(&bar0->tx_fifo_partition_0);
1060         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1061                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1062
1063         /*
1064          * Initialization of Tx_PA_CONFIG register to ignore packet
1065          * integrity checking.
1066          */
1067         val64 = readq(&bar0->tx_pa_cfg);
1068         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1069             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1070         writeq(val64, &bar0->tx_pa_cfg);
1071
1072         /* Rx DMA intialization. */
1073         val64 = 0;
1074         for (i = 0; i < config->rx_ring_num; i++) {
1075                 val64 |=
1076                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1077                          3);
1078         }
1079         writeq(val64, &bar0->rx_queue_priority);
1080
1081         /*
1082          * Allocating equal share of memory to all the
1083          * configured Rings.
1084          */
1085         val64 = 0;
1086         if (nic->device_type & XFRAME_II_DEVICE)
1087                 mem_size = 32;
1088         else
1089                 mem_size = 64;
1090
1091         for (i = 0; i < config->rx_ring_num; i++) {
1092                 switch (i) {
1093                 case 0:
1094                         mem_share = (mem_size / config->rx_ring_num +
1095                                      mem_size % config->rx_ring_num);
1096                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1097                         continue;
1098                 case 1:
1099                         mem_share = (mem_size / config->rx_ring_num);
1100                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1101                         continue;
1102                 case 2:
1103                         mem_share = (mem_size / config->rx_ring_num);
1104                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1105                         continue;
1106                 case 3:
1107                         mem_share = (mem_size / config->rx_ring_num);
1108                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1109                         continue;
1110                 case 4:
1111                         mem_share = (mem_size / config->rx_ring_num);
1112                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1113                         continue;
1114                 case 5:
1115                         mem_share = (mem_size / config->rx_ring_num);
1116                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1117                         continue;
1118                 case 6:
1119                         mem_share = (mem_size / config->rx_ring_num);
1120                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1121                         continue;
1122                 case 7:
1123                         mem_share = (mem_size / config->rx_ring_num);
1124                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1125                         continue;
1126                 }
1127         }
1128         writeq(val64, &bar0->rx_queue_cfg);
1129
1130         /*
1131          * Filling Tx round robin registers
1132          * as per the number of FIFOs
1133          */
1134         switch (config->tx_fifo_num) {
1135         case 1:
1136                 val64 = 0x0000000000000000ULL;
1137                 writeq(val64, &bar0->tx_w_round_robin_0);
1138                 writeq(val64, &bar0->tx_w_round_robin_1);
1139                 writeq(val64, &bar0->tx_w_round_robin_2);
1140                 writeq(val64, &bar0->tx_w_round_robin_3);
1141                 writeq(val64, &bar0->tx_w_round_robin_4);
1142                 break;
1143         case 2:
1144                 val64 = 0x0000010000010000ULL;
1145                 writeq(val64, &bar0->tx_w_round_robin_0);
1146                 val64 = 0x0100000100000100ULL;
1147                 writeq(val64, &bar0->tx_w_round_robin_1);
1148                 val64 = 0x0001000001000001ULL;
1149                 writeq(val64, &bar0->tx_w_round_robin_2);
1150                 val64 = 0x0000010000010000ULL;
1151                 writeq(val64, &bar0->tx_w_round_robin_3);
1152                 val64 = 0x0100000000000000ULL;
1153                 writeq(val64, &bar0->tx_w_round_robin_4);
1154                 break;
1155         case 3:
1156                 val64 = 0x0001000102000001ULL;
1157                 writeq(val64, &bar0->tx_w_round_robin_0);
1158                 val64 = 0x0001020000010001ULL;
1159                 writeq(val64, &bar0->tx_w_round_robin_1);
1160                 val64 = 0x0200000100010200ULL;
1161                 writeq(val64, &bar0->tx_w_round_robin_2);
1162                 val64 = 0x0001000102000001ULL;
1163                 writeq(val64, &bar0->tx_w_round_robin_3);
1164                 val64 = 0x0001020000000000ULL;
1165                 writeq(val64, &bar0->tx_w_round_robin_4);
1166                 break;
1167         case 4:
1168                 val64 = 0x0001020300010200ULL;
1169                 writeq(val64, &bar0->tx_w_round_robin_0);
1170                 val64 = 0x0100000102030001ULL;
1171                 writeq(val64, &bar0->tx_w_round_robin_1);
1172                 val64 = 0x0200010000010203ULL;
1173                 writeq(val64, &bar0->tx_w_round_robin_2);
1174                 val64 = 0x0001020001000001ULL;
1175                 writeq(val64, &bar0->tx_w_round_robin_3);
1176                 val64 = 0x0203000100000000ULL;
1177                 writeq(val64, &bar0->tx_w_round_robin_4);
1178                 break;
1179         case 5:
1180                 val64 = 0x0001000203000102ULL;
1181                 writeq(val64, &bar0->tx_w_round_robin_0);
1182                 val64 = 0x0001020001030004ULL;
1183                 writeq(val64, &bar0->tx_w_round_robin_1);
1184                 val64 = 0x0001000203000102ULL;
1185                 writeq(val64, &bar0->tx_w_round_robin_2);
1186                 val64 = 0x0001020001030004ULL;
1187                 writeq(val64, &bar0->tx_w_round_robin_3);
1188                 val64 = 0x0001000000000000ULL;
1189                 writeq(val64, &bar0->tx_w_round_robin_4);
1190                 break;
1191         case 6:
1192                 val64 = 0x0001020304000102ULL;
1193                 writeq(val64, &bar0->tx_w_round_robin_0);
1194                 val64 = 0x0304050001020001ULL;
1195                 writeq(val64, &bar0->tx_w_round_robin_1);
1196                 val64 = 0x0203000100000102ULL;
1197                 writeq(val64, &bar0->tx_w_round_robin_2);
1198                 val64 = 0x0304000102030405ULL;
1199                 writeq(val64, &bar0->tx_w_round_robin_3);
1200                 val64 = 0x0001000200000000ULL;
1201                 writeq(val64, &bar0->tx_w_round_robin_4);
1202                 break;
1203         case 7:
1204                 val64 = 0x0001020001020300ULL;
1205                 writeq(val64, &bar0->tx_w_round_robin_0);
1206                 val64 = 0x0102030400010203ULL;
1207                 writeq(val64, &bar0->tx_w_round_robin_1);
1208                 val64 = 0x0405060001020001ULL;
1209                 writeq(val64, &bar0->tx_w_round_robin_2);
1210                 val64 = 0x0304050000010200ULL;
1211                 writeq(val64, &bar0->tx_w_round_robin_3);
1212                 val64 = 0x0102030000000000ULL;
1213                 writeq(val64, &bar0->tx_w_round_robin_4);
1214                 break;
1215         case 8:
1216                 val64 = 0x0001020300040105ULL;
1217                 writeq(val64, &bar0->tx_w_round_robin_0);
1218                 val64 = 0x0200030106000204ULL;
1219                 writeq(val64, &bar0->tx_w_round_robin_1);
1220                 val64 = 0x0103000502010007ULL;
1221                 writeq(val64, &bar0->tx_w_round_robin_2);
1222                 val64 = 0x0304010002060500ULL;
1223                 writeq(val64, &bar0->tx_w_round_robin_3);
1224                 val64 = 0x0103020400000000ULL;
1225                 writeq(val64, &bar0->tx_w_round_robin_4);
1226                 break;
1227         }
1228
1229         /* Enable all configured Tx FIFO partitions */
1230         val64 = readq(&bar0->tx_fifo_partition_0);
1231         val64 |= (TX_FIFO_PARTITION_EN);
1232         writeq(val64, &bar0->tx_fifo_partition_0);
1233
1234         /* Filling the Rx round robin registers as per the
1235          * number of Rings and steering based on QoS.
1236          */
1237         switch (config->rx_ring_num) {
1238         case 1:
1239                 val64 = 0x8080808080808080ULL;
1240                 writeq(val64, &bar0->rts_qos_steering);
1241                 break;
1242         case 2:
1243                 val64 = 0x0000010000010000ULL;
1244                 writeq(val64, &bar0->rx_w_round_robin_0);
1245                 val64 = 0x0100000100000100ULL;
1246                 writeq(val64, &bar0->rx_w_round_robin_1);
1247                 val64 = 0x0001000001000001ULL;
1248                 writeq(val64, &bar0->rx_w_round_robin_2);
1249                 val64 = 0x0000010000010000ULL;
1250                 writeq(val64, &bar0->rx_w_round_robin_3);
1251                 val64 = 0x0100000000000000ULL;
1252                 writeq(val64, &bar0->rx_w_round_robin_4);
1253
1254                 val64 = 0x8080808040404040ULL;
1255                 writeq(val64, &bar0->rts_qos_steering);
1256                 break;
1257         case 3:
1258                 val64 = 0x0001000102000001ULL;
1259                 writeq(val64, &bar0->rx_w_round_robin_0);
1260                 val64 = 0x0001020000010001ULL;
1261                 writeq(val64, &bar0->rx_w_round_robin_1);
1262                 val64 = 0x0200000100010200ULL;
1263                 writeq(val64, &bar0->rx_w_round_robin_2);
1264                 val64 = 0x0001000102000001ULL;
1265                 writeq(val64, &bar0->rx_w_round_robin_3);
1266                 val64 = 0x0001020000000000ULL;
1267                 writeq(val64, &bar0->rx_w_round_robin_4);
1268
1269                 val64 = 0x8080804040402020ULL;
1270                 writeq(val64, &bar0->rts_qos_steering);
1271                 break;
1272         case 4:
1273                 val64 = 0x0001020300010200ULL;
1274                 writeq(val64, &bar0->rx_w_round_robin_0);
1275                 val64 = 0x0100000102030001ULL;
1276                 writeq(val64, &bar0->rx_w_round_robin_1);
1277                 val64 = 0x0200010000010203ULL;
1278                 writeq(val64, &bar0->rx_w_round_robin_2);
1279                 val64 = 0x0001020001000001ULL;
1280                 writeq(val64, &bar0->rx_w_round_robin_3);
1281                 val64 = 0x0203000100000000ULL;
1282                 writeq(val64, &bar0->rx_w_round_robin_4);
1283
1284                 val64 = 0x8080404020201010ULL;
1285                 writeq(val64, &bar0->rts_qos_steering);
1286                 break;
1287         case 5:
1288                 val64 = 0x0001000203000102ULL;
1289                 writeq(val64, &bar0->rx_w_round_robin_0);
1290                 val64 = 0x0001020001030004ULL;
1291                 writeq(val64, &bar0->rx_w_round_robin_1);
1292                 val64 = 0x0001000203000102ULL;
1293                 writeq(val64, &bar0->rx_w_round_robin_2);
1294                 val64 = 0x0001020001030004ULL;
1295                 writeq(val64, &bar0->rx_w_round_robin_3);
1296                 val64 = 0x0001000000000000ULL;
1297                 writeq(val64, &bar0->rx_w_round_robin_4);
1298
1299                 val64 = 0x8080404020201008ULL;
1300                 writeq(val64, &bar0->rts_qos_steering);
1301                 break;
1302         case 6:
1303                 val64 = 0x0001020304000102ULL;
1304                 writeq(val64, &bar0->rx_w_round_robin_0);
1305                 val64 = 0x0304050001020001ULL;
1306                 writeq(val64, &bar0->rx_w_round_robin_1);
1307                 val64 = 0x0203000100000102ULL;
1308                 writeq(val64, &bar0->rx_w_round_robin_2);
1309                 val64 = 0x0304000102030405ULL;
1310                 writeq(val64, &bar0->rx_w_round_robin_3);
1311                 val64 = 0x0001000200000000ULL;
1312                 writeq(val64, &bar0->rx_w_round_robin_4);
1313
1314                 val64 = 0x8080404020100804ULL;
1315                 writeq(val64, &bar0->rts_qos_steering);
1316                 break;
1317         case 7:
1318                 val64 = 0x0001020001020300ULL;
1319                 writeq(val64, &bar0->rx_w_round_robin_0);
1320                 val64 = 0x0102030400010203ULL;
1321                 writeq(val64, &bar0->rx_w_round_robin_1);
1322                 val64 = 0x0405060001020001ULL;
1323                 writeq(val64, &bar0->rx_w_round_robin_2);
1324                 val64 = 0x0304050000010200ULL;
1325                 writeq(val64, &bar0->rx_w_round_robin_3);
1326                 val64 = 0x0102030000000000ULL;
1327                 writeq(val64, &bar0->rx_w_round_robin_4);
1328
1329                 val64 = 0x8080402010080402ULL;
1330                 writeq(val64, &bar0->rts_qos_steering);
1331                 break;
1332         case 8:
1333                 val64 = 0x0001020300040105ULL;
1334                 writeq(val64, &bar0->rx_w_round_robin_0);
1335                 val64 = 0x0200030106000204ULL;
1336                 writeq(val64, &bar0->rx_w_round_robin_1);
1337                 val64 = 0x0103000502010007ULL;
1338                 writeq(val64, &bar0->rx_w_round_robin_2);
1339                 val64 = 0x0304010002060500ULL;
1340                 writeq(val64, &bar0->rx_w_round_robin_3);
1341                 val64 = 0x0103020400000000ULL;
1342                 writeq(val64, &bar0->rx_w_round_robin_4);
1343
1344                 val64 = 0x8040201008040201ULL;
1345                 writeq(val64, &bar0->rts_qos_steering);
1346                 break;
1347         }
1348
1349         /* UDP Fix */
1350         val64 = 0;
1351         for (i = 0; i < 8; i++)
1352                 writeq(val64, &bar0->rts_frm_len_n[i]);
1353
1354         /* Set the default rts frame length for the rings configured */
1355         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1356         for (i = 0 ; i < config->rx_ring_num ; i++)
1357                 writeq(val64, &bar0->rts_frm_len_n[i]);
1358
1359         /* Set the frame length for the configured rings
1360          * desired by the user
1361          */
1362         for (i = 0; i < config->rx_ring_num; i++) {
1363                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1364                  * specified frame length steering.
1365                  * If the user provides the frame length then program
1366                  * the rts_frm_len register for those values or else
1367                  * leave it as it is.
1368                  */
1369                 if (rts_frm_len[i] != 0) {
1370                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1371                                 &bar0->rts_frm_len_n[i]);
1372                 }
1373         }
1374
1375         /* Program statistics memory */
1376         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1377
1378         if (nic->device_type == XFRAME_II_DEVICE) {
1379                 val64 = STAT_BC(0x320);
1380                 writeq(val64, &bar0->stat_byte_cnt);
1381         }
1382
1383         /*
1384          * Initializing the sampling rate for the device to calculate the
1385          * bandwidth utilization.
1386          */
1387         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1388             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1389         writeq(val64, &bar0->mac_link_util);
1390
1391
1392         /*
1393          * Initializing the Transmit and Receive Traffic Interrupt
1394          * Scheme.
1395          */
1396         /*
1397          * TTI Initialization. Default Tx timer gets us about
1398          * 250 interrupts per sec. Continuous interrupts are enabled
1399          * by default.
1400          */
1401         if (nic->device_type == XFRAME_II_DEVICE) {
1402                 int count = (nic->config.bus_speed * 125)/2;
1403                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1404         } else {
1405
1406                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1407         }
1408         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1409             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1410             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1411                 if (use_continuous_tx_intrs)
1412                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1413         writeq(val64, &bar0->tti_data1_mem);
1414
1415         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1416             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1417             TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1418         writeq(val64, &bar0->tti_data2_mem);
1419
1420         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1421         writeq(val64, &bar0->tti_command_mem);
1422
1423         /*
1424          * Once the operation completes, the Strobe bit of the command
1425          * register will be reset. We poll for this particular condition
1426          * We wait for a maximum of 500ms for the operation to complete,
1427          * if it's not complete by then we return error.
1428          */
1429         time = 0;
1430         while (TRUE) {
1431                 val64 = readq(&bar0->tti_command_mem);
1432                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1433                         break;
1434                 }
1435                 if (time > 10) {
1436                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1437                                   dev->name);
1438                         return -1;
1439                 }
1440                 msleep(50);
1441                 time++;
1442         }
1443
1444         if (nic->config.bimodal) {
1445                 int k = 0;
1446                 for (k = 0; k < config->rx_ring_num; k++) {
1447                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1448                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1449                         writeq(val64, &bar0->tti_command_mem);
1450
1451                 /*
1452                  * Once the operation completes, the Strobe bit of the command
1453                  * register will be reset. We poll for this particular condition
1454                  * We wait for a maximum of 500ms for the operation to complete,
1455                  * if it's not complete by then we return error.
1456                 */
1457                         time = 0;
1458                         while (TRUE) {
1459                                 val64 = readq(&bar0->tti_command_mem);
1460                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1461                                         break;
1462                                 }
1463                                 if (time > 10) {
1464                                         DBG_PRINT(ERR_DBG,
1465                                                 "%s: TTI init Failed\n",
1466                                         dev->name);
1467                                         return -1;
1468                                 }
1469                                 time++;
1470                                 msleep(50);
1471                         }
1472                 }
1473         } else {
1474
1475                 /* RTI Initialization */
1476                 if (nic->device_type == XFRAME_II_DEVICE) {
1477                         /*
1478                          * Programmed to generate Apprx 500 Intrs per
1479                          * second
1480                          */
1481                         int count = (nic->config.bus_speed * 125)/4;
1482                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1483                 } else {
1484                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1485                 }
1486                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1487                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1488                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1489
1490                 writeq(val64, &bar0->rti_data1_mem);
1491
1492                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1493                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1494                 if (nic->intr_type == MSI_X)
1495                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1496                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1497                 else
1498                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1499                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1500                 writeq(val64, &bar0->rti_data2_mem);
1501
1502                 for (i = 0; i < config->rx_ring_num; i++) {
1503                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1504                                         | RTI_CMD_MEM_OFFSET(i);
1505                         writeq(val64, &bar0->rti_command_mem);
1506
1507                         /*
1508                          * Once the operation completes, the Strobe bit of the
1509                          * command register will be reset. We poll for this
1510                          * particular condition. We wait for a maximum of 500ms
1511                          * for the operation to complete, if it's not complete
1512                          * by then we return error.
1513                          */
1514                         time = 0;
1515                         while (TRUE) {
1516                                 val64 = readq(&bar0->rti_command_mem);
1517                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1518                                         break;
1519                                 }
1520                                 if (time > 10) {
1521                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1522                                                   dev->name);
1523                                         return -1;
1524                                 }
1525                                 time++;
1526                                 msleep(50);
1527                         }
1528                 }
1529         }
1530
1531         /*
1532          * Initializing proper values as Pause threshold into all
1533          * the 8 Queues on Rx side.
1534          */
1535         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1536         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1537
1538         /* Disable RMAC PAD STRIPPING */
1539         add = &bar0->mac_cfg;
1540         val64 = readq(&bar0->mac_cfg);
1541         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1542         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1543         writel((u32) (val64), add);
1544         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1545         writel((u32) (val64 >> 32), (add + 4));
1546         val64 = readq(&bar0->mac_cfg);
1547
1548         /* Enable FCS stripping by adapter */
1549         add = &bar0->mac_cfg;
1550         val64 = readq(&bar0->mac_cfg);
1551         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1552         if (nic->device_type == XFRAME_II_DEVICE)
1553                 writeq(val64, &bar0->mac_cfg);
1554         else {
1555                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1556                 writel((u32) (val64), add);
1557                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1558                 writel((u32) (val64 >> 32), (add + 4));
1559         }
1560
1561         /*
1562          * Set the time value to be inserted in the pause frame
1563          * generated by xena.
1564          */
1565         val64 = readq(&bar0->rmac_pause_cfg);
1566         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1567         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1568         writeq(val64, &bar0->rmac_pause_cfg);
1569
1570         /*
1571          * Set the Threshold Limit for Generating the pause frame
1572          * If the amount of data in any Queue exceeds ratio of
1573          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1574          * pause frame is generated
1575          */
1576         val64 = 0;
1577         for (i = 0; i < 4; i++) {
1578                 val64 |=
1579                     (((u64) 0xFF00 | nic->mac_control.
1580                       mc_pause_threshold_q0q3)
1581                      << (i * 2 * 8));
1582         }
1583         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1584
1585         val64 = 0;
1586         for (i = 0; i < 4; i++) {
1587                 val64 |=
1588                     (((u64) 0xFF00 | nic->mac_control.
1589                       mc_pause_threshold_q4q7)
1590                      << (i * 2 * 8));
1591         }
1592         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1593
1594         /*
1595          * TxDMA will stop Read request if the number of read split has
1596          * exceeded the limit pointed by shared_splits
1597          */
1598         val64 = readq(&bar0->pic_control);
1599         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1600         writeq(val64, &bar0->pic_control);
1601
1602         if (nic->config.bus_speed == 266) {
1603                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1604                 writeq(0x0, &bar0->read_retry_delay);
1605                 writeq(0x0, &bar0->write_retry_delay);
1606         }
1607
1608         /*
1609          * Programming the Herc to split every write transaction
1610          * that does not start on an ADB to reduce disconnects.
1611          */
1612         if (nic->device_type == XFRAME_II_DEVICE) {
1613                 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1614                 writeq(val64, &bar0->misc_control);
1615                 val64 = readq(&bar0->pic_control2);
1616                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1617                 writeq(val64, &bar0->pic_control2);
1618         }
1619         if (strstr(nic->product_name, "CX4")) {
1620                 val64 = TMAC_AVG_IPG(0x17);
1621                 writeq(val64, &bar0->tmac_avg_ipg);
1622         }
1623
1624         return SUCCESS;
1625 }
1626 #define LINK_UP_DOWN_INTERRUPT          1
1627 #define MAC_RMAC_ERR_TIMER              2
1628
1629 static int s2io_link_fault_indication(nic_t *nic)
1630 {
1631         if (nic->intr_type != INTA)
1632                 return MAC_RMAC_ERR_TIMER;
1633         if (nic->device_type == XFRAME_II_DEVICE)
1634                 return LINK_UP_DOWN_INTERRUPT;
1635         else
1636                 return MAC_RMAC_ERR_TIMER;
1637 }
1638
1639 /**
1640  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1641  *  @nic: device private variable,
1642  *  @mask: A mask indicating which Intr block must be modified and,
1643  *  @flag: A flag indicating whether to enable or disable the Intrs.
1644  *  Description: This function will either disable or enable the interrupts
1645  *  depending on the flag argument. The mask argument can be used to
1646  *  enable/disable any Intr block.
1647  *  Return Value: NONE.
1648  */
1649
1650 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1651 {
1652         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1653         register u64 val64 = 0, temp64 = 0;
1654
1655         /*  Top level interrupt classification */
1656         /*  PIC Interrupts */
1657         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1658                 /*  Enable PIC Intrs in the general intr mask register */
1659                 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1660                 if (flag == ENABLE_INTRS) {
1661                         temp64 = readq(&bar0->general_int_mask);
1662                         temp64 &= ~((u64) val64);
1663                         writeq(temp64, &bar0->general_int_mask);
1664                         /*
1665                          * If Hercules adapter enable GPIO otherwise
1666                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1667                          * interrupts for now.
1668                          * TODO
1669                          */
1670                         if (s2io_link_fault_indication(nic) ==
1671                                         LINK_UP_DOWN_INTERRUPT ) {
1672                                 temp64 = readq(&bar0->pic_int_mask);
1673                                 temp64 &= ~((u64) PIC_INT_GPIO);
1674                                 writeq(temp64, &bar0->pic_int_mask);
1675                                 temp64 = readq(&bar0->gpio_int_mask);
1676                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1677                                 writeq(temp64, &bar0->gpio_int_mask);
1678                         } else {
1679                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1680                         }
1681                         /*
1682                          * No MSI Support is available presently, so TTI and
1683                          * RTI interrupts are also disabled.
1684                          */
1685                 } else if (flag == DISABLE_INTRS) {
1686                         /*
1687                          * Disable PIC Intrs in the general
1688                          * intr mask register
1689                          */
1690                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1691                         temp64 = readq(&bar0->general_int_mask);
1692                         val64 |= temp64;
1693                         writeq(val64, &bar0->general_int_mask);
1694                 }
1695         }
1696
1697         /*  DMA Interrupts */
1698         /*  Enabling/Disabling Tx DMA interrupts */
1699         if (mask & TX_DMA_INTR) {
1700                 /* Enable TxDMA Intrs in the general intr mask register */
1701                 val64 = TXDMA_INT_M;
1702                 if (flag == ENABLE_INTRS) {
1703                         temp64 = readq(&bar0->general_int_mask);
1704                         temp64 &= ~((u64) val64);
1705                         writeq(temp64, &bar0->general_int_mask);
1706                         /*
1707                          * Keep all interrupts other than PFC interrupt
1708                          * and PCC interrupt disabled in DMA level.
1709                          */
1710                         val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1711                                                       TXDMA_PCC_INT_M);
1712                         writeq(val64, &bar0->txdma_int_mask);
1713                         /*
1714                          * Enable only the MISC error 1 interrupt in PFC block
1715                          */
1716                         val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1717                         writeq(val64, &bar0->pfc_err_mask);
1718                         /*
1719                          * Enable only the FB_ECC error interrupt in PCC block
1720                          */
1721                         val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1722                         writeq(val64, &bar0->pcc_err_mask);
1723                 } else if (flag == DISABLE_INTRS) {
1724                         /*
1725                          * Disable TxDMA Intrs in the general intr mask
1726                          * register
1727                          */
1728                         writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1729                         writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1730                         temp64 = readq(&bar0->general_int_mask);
1731                         val64 |= temp64;
1732                         writeq(val64, &bar0->general_int_mask);
1733                 }
1734         }
1735
1736         /*  Enabling/Disabling Rx DMA interrupts */
1737         if (mask & RX_DMA_INTR) {
1738                 /*  Enable RxDMA Intrs in the general intr mask register */
1739                 val64 = RXDMA_INT_M;
1740                 if (flag == ENABLE_INTRS) {
1741                         temp64 = readq(&bar0->general_int_mask);
1742                         temp64 &= ~((u64) val64);
1743                         writeq(temp64, &bar0->general_int_mask);
1744                         /*
1745                          * All RxDMA block interrupts are disabled for now
1746                          * TODO
1747                          */
1748                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1749                 } else if (flag == DISABLE_INTRS) {
1750                         /*
1751                          * Disable RxDMA Intrs in the general intr mask
1752                          * register
1753                          */
1754                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1755                         temp64 = readq(&bar0->general_int_mask);
1756                         val64 |= temp64;
1757                         writeq(val64, &bar0->general_int_mask);
1758                 }
1759         }
1760
1761         /*  MAC Interrupts */
1762         /*  Enabling/Disabling MAC interrupts */
1763         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1764                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1765                 if (flag == ENABLE_INTRS) {
1766                         temp64 = readq(&bar0->general_int_mask);
1767                         temp64 &= ~((u64) val64);
1768                         writeq(temp64, &bar0->general_int_mask);
1769                         /*
1770                          * All MAC block error interrupts are disabled for now
1771                          * TODO
1772                          */
1773                 } else if (flag == DISABLE_INTRS) {
1774                         /*
1775                          * Disable MAC Intrs in the general intr mask register
1776                          */
1777                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1778                         writeq(DISABLE_ALL_INTRS,
1779                                &bar0->mac_rmac_err_mask);
1780
1781                         temp64 = readq(&bar0->general_int_mask);
1782                         val64 |= temp64;
1783                         writeq(val64, &bar0->general_int_mask);
1784                 }
1785         }
1786
1787         /*  XGXS Interrupts */
1788         if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1789                 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1790                 if (flag == ENABLE_INTRS) {
1791                         temp64 = readq(&bar0->general_int_mask);
1792                         temp64 &= ~((u64) val64);
1793                         writeq(temp64, &bar0->general_int_mask);
1794                         /*
1795                          * All XGXS block error interrupts are disabled for now
1796                          * TODO
1797                          */
1798                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1799                 } else if (flag == DISABLE_INTRS) {
1800                         /*
1801                          * Disable MC Intrs in the general intr mask register
1802                          */
1803                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1804                         temp64 = readq(&bar0->general_int_mask);
1805                         val64 |= temp64;
1806                         writeq(val64, &bar0->general_int_mask);
1807                 }
1808         }
1809
1810         /*  Memory Controller(MC) interrupts */
1811         if (mask & MC_INTR) {
1812                 val64 = MC_INT_M;
1813                 if (flag == ENABLE_INTRS) {
1814                         temp64 = readq(&bar0->general_int_mask);
1815                         temp64 &= ~((u64) val64);
1816                         writeq(temp64, &bar0->general_int_mask);
1817                         /*
1818                          * Enable all MC Intrs.
1819                          */
1820                         writeq(0x0, &bar0->mc_int_mask);
1821                         writeq(0x0, &bar0->mc_err_mask);
1822                 } else if (flag == DISABLE_INTRS) {
1823                         /*
1824                          * Disable MC Intrs in the general intr mask register
1825                          */
1826                         writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1827                         temp64 = readq(&bar0->general_int_mask);
1828                         val64 |= temp64;
1829                         writeq(val64, &bar0->general_int_mask);
1830                 }
1831         }
1832
1833
1834         /*  Tx traffic interrupts */
1835         if (mask & TX_TRAFFIC_INTR) {
1836                 val64 = TXTRAFFIC_INT_M;
1837                 if (flag == ENABLE_INTRS) {
1838                         temp64 = readq(&bar0->general_int_mask);
1839                         temp64 &= ~((u64) val64);
1840                         writeq(temp64, &bar0->general_int_mask);
1841                         /*
1842                          * Enable all the Tx side interrupts
1843                          * writing 0 Enables all 64 TX interrupt levels
1844                          */
1845                         writeq(0x0, &bar0->tx_traffic_mask);
1846                 } else if (flag == DISABLE_INTRS) {
1847                         /*
1848                          * Disable Tx Traffic Intrs in the general intr mask
1849                          * register.
1850                          */
1851                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1852                         temp64 = readq(&bar0->general_int_mask);
1853                         val64 |= temp64;
1854                         writeq(val64, &bar0->general_int_mask);
1855                 }
1856         }
1857
1858         /*  Rx traffic interrupts */
1859         if (mask & RX_TRAFFIC_INTR) {
1860                 val64 = RXTRAFFIC_INT_M;
1861                 if (flag == ENABLE_INTRS) {
1862                         temp64 = readq(&bar0->general_int_mask);
1863                         temp64 &= ~((u64) val64);
1864                         writeq(temp64, &bar0->general_int_mask);
1865                         /* writing 0 Enables all 8 RX interrupt levels */
1866                         writeq(0x0, &bar0->rx_traffic_mask);
1867                 } else if (flag == DISABLE_INTRS) {
1868                         /*
1869                          * Disable Rx Traffic Intrs in the general intr mask
1870                          * register.
1871                          */
1872                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1873                         temp64 = readq(&bar0->general_int_mask);
1874                         val64 |= temp64;
1875                         writeq(val64, &bar0->general_int_mask);
1876                 }
1877         }
1878 }
1879
1880 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1881 {
1882         int ret = 0;
1883
1884         if (flag == FALSE) {
1885                 if ((!herc && (rev_id >= 4)) || herc) {
1886                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1887                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1888                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1889                                 ret = 1;
1890                         }
1891                 }else {
1892                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1893                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1894                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1895                                 ret = 1;
1896                         }
1897                 }
1898         } else {
1899                 if ((!herc && (rev_id >= 4)) || herc) {
1900                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1901                              ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1902                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1903                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1904                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1905                                 ret = 1;
1906                         }
1907                 } else {
1908                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1909                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1910                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1911                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1912                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1913                                 ret = 1;
1914                         }
1915                 }
1916         }
1917
1918         return ret;
1919 }
1920 /**
1921  *  verify_xena_quiescence - Checks whether the H/W is ready
1922  *  @val64 :  Value read from adapter status register.
1923  *  @flag : indicates if the adapter enable bit was ever written once
1924  *  before.
1925  *  Description: Returns whether the H/W is ready to go or not. Depending
1926  *  on whether adapter enable bit was written or not the comparison
1927  *  differs and the calling function passes the input argument flag to
1928  *  indicate this.
1929  *  Return: 1 If xena is quiescence
1930  *          0 If Xena is not quiescence
1931  */
1932
1933 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1934 {
1935         int ret = 0, herc;
1936         u64 tmp64 = ~((u64) val64);
1937         int rev_id = get_xena_rev_id(sp->pdev);
1938
1939         herc = (sp->device_type == XFRAME_II_DEVICE);
1940         if (!
1941             (tmp64 &
1942              (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1943               ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1944               ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1945               ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1946               ADAPTER_STATUS_P_PLL_LOCK))) {
1947                 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1948         }
1949
1950         return ret;
1951 }
1952
1953 /**
1954  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1955  * @sp: Pointer to device specifc structure
1956  * Description :
1957  * New procedure to clear mac address reading  problems on Alpha platforms
1958  *
1959  */
1960
1961 static void fix_mac_address(nic_t * sp)
1962 {
1963         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1964         u64 val64;
1965         int i = 0;
1966
1967         while (fix_mac[i] != END_SIGN) {
1968                 writeq(fix_mac[i++], &bar0->gpio_control);
1969                 udelay(10);
1970                 val64 = readq(&bar0->gpio_control);
1971         }
1972 }
1973
1974 /**
1975  *  start_nic - Turns the device on
1976  *  @nic : device private variable.
1977  *  Description:
1978  *  This function actually turns the device on. Before this  function is
1979  *  called,all Registers are configured from their reset states
1980  *  and shared memory is allocated but the NIC is still quiescent. On
1981  *  calling this function, the device interrupts are cleared and the NIC is
1982  *  literally switched on by writing into the adapter control register.
1983  *  Return Value:
1984  *  SUCCESS on success and -1 on failure.
1985  */
1986
1987 static int start_nic(struct s2io_nic *nic)
1988 {
1989         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1990         struct net_device *dev = nic->dev;
1991         register u64 val64 = 0;
1992         u16 subid, i;
1993         mac_info_t *mac_control;
1994         struct config_param *config;
1995
1996         mac_control = &nic->mac_control;
1997         config = &nic->config;
1998
1999         /*  PRC Initialization and configuration */
2000         for (i = 0; i < config->rx_ring_num; i++) {
2001                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2002                        &bar0->prc_rxd0_n[i]);
2003
2004                 val64 = readq(&bar0->prc_ctrl_n[i]);
2005                 if (nic->config.bimodal)
2006                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2007                 if (nic->rxd_mode == RXD_MODE_1)
2008                         val64 |= PRC_CTRL_RC_ENABLED;
2009                 else
2010                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2011                 if (nic->device_type == XFRAME_II_DEVICE)
2012                         val64 |= PRC_CTRL_GROUP_READS;
2013                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2014                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2015                 writeq(val64, &bar0->prc_ctrl_n[i]);
2016         }
2017
2018         if (nic->rxd_mode == RXD_MODE_3B) {
2019                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2020                 val64 = readq(&bar0->rx_pa_cfg);
2021                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2022                 writeq(val64, &bar0->rx_pa_cfg);
2023         }
2024
2025         /*
2026          * Enabling MC-RLDRAM. After enabling the device, we timeout
2027          * for around 100ms, which is approximately the time required
2028          * for the device to be ready for operation.
2029          */
2030         val64 = readq(&bar0->mc_rldram_mrs);
2031         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2032         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2033         val64 = readq(&bar0->mc_rldram_mrs);
2034
2035         msleep(100);    /* Delay by around 100 ms. */
2036
2037         /* Enabling ECC Protection. */
2038         val64 = readq(&bar0->adapter_control);
2039         val64 &= ~ADAPTER_ECC_EN;
2040         writeq(val64, &bar0->adapter_control);
2041
2042         /*
2043          * Clearing any possible Link state change interrupts that
2044          * could have popped up just before Enabling the card.
2045          */
2046         val64 = readq(&bar0->mac_rmac_err_reg);
2047         if (val64)
2048                 writeq(val64, &bar0->mac_rmac_err_reg);
2049
2050         /*
2051          * Verify if the device is ready to be enabled, if so enable
2052          * it.
2053          */
2054         val64 = readq(&bar0->adapter_status);
2055         if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
2056                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2057                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2058                           (unsigned long long) val64);
2059                 return FAILURE;
2060         }
2061
2062         /*
2063          * With some switches, link might be already up at this point.
2064          * Because of this weird behavior, when we enable laser,
2065          * we may not get link. We need to handle this. We cannot
2066          * figure out which switch is misbehaving. So we are forced to
2067          * make a global change.
2068          */
2069
2070         /* Enabling Laser. */
2071         val64 = readq(&bar0->adapter_control);
2072         val64 |= ADAPTER_EOI_TX_ON;
2073         writeq(val64, &bar0->adapter_control);
2074
2075         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2076                 /*
2077                  * Dont see link state interrupts initally on some switches,
2078                  * so directly scheduling the link state task here.
2079                  */
2080                 schedule_work(&nic->set_link_task);
2081         }
2082         /* SXE-002: Initialize link and activity LED */
2083         subid = nic->pdev->subsystem_device;
2084         if (((subid & 0xFF) >= 0x07) &&
2085             (nic->device_type == XFRAME_I_DEVICE)) {
2086                 val64 = readq(&bar0->gpio_control);
2087                 val64 |= 0x0000800000000000ULL;
2088                 writeq(val64, &bar0->gpio_control);
2089                 val64 = 0x0411040400000000ULL;
2090                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2091         }
2092
2093         return SUCCESS;
2094 }
2095 /**
2096  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2097  */
2098 static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2099 {
2100         nic_t *nic = fifo_data->nic;
2101         struct sk_buff *skb;
2102         TxD_t *txds;
2103         u16 j, frg_cnt;
2104
2105         txds = txdlp;
2106         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2107                 pci_unmap_single(nic->pdev, (dma_addr_t)
2108                         txds->Buffer_Pointer, sizeof(u64),
2109                         PCI_DMA_TODEVICE);
2110                 txds++;
2111         }
2112
2113         skb = (struct sk_buff *) ((unsigned long)
2114                         txds->Host_Control);
2115         if (!skb) {
2116                 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2117                 return NULL;
2118         }
2119         pci_unmap_single(nic->pdev, (dma_addr_t)
2120                          txds->Buffer_Pointer,
2121                          skb->len - skb->data_len,
2122                          PCI_DMA_TODEVICE);
2123         frg_cnt = skb_shinfo(skb)->nr_frags;
2124         if (frg_cnt) {
2125                 txds++;
2126                 for (j = 0; j < frg_cnt; j++, txds++) {
2127                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2128                         if (!txds->Buffer_Pointer)
2129                                 break;
2130                         pci_unmap_page(nic->pdev, (dma_addr_t)
2131                                         txds->Buffer_Pointer,
2132                                        frag->size, PCI_DMA_TODEVICE);
2133                 }
2134         }
2135         memset(txdlp,0, (sizeof(TxD_t) * fifo_data->max_txds));
2136         return(skb);
2137 }
2138
2139 /**
2140  *  free_tx_buffers - Free all queued Tx buffers
2141  *  @nic : device private variable.
2142  *  Description:
2143  *  Free all queued Tx buffers.
2144  *  Return Value: void
2145 */
2146
2147 static void free_tx_buffers(struct s2io_nic *nic)
2148 {
2149         struct net_device *dev = nic->dev;
2150         struct sk_buff *skb;
2151         TxD_t *txdp;
2152         int i, j;
2153         mac_info_t *mac_control;
2154         struct config_param *config;
2155         int cnt = 0;
2156
2157         mac_control = &nic->mac_control;
2158         config = &nic->config;
2159
2160         for (i = 0; i < config->tx_fifo_num; i++) {
2161                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2162                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2163                             list_virt_addr;
2164                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2165                         if (skb) {
2166                                 dev_kfree_skb(skb);
2167                                 cnt++;
2168                         }
2169                 }
2170                 DBG_PRINT(INTR_DBG,
2171                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2172                           dev->name, cnt, i);
2173                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2174                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2175         }
2176 }
2177
2178 /**
2179  *   stop_nic -  To stop the nic
2180  *   @nic ; device private variable.
2181  *   Description:
2182  *   This function does exactly the opposite of what the start_nic()
2183  *   function does. This function is called to stop the device.
2184  *   Return Value:
2185  *   void.
2186  */
2187
2188 static void stop_nic(struct s2io_nic *nic)
2189 {
2190         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2191         register u64 val64 = 0;
2192         u16 interruptible;
2193         mac_info_t *mac_control;
2194         struct config_param *config;
2195
2196         mac_control = &nic->mac_control;
2197         config = &nic->config;
2198
2199         /*  Disable all interrupts */
2200         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2201         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2202         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2203         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2204
2205         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2206         val64 = readq(&bar0->adapter_control);
2207         val64 &= ~(ADAPTER_CNTL_EN);
2208         writeq(val64, &bar0->adapter_control);
2209 }
2210
2211 static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2212 {
2213         struct net_device *dev = nic->dev;
2214         struct sk_buff *frag_list;
2215         void *tmp;
2216
2217         /* Buffer-1 receives L3/L4 headers */
2218         ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2219                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2220                         PCI_DMA_FROMDEVICE);
2221
2222         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2223         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2224         if (skb_shinfo(skb)->frag_list == NULL) {
2225                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2226                 return -ENOMEM ;
2227         }
2228         frag_list = skb_shinfo(skb)->frag_list;
2229         frag_list->next = NULL;
2230         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2231         frag_list->data = tmp;
2232         frag_list->tail = tmp;
2233
2234         /* Buffer-2 receives L4 data payload */
2235         ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2236                                 frag_list->data, dev->mtu,
2237                                 PCI_DMA_FROMDEVICE);
2238         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2239         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2240
2241         return SUCCESS;
2242 }
2243
2244 /**
2245  *  fill_rx_buffers - Allocates the Rx side skbs
2246  *  @nic:  device private variable
2247  *  @ring_no: ring number
2248  *  Description:
2249  *  The function allocates Rx side skbs and puts the physical
2250  *  address of these buffers into the RxD buffer pointers, so that the NIC
2251  *  can DMA the received frame into these locations.
2252  *  The NIC supports 3 receive modes, viz
2253  *  1. single buffer,
2254  *  2. three buffer and
2255  *  3. Five buffer modes.
2256  *  Each mode defines how many fragments the received frame will be split
2257  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2258  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2259  *  is split into 3 fragments. As of now only single buffer mode is
2260  *  supported.
2261  *   Return Value:
2262  *  SUCCESS on success or an appropriate -ve value on failure.
2263  */
2264
2265 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2266 {
2267         struct net_device *dev = nic->dev;
2268         struct sk_buff *skb;
2269         RxD_t *rxdp;
2270         int off, off1, size, block_no, block_no1;
2271         u32 alloc_tab = 0;
2272         u32 alloc_cnt;
2273         mac_info_t *mac_control;
2274         struct config_param *config;
2275         u64 tmp;
2276         buffAdd_t *ba;
2277 #ifndef CONFIG_S2IO_NAPI
2278         unsigned long flags;
2279 #endif
2280         RxD_t *first_rxdp = NULL;
2281
2282         mac_control = &nic->mac_control;
2283         config = &nic->config;
2284         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2285             atomic_read(&nic->rx_bufs_left[ring_no]);
2286
2287         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2288         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2289         while (alloc_tab < alloc_cnt) {
2290                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2291                     block_index;
2292                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2293
2294                 rxdp = mac_control->rings[ring_no].
2295                                 rx_blocks[block_no].rxds[off].virt_addr;
2296
2297                 if ((block_no == block_no1) && (off == off1) &&
2298                                         (rxdp->Host_Control)) {
2299                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2300                                   dev->name);
2301                         DBG_PRINT(INTR_DBG, " info equated\n");
2302                         goto end;
2303                 }
2304                 if (off && (off == rxd_count[nic->rxd_mode])) {
2305                         mac_control->rings[ring_no].rx_curr_put_info.
2306                             block_index++;
2307                         if (mac_control->rings[ring_no].rx_curr_put_info.
2308                             block_index == mac_control->rings[ring_no].
2309                                         block_count)
2310                                 mac_control->rings[ring_no].rx_curr_put_info.
2311                                         block_index = 0;
2312                         block_no = mac_control->rings[ring_no].
2313                                         rx_curr_put_info.block_index;
2314                         if (off == rxd_count[nic->rxd_mode])
2315                                 off = 0;
2316                         mac_control->rings[ring_no].rx_curr_put_info.
2317                                 offset = off;
2318                         rxdp = mac_control->rings[ring_no].
2319                                 rx_blocks[block_no].block_virt_addr;
2320                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2321                                   dev->name, rxdp);
2322                 }
2323 #ifndef CONFIG_S2IO_NAPI
2324                 spin_lock_irqsave(&nic->put_lock, flags);
2325                 mac_control->rings[ring_no].put_pos =
2326                     (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2327                 spin_unlock_irqrestore(&nic->put_lock, flags);
2328 #endif
2329                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2330                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2331                                 (rxdp->Control_2 & BIT(0)))) {
2332                         mac_control->rings[ring_no].rx_curr_put_info.
2333                                         offset = off;
2334                         goto end;
2335                 }
2336                 /* calculate size of skb based on ring mode */
2337                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2338                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2339                 if (nic->rxd_mode == RXD_MODE_1)
2340                         size += NET_IP_ALIGN;
2341                 else if (nic->rxd_mode == RXD_MODE_3B)
2342                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2343                 else
2344                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2345
2346                 /* allocate skb */
2347                 skb = dev_alloc_skb(size);
2348                 if(!skb) {
2349                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2350                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2351                         if (first_rxdp) {
2352                                 wmb();
2353                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2354                         }
2355                         return -ENOMEM ;
2356                 }
2357                 if (nic->rxd_mode == RXD_MODE_1) {
2358                         /* 1 buffer mode - normal operation mode */
2359                         memset(rxdp, 0, sizeof(RxD1_t));
2360                         skb_reserve(skb, NET_IP_ALIGN);
2361                         ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2362                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2363                                 PCI_DMA_FROMDEVICE);
2364                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2365
2366                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2367                         /*
2368                          * 2 or 3 buffer mode -
2369                          * Both 2 buffer mode and 3 buffer mode provides 128
2370                          * byte aligned receive buffers.
2371                          *
2372                          * 3 buffer mode provides header separation where in
2373                          * skb->data will have L3/L4 headers where as
2374                          * skb_shinfo(skb)->frag_list will have the L4 data
2375                          * payload
2376                          */
2377
2378                         memset(rxdp, 0, sizeof(RxD3_t));
2379                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2380                         skb_reserve(skb, BUF0_LEN);
2381                         tmp = (u64)(unsigned long) skb->data;
2382                         tmp += ALIGN_SIZE;
2383                         tmp &= ~ALIGN_SIZE;
2384                         skb->data = (void *) (unsigned long)tmp;
2385                         skb->tail = (void *) (unsigned long)tmp;
2386
2387                         if (!(((RxD3_t*)rxdp)->Buffer0_ptr))
2388                                 ((RxD3_t*)rxdp)->Buffer0_ptr =
2389                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2390                                            PCI_DMA_FROMDEVICE);
2391                         else
2392                                 pci_dma_sync_single_for_device(nic->pdev,
2393                                     (dma_addr_t) ((RxD3_t*)rxdp)->Buffer0_ptr,
2394                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2395                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2396                         if (nic->rxd_mode == RXD_MODE_3B) {
2397                                 /* Two buffer mode */
2398
2399                                 /*
2400                                  * Buffer2 will have L3/L4 header plus
2401                                  * L4 payload
2402                                  */
2403                                 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2404                                 (nic->pdev, skb->data, dev->mtu + 4,
2405                                                 PCI_DMA_FROMDEVICE);
2406
2407                                 /* Buffer-1 will be dummy buffer. Not used */
2408                                 if (!(((RxD3_t*)rxdp)->Buffer1_ptr)) {
2409                                         ((RxD3_t*)rxdp)->Buffer1_ptr =
2410                                                 pci_map_single(nic->pdev,
2411                                                 ba->ba_1, BUF1_LEN,
2412                                                 PCI_DMA_FROMDEVICE);
2413                                 }
2414                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2415                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2416                                                                 (dev->mtu + 4);
2417                         } else {
2418                                 /* 3 buffer mode */
2419                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2420                                         dev_kfree_skb_irq(skb);
2421                                         if (first_rxdp) {
2422                                                 wmb();
2423                                                 first_rxdp->Control_1 |=
2424                                                         RXD_OWN_XENA;
2425                                         }
2426                                         return -ENOMEM ;
2427                                 }
2428                         }
2429                         rxdp->Control_2 |= BIT(0);
2430                 }
2431                 rxdp->Host_Control = (unsigned long) (skb);
2432                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2433                         rxdp->Control_1 |= RXD_OWN_XENA;
2434                 off++;
2435                 if (off == (rxd_count[nic->rxd_mode] + 1))
2436                         off = 0;
2437                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2438
2439                 rxdp->Control_2 |= SET_RXD_MARKER;
2440                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2441                         if (first_rxdp) {
2442                                 wmb();
2443                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2444                         }
2445                         first_rxdp = rxdp;
2446                 }
2447                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2448                 alloc_tab++;
2449         }
2450
2451       end:
2452         /* Transfer ownership of first descriptor to adapter just before
2453          * exiting. Before that, use memory barrier so that ownership
2454          * and other fields are seen by adapter correctly.
2455          */
2456         if (first_rxdp) {
2457                 wmb();
2458                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2459         }
2460
2461         return SUCCESS;
2462 }
2463
2464 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2465 {
2466         struct net_device *dev = sp->dev;
2467         int j;
2468         struct sk_buff *skb;
2469         RxD_t *rxdp;
2470         mac_info_t *mac_control;
2471         buffAdd_t *ba;
2472
2473         mac_control = &sp->mac_control;
2474         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2475                 rxdp = mac_control->rings[ring_no].
2476                                 rx_blocks[blk].rxds[j].virt_addr;
2477                 skb = (struct sk_buff *)
2478                         ((unsigned long) rxdp->Host_Control);
2479                 if (!skb) {
2480                         continue;
2481                 }
2482                 if (sp->rxd_mode == RXD_MODE_1) {
2483                         pci_unmap_single(sp->pdev, (dma_addr_t)
2484                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2485                                  dev->mtu +
2486                                  HEADER_ETHERNET_II_802_3_SIZE
2487                                  + HEADER_802_2_SIZE +
2488                                  HEADER_SNAP_SIZE,
2489                                  PCI_DMA_FROMDEVICE);
2490                         memset(rxdp, 0, sizeof(RxD1_t));
2491                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2492                         ba = &mac_control->rings[ring_no].
2493                                 ba[blk][j];
2494                         pci_unmap_single(sp->pdev, (dma_addr_t)
2495                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2496                                  BUF0_LEN,
2497                                  PCI_DMA_FROMDEVICE);
2498                         pci_unmap_single(sp->pdev, (dma_addr_t)
2499                                  ((RxD3_t*)rxdp)->Buffer1_ptr,
2500                                  BUF1_LEN,
2501                                  PCI_DMA_FROMDEVICE);
2502                         pci_unmap_single(sp->pdev, (dma_addr_t)
2503                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2504                                  dev->mtu + 4,
2505                                  PCI_DMA_FROMDEVICE);
2506                         memset(rxdp, 0, sizeof(RxD3_t));
2507                 } else {
2508                         pci_unmap_single(sp->pdev, (dma_addr_t)
2509                                 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2510                                 PCI_DMA_FROMDEVICE);
2511                         pci_unmap_single(sp->pdev, (dma_addr_t)
2512                                 ((RxD3_t*)rxdp)->Buffer1_ptr,
2513                                 l3l4hdr_size + 4,
2514                                 PCI_DMA_FROMDEVICE);
2515                         pci_unmap_single(sp->pdev, (dma_addr_t)
2516                                 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2517                                 PCI_DMA_FROMDEVICE);
2518                         memset(rxdp, 0, sizeof(RxD3_t));
2519                 }
2520                 dev_kfree_skb(skb);
2521                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2522         }
2523 }
2524
2525 /**
2526  *  free_rx_buffers - Frees all Rx buffers
2527  *  @sp: device private variable.
2528  *  Description:
2529  *  This function will free all Rx buffers allocated by host.
2530  *  Return Value:
2531  *  NONE.
2532  */
2533
2534 static void free_rx_buffers(struct s2io_nic *sp)
2535 {
2536         struct net_device *dev = sp->dev;
2537         int i, blk = 0, buf_cnt = 0;
2538         mac_info_t *mac_control;
2539         struct config_param *config;
2540
2541         mac_control = &sp->mac_control;
2542         config = &sp->config;
2543
2544         for (i = 0; i < config->rx_ring_num; i++) {
2545                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2546                         free_rxd_blk(sp,i,blk);
2547
2548                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2549                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2550                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2551                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2552                 atomic_set(&sp->rx_bufs_left[i], 0);
2553                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2554                           dev->name, buf_cnt, i);
2555         }
2556 }
2557
2558 /**
2559  * s2io_poll - Rx interrupt handler for NAPI support
2560  * @dev : pointer to the device structure.
2561  * @budget : The number of packets that were budgeted to be processed
2562  * during  one pass through the 'Poll" function.
2563  * Description:
2564  * Comes into picture only if NAPI support has been incorporated. It does
2565  * the same thing that rx_intr_handler does, but not in a interrupt context
2566  * also It will process only a given number of packets.
2567  * Return value:
2568  * 0 on success and 1 if there are No Rx packets to be processed.
2569  */
2570
2571 #if defined(CONFIG_S2IO_NAPI)
2572 static int s2io_poll(struct net_device *dev, int *budget)
2573 {
2574         nic_t *nic = dev->priv;
2575         int pkt_cnt = 0, org_pkts_to_process;
2576         mac_info_t *mac_control;
2577         struct config_param *config;
2578         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2579         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2580         int i;
2581
2582         atomic_inc(&nic->isr_cnt);
2583         mac_control = &nic->mac_control;
2584         config = &nic->config;
2585
2586         nic->pkts_to_process = *budget;
2587         if (nic->pkts_to_process > dev->quota)
2588                 nic->pkts_to_process = dev->quota;
2589         org_pkts_to_process = nic->pkts_to_process;
2590
2591         writeq(val64, &bar0->rx_traffic_int);
2592         val64 = readl(&bar0->rx_traffic_int);
2593
2594         for (i = 0; i < config->rx_ring_num; i++) {
2595                 rx_intr_handler(&mac_control->rings[i]);
2596                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2597                 if (!nic->pkts_to_process) {
2598                         /* Quota for the current iteration has been met */
2599                         goto no_rx;
2600                 }
2601         }
2602         if (!pkt_cnt)
2603                 pkt_cnt = 1;
2604
2605         dev->quota -= pkt_cnt;
2606         *budget -= pkt_cnt;
2607         netif_rx_complete(dev);
2608
2609         for (i = 0; i < config->rx_ring_num; i++) {
2610                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2611                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2612                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2613                         break;
2614                 }
2615         }
2616         /* Re enable the Rx interrupts. */
2617         writeq(0x0, &bar0->rx_traffic_mask);
2618         val64 = readl(&bar0->rx_traffic_mask);
2619         atomic_dec(&nic->isr_cnt);
2620         return 0;
2621
2622 no_rx:
2623         dev->quota -= pkt_cnt;
2624         *budget -= pkt_cnt;
2625
2626         for (i = 0; i < config->rx_ring_num; i++) {
2627                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2628                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2629                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2630                         break;
2631                 }
2632         }
2633         atomic_dec(&nic->isr_cnt);
2634         return 1;
2635 }
2636 #endif
2637
2638 #ifdef CONFIG_NET_POLL_CONTROLLER
2639 /**
2640  * s2io_netpoll - netpoll event handler entry point
2641  * @dev : pointer to the device structure.
2642  * Description:
2643  *      This function will be called by upper layer to check for events on the
2644  * interface in situations where interrupts are disabled. It is used for
2645  * specific in-kernel networking tasks, such as remote consoles and kernel
2646  * debugging over the network (example netdump in RedHat).
2647  */
2648 static void s2io_netpoll(struct net_device *dev)
2649 {
2650         nic_t *nic = dev->priv;
2651         mac_info_t *mac_control;
2652         struct config_param *config;
2653         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2654         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2655         int i;
2656
2657         disable_irq(dev->irq);
2658
2659         atomic_inc(&nic->isr_cnt);
2660         mac_control = &nic->mac_control;
2661         config = &nic->config;
2662
2663         writeq(val64, &bar0->rx_traffic_int);
2664         writeq(val64, &bar0->tx_traffic_int);
2665
2666         /* we need to free up the transmitted skbufs or else netpoll will
2667          * run out of skbs and will fail and eventually netpoll application such
2668          * as netdump will fail.
2669          */
2670         for (i = 0; i < config->tx_fifo_num; i++)
2671                 tx_intr_handler(&mac_control->fifos[i]);
2672
2673         /* check for received packet and indicate up to network */
2674         for (i = 0; i < config->rx_ring_num; i++)
2675                 rx_intr_handler(&mac_control->rings[i]);
2676
2677         for (i = 0; i < config->rx_ring_num; i++) {
2678                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2679                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2680                         DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2681                         break;
2682                 }
2683         }
2684         atomic_dec(&nic->isr_cnt);
2685         enable_irq(dev->irq);
2686         return;
2687 }
2688 #endif
2689
2690 /**
2691  *  rx_intr_handler - Rx interrupt handler
2692  *  @nic: device private variable.
2693  *  Description:
2694  *  If the interrupt is because of a received frame or if the
2695  *  receive ring contains fresh as yet un-processed frames,this function is
2696  *  called. It picks out the RxD at which place the last Rx processing had
2697  *  stopped and sends the skb to the OSM's Rx handler and then increments
2698  *  the offset.
2699  *  Return Value:
2700  *  NONE.
2701  */
2702 static void rx_intr_handler(ring_info_t *ring_data)
2703 {
2704         nic_t *nic = ring_data->nic;
2705         struct net_device *dev = (struct net_device *) nic->dev;
2706         int get_block, put_block, put_offset;
2707         rx_curr_get_info_t get_info, put_info;
2708         RxD_t *rxdp;
2709         struct sk_buff *skb;
2710 #ifndef CONFIG_S2IO_NAPI
2711         int pkt_cnt = 0;
2712 #endif
2713         int i;
2714
2715         spin_lock(&nic->rx_lock);
2716         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2717                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2718                           __FUNCTION__, dev->name);
2719                 spin_unlock(&nic->rx_lock);
2720                 return;
2721         }
2722
2723         get_info = ring_data->rx_curr_get_info;
2724         get_block = get_info.block_index;
2725         put_info = ring_data->rx_curr_put_info;
2726         put_block = put_info.block_index;
2727         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2728 #ifndef CONFIG_S2IO_NAPI
2729         spin_lock(&nic->put_lock);
2730         put_offset = ring_data->put_pos;
2731         spin_unlock(&nic->put_lock);
2732 #else
2733         put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2734                 put_info.offset;
2735 #endif
2736         while (RXD_IS_UP2DT(rxdp)) {
2737                 /* If your are next to put index then it's FIFO full condition */
2738                 if ((get_block == put_block) &&
2739                     (get_info.offset + 1) == put_info.offset) {
2740                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2741                         break;
2742                 }
2743                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2744                 if (skb == NULL) {
2745                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2746                                   dev->name);
2747                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2748                         spin_unlock(&nic->rx_lock);
2749                         return;
2750                 }
2751                 if (nic->rxd_mode == RXD_MODE_1) {
2752                         pci_unmap_single(nic->pdev, (dma_addr_t)
2753                                  ((RxD1_t*)rxdp)->Buffer0_ptr,
2754                                  dev->mtu +
2755                                  HEADER_ETHERNET_II_802_3_SIZE +
2756                                  HEADER_802_2_SIZE +
2757                                  HEADER_SNAP_SIZE,
2758                                  PCI_DMA_FROMDEVICE);
2759                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2760                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2761                                  ((RxD3_t*)rxdp)->Buffer0_ptr,
2762                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2763                         pci_unmap_single(nic->pdev, (dma_addr_t)
2764                                  ((RxD3_t*)rxdp)->Buffer2_ptr,
2765                                  dev->mtu + 4,
2766                                  PCI_DMA_FROMDEVICE);
2767                 } else {
2768                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2769                                          ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2770                                          PCI_DMA_FROMDEVICE);
2771                         pci_unmap_single(nic->pdev, (dma_addr_t)
2772                                          ((RxD3_t*)rxdp)->Buffer1_ptr,
2773                                          l3l4hdr_size + 4,
2774                                          PCI_DMA_FROMDEVICE);
2775                         pci_unmap_single(nic->pdev, (dma_addr_t)
2776                                          ((RxD3_t*)rxdp)->Buffer2_ptr,
2777                                          dev->mtu, PCI_DMA_FROMDEVICE);
2778                 }
2779                 prefetch(skb->data);
2780                 rx_osm_handler(ring_data, rxdp);
2781                 get_info.offset++;
2782                 ring_data->rx_curr_get_info.offset = get_info.offset;
2783                 rxdp = ring_data->rx_blocks[get_block].
2784                                 rxds[get_info.offset].virt_addr;
2785                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2786                         get_info.offset = 0;
2787                         ring_data->rx_curr_get_info.offset = get_info.offset;
2788                         get_block++;
2789                         if (get_block == ring_data->block_count)
2790                                 get_block = 0;
2791                         ring_data->rx_curr_get_info.block_index = get_block;
2792                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2793                 }
2794
2795 #ifdef CONFIG_S2IO_NAPI
2796                 nic->pkts_to_process -= 1;
2797                 if (!nic->pkts_to_process)
2798                         break;
2799 #else
2800                 pkt_cnt++;
2801                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2802                         break;
2803 #endif
2804         }
2805         if (nic->lro) {
2806                 /* Clear all LRO sessions before exiting */
2807                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2808                         lro_t *lro = &nic->lro0_n[i];
2809                         if (lro->in_use) {
2810                                 update_L3L4_header(nic, lro);
2811                                 queue_rx_frame(lro->parent);
2812                                 clear_lro_session(lro);
2813                         }
2814                 }
2815         }
2816
2817         spin_unlock(&nic->rx_lock);
2818 }
2819
2820 /**
2821  *  tx_intr_handler - Transmit interrupt handler
2822  *  @nic : device private variable
2823  *  Description:
2824  *  If an interrupt was raised to indicate DMA complete of the
2825  *  Tx packet, this function is called. It identifies the last TxD
2826  *  whose buffer was freed and frees all skbs whose data have already
2827  *  DMA'ed into the NICs internal memory.
2828  *  Return Value:
2829  *  NONE
2830  */
2831
2832 static void tx_intr_handler(fifo_info_t *fifo_data)
2833 {
2834         nic_t *nic = fifo_data->nic;
2835         struct net_device *dev = (struct net_device *) nic->dev;
2836         tx_curr_get_info_t get_info, put_info;
2837         struct sk_buff *skb;
2838         TxD_t *txdlp;
2839
2840         get_info = fifo_data->tx_curr_get_info;
2841         put_info = fifo_data->tx_curr_put_info;
2842         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2843             list_virt_addr;
2844         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2845                (get_info.offset != put_info.offset) &&
2846                (txdlp->Host_Control)) {
2847                 /* Check for TxD errors */
2848                 if (txdlp->Control_1 & TXD_T_CODE) {
2849                         unsigned long long err;
2850                         err = txdlp->Control_1 & TXD_T_CODE;
2851                         if (err & 0x1) {
2852                                 nic->mac_control.stats_info->sw_stat.
2853                                                 parity_err_cnt++;
2854                         }
2855                         if ((err >> 48) == 0xA) {
2856                                 DBG_PRINT(TX_DBG, "TxD returned due \
2857 to loss of link\n");
2858                         }
2859                         else {
2860                                 DBG_PRINT(ERR_DBG, "***TxD error \
2861 %llx\n", err);
2862                         }
2863                 }
2864
2865                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2866                 if (skb == NULL) {
2867                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2868                         __FUNCTION__);
2869                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2870                         return;
2871                 }
2872
2873                 /* Updating the statistics block */
2874                 nic->stats.tx_bytes += skb->len;
2875                 dev_kfree_skb_irq(skb);
2876
2877                 get_info.offset++;
2878                 if (get_info.offset == get_info.fifo_len + 1)
2879                         get_info.offset = 0;
2880                 txdlp = (TxD_t *) fifo_data->list_info
2881                     [get_info.offset].list_virt_addr;
2882                 fifo_data->tx_curr_get_info.offset =
2883                     get_info.offset;
2884         }
2885
2886         spin_lock(&nic->tx_lock);
2887         if (netif_queue_stopped(dev))
2888                 netif_wake_queue(dev);
2889         spin_unlock(&nic->tx_lock);
2890 }
2891
2892 /**
2893  *  s2io_mdio_write - Function to write in to MDIO registers
2894  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2895  *  @addr     : address value
2896  *  @value    : data value
2897  *  @dev      : pointer to net_device structure
2898  *  Description:
2899  *  This function is used to write values to the MDIO registers
2900  *  NONE
2901  */
2902 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2903 {
2904         u64 val64 = 0x0;
2905         nic_t *sp = dev->priv;
2906         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2907
2908         //address transaction
2909         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2910                         | MDIO_MMD_DEV_ADDR(mmd_type)
2911                         | MDIO_MMS_PRT_ADDR(0x0);
2912         writeq(val64, &bar0->mdio_control);
2913         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2914         writeq(val64, &bar0->mdio_control);
2915         udelay(100);
2916
2917         //Data transaction
2918         val64 = 0x0;
2919         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2920                         | MDIO_MMD_DEV_ADDR(mmd_type)
2921                         | MDIO_MMS_PRT_ADDR(0x0)
2922                         | MDIO_MDIO_DATA(value)
2923                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2924         writeq(val64, &bar0->mdio_control);
2925         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2926         writeq(val64, &bar0->mdio_control);
2927         udelay(100);
2928
2929         val64 = 0x0;
2930         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2931         | MDIO_MMD_DEV_ADDR(mmd_type)
2932         | MDIO_MMS_PRT_ADDR(0x0)
2933         | MDIO_OP(MDIO_OP_READ_TRANS);
2934         writeq(val64, &bar0->mdio_control);
2935         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2936         writeq(val64, &bar0->mdio_control);
2937         udelay(100);
2938
2939 }
2940
2941 /**
2942  *  s2io_mdio_read - Function to write in to MDIO registers
2943  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2944  *  @addr     : address value
2945  *  @dev      : pointer to net_device structure
2946  *  Description:
2947  *  This function is used to read values to the MDIO registers
2948  *  NONE
2949  */
2950 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2951 {
2952         u64 val64 = 0x0;
2953         u64 rval64 = 0x0;
2954         nic_t *sp = dev->priv;
2955         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2956
2957         /* address transaction */
2958         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2959                         | MDIO_MMD_DEV_ADDR(mmd_type)
2960                         | MDIO_MMS_PRT_ADDR(0x0);
2961         writeq(val64, &bar0->mdio_control);
2962         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2963         writeq(val64, &bar0->mdio_control);
2964         udelay(100);
2965
2966         /* Data transaction */
2967         val64 = 0x0;
2968         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2969                         | MDIO_MMD_DEV_ADDR(mmd_type)
2970                         | MDIO_MMS_PRT_ADDR(0x0)
2971                         | MDIO_OP(MDIO_OP_READ_TRANS);
2972         writeq(val64, &bar0->mdio_control);
2973         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2974         writeq(val64, &bar0->mdio_control);
2975         udelay(100);
2976
2977         /* Read the value from regs */
2978         rval64 = readq(&bar0->mdio_control);
2979         rval64 = rval64 & 0xFFFF0000;
2980         rval64 = rval64 >> 16;
2981         return rval64;
2982 }
2983 /**
2984  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2985  *  @counter      : couter value to be updated
2986  *  @flag         : flag to indicate the status
2987  *  @type         : counter type
2988  *  Description:
2989  *  This function is to check the status of the xpak counters value
2990  *  NONE
2991  */
2992
2993 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2994 {
2995         u64 mask = 0x3;
2996         u64 val64;
2997         int i;
2998         for(i = 0; i <index; i++)
2999                 mask = mask << 0x2;
3000
3001         if(flag > 0)
3002         {
3003                 *counter = *counter + 1;
3004                 val64 = *regs_stat & mask;
3005                 val64 = val64 >> (index * 0x2);
3006                 val64 = val64 + 1;
3007                 if(val64 == 3)
3008                 {
3009                         switch(type)
3010                         {
3011                         case 1:
3012                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3013                                           "service. Excessive temperatures may "
3014                                           "result in premature transceiver "
3015                                           "failure \n");
3016                         break;
3017                         case 2:
3018                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3019                                           "service Excessive bias currents may "
3020                                           "indicate imminent laser diode "
3021                                           "failure \n");
3022                         break;
3023                         case 3:
3024                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3025                                           "service Excessive laser output "
3026                                           "power may saturate far-end "
3027                                           "receiver\n");
3028                         break;
3029                         default:
3030                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3031                                           "type \n");
3032                         }
3033                         val64 = 0x0;
3034                 }
3035                 val64 = val64 << (index * 0x2);
3036                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3037
3038         } else {
3039                 *regs_stat = *regs_stat & (~mask);
3040         }
3041 }
3042
3043 /**
3044  *  s2io_updt_xpak_counter - Function to update the xpak counters
3045  *  @dev         : pointer to net_device struct
3046  *  Description:
3047  *  This function is to upate the status of the xpak counters value
3048  *  NONE
3049  */
3050 static void s2io_updt_xpak_counter(struct net_device *dev)
3051 {
3052         u16 flag  = 0x0;
3053         u16 type  = 0x0;
3054         u16 val16 = 0x0;
3055         u64 val64 = 0x0;
3056         u64 addr  = 0x0;
3057
3058         nic_t *sp = dev->priv;
3059         StatInfo_t *stat_info = sp->mac_control.stats_info;
3060
3061         /* Check the communication with the MDIO slave */
3062         addr = 0x0000;
3063         val64 = 0x0;
3064         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3065         if((val64 == 0xFFFF) || (val64 == 0x0000))
3066         {
3067                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3068                           "Returned %llx\n", (unsigned long long)val64);
3069                 return;
3070         }
3071
3072         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3073         if(val64 != 0x2040)
3074         {
3075                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3076                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3077                           (unsigned long long)val64);
3078                 return;
3079         }
3080
3081         /* Loading the DOM register to MDIO register */
3082         addr = 0xA100;
3083         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3084         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3085
3086         /* Reading the Alarm flags */
3087         addr = 0xA070;
3088         val64 = 0x0;
3089         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3090
3091         flag = CHECKBIT(val64, 0x7);
3092         type = 1;
3093         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3094                                 &stat_info->xpak_stat.xpak_regs_stat,
3095                                 0x0, flag, type);
3096
3097         if(CHECKBIT(val64, 0x6))
3098                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3099
3100         flag = CHECKBIT(val64, 0x3);
3101         type = 2;
3102         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3103                                 &stat_info->xpak_stat.xpak_regs_stat,
3104                                 0x2, flag, type);
3105
3106         if(CHECKBIT(val64, 0x2))
3107                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3108
3109         flag = CHECKBIT(val64, 0x1);
3110         type = 3;
3111         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3112                                 &stat_info->xpak_stat.xpak_regs_stat,
3113                                 0x4, flag, type);
3114
3115         if(CHECKBIT(val64, 0x0))
3116                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3117
3118         /* Reading the Warning flags */
3119         addr = 0xA074;
3120         val64 = 0x0;
3121         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3122
3123         if(CHECKBIT(val64, 0x7))
3124                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3125
3126         if(CHECKBIT(val64, 0x6))
3127                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3128
3129         if(CHECKBIT(val64, 0x3))
3130                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3131
3132         if(CHECKBIT(val64, 0x2))
3133                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3134
3135         if(CHECKBIT(val64, 0x1))
3136                 stat_info->xpak_stat.warn_laser_output_power_high++;
3137
3138         if(CHECKBIT(val64, 0x0))
3139                 stat_info->xpak_stat.warn_laser_output_power_low++;
3140 }
3141
3142 /**
3143  *  alarm_intr_handler - Alarm Interrrupt handler
3144  *  @nic: device private variable
3145  *  Description: If the interrupt was neither because of Rx packet or Tx
3146  *  complete, this function is called. If the interrupt was to indicate
3147  *  a loss of link, the OSM link status handler is invoked for any other
3148  *  alarm interrupt the block that raised the interrupt is displayed
3149  *  and a H/W reset is issued.
3150  *  Return Value:
3151  *  NONE
3152 */
3153
3154 static void alarm_intr_handler(struct s2io_nic *nic)
3155 {
3156         struct net_device *dev = (struct net_device *) nic->dev;
3157         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3158         register u64 val64 = 0, err_reg = 0;
3159         u64 cnt;
3160         int i;
3161         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3162         /* Handling the XPAK counters update */
3163         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3164                 /* waiting for an hour */
3165                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3166         } else {
3167                 s2io_updt_xpak_counter(dev);
3168                 /* reset the count to zero */
3169                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3170         }
3171
3172         /* Handling link status change error Intr */
3173         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3174                 err_reg = readq(&bar0->mac_rmac_err_reg);
3175                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3176                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3177                         schedule_work(&nic->set_link_task);
3178                 }
3179         }
3180
3181         /* Handling Ecc errors */
3182         val64 = readq(&bar0->mc_err_reg);
3183         writeq(val64, &bar0->mc_err_reg);
3184         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3185                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3186                         nic->mac_control.stats_info->sw_stat.
3187                                 double_ecc_errs++;
3188                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3189                                   dev->name);
3190                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3191                         if (nic->device_type != XFRAME_II_DEVICE) {
3192                                 /* Reset XframeI only if critical error */
3193                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3194                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3195                                         netif_stop_queue(dev);
3196                                         schedule_work(&nic->rst_timer_task);
3197                                         nic->mac_control.stats_info->sw_stat.
3198                                                         soft_reset_cnt++;
3199                                 }
3200                         }
3201                 } else {
3202                         nic->mac_control.stats_info->sw_stat.
3203                                 single_ecc_errs++;
3204                 }
3205         }
3206
3207         /* In case of a serious error, the device will be Reset. */
3208         val64 = readq(&bar0->serr_source);
3209         if (val64 & SERR_SOURCE_ANY) {
3210                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3211                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3212                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3213                           (unsigned long long)val64);
3214                 netif_stop_queue(dev);
3215                 schedule_work(&nic->rst_timer_task);
3216                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3217         }
3218
3219         /*
3220          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3221          * Error occurs, the adapter will be recycled by disabling the
3222          * adapter enable bit and enabling it again after the device
3223          * becomes Quiescent.
3224          */
3225         val64 = readq(&bar0->pcc_err_reg);
3226         writeq(val64, &bar0->pcc_err_reg);
3227         if (val64 & PCC_FB_ECC_DB_ERR) {
3228                 u64 ac = readq(&bar0->adapter_control);
3229                 ac &= ~(ADAPTER_CNTL_EN);
3230                 writeq(ac, &bar0->adapter_control);
3231                 ac = readq(&bar0->adapter_control);
3232                 schedule_work(&nic->set_link_task);
3233         }
3234         /* Check for data parity error */
3235         val64 = readq(&bar0->pic_int_status);
3236         if (val64 & PIC_INT_GPIO) {
3237                 val64 = readq(&bar0->gpio_int_reg);
3238                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3239                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3240                         schedule_work(&nic->rst_timer_task);
3241                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3242                 }
3243         }
3244
3245         /* Check for ring full counter */
3246         if (nic->device_type & XFRAME_II_DEVICE) {
3247                 val64 = readq(&bar0->ring_bump_counter1);
3248                 for (i=0; i<4; i++) {
3249                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3250                         cnt >>= 64 - ((i+1)*16);
3251                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3252                                 += cnt;
3253                 }
3254
3255                 val64 = readq(&bar0->ring_bump_counter2);
3256                 for (i=0; i<4; i++) {
3257                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3258                         cnt >>= 64 - ((i+1)*16);
3259                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3260                                 += cnt;
3261                 }
3262         }
3263
3264         /* Other type of interrupts are not being handled now,  TODO */
3265 }
3266
3267 /**
3268  *  wait_for_cmd_complete - waits for a command to complete.
3269  *  @sp : private member of the device structure, which is a pointer to the
3270  *  s2io_nic structure.
3271  *  Description: Function that waits for a command to Write into RMAC
3272  *  ADDR DATA registers to be completed and returns either success or
3273  *  error depending on whether the command was complete or not.
3274  *  Return value:
3275  *   SUCCESS on success and FAILURE on failure.
3276  */
3277
3278 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
3279 {
3280         int ret = FAILURE, cnt = 0;
3281         u64 val64;
3282
3283         while (TRUE) {
3284                 val64 = readq(addr);
3285                 if (!(val64 & busy_bit)) {
3286                         ret = SUCCESS;
3287                         break;
3288                 }
3289
3290                 if(in_interrupt())
3291                         mdelay(50);
3292                 else
3293                         msleep(50);
3294
3295                 if (cnt++ > 10)
3296                         break;
3297         }
3298         return ret;
3299 }
3300
3301 /**
3302  *  s2io_reset - Resets the card.
3303  *  @sp : private member of the device structure.
3304  *  Description: Function to Reset the card. This function then also
3305  *  restores the previously saved PCI configuration space registers as
3306  *  the card reset also resets the configuration space.
3307  *  Return value:
3308  *  void.
3309  */
3310
3311 static void s2io_reset(nic_t * sp)
3312 {
3313         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3314         u64 val64;
3315         u16 subid, pci_cmd;
3316
3317         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3318         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3319
3320         val64 = SW_RESET_ALL;
3321         writeq(val64, &bar0->sw_reset);
3322
3323         /*
3324          * At this stage, if the PCI write is indeed completed, the
3325          * card is reset and so is the PCI Config space of the device.
3326          * So a read cannot be issued at this stage on any of the
3327          * registers to ensure the write into "sw_reset" register
3328          * has gone through.
3329          * Question: Is there any system call that will explicitly force
3330          * all the write commands still pending on the bus to be pushed
3331          * through?
3332          * As of now I'am just giving a 250ms delay and hoping that the
3333          * PCI write to sw_reset register is done by this time.
3334          */
3335         msleep(250);
3336         if (strstr(sp->product_name, "CX4")) {
3337                 msleep(750);
3338         }
3339
3340         /* Restore the PCI state saved during initialization. */
3341         pci_restore_state(sp->pdev);
3342         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
3343                                      pci_cmd);
3344         s2io_init_pci(sp);
3345
3346         msleep(250);
3347
3348         /* Set swapper to enable I/O register access */
3349         s2io_set_swapper(sp);
3350
3351         /* Restore the MSIX table entries from local variables */
3352         restore_xmsi_data(sp);
3353
3354         /* Clear certain PCI/PCI-X fields after reset */
3355         if (sp->device_type == XFRAME_II_DEVICE) {
3356                 /* Clear "detected parity error" bit */
3357                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3358
3359                 /* Clearing PCIX Ecc status register */
3360                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3361
3362                 /* Clearing PCI_STATUS error reflected here */
3363                 writeq(BIT(62), &bar0->txpic_int_reg);
3364         }
3365
3366         /* Reset device statistics maintained by OS */
3367         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3368
3369         /* SXE-002: Configure link and activity LED to turn it off */
3370         subid = sp->pdev->subsystem_device;
3371         if (((subid & 0xFF) >= 0x07) &&
3372             (sp->device_type == XFRAME_I_DEVICE)) {
3373                 val64 = readq(&bar0->gpio_control);
3374                 val64 |= 0x0000800000000000ULL;
3375                 writeq(val64, &bar0->gpio_control);
3376                 val64 = 0x0411040400000000ULL;
3377                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3378         }
3379
3380         /*
3381          * Clear spurious ECC interrupts that would have occured on
3382          * XFRAME II cards after reset.
3383          */
3384         if (sp->device_type == XFRAME_II_DEVICE) {
3385                 val64 = readq(&bar0->pcc_err_reg);
3386                 writeq(val64, &bar0->pcc_err_reg);
3387         }
3388
3389         sp->device_enabled_once = FALSE;
3390 }
3391
3392 /**
3393  *  s2io_set_swapper - to set the swapper controle on the card
3394  *  @sp : private member of the device structure,
3395  *  pointer to the s2io_nic structure.
3396  *  Description: Function to set the swapper control on the card
3397  *  correctly depending on the 'endianness' of the system.
3398  *  Return value:
3399  *  SUCCESS on success and FAILURE on failure.
3400  */
3401
3402 static int s2io_set_swapper(nic_t * sp)
3403 {
3404         struct net_device *dev = sp->dev;
3405         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3406         u64 val64, valt, valr;
3407
3408         /*
3409          * Set proper endian settings and verify the same by reading
3410          * the PIF Feed-back register.
3411          */
3412
3413         val64 = readq(&bar0->pif_rd_swapper_fb);
3414         if (val64 != 0x0123456789ABCDEFULL) {
3415                 int i = 0;
3416                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3417                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3418                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3419                                 0};                     /* FE=0, SE=0 */
3420
3421                 while(i<4) {
3422                         writeq(value[i], &bar0->swapper_ctrl);
3423                         val64 = readq(&bar0->pif_rd_swapper_fb);
3424                         if (val64 == 0x0123456789ABCDEFULL)
3425                                 break;
3426                         i++;
3427                 }
3428                 if (i == 4) {
3429                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3430                                 dev->name);
3431                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3432                                 (unsigned long long) val64);
3433                         return FAILURE;
3434                 }
3435                 valr = value[i];
3436         } else {
3437                 valr = readq(&bar0->swapper_ctrl);
3438         }
3439
3440         valt = 0x0123456789ABCDEFULL;
3441         writeq(valt, &bar0->xmsi_address);
3442         val64 = readq(&bar0->xmsi_address);
3443
3444         if(val64 != valt) {
3445                 int i = 0;
3446                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3447                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3448                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3449                                 0};                     /* FE=0, SE=0 */
3450
3451                 while(i<4) {
3452                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3453                         writeq(valt, &bar0->xmsi_address);
3454                         val64 = readq(&bar0->xmsi_address);
3455                         if(val64 == valt)
3456                                 break;
3457                         i++;
3458                 }
3459                 if(i == 4) {
3460                         unsigned long long x = val64;
3461                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3462                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3463                         return FAILURE;
3464                 }
3465         }
3466         val64 = readq(&bar0->swapper_ctrl);
3467         val64 &= 0xFFFF000000000000ULL;
3468
3469 #ifdef  __BIG_ENDIAN
3470         /*
3471          * The device by default set to a big endian format, so a
3472          * big endian driver need not set anything.
3473          */
3474         val64 |= (SWAPPER_CTRL_TXP_FE |
3475                  SWAPPER_CTRL_TXP_SE |
3476                  SWAPPER_CTRL_TXD_R_FE |
3477                  SWAPPER_CTRL_TXD_W_FE |
3478                  SWAPPER_CTRL_TXF_R_FE |
3479                  SWAPPER_CTRL_RXD_R_FE |
3480                  SWAPPER_CTRL_RXD_W_FE |
3481                  SWAPPER_CTRL_RXF_W_FE |
3482                  SWAPPER_CTRL_XMSI_FE |
3483                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3484         if (sp->intr_type == INTA)
3485                 val64 |= SWAPPER_CTRL_XMSI_SE;
3486         writeq(val64, &bar0->swapper_ctrl);
3487 #else
3488         /*
3489          * Initially we enable all bits to make it accessible by the
3490          * driver, then we selectively enable only those bits that
3491          * we want to set.
3492          */
3493         val64 |= (SWAPPER_CTRL_TXP_FE |
3494                  SWAPPER_CTRL_TXP_SE |
3495                  SWAPPER_CTRL_TXD_R_FE |
3496                  SWAPPER_CTRL_TXD_R_SE |
3497                  SWAPPER_CTRL_TXD_W_FE |
3498                  SWAPPER_CTRL_TXD_W_SE |
3499                  SWAPPER_CTRL_TXF_R_FE |
3500                  SWAPPER_CTRL_RXD_R_FE |
3501                  SWAPPER_CTRL_RXD_R_SE |
3502                  SWAPPER_CTRL_RXD_W_FE |
3503                  SWAPPER_CTRL_RXD_W_SE |
3504                  SWAPPER_CTRL_RXF_W_FE |
3505                  SWAPPER_CTRL_XMSI_FE |
3506                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3507         if (sp->intr_type == INTA)
3508                 val64 |= SWAPPER_CTRL_XMSI_SE;
3509         writeq(val64, &bar0->swapper_ctrl);
3510 #endif
3511         val64 = readq(&bar0->swapper_ctrl);
3512
3513         /*
3514          * Verifying if endian settings are accurate by reading a
3515          * feedback register.
3516          */
3517         val64 = readq(&bar0->pif_rd_swapper_fb);
3518         if (val64 != 0x0123456789ABCDEFULL) {
3519                 /* Endian settings are incorrect, calls for another dekko. */
3520                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3521                           dev->name);
3522                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3523                           (unsigned long long) val64);
3524                 return FAILURE;
3525         }
3526
3527         return SUCCESS;
3528 }
3529
3530 static int wait_for_msix_trans(nic_t *nic, int i)
3531 {
3532         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3533         u64 val64;
3534         int ret = 0, cnt = 0;
3535
3536         do {
3537                 val64 = readq(&bar0->xmsi_access);
3538                 if (!(val64 & BIT(15)))
3539                         break;
3540                 mdelay(1);
3541                 cnt++;
3542         } while(cnt < 5);
3543         if (cnt == 5) {
3544                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3545                 ret = 1;
3546         }
3547
3548         return ret;
3549 }
3550
3551 static void restore_xmsi_data(nic_t *nic)
3552 {
3553         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3554         u64 val64;
3555         int i;
3556
3557         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3558                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3559                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3560                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3561                 writeq(val64, &bar0->xmsi_access);
3562                 if (wait_for_msix_trans(nic, i)) {
3563                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3564                         continue;
3565                 }
3566         }
3567 }
3568
3569 static void store_xmsi_data(nic_t *nic)
3570 {
3571         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3572         u64 val64, addr, data;
3573         int i;
3574
3575         /* Store and display */
3576         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3577                 val64 = (BIT(15) | vBIT(i, 26, 6));
3578                 writeq(val64, &bar0->xmsi_access);
3579                 if (wait_for_msix_trans(nic, i)) {
3580                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3581                         continue;
3582                 }
3583                 addr = readq(&bar0->xmsi_address);
3584                 data = readq(&bar0->xmsi_data);
3585                 if (addr && data) {
3586                         nic->msix_info[i].addr = addr;
3587                         nic->msix_info[i].data = data;
3588                 }
3589         }
3590 }
3591
3592 int s2io_enable_msi(nic_t *nic)
3593 {
3594         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3595         u16 msi_ctrl, msg_val;
3596         struct config_param *config = &nic->config;
3597         struct net_device *dev = nic->dev;
3598         u64 val64, tx_mat, rx_mat;
3599         int i, err;
3600
3601         val64 = readq(&bar0->pic_control);
3602         val64 &= ~BIT(1);
3603         writeq(val64, &bar0->pic_control);
3604
3605         err = pci_enable_msi(nic->pdev);
3606         if (err) {
3607                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3608                           nic->dev->name);
3609                 return err;
3610         }
3611
3612         /*
3613          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3614          * for interrupt handling.
3615          */
3616         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3617         msg_val ^= 0x1;
3618         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3619         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3620
3621         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3622         msi_ctrl |= 0x10;
3623         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3624
3625         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3626         tx_mat = readq(&bar0->tx_mat0_n[0]);
3627         for (i=0; i<config->tx_fifo_num; i++) {
3628                 tx_mat |= TX_MAT_SET(i, 1);
3629         }
3630         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3631
3632         rx_mat = readq(&bar0->rx_mat);
3633         for (i=0; i<config->rx_ring_num; i++) {
3634                 rx_mat |= RX_MAT_SET(i, 1);
3635         }
3636         writeq(rx_mat, &bar0->rx_mat);
3637
3638         dev->irq = nic->pdev->irq;
3639         return 0;
3640 }
3641
3642 static int s2io_enable_msi_x(nic_t *nic)
3643 {
3644         XENA_dev_config_t __iomem *bar0 = nic->bar0;
3645         u64 tx_mat, rx_mat;
3646         u16 msi_control; /* Temp variable */
3647         int ret, i, j, msix_indx = 1;
3648
3649         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3650                                GFP_KERNEL);
3651         if (nic->entries == NULL) {
3652                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3653                 return -ENOMEM;
3654         }
3655         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3656
3657         nic->s2io_entries =
3658                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3659                                    GFP_KERNEL);
3660         if (nic->s2io_entries == NULL) {
3661                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3662                 kfree(nic->entries);
3663                 return -ENOMEM;
3664         }
3665         memset(nic->s2io_entries, 0,
3666                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3667
3668         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3669                 nic->entries[i].entry = i;
3670                 nic->s2io_entries[i].entry = i;
3671                 nic->s2io_entries[i].arg = NULL;
3672                 nic->s2io_entries[i].in_use = 0;
3673         }
3674
3675         tx_mat = readq(&bar0->tx_mat0_n[0]);
3676         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3677                 tx_mat |= TX_MAT_SET(i, msix_indx);
3678                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3679                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3680                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3681         }
3682         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3683
3684         if (!nic->config.bimodal) {
3685                 rx_mat = readq(&bar0->rx_mat);
3686                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3687                         rx_mat |= RX_MAT_SET(j, msix_indx);
3688                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3689                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3690                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3691                 }
3692                 writeq(rx_mat, &bar0->rx_mat);
3693         } else {
3694                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3695                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3696                         tx_mat |= TX_MAT_SET(i, msix_indx);
3697                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3698                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3699                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3700                 }
3701                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3702         }
3703
3704         nic->avail_msix_vectors = 0;
3705         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3706         /* We fail init if error or we get less vectors than min required */
3707         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3708                 nic->avail_msix_vectors = ret;
3709                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3710         }
3711         if (ret) {
3712                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3713                 kfree(nic->entries);
3714                 kfree(nic->s2io_entries);
3715                 nic->entries = NULL;
3716                 nic->s2io_entries = NULL;
3717                 nic->avail_msix_vectors = 0;
3718                 return -ENOMEM;
3719         }
3720         if (!nic->avail_msix_vectors)
3721                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3722
3723         /*
3724          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3725          * in the herc NIC. (Temp change, needs to be removed later)
3726          */
3727         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3728         msi_control |= 0x1; /* Enable MSI */
3729         pci_write_config_word(nic->pdev, 0x42, msi_control);
3730
3731         return 0;
3732 }
3733
3734 /* ********************************************************* *
3735  * Functions defined below concern the OS part of the driver *
3736  * ********************************************************* */
3737
3738 /**
3739  *  s2io_open - open entry point of the driver
3740  *  @dev : pointer to the device structure.
3741  *  Description:
3742  *  This function is the open entry point of the driver. It mainly calls a
3743  *  function to allocate Rx buffers and inserts them into the buffer
3744  *  descriptors and then enables the Rx part of the NIC.
3745  *  Return value:
3746  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3747  *   file on failure.
3748  */
3749
3750 static int s2io_open(struct net_device *dev)
3751 {
3752         nic_t *sp = dev->priv;
3753         int err = 0;
3754
3755         /*
3756          * Make sure you have link off by default every time
3757          * Nic is initialized
3758          */
3759         netif_carrier_off(dev);
3760         sp->last_link_state = 0;
3761
3762         /* Initialize H/W and enable interrupts */
3763         err = s2io_card_up(sp);
3764         if (err) {
3765                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3766                           dev->name);
3767                 goto hw_init_failed;
3768         }
3769
3770         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3771                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3772                 s2io_card_down(sp);
3773                 err = -ENODEV;
3774                 goto hw_init_failed;
3775         }
3776
3777         netif_start_queue(dev);
3778         return 0;
3779
3780 hw_init_failed:
3781         if (sp->intr_type == MSI_X) {
3782                 if (sp->entries)
3783                         kfree(sp->entries);
3784                 if (sp->s2io_entries)
3785                         kfree(sp->s2io_entries);
3786         }
3787         return err;
3788 }
3789
3790 /**
3791  *  s2io_close -close entry point of the driver
3792  *  @dev : device pointer.
3793  *  Description:
3794  *  This is the stop entry point of the driver. It needs to undo exactly
3795  *  whatever was done by the open entry point,thus it's usually referred to
3796  *  as the close function.Among other things this function mainly stops the
3797  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3798  *  Return value:
3799  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3800  *  file on failure.
3801  */
3802
3803 static int s2io_close(struct net_device *dev)
3804 {
3805         nic_t *sp = dev->priv;
3806
3807         flush_scheduled_work();
3808         netif_stop_queue(dev);
3809         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3810         s2io_card_down(sp);
3811
3812         sp->device_close_flag = TRUE;   /* Device is shut down. */
3813         return 0;
3814 }
3815
3816 /**
3817  *  s2io_xmit - Tx entry point of te driver
3818  *  @skb : the socket buffer containing the Tx data.
3819  *  @dev : device pointer.
3820  *  Description :
3821  *  This function is the Tx entry point of the driver. S2IO NIC supports
3822  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3823  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3824  *  not be upadted.
3825  *  Return value:
3826  *  0 on success & 1 on failure.
3827  */
3828
3829 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3830 {
3831         nic_t *sp = dev->priv;
3832         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3833         register u64 val64;
3834         TxD_t *txdp;
3835         TxFIFO_element_t __iomem *tx_fifo;
3836         unsigned long flags;
3837         u16 vlan_tag = 0;
3838         int vlan_priority = 0;
3839         mac_info_t *mac_control;
3840         struct config_param *config;
3841         int offload_type;
3842
3843         mac_control = &sp->mac_control;
3844         config = &sp->config;
3845
3846         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3847         spin_lock_irqsave(&sp->tx_lock, flags);
3848         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3849                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3850                           dev->name);
3851                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3852                 dev_kfree_skb(skb);
3853                 return 0;
3854         }
3855
3856         queue = 0;
3857
3858         /* Get Fifo number to Transmit based on vlan priority */
3859         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3860                 vlan_tag = vlan_tx_tag_get(skb);
3861                 vlan_priority = vlan_tag >> 13;
3862                 queue = config->fifo_mapping[vlan_priority];
3863         }
3864
3865         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3866         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3867         txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3868                 list_virt_addr;
3869
3870         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3871         /* Avoid "put" pointer going beyond "get" pointer */
3872         if (txdp->Host_Control ||
3873                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3874                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3875                 netif_stop_queue(dev);
3876                 dev_kfree_skb(skb);
3877                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3878                 return 0;
3879         }
3880
3881         /* A buffer with no data will be dropped */
3882         if (!skb->len) {
3883                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3884                 dev_kfree_skb(skb);
3885                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3886                 return 0;
3887         }
3888
3889         offload_type = s2io_offload_type(skb);
3890 #ifdef NETIF_F_TSO
3891         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3892                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3893                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3894         }
3895 #endif
3896         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3897                 txdp->Control_2 |=
3898                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3899                      TXD_TX_CKO_UDP_EN);
3900         }
3901         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3902         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3903         txdp->Control_2 |= config->tx_intr_type;
3904
3905         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3906                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3907                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3908         }
3909
3910         frg_len = skb->len - skb->data_len;
3911         if (offload_type == SKB_GSO_UDP) {
3912                 int ufo_size;
3913
3914                 ufo_size = s2io_udp_mss(skb);
3915                 ufo_size &= ~7;
3916                 txdp->Control_1 |= TXD_UFO_EN;
3917                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3918                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3919 #ifdef __BIG_ENDIAN
3920                 sp->ufo_in_band_v[put_off] =
3921                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3922 #else
3923                 sp->ufo_in_band_v[put_off] =
3924                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3925 #endif
3926                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3927                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3928                                         sp->ufo_in_band_v,
3929                                         sizeof(u64), PCI_DMA_TODEVICE);
3930                 txdp++;
3931         }
3932
3933         txdp->Buffer_Pointer = pci_map_single
3934             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3935         txdp->Host_Control = (unsigned long) skb;
3936         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3937         if (offload_type == SKB_GSO_UDP)
3938                 txdp->Control_1 |= TXD_UFO_EN;
3939
3940         frg_cnt = skb_shinfo(skb)->nr_frags;
3941         /* For fragmented SKB. */
3942         for (i = 0; i < frg_cnt; i++) {
3943                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3944                 /* A '0' length fragment will be ignored */
3945                 if (!frag->size)
3946                         continue;
3947                 txdp++;
3948                 txdp->Buffer_Pointer = (u64) pci_map_page
3949                     (sp->pdev, frag->page, frag->page_offset,
3950                      frag->size, PCI_DMA_TODEVICE);
3951                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3952                 if (offload_type == SKB_GSO_UDP)
3953                         txdp->Control_1 |= TXD_UFO_EN;
3954         }
3955         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3956
3957         if (offload_type == SKB_GSO_UDP)
3958                 frg_cnt++; /* as Txd0 was used for inband header */
3959
3960         tx_fifo = mac_control->tx_FIFO_start[queue];
3961         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3962         writeq(val64, &tx_fifo->TxDL_Pointer);
3963
3964         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3965                  TX_FIFO_LAST_LIST);
3966         if (offload_type)
3967                 val64 |= TX_FIFO_SPECIAL_FUNC;
3968
3969         writeq(val64, &tx_fifo->List_Control);
3970
3971         mmiowb();
3972
3973         put_off++;
3974         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3975                 put_off = 0;
3976         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3977
3978         /* Avoid "put" pointer going beyond "get" pointer */
3979         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3980                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
3981                 DBG_PRINT(TX_DBG,
3982                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3983                           put_off, get_off);
3984                 netif_stop_queue(dev);
3985         }
3986
3987         dev->trans_start = jiffies;
3988         spin_unlock_irqrestore(&sp->tx_lock, flags);
3989
3990         return 0;
3991 }
3992
3993 static void
3994 s2io_alarm_handle(unsigned long data)
3995 {
3996         nic_t *sp = (nic_t *)data;
3997
3998         alarm_intr_handler(sp);
3999         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4000 }
4001
4002 static int s2io_chk_rx_buffers(nic_t *sp, int rng_n)
4003 {
4004         int rxb_size, level;
4005
4006         if (!sp->lro) {
4007                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4008                 level = rx_buffer_level(sp, rxb_size, rng_n);
4009
4010                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4011                         int ret;
4012                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4013                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4014                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4015                                 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4016                                           __FUNCTION__);
4017                                 clear_bit(0, (&sp->tasklet_status));
4018                                 return -1;
4019                         }
4020                         clear_bit(0, (&sp->tasklet_status));
4021                 } else if (level == LOW)
4022                         tasklet_schedule(&sp->task);
4023
4024         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4025                         DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
4026                         DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4027         }
4028         return 0;
4029 }
4030
4031 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4032 {
4033         struct net_device *dev = (struct net_device *) dev_id;
4034         nic_t *sp = dev->priv;
4035         int i;
4036         mac_info_t *mac_control;
4037         struct config_param *config;
4038
4039         atomic_inc(&sp->isr_cnt);
4040         mac_control = &sp->mac_control;
4041         config = &sp->config;
4042         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4043
4044         /* If Intr is because of Rx Traffic */
4045         for (i = 0; i < config->rx_ring_num; i++)
4046                 rx_intr_handler(&mac_control->rings[i]);
4047
4048         /* If Intr is because of Tx Traffic */
4049         for (i = 0; i < config->tx_fifo_num; i++)
4050                 tx_intr_handler(&mac_control->fifos[i]);
4051
4052         /*
4053          * If the Rx buffer count is below the panic threshold then
4054          * reallocate the buffers from the interrupt handler itself,
4055          * else schedule a tasklet to reallocate the buffers.
4056          */
4057         for (i = 0; i < config->rx_ring_num; i++)
4058                 s2io_chk_rx_buffers(sp, i);
4059
4060         atomic_dec(&sp->isr_cnt);
4061         return IRQ_HANDLED;
4062 }
4063
4064 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4065 {
4066         ring_info_t *ring = (ring_info_t *)dev_id;
4067         nic_t *sp = ring->nic;
4068
4069         atomic_inc(&sp->isr_cnt);
4070
4071         rx_intr_handler(ring);
4072         s2io_chk_rx_buffers(sp, ring->ring_no);
4073
4074         atomic_dec(&sp->isr_cnt);
4075         return IRQ_HANDLED;
4076 }
4077
4078 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4079 {
4080         fifo_info_t *fifo = (fifo_info_t *)dev_id;
4081         nic_t *sp = fifo->nic;
4082
4083         atomic_inc(&sp->isr_cnt);
4084         tx_intr_handler(fifo);
4085         atomic_dec(&sp->isr_cnt);
4086         return IRQ_HANDLED;
4087 }
4088 static void s2io_txpic_intr_handle(nic_t *sp)
4089 {
4090         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4091         u64 val64;
4092
4093         val64 = readq(&bar0->pic_int_status);
4094         if (val64 & PIC_INT_GPIO) {
4095                 val64 = readq(&bar0->gpio_int_reg);
4096                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4097                     (val64 & GPIO_INT_REG_LINK_UP)) {
4098                         /*
4099                          * This is unstable state so clear both up/down
4100                          * interrupt and adapter to re-evaluate the link state.
4101                          */
4102                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4103                         val64 |= GPIO_INT_REG_LINK_UP;
4104                         writeq(val64, &bar0->gpio_int_reg);
4105                         val64 = readq(&bar0->gpio_int_mask);
4106                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4107                                    GPIO_INT_MASK_LINK_DOWN);
4108                         writeq(val64, &bar0->gpio_int_mask);
4109                 }
4110                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4111                         val64 = readq(&bar0->adapter_status);
4112                         if (verify_xena_quiescence(sp, val64,
4113                                                    sp->device_enabled_once)) {
4114                                 /* Enable Adapter */
4115                                 val64 = readq(&bar0->adapter_control);
4116                                 val64 |= ADAPTER_CNTL_EN;
4117                                 writeq(val64, &bar0->adapter_control);
4118                                 val64 |= ADAPTER_LED_ON;
4119                                 writeq(val64, &bar0->adapter_control);
4120                                 if (!sp->device_enabled_once)
4121                                         sp->device_enabled_once = 1;
4122
4123                                 s2io_link(sp, LINK_UP);
4124                                 /*
4125                                  * unmask link down interrupt and mask link-up
4126                                  * intr
4127                                  */
4128                                 val64 = readq(&bar0->gpio_int_mask);
4129                                 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4130                                 val64 |= GPIO_INT_MASK_LINK_UP;
4131                                 writeq(val64, &bar0->gpio_int_mask);
4132
4133                         }
4134                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4135                         val64 = readq(&bar0->adapter_status);
4136                         if (verify_xena_quiescence(sp, val64,
4137                                                    sp->device_enabled_once)) {
4138                                 s2io_link(sp, LINK_DOWN);
4139                                 /* Link is down so unmaks link up interrupt */
4140                                 val64 = readq(&bar0->gpio_int_mask);
4141                                 val64 &= ~GPIO_INT_MASK_LINK_UP;
4142                                 val64 |= GPIO_INT_MASK_LINK_DOWN;
4143                                 writeq(val64, &bar0->gpio_int_mask);
4144                         }
4145                 }
4146         }
4147         val64 = readq(&bar0->gpio_int_mask);
4148 }
4149
4150 /**
4151  *  s2io_isr - ISR handler of the device .
4152  *  @irq: the irq of the device.
4153  *  @dev_id: a void pointer to the dev structure of the NIC.
4154  *  Description:  This function is the ISR handler of the device. It
4155  *  identifies the reason for the interrupt and calls the relevant
4156  *  service routines. As a contongency measure, this ISR allocates the
4157  *  recv buffers, if their numbers are below the panic value which is
4158  *  presently set to 25% of the original number of rcv buffers allocated.
4159  *  Return value:
4160  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4161  *   IRQ_NONE: will be returned if interrupt is not from our device
4162  */
4163 static irqreturn_t s2io_isr(int irq, void *dev_id)
4164 {
4165         struct net_device *dev = (struct net_device *) dev_id;
4166         nic_t *sp = dev->priv;
4167         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4168         int i;
4169         u64 reason = 0, val64, org_mask;
4170         mac_info_t *mac_control;
4171         struct config_param *config;
4172
4173         atomic_inc(&sp->isr_cnt);
4174         mac_control = &sp->mac_control;
4175         config = &sp->config;
4176
4177         /*
4178          * Identify the cause for interrupt and call the appropriate
4179          * interrupt handler. Causes for the interrupt could be;
4180          * 1. Rx of packet.
4181          * 2. Tx complete.
4182          * 3. Link down.
4183          * 4. Error in any functional blocks of the NIC.
4184          */
4185         reason = readq(&bar0->general_int_status);
4186
4187         if (!reason) {
4188                 /* The interrupt was not raised by Xena. */
4189                 atomic_dec(&sp->isr_cnt);
4190                 return IRQ_NONE;
4191         }
4192
4193         val64 = 0xFFFFFFFFFFFFFFFFULL;
4194         /* Store current mask before masking all interrupts */
4195         org_mask = readq(&bar0->general_int_mask);
4196         writeq(val64, &bar0->general_int_mask);
4197
4198 #ifdef CONFIG_S2IO_NAPI
4199         if (reason & GEN_INTR_RXTRAFFIC) {
4200                 if (netif_rx_schedule_prep(dev)) {
4201                         writeq(val64, &bar0->rx_traffic_mask);
4202                         __netif_rx_schedule(dev);
4203                 }
4204         }
4205 #else
4206         /*
4207          * Rx handler is called by default, without checking for the
4208          * cause of interrupt.
4209          * rx_traffic_int reg is an R1 register, writing all 1's
4210          * will ensure that the actual interrupt causing bit get's
4211          * cleared and hence a read can be avoided.
4212          */
4213         writeq(val64, &bar0->rx_traffic_int);
4214         for (i = 0; i < config->rx_ring_num; i++) {
4215                 rx_intr_handler(&mac_control->rings[i]);
4216         }
4217 #endif
4218
4219         /*
4220          * tx_traffic_int reg is an R1 register, writing all 1's
4221          * will ensure that the actual interrupt causing bit get's
4222          * cleared and hence a read can be avoided.
4223          */
4224         writeq(val64, &bar0->tx_traffic_int);
4225
4226         for (i = 0; i < config->tx_fifo_num; i++)
4227                 tx_intr_handler(&mac_control->fifos[i]);
4228
4229         if (reason & GEN_INTR_TXPIC)
4230                 s2io_txpic_intr_handle(sp);
4231         /*
4232          * If the Rx buffer count is below the panic threshold then
4233          * reallocate the buffers from the interrupt handler itself,
4234          * else schedule a tasklet to reallocate the buffers.
4235          */
4236 #ifndef CONFIG_S2IO_NAPI
4237         for (i = 0; i < config->rx_ring_num; i++)
4238                 s2io_chk_rx_buffers(sp, i);
4239 #endif
4240         writeq(org_mask, &bar0->general_int_mask);
4241         atomic_dec(&sp->isr_cnt);
4242         return IRQ_HANDLED;
4243 }
4244
4245 /**
4246  * s2io_updt_stats -
4247  */
4248 static void s2io_updt_stats(nic_t *sp)
4249 {
4250         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4251         u64 val64;
4252         int cnt = 0;
4253
4254         if (atomic_read(&sp->card_state) == CARD_UP) {
4255                 /* Apprx 30us on a 133 MHz bus */
4256                 val64 = SET_UPDT_CLICKS(10) |
4257                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4258                 writeq(val64, &bar0->stat_cfg);
4259                 do {
4260                         udelay(100);
4261                         val64 = readq(&bar0->stat_cfg);
4262                         if (!(val64 & BIT(0)))
4263                                 break;
4264                         cnt++;
4265                         if (cnt == 5)
4266                                 break; /* Updt failed */
4267                 } while(1);
4268         } else {
4269                 memset(sp->mac_control.stats_info, 0, sizeof(StatInfo_t));
4270         }
4271 }
4272
4273 /**
4274  *  s2io_get_stats - Updates the device statistics structure.
4275  *  @dev : pointer to the device structure.
4276  *  Description:
4277  *  This function updates the device statistics structure in the s2io_nic
4278  *  structure and returns a pointer to the same.
4279  *  Return value:
4280  *  pointer to the updated net_device_stats structure.
4281  */
4282
4283 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4284 {
4285         nic_t *sp = dev->priv;
4286         mac_info_t *mac_control;
4287         struct config_param *config;
4288
4289
4290         mac_control = &sp->mac_control;
4291         config = &sp->config;
4292
4293         /* Configure Stats for immediate updt */
4294         s2io_updt_stats(sp);
4295
4296         sp->stats.tx_packets =
4297                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4298         sp->stats.tx_errors =
4299                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4300         sp->stats.rx_errors =
4301                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4302         sp->stats.multicast =
4303                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4304         sp->stats.rx_length_errors =
4305                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4306
4307         return (&sp->stats);
4308 }
4309
4310 /**
4311  *  s2io_set_multicast - entry point for multicast address enable/disable.
4312  *  @dev : pointer to the device structure
4313  *  Description:
4314  *  This function is a driver entry point which gets called by the kernel
4315  *  whenever multicast addresses must be enabled/disabled. This also gets
4316  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4317  *  determine, if multicast address must be enabled or if promiscuous mode
4318  *  is to be disabled etc.
4319  *  Return value:
4320  *  void.
4321  */
4322
4323 static void s2io_set_multicast(struct net_device *dev)
4324 {
4325         int i, j, prev_cnt;
4326         struct dev_mc_list *mclist;
4327         nic_t *sp = dev->priv;
4328         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4329         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4330             0xfeffffffffffULL;
4331         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4332         void __iomem *add;
4333
4334         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4335                 /*  Enable all Multicast addresses */
4336                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4337                        &bar0->rmac_addr_data0_mem);
4338                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4339                        &bar0->rmac_addr_data1_mem);
4340                 val64 = RMAC_ADDR_CMD_MEM_WE |
4341                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4342                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4343                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4344                 /* Wait till command completes */
4345                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4346                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4347
4348                 sp->m_cast_flg = 1;
4349                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4350         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4351                 /*  Disable all Multicast addresses */
4352                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4353                        &bar0->rmac_addr_data0_mem);
4354                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4355                        &bar0->rmac_addr_data1_mem);
4356                 val64 = RMAC_ADDR_CMD_MEM_WE |
4357                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4358                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4359                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4360                 /* Wait till command completes */
4361                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4362                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
4363
4364                 sp->m_cast_flg = 0;
4365                 sp->all_multi_pos = 0;
4366         }
4367
4368         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4369                 /*  Put the NIC into promiscuous mode */
4370                 add = &bar0->mac_cfg;
4371                 val64 = readq(&bar0->mac_cfg);
4372                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4373
4374                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4375                 writel((u32) val64, add);
4376                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4377                 writel((u32) (val64 >> 32), (add + 4));
4378
4379                 val64 = readq(&bar0->mac_cfg);
4380                 sp->promisc_flg = 1;
4381                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4382                           dev->name);
4383         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4384                 /*  Remove the NIC from promiscuous mode */
4385                 add = &bar0->mac_cfg;
4386                 val64 = readq(&bar0->mac_cfg);
4387                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4388
4389                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4390                 writel((u32) val64, add);
4391                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4392                 writel((u32) (val64 >> 32), (add + 4));
4393
4394                 val64 = readq(&bar0->mac_cfg);
4395                 sp->promisc_flg = 0;
4396                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4397                           dev->name);
4398         }
4399
4400         /*  Update individual M_CAST address list */
4401         if ((!sp->m_cast_flg) && dev->mc_count) {
4402                 if (dev->mc_count >
4403                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4404                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4405                                   dev->name);
4406                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4407                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4408                         return;
4409                 }
4410
4411                 prev_cnt = sp->mc_addr_count;
4412                 sp->mc_addr_count = dev->mc_count;
4413
4414                 /* Clear out the previous list of Mc in the H/W. */
4415                 for (i = 0; i < prev_cnt; i++) {
4416                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4417                                &bar0->rmac_addr_data0_mem);
4418                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4419                                 &bar0->rmac_addr_data1_mem);
4420                         val64 = RMAC_ADDR_CMD_MEM_WE |
4421                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4422                             RMAC_ADDR_CMD_MEM_OFFSET
4423                             (MAC_MC_ADDR_START_OFFSET + i);
4424                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4425
4426                         /* Wait for command completes */
4427                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4428                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4429                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4430                                           dev->name);
4431                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4432                                 return;
4433                         }
4434                 }
4435
4436                 /* Create the new Rx filter list and update the same in H/W. */
4437                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4438                      i++, mclist = mclist->next) {
4439                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4440                                ETH_ALEN);
4441                         mac_addr = 0;
4442                         for (j = 0; j < ETH_ALEN; j++) {
4443                                 mac_addr |= mclist->dmi_addr[j];
4444                                 mac_addr <<= 8;
4445                         }
4446                         mac_addr >>= 8;
4447                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4448                                &bar0->rmac_addr_data0_mem);
4449                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4450                                 &bar0->rmac_addr_data1_mem);
4451                         val64 = RMAC_ADDR_CMD_MEM_WE |
4452                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4453                             RMAC_ADDR_CMD_MEM_OFFSET
4454                             (i + MAC_MC_ADDR_START_OFFSET);
4455                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4456
4457                         /* Wait for command completes */
4458                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4459                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4460                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4461                                           dev->name);
4462                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4463                                 return;
4464                         }
4465                 }
4466         }
4467 }
4468
4469 /**
4470  *  s2io_set_mac_addr - Programs the Xframe mac address
4471  *  @dev : pointer to the device structure.
4472  *  @addr: a uchar pointer to the new mac address which is to be set.
4473  *  Description : This procedure will program the Xframe to receive
4474  *  frames with new Mac Address
4475  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4476  *  as defined in errno.h file on failure.
4477  */
4478
4479 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4480 {
4481         nic_t *sp = dev->priv;
4482         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4483         register u64 val64, mac_addr = 0;
4484         int i;
4485
4486         /*
4487          * Set the new MAC address as the new unicast filter and reflect this
4488          * change on the device address registered with the OS. It will be
4489          * at offset 0.
4490          */
4491         for (i = 0; i < ETH_ALEN; i++) {
4492                 mac_addr <<= 8;
4493                 mac_addr |= addr[i];
4494         }
4495
4496         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4497                &bar0->rmac_addr_data0_mem);
4498
4499         val64 =
4500             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4501             RMAC_ADDR_CMD_MEM_OFFSET(0);
4502         writeq(val64, &bar0->rmac_addr_cmd_mem);
4503         /* Wait till command completes */
4504         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4505                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
4506                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4507                 return FAILURE;
4508         }
4509
4510         return SUCCESS;
4511 }
4512
4513 /**
4514  * s2io_ethtool_sset - Sets different link parameters.
4515  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4516  * @info: pointer to the structure with parameters given by ethtool to set
4517  * link information.
4518  * Description:
4519  * The function sets different link parameters provided by the user onto
4520  * the NIC.
4521  * Return value:
4522  * 0 on success.
4523 */
4524
4525 static int s2io_ethtool_sset(struct net_device *dev,
4526                              struct ethtool_cmd *info)
4527 {
4528         nic_t *sp = dev->priv;
4529         if ((info->autoneg == AUTONEG_ENABLE) ||
4530             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4531                 return -EINVAL;
4532         else {
4533                 s2io_close(sp->dev);
4534                 s2io_open(sp->dev);
4535         }
4536
4537         return 0;
4538 }
4539
4540 /**
4541  * s2io_ethtol_gset - Return link specific information.
4542  * @sp : private member of the device structure, pointer to the
4543  *      s2io_nic structure.
4544  * @info : pointer to the structure with parameters given by ethtool
4545  * to return link information.
4546  * Description:
4547  * Returns link specific information like speed, duplex etc.. to ethtool.
4548  * Return value :
4549  * return 0 on success.
4550  */
4551
4552 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4553 {
4554         nic_t *sp = dev->priv;
4555         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4556         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4557         info->port = PORT_FIBRE;
4558         /* info->transceiver?? TODO */
4559
4560         if (netif_carrier_ok(sp->dev)) {
4561                 info->speed = 10000;
4562                 info->duplex = DUPLEX_FULL;
4563         } else {
4564                 info->speed = -1;
4565                 info->duplex = -1;
4566         }
4567
4568         info->autoneg = AUTONEG_DISABLE;
4569         return 0;
4570 }
4571
4572 /**
4573  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4574  * @sp : private member of the device structure, which is a pointer to the
4575  * s2io_nic structure.
4576  * @info : pointer to the structure with parameters given by ethtool to
4577  * return driver information.
4578  * Description:
4579  * Returns driver specefic information like name, version etc.. to ethtool.
4580  * Return value:
4581  *  void
4582  */
4583
4584 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4585                                   struct ethtool_drvinfo *info)
4586 {
4587         nic_t *sp = dev->priv;
4588
4589         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4590         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4591         strncpy(info->fw_version, "", sizeof(info->fw_version));
4592         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4593         info->regdump_len = XENA_REG_SPACE;
4594         info->eedump_len = XENA_EEPROM_SPACE;
4595         info->testinfo_len = S2IO_TEST_LEN;
4596         info->n_stats = S2IO_STAT_LEN;
4597 }
4598
4599 /**
4600  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4601  *  @sp: private member of the device structure, which is a pointer to the
4602  *  s2io_nic structure.
4603  *  @regs : pointer to the structure with parameters given by ethtool for
4604  *  dumping the registers.
4605  *  @reg_space: The input argumnet into which all the registers are dumped.
4606  *  Description:
4607  *  Dumps the entire register space of xFrame NIC into the user given
4608  *  buffer area.
4609  * Return value :
4610  * void .
4611 */
4612
4613 static void s2io_ethtool_gregs(struct net_device *dev,
4614                                struct ethtool_regs *regs, void *space)
4615 {
4616         int i;
4617         u64 reg;
4618         u8 *reg_space = (u8 *) space;
4619         nic_t *sp = dev->priv;
4620
4621         regs->len = XENA_REG_SPACE;
4622         regs->version = sp->pdev->subsystem_device;
4623
4624         for (i = 0; i < regs->len; i += 8) {
4625                 reg = readq(sp->bar0 + i);
4626                 memcpy((reg_space + i), &reg, 8);
4627         }
4628 }
4629
4630 /**
4631  *  s2io_phy_id  - timer function that alternates adapter LED.
4632  *  @data : address of the private member of the device structure, which
4633  *  is a pointer to the s2io_nic structure, provided as an u32.
4634  * Description: This is actually the timer function that alternates the
4635  * adapter LED bit of the adapter control bit to set/reset every time on
4636  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4637  *  once every second.
4638 */
4639 static void s2io_phy_id(unsigned long data)
4640 {
4641         nic_t *sp = (nic_t *) data;
4642         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4643         u64 val64 = 0;
4644         u16 subid;
4645
4646         subid = sp->pdev->subsystem_device;
4647         if ((sp->device_type == XFRAME_II_DEVICE) ||
4648                    ((subid & 0xFF) >= 0x07)) {
4649                 val64 = readq(&bar0->gpio_control);
4650                 val64 ^= GPIO_CTRL_GPIO_0;
4651                 writeq(val64, &bar0->gpio_control);
4652         } else {
4653                 val64 = readq(&bar0->adapter_control);
4654                 val64 ^= ADAPTER_LED_ON;
4655                 writeq(val64, &bar0->adapter_control);
4656         }
4657
4658         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4659 }
4660
4661 /**
4662  * s2io_ethtool_idnic - To physically identify the nic on the system.
4663  * @sp : private member of the device structure, which is a pointer to the
4664  * s2io_nic structure.
4665  * @id : pointer to the structure with identification parameters given by
4666  * ethtool.
4667  * Description: Used to physically identify the NIC on the system.
4668  * The Link LED will blink for a time specified by the user for
4669  * identification.
4670  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4671  * identification is possible only if it's link is up.
4672  * Return value:
4673  * int , returns 0 on success
4674  */
4675
4676 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4677 {
4678         u64 val64 = 0, last_gpio_ctrl_val;
4679         nic_t *sp = dev->priv;
4680         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4681         u16 subid;
4682
4683         subid = sp->pdev->subsystem_device;
4684         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4685         if ((sp->device_type == XFRAME_I_DEVICE) &&
4686                 ((subid & 0xFF) < 0x07)) {
4687                 val64 = readq(&bar0->adapter_control);
4688                 if (!(val64 & ADAPTER_CNTL_EN)) {
4689                         printk(KERN_ERR
4690                                "Adapter Link down, cannot blink LED\n");
4691                         return -EFAULT;
4692                 }
4693         }
4694         if (sp->id_timer.function == NULL) {
4695                 init_timer(&sp->id_timer);
4696                 sp->id_timer.function = s2io_phy_id;
4697                 sp->id_timer.data = (unsigned long) sp;
4698         }
4699         mod_timer(&sp->id_timer, jiffies);
4700         if (data)
4701                 msleep_interruptible(data * HZ);
4702         else
4703                 msleep_interruptible(MAX_FLICKER_TIME);
4704         del_timer_sync(&sp->id_timer);
4705
4706         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4707                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4708                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4709         }
4710
4711         return 0;
4712 }
4713
4714 /**
4715  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4716  * @sp : private member of the device structure, which is a pointer to the
4717  *      s2io_nic structure.
4718  * @ep : pointer to the structure with pause parameters given by ethtool.
4719  * Description:
4720  * Returns the Pause frame generation and reception capability of the NIC.
4721  * Return value:
4722  *  void
4723  */
4724 static void s2io_ethtool_getpause_data(struct net_device *dev,
4725                                        struct ethtool_pauseparam *ep)
4726 {
4727         u64 val64;
4728         nic_t *sp = dev->priv;
4729         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4730
4731         val64 = readq(&bar0->rmac_pause_cfg);
4732         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4733                 ep->tx_pause = TRUE;
4734         if (val64 & RMAC_PAUSE_RX_ENABLE)
4735                 ep->rx_pause = TRUE;
4736         ep->autoneg = FALSE;
4737 }
4738
4739 /**
4740  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4741  * @sp : private member of the device structure, which is a pointer to the
4742  *      s2io_nic structure.
4743  * @ep : pointer to the structure with pause parameters given by ethtool.
4744  * Description:
4745  * It can be used to set or reset Pause frame generation or reception
4746  * support of the NIC.
4747  * Return value:
4748  * int, returns 0 on Success
4749  */
4750
4751 static int s2io_ethtool_setpause_data(struct net_device *dev,
4752                                struct ethtool_pauseparam *ep)
4753 {
4754         u64 val64;
4755         nic_t *sp = dev->priv;
4756         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4757
4758         val64 = readq(&bar0->rmac_pause_cfg);
4759         if (ep->tx_pause)
4760                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4761         else
4762                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4763         if (ep->rx_pause)
4764                 val64 |= RMAC_PAUSE_RX_ENABLE;
4765         else
4766                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4767         writeq(val64, &bar0->rmac_pause_cfg);
4768         return 0;
4769 }
4770
4771 /**
4772  * read_eeprom - reads 4 bytes of data from user given offset.
4773  * @sp : private member of the device structure, which is a pointer to the
4774  *      s2io_nic structure.
4775  * @off : offset at which the data must be written
4776  * @data : Its an output parameter where the data read at the given
4777  *      offset is stored.
4778  * Description:
4779  * Will read 4 bytes of data from the user given offset and return the
4780  * read data.
4781  * NOTE: Will allow to read only part of the EEPROM visible through the
4782  *   I2C bus.
4783  * Return value:
4784  *  -1 on failure and 0 on success.
4785  */
4786
4787 #define S2IO_DEV_ID             5
4788 static int read_eeprom(nic_t * sp, int off, u64 * data)
4789 {
4790         int ret = -1;
4791         u32 exit_cnt = 0;
4792         u64 val64;
4793         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4794
4795         if (sp->device_type == XFRAME_I_DEVICE) {
4796                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4797                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4798                     I2C_CONTROL_CNTL_START;
4799                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4800
4801                 while (exit_cnt < 5) {
4802                         val64 = readq(&bar0->i2c_control);
4803                         if (I2C_CONTROL_CNTL_END(val64)) {
4804                                 *data = I2C_CONTROL_GET_DATA(val64);
4805                                 ret = 0;
4806                                 break;
4807                         }
4808                         msleep(50);
4809                         exit_cnt++;
4810                 }
4811         }
4812
4813         if (sp->device_type == XFRAME_II_DEVICE) {
4814                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4815                         SPI_CONTROL_BYTECNT(0x3) |
4816                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4817                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4818                 val64 |= SPI_CONTROL_REQ;
4819                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4820                 while (exit_cnt < 5) {
4821                         val64 = readq(&bar0->spi_control);
4822                         if (val64 & SPI_CONTROL_NACK) {
4823                                 ret = 1;
4824                                 break;
4825                         } else if (val64 & SPI_CONTROL_DONE) {
4826                                 *data = readq(&bar0->spi_data);
4827                                 *data &= 0xffffff;
4828                                 ret = 0;
4829                                 break;
4830                         }
4831                         msleep(50);
4832                         exit_cnt++;
4833                 }
4834         }
4835         return ret;
4836 }
4837
4838 /**
4839  *  write_eeprom - actually writes the relevant part of the data value.
4840  *  @sp : private member of the device structure, which is a pointer to the
4841  *       s2io_nic structure.
4842  *  @off : offset at which the data must be written
4843  *  @data : The data that is to be written
4844  *  @cnt : Number of bytes of the data that are actually to be written into
4845  *  the Eeprom. (max of 3)
4846  * Description:
4847  *  Actually writes the relevant part of the data value into the Eeprom
4848  *  through the I2C bus.
4849  * Return value:
4850  *  0 on success, -1 on failure.
4851  */
4852
4853 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4854 {
4855         int exit_cnt = 0, ret = -1;
4856         u64 val64;
4857         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4858
4859         if (sp->device_type == XFRAME_I_DEVICE) {
4860                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4861                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4862                     I2C_CONTROL_CNTL_START;
4863                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4864
4865                 while (exit_cnt < 5) {
4866                         val64 = readq(&bar0->i2c_control);
4867                         if (I2C_CONTROL_CNTL_END(val64)) {
4868                                 if (!(val64 & I2C_CONTROL_NACK))
4869                                         ret = 0;
4870                                 break;
4871                         }
4872                         msleep(50);
4873                         exit_cnt++;
4874                 }
4875         }
4876
4877         if (sp->device_type == XFRAME_II_DEVICE) {
4878                 int write_cnt = (cnt == 8) ? 0 : cnt;
4879                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4880
4881                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4882                         SPI_CONTROL_BYTECNT(write_cnt) |
4883                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4884                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4885                 val64 |= SPI_CONTROL_REQ;
4886                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4887                 while (exit_cnt < 5) {
4888                         val64 = readq(&bar0->spi_control);
4889                         if (val64 & SPI_CONTROL_NACK) {
4890                                 ret = 1;
4891                                 break;
4892                         } else if (val64 & SPI_CONTROL_DONE) {
4893                                 ret = 0;
4894                                 break;
4895                         }
4896                         msleep(50);
4897                         exit_cnt++;
4898                 }
4899         }
4900         return ret;
4901 }
4902 static void s2io_vpd_read(nic_t *nic)
4903 {
4904         u8 *vpd_data;
4905         u8 data;
4906         int i=0, cnt, fail = 0;
4907         int vpd_addr = 0x80;
4908
4909         if (nic->device_type == XFRAME_II_DEVICE) {
4910                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4911                 vpd_addr = 0x80;
4912         }
4913         else {
4914                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4915                 vpd_addr = 0x50;
4916         }
4917
4918         vpd_data = kmalloc(256, GFP_KERNEL);
4919         if (!vpd_data)
4920                 return;
4921
4922         for (i = 0; i < 256; i +=4 ) {
4923                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4924                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
4925                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4926                 for (cnt = 0; cnt <5; cnt++) {
4927                         msleep(2);
4928                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4929                         if (data == 0x80)
4930                                 break;
4931                 }
4932                 if (cnt >= 5) {
4933                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4934                         fail = 1;
4935                         break;
4936                 }
4937                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
4938                                       (u32 *)&vpd_data[i]);
4939         }
4940         if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
4941                 memset(nic->product_name, 0, vpd_data[1]);
4942                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4943         }
4944         kfree(vpd_data);
4945 }
4946
4947 /**
4948  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
4949  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
4950  *  @eeprom : pointer to the user level structure provided by ethtool,
4951  *  containing all relevant information.
4952  *  @data_buf : user defined value to be written into Eeprom.
4953  *  Description: Reads the values stored in the Eeprom at given offset
4954  *  for a given length. Stores these values int the input argument data
4955  *  buffer 'data_buf' and returns these to the caller (ethtool.)
4956  *  Return value:
4957  *  int  0 on success
4958  */
4959
4960 static int s2io_ethtool_geeprom(struct net_device *dev,
4961                          struct ethtool_eeprom *eeprom, u8 * data_buf)
4962 {
4963         u32 i, valid;
4964         u64 data;
4965         nic_t *sp = dev->priv;
4966
4967         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4968
4969         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4970                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4971
4972         for (i = 0; i < eeprom->len; i += 4) {
4973                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4974                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4975                         return -EFAULT;
4976                 }
4977                 valid = INV(data);
4978                 memcpy((data_buf + i), &valid, 4);
4979         }
4980         return 0;
4981 }
4982
4983 /**
4984  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4985  *  @sp : private member of the device structure, which is a pointer to the
4986  *  s2io_nic structure.
4987  *  @eeprom : pointer to the user level structure provided by ethtool,
4988  *  containing all relevant information.
4989  *  @data_buf ; user defined value to be written into Eeprom.
4990  *  Description:
4991  *  Tries to write the user provided value in the Eeprom, at the offset
4992  *  given by the user.
4993  *  Return value:
4994  *  0 on success, -EFAULT on failure.
4995  */
4996
4997 static int s2io_ethtool_seeprom(struct net_device *dev,
4998                                 struct ethtool_eeprom *eeprom,
4999                                 u8 * data_buf)
5000 {
5001         int len = eeprom->len, cnt = 0;
5002         u64 valid = 0, data;
5003         nic_t *sp = dev->priv;
5004
5005         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5006                 DBG_PRINT(ERR_DBG,
5007                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5008                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5009                           eeprom->magic);
5010                 return -EFAULT;
5011         }
5012
5013         while (len) {
5014                 data = (u32) data_buf[cnt] & 0x000000FF;
5015                 if (data) {
5016                         valid = (u32) (data << 24);
5017                 } else
5018                         valid = data;
5019
5020                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5021                         DBG_PRINT(ERR_DBG,
5022                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5023                         DBG_PRINT(ERR_DBG,
5024                                   "write into the specified offset\n");
5025                         return -EFAULT;
5026                 }
5027                 cnt++;
5028                 len--;
5029         }
5030
5031         return 0;
5032 }
5033
5034 /**
5035  * s2io_register_test - reads and writes into all clock domains.
5036  * @sp : private member of the device structure, which is a pointer to the
5037  * s2io_nic structure.
5038  * @data : variable that returns the result of each of the test conducted b
5039  * by the driver.
5040  * Description:
5041  * Read and write into all clock domains. The NIC has 3 clock domains,
5042  * see that registers in all the three regions are accessible.
5043  * Return value:
5044  * 0 on success.
5045  */
5046
5047 static int s2io_register_test(nic_t * sp, uint64_t * data)
5048 {
5049         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5050         u64 val64 = 0, exp_val;
5051         int fail = 0;
5052
5053         val64 = readq(&bar0->pif_rd_swapper_fb);
5054         if (val64 != 0x123456789abcdefULL) {
5055                 fail = 1;
5056                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5057         }
5058
5059         val64 = readq(&bar0->rmac_pause_cfg);
5060         if (val64 != 0xc000ffff00000000ULL) {
5061                 fail = 1;
5062                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5063         }
5064
5065         val64 = readq(&bar0->rx_queue_cfg);
5066         if (sp->device_type == XFRAME_II_DEVICE)
5067                 exp_val = 0x0404040404040404ULL;
5068         else
5069                 exp_val = 0x0808080808080808ULL;
5070         if (val64 != exp_val) {
5071                 fail = 1;
5072                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5073         }
5074
5075         val64 = readq(&bar0->xgxs_efifo_cfg);
5076         if (val64 != 0x000000001923141EULL) {
5077                 fail = 1;
5078                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5079         }
5080
5081         val64 = 0x5A5A5A5A5A5A5A5AULL;
5082         writeq(val64, &bar0->xmsi_data);
5083         val64 = readq(&bar0->xmsi_data);
5084         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5085                 fail = 1;
5086                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5087         }
5088
5089         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5090         writeq(val64, &bar0->xmsi_data);
5091         val64 = readq(&bar0->xmsi_data);
5092         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5093                 fail = 1;
5094                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5095         }
5096
5097         *data = fail;
5098         return fail;
5099 }
5100
5101 /**
5102  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5103  * @sp : private member of the device structure, which is a pointer to the
5104  * s2io_nic structure.
5105  * @data:variable that returns the result of each of the test conducted by
5106  * the driver.
5107  * Description:
5108  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5109  * register.
5110  * Return value:
5111  * 0 on success.
5112  */
5113
5114 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5115 {
5116         int fail = 0;
5117         u64 ret_data, org_4F0, org_7F0;
5118         u8 saved_4F0 = 0, saved_7F0 = 0;
5119         struct net_device *dev = sp->dev;
5120
5121         /* Test Write Error at offset 0 */
5122         /* Note that SPI interface allows write access to all areas
5123          * of EEPROM. Hence doing all negative testing only for Xframe I.
5124          */
5125         if (sp->device_type == XFRAME_I_DEVICE)
5126                 if (!write_eeprom(sp, 0, 0, 3))
5127                         fail = 1;
5128
5129         /* Save current values at offsets 0x4F0 and 0x7F0 */
5130         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5131                 saved_4F0 = 1;
5132         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5133                 saved_7F0 = 1;
5134
5135         /* Test Write at offset 4f0 */
5136         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5137                 fail = 1;
5138         if (read_eeprom(sp, 0x4F0, &ret_data))
5139                 fail = 1;
5140
5141         if (ret_data != 0x012345) {
5142                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5143                         "Data written %llx Data read %llx\n",
5144                         dev->name, (unsigned long long)0x12345,
5145                         (unsigned long long)ret_data);
5146                 fail = 1;
5147         }
5148
5149         /* Reset the EEPROM data go FFFF */
5150         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5151
5152         /* Test Write Request Error at offset 0x7c */
5153         if (sp->device_type == XFRAME_I_DEVICE)
5154                 if (!write_eeprom(sp, 0x07C, 0, 3))
5155                         fail = 1;
5156
5157         /* Test Write Request at offset 0x7f0 */
5158         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5159                 fail = 1;
5160         if (read_eeprom(sp, 0x7F0, &ret_data))
5161                 fail = 1;
5162
5163         if (ret_data != 0x012345) {
5164                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5165                         "Data written %llx Data read %llx\n",
5166                         dev->name, (unsigned long long)0x12345,
5167                         (unsigned long long)ret_data);
5168                 fail = 1;
5169         }
5170
5171         /* Reset the EEPROM data go FFFF */
5172         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5173
5174         if (sp->device_type == XFRAME_I_DEVICE) {
5175                 /* Test Write Error at offset 0x80 */
5176                 if (!write_eeprom(sp, 0x080, 0, 3))
5177                         fail = 1;
5178
5179                 /* Test Write Error at offset 0xfc */
5180                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5181                         fail = 1;
5182
5183                 /* Test Write Error at offset 0x100 */
5184                 if (!write_eeprom(sp, 0x100, 0, 3))
5185                         fail = 1;
5186
5187                 /* Test Write Error at offset 4ec */
5188                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5189                         fail = 1;
5190         }
5191
5192         /* Restore values at offsets 0x4F0 and 0x7F0 */
5193         if (saved_4F0)
5194                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5195         if (saved_7F0)
5196                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5197
5198         *data = fail;
5199         return fail;
5200 }
5201
5202 /**
5203  * s2io_bist_test - invokes the MemBist test of the card .
5204  * @sp : private member of the device structure, which is a pointer to the
5205  * s2io_nic structure.
5206  * @data:variable that returns the result of each of the test conducted by
5207  * the driver.
5208  * Description:
5209  * This invokes the MemBist test of the card. We give around
5210  * 2 secs time for the Test to complete. If it's still not complete
5211  * within this peiod, we consider that the test failed.
5212  * Return value:
5213  * 0 on success and -1 on failure.
5214  */
5215
5216 static int s2io_bist_test(nic_t * sp, uint64_t * data)
5217 {
5218         u8 bist = 0;
5219         int cnt = 0, ret = -1;
5220
5221         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5222         bist |= PCI_BIST_START;
5223         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5224
5225         while (cnt < 20) {
5226                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5227                 if (!(bist & PCI_BIST_START)) {
5228                         *data = (bist & PCI_BIST_CODE_MASK);
5229                         ret = 0;
5230                         break;
5231                 }
5232                 msleep(100);
5233                 cnt++;
5234         }
5235
5236         return ret;
5237 }
5238
5239 /**
5240  * s2io-link_test - verifies the link state of the nic
5241  * @sp ; private member of the device structure, which is a pointer to the
5242  * s2io_nic structure.
5243  * @data: variable that returns the result of each of the test conducted by
5244  * the driver.
5245  * Description:
5246  * The function verifies the link state of the NIC and updates the input
5247  * argument 'data' appropriately.
5248  * Return value:
5249  * 0 on success.
5250  */
5251
5252 static int s2io_link_test(nic_t * sp, uint64_t * data)
5253 {
5254         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5255         u64 val64;
5256
5257         val64 = readq(&bar0->adapter_status);
5258         if(!(LINK_IS_UP(val64)))
5259                 *data = 1;
5260         else
5261                 *data = 0;
5262
5263         return *data;
5264 }
5265
5266 /**
5267  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5268  * @sp - private member of the device structure, which is a pointer to the
5269  * s2io_nic structure.
5270  * @data - variable that returns the result of each of the test
5271  * conducted by the driver.
5272  * Description:
5273  *  This is one of the offline test that tests the read and write
5274  *  access to the RldRam chip on the NIC.
5275  * Return value:
5276  *  0 on success.
5277  */
5278
5279 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5280 {
5281         XENA_dev_config_t __iomem *bar0 = sp->bar0;
5282         u64 val64;
5283         int cnt, iteration = 0, test_fail = 0;
5284
5285         val64 = readq(&bar0->adapter_control);
5286         val64 &= ~ADAPTER_ECC_EN;
5287         writeq(val64, &bar0->adapter_control);
5288
5289         val64 = readq(&bar0->mc_rldram_test_ctrl);
5290         val64 |= MC_RLDRAM_TEST_MODE;
5291         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5292
5293         val64 = readq(&bar0->mc_rldram_mrs);
5294         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5295         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5296
5297         val64 |= MC_RLDRAM_MRS_ENABLE;
5298         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5299
5300         while (iteration < 2) {
5301                 val64 = 0x55555555aaaa0000ULL;
5302                 if (iteration == 1) {
5303                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5304                 }
5305                 writeq(val64, &bar0->mc_rldram_test_d0);
5306
5307                 val64 = 0xaaaa5a5555550000ULL;
5308                 if (iteration == 1) {
5309                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5310                 }
5311                 writeq(val64, &bar0->mc_rldram_test_d1);
5312
5313                 val64 = 0x55aaaaaaaa5a0000ULL;
5314                 if (iteration == 1) {
5315                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5316                 }
5317                 writeq(val64, &bar0->mc_rldram_test_d2);
5318
5319                 val64 = (u64) (0x0000003ffffe0100ULL);
5320                 writeq(val64, &bar0->mc_rldram_test_add);
5321
5322                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5323                         MC_RLDRAM_TEST_GO;
5324                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5325
5326                 for (cnt = 0; cnt < 5; cnt++) {
5327                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5328                         if (val64 & MC_RLDRAM_TEST_DONE)
5329                                 break;
5330                         msleep(200);
5331                 }
5332
5333                 if (cnt == 5)
5334                         break;
5335
5336                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5337                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5338
5339                 for (cnt = 0; cnt < 5; cnt++) {
5340                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5341                         if (val64 & MC_RLDRAM_TEST_DONE)
5342                                 break;
5343                         msleep(500);
5344                 }
5345
5346                 if (cnt == 5)
5347                         break;
5348
5349                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5350                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5351                         test_fail = 1;
5352
5353                 iteration++;
5354         }
5355
5356         *data = test_fail;
5357
5358         /* Bring the adapter out of test mode */
5359         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5360
5361         return test_fail;
5362 }
5363
5364 /**
5365  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5366  *  @sp : private member of the device structure, which is a pointer to the
5367  *  s2io_nic structure.
5368  *  @ethtest : pointer to a ethtool command specific structure that will be
5369  *  returned to the user.
5370  *  @data : variable that returns the result of each of the test
5371  * conducted by the driver.
5372  * Description:
5373  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5374  *  the health of the card.
5375  * Return value:
5376  *  void
5377  */
5378
5379 static void s2io_ethtool_test(struct net_device *dev,
5380                               struct ethtool_test *ethtest,
5381                               uint64_t * data)
5382 {
5383         nic_t *sp = dev->priv;
5384         int orig_state = netif_running(sp->dev);
5385
5386         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5387                 /* Offline Tests. */
5388                 if (orig_state)
5389                         s2io_close(sp->dev);
5390
5391                 if (s2io_register_test(sp, &data[0]))
5392                         ethtest->flags |= ETH_TEST_FL_FAILED;
5393
5394                 s2io_reset(sp);
5395
5396                 if (s2io_rldram_test(sp, &data[3]))
5397                         ethtest->flags |= ETH_TEST_FL_FAILED;
5398
5399                 s2io_reset(sp);
5400
5401                 if (s2io_eeprom_test(sp, &data[1]))
5402                         ethtest->flags |= ETH_TEST_FL_FAILED;
5403
5404                 if (s2io_bist_test(sp, &data[4]))
5405                         ethtest->flags |= ETH_TEST_FL_FAILED;
5406
5407                 if (orig_state)
5408                         s2io_open(sp->dev);
5409
5410                 data[2] = 0;
5411         } else {
5412                 /* Online Tests. */
5413                 if (!orig_state) {
5414                         DBG_PRINT(ERR_DBG,
5415                                   "%s: is not up, cannot run test\n",
5416                                   dev->name);
5417                         data[0] = -1;
5418                         data[1] = -1;
5419                         data[2] = -1;
5420                         data[3] = -1;
5421                         data[4] = -1;
5422                 }
5423
5424                 if (s2io_link_test(sp, &data[2]))
5425                         ethtest->flags |= ETH_TEST_FL_FAILED;
5426
5427                 data[0] = 0;
5428                 data[1] = 0;
5429                 data[3] = 0;
5430                 data[4] = 0;
5431         }
5432 }
5433
5434 static void s2io_get_ethtool_stats(struct net_device *dev,
5435                                    struct ethtool_stats *estats,
5436                                    u64 * tmp_stats)
5437 {
5438         int i = 0;
5439         nic_t *sp = dev->priv;
5440         StatInfo_t *stat_info = sp->mac_control.stats_info;
5441
5442         s2io_updt_stats(sp);
5443         tmp_stats[i++] =
5444                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5445                 le32_to_cpu(stat_info->tmac_frms);
5446         tmp_stats[i++] =
5447                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5448                 le32_to_cpu(stat_info->tmac_data_octets);
5449         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5450         tmp_stats[i++] =
5451                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5452                 le32_to_cpu(stat_info->tmac_mcst_frms);
5453         tmp_stats[i++] =
5454                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5455                 le32_to_cpu(stat_info->tmac_bcst_frms);
5456         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5457         tmp_stats[i++] =
5458                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5459                 le32_to_cpu(stat_info->tmac_ttl_octets);
5460         tmp_stats[i++] =
5461                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5462                 le32_to_cpu(stat_info->tmac_ucst_frms);
5463         tmp_stats[i++] =
5464                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5465                 le32_to_cpu(stat_info->tmac_nucst_frms);
5466         tmp_stats[i++] =
5467                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5468                 le32_to_cpu(stat_info->tmac_any_err_frms);
5469         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5470         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5471         tmp_stats[i++] =
5472                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5473                 le32_to_cpu(stat_info->tmac_vld_ip);
5474         tmp_stats[i++] =
5475                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5476                 le32_to_cpu(stat_info->tmac_drop_ip);
5477         tmp_stats[i++] =
5478                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5479                 le32_to_cpu(stat_info->tmac_icmp);
5480         tmp_stats[i++] =
5481                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5482                 le32_to_cpu(stat_info->tmac_rst_tcp);
5483         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5484         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5485                 le32_to_cpu(stat_info->tmac_udp);
5486         tmp_stats[i++] =
5487                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5488                 le32_to_cpu(stat_info->rmac_vld_frms);
5489         tmp_stats[i++] =
5490                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5491                 le32_to_cpu(stat_info->rmac_data_octets);
5492         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5493         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5494         tmp_stats[i++] =
5495                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5496                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5497         tmp_stats[i++] =
5498                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5499                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5500         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5501         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5502         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5503         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5504         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5505         tmp_stats[i++] =
5506                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5507                 le32_to_cpu(stat_info->rmac_ttl_octets);
5508         tmp_stats[i++] =
5509                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5510                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5511         tmp_stats[i++] =
5512                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5513                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5514         tmp_stats[i++] =
5515                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5516                 le32_to_cpu(stat_info->rmac_discarded_frms);
5517         tmp_stats[i++] =
5518                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5519                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5520         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5521         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5522         tmp_stats[i++] =
5523                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5524                 le32_to_cpu(stat_info->rmac_usized_frms);
5525         tmp_stats[i++] =
5526                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5527                 le32_to_cpu(stat_info->rmac_osized_frms);
5528         tmp_stats[i++] =
5529                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5530                 le32_to_cpu(stat_info->rmac_frag_frms);
5531         tmp_stats[i++] =
5532                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5533                 le32_to_cpu(stat_info->rmac_jabber_frms);
5534         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5535         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5536         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5537         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5538         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5539         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5540         tmp_stats[i++] =
5541                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5542                 le32_to_cpu(stat_info->rmac_ip);
5543         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5544         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5545         tmp_stats[i++] =
5546                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5547                 le32_to_cpu(stat_info->rmac_drop_ip);
5548         tmp_stats[i++] =
5549                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5550                 le32_to_cpu(stat_info->rmac_icmp);
5551         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5552         tmp_stats[i++] =
5553                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5554                 le32_to_cpu(stat_info->rmac_udp);
5555         tmp_stats[i++] =
5556                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5557                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5558         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5559         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5560         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5561         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5562         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5563         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5564         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5565         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5566         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5567         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5568         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5569         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5570         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5571         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5572         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5573         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5574         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5575         tmp_stats[i++] =
5576                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5577                 le32_to_cpu(stat_info->rmac_pause_cnt);
5578         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5579         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5580         tmp_stats[i++] =
5581                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5582                 le32_to_cpu(stat_info->rmac_accepted_ip);
5583         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5584         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5585         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5586         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5587         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5588         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5589         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5590         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5591         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5592         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5593         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5594         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5595         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5596         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5597         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5598         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5599         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5600         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5601         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5602         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5603         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5604         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5605         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5606         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5607         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5608         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5609         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5610         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5611         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5612         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5613         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5614         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5615         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5616         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5617         tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5618         tmp_stats[i++] = 0;
5619         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5620         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5621         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5622         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5623         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5624         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5625         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5626         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5627         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5628         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5629         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5630         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5631         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5632         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5633         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5634         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5635         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5636         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5637         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5638         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5639         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5640         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5641         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5642         if (stat_info->sw_stat.num_aggregations) {
5643                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5644                 int count = 0;
5645                 /*
5646                  * Since 64-bit divide does not work on all platforms,
5647                  * do repeated subtraction.
5648                  */
5649                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5650                         tmp -= stat_info->sw_stat.num_aggregations;
5651                         count++;
5652                 }
5653                 tmp_stats[i++] = count;
5654         }
5655         else
5656                 tmp_stats[i++] = 0;
5657 }
5658
5659 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5660 {
5661         return (XENA_REG_SPACE);
5662 }
5663
5664
5665 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5666 {
5667         nic_t *sp = dev->priv;
5668
5669         return (sp->rx_csum);
5670 }
5671
5672 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5673 {
5674         nic_t *sp = dev->priv;
5675
5676         if (data)
5677                 sp->rx_csum = 1;
5678         else
5679                 sp->rx_csum = 0;
5680
5681         return 0;
5682 }
5683
5684 static int s2io_get_eeprom_len(struct net_device *dev)
5685 {
5686         return (XENA_EEPROM_SPACE);
5687 }
5688
5689 static int s2io_ethtool_self_test_count(struct net_device *dev)
5690 {
5691         return (S2IO_TEST_LEN);
5692 }
5693
5694 static void s2io_ethtool_get_strings(struct net_device *dev,
5695                                      u32 stringset, u8 * data)
5696 {
5697         switch (stringset) {
5698         case ETH_SS_TEST:
5699                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5700                 break;
5701         case ETH_SS_STATS:
5702                 memcpy(data, &ethtool_stats_keys,
5703                        sizeof(ethtool_stats_keys));
5704         }
5705 }
5706 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5707 {
5708         return (S2IO_STAT_LEN);
5709 }
5710
5711 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5712 {
5713         if (data)
5714                 dev->features |= NETIF_F_IP_CSUM;
5715         else
5716                 dev->features &= ~NETIF_F_IP_CSUM;
5717
5718         return 0;
5719 }
5720
5721 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5722 {
5723         return (dev->features & NETIF_F_TSO) != 0;
5724 }
5725 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5726 {
5727         if (data)
5728                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5729         else
5730                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5731
5732         return 0;
5733 }
5734
5735 static const struct ethtool_ops netdev_ethtool_ops = {
5736         .get_settings = s2io_ethtool_gset,
5737         .set_settings = s2io_ethtool_sset,
5738         .get_drvinfo = s2io_ethtool_gdrvinfo,
5739         .get_regs_len = s2io_ethtool_get_regs_len,
5740         .get_regs = s2io_ethtool_gregs,
5741         .get_link = ethtool_op_get_link,
5742         .get_eeprom_len = s2io_get_eeprom_len,
5743         .get_eeprom = s2io_ethtool_geeprom,
5744         .set_eeprom = s2io_ethtool_seeprom,
5745         .get_pauseparam = s2io_ethtool_getpause_data,
5746         .set_pauseparam = s2io_ethtool_setpause_data,
5747         .get_rx_csum = s2io_ethtool_get_rx_csum,
5748         .set_rx_csum = s2io_ethtool_set_rx_csum,
5749         .get_tx_csum = ethtool_op_get_tx_csum,
5750         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5751         .get_sg = ethtool_op_get_sg,
5752         .set_sg = ethtool_op_set_sg,
5753 #ifdef NETIF_F_TSO
5754         .get_tso = s2io_ethtool_op_get_tso,
5755         .set_tso = s2io_ethtool_op_set_tso,
5756 #endif
5757         .get_ufo = ethtool_op_get_ufo,
5758         .set_ufo = ethtool_op_set_ufo,
5759         .self_test_count = s2io_ethtool_self_test_count,
5760         .self_test = s2io_ethtool_test,
5761         .get_strings = s2io_ethtool_get_strings,
5762         .phys_id = s2io_ethtool_idnic,
5763         .get_stats_count = s2io_ethtool_get_stats_count,
5764         .get_ethtool_stats = s2io_get_ethtool_stats
5765 };
5766
5767 /**
5768  *  s2io_ioctl - Entry point for the Ioctl
5769  *  @dev :  Device pointer.
5770  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5771  *  a proprietary structure used to pass information to the driver.
5772  *  @cmd :  This is used to distinguish between the different commands that
5773  *  can be passed to the IOCTL functions.
5774  *  Description:
5775  *  Currently there are no special functionality supported in IOCTL, hence
5776  *  function always return EOPNOTSUPPORTED
5777  */
5778
5779 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5780 {
5781         return -EOPNOTSUPP;
5782 }
5783
5784 /**
5785  *  s2io_change_mtu - entry point to change MTU size for the device.
5786  *   @dev : device pointer.
5787  *   @new_mtu : the new MTU size for the device.
5788  *   Description: A driver entry point to change MTU size for the device.
5789  *   Before changing the MTU the device must be stopped.
5790  *  Return value:
5791  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5792  *   file on failure.
5793  */
5794
5795 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5796 {
5797         nic_t *sp = dev->priv;
5798
5799         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5800                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5801                           dev->name);
5802                 return -EPERM;
5803         }
5804
5805         dev->mtu = new_mtu;
5806         if (netif_running(dev)) {
5807                 s2io_card_down(sp);
5808                 netif_stop_queue(dev);
5809                 if (s2io_card_up(sp)) {
5810                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5811                                   __FUNCTION__);
5812                 }
5813                 if (netif_queue_stopped(dev))
5814                         netif_wake_queue(dev);
5815         } else { /* Device is down */
5816                 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5817                 u64 val64 = new_mtu;
5818
5819                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5820         }
5821
5822         return 0;
5823 }
5824
5825 /**
5826  *  s2io_tasklet - Bottom half of the ISR.
5827  *  @dev_adr : address of the device structure in dma_addr_t format.
5828  *  Description:
5829  *  This is the tasklet or the bottom half of the ISR. This is
5830  *  an extension of the ISR which is scheduled by the scheduler to be run
5831  *  when the load on the CPU is low. All low priority tasks of the ISR can
5832  *  be pushed into the tasklet. For now the tasklet is used only to
5833  *  replenish the Rx buffers in the Rx buffer descriptors.
5834  *  Return value:
5835  *  void.
5836  */
5837
5838 static void s2io_tasklet(unsigned long dev_addr)
5839 {
5840         struct net_device *dev = (struct net_device *) dev_addr;
5841         nic_t *sp = dev->priv;
5842         int i, ret;
5843         mac_info_t *mac_control;
5844         struct config_param *config;
5845
5846         mac_control = &sp->mac_control;
5847         config = &sp->config;
5848
5849         if (!TASKLET_IN_USE) {
5850                 for (i = 0; i < config->rx_ring_num; i++) {
5851                         ret = fill_rx_buffers(sp, i);
5852                         if (ret == -ENOMEM) {
5853                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
5854                                           dev->name);
5855                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5856                                 break;
5857                         } else if (ret == -EFILL) {
5858                                 DBG_PRINT(ERR_DBG,
5859                                           "%s: Rx Ring %d is full\n",
5860                                           dev->name, i);
5861                                 break;
5862                         }
5863                 }
5864                 clear_bit(0, (&sp->tasklet_status));
5865         }
5866 }
5867
5868 /**
5869  * s2io_set_link - Set the LInk status
5870  * @data: long pointer to device private structue
5871  * Description: Sets the link status for the adapter
5872  */
5873
5874 static void s2io_set_link(struct work_struct *work)
5875 {
5876         nic_t *nic = container_of(work, nic_t, set_link_task);
5877         struct net_device *dev = nic->dev;
5878         XENA_dev_config_t __iomem *bar0 = nic->bar0;
5879         register u64 val64;
5880         u16 subid;
5881
5882         if (test_and_set_bit(0, &(nic->link_state))) {
5883                 /* The card is being reset, no point doing anything */
5884                 return;
5885         }
5886
5887         subid = nic->pdev->subsystem_device;
5888         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5889                 /*
5890                  * Allow a small delay for the NICs self initiated
5891                  * cleanup to complete.
5892                  */
5893                 msleep(100);
5894         }
5895
5896         val64 = readq(&bar0->adapter_status);
5897         if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5898                 if (LINK_IS_UP(val64)) {
5899                         val64 = readq(&bar0->adapter_control);
5900                         val64 |= ADAPTER_CNTL_EN;
5901                         writeq(val64, &bar0->adapter_control);
5902                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5903                                                              subid)) {
5904                                 val64 = readq(&bar0->gpio_control);
5905                                 val64 |= GPIO_CTRL_GPIO_0;
5906                                 writeq(val64, &bar0->gpio_control);
5907                                 val64 = readq(&bar0->gpio_control);
5908                         } else {
5909                                 val64 |= ADAPTER_LED_ON;
5910                                 writeq(val64, &bar0->adapter_control);
5911                         }
5912                         if (s2io_link_fault_indication(nic) ==
5913                                                 MAC_RMAC_ERR_TIMER) {
5914                                 val64 = readq(&bar0->adapter_status);
5915                                 if (!LINK_IS_UP(val64)) {
5916                                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
5917                                         DBG_PRINT(ERR_DBG, " Link down");
5918                                         DBG_PRINT(ERR_DBG, "after ");
5919                                         DBG_PRINT(ERR_DBG, "enabling ");
5920                                         DBG_PRINT(ERR_DBG, "device \n");
5921                                 }
5922                         }
5923                         if (nic->device_enabled_once == FALSE) {
5924                                 nic->device_enabled_once = TRUE;
5925                         }
5926                         s2io_link(nic, LINK_UP);
5927                 } else {
5928                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5929                                                               subid)) {
5930                                 val64 = readq(&bar0->gpio_control);
5931                                 val64 &= ~GPIO_CTRL_GPIO_0;
5932                                 writeq(val64, &bar0->gpio_control);
5933                                 val64 = readq(&bar0->gpio_control);
5934                         }
5935                         s2io_link(nic, LINK_DOWN);
5936                 }
5937         } else {                /* NIC is not Quiescent. */
5938                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5939                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5940                 netif_stop_queue(dev);
5941         }
5942         clear_bit(0, &(nic->link_state));
5943 }
5944
5945 static int set_rxd_buffer_pointer(nic_t *sp, RxD_t *rxdp, buffAdd_t *ba,
5946                            struct sk_buff **skb, u64 *temp0, u64 *temp1,
5947                            u64 *temp2, int size)
5948 {
5949         struct net_device *dev = sp->dev;
5950         struct sk_buff *frag_list;
5951
5952         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5953                 /* allocate skb */
5954                 if (*skb) {
5955                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5956                         /*
5957                          * As Rx frame are not going to be processed,
5958                          * using same mapped address for the Rxd
5959                          * buffer pointer
5960                          */
5961                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0;
5962                 } else {
5963                         *skb = dev_alloc_skb(size);
5964                         if (!(*skb)) {
5965                                 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5966                                 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5967                                 return -ENOMEM ;
5968                         }
5969                         /* storing the mapped addr in a temp variable
5970                          * such it will be used for next rxd whose
5971                          * Host Control is NULL
5972                          */
5973                         ((RxD1_t*)rxdp)->Buffer0_ptr = *temp0 =
5974                                 pci_map_single( sp->pdev, (*skb)->data,
5975                                         size - NET_IP_ALIGN,
5976                                         PCI_DMA_FROMDEVICE);
5977                         rxdp->Host_Control = (unsigned long) (*skb);
5978                 }
5979         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5980                 /* Two buffer Mode */
5981                 if (*skb) {
5982                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
5983                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
5984                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
5985                 } else {
5986                         *skb = dev_alloc_skb(size);
5987                         if (!(*skb)) {
5988                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5989                                           dev->name);
5990                                 return -ENOMEM;
5991                         }
5992                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
5993                                 pci_map_single(sp->pdev, (*skb)->data,
5994                                                dev->mtu + 4,
5995                                                PCI_DMA_FROMDEVICE);
5996                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
5997                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5998                                                 PCI_DMA_FROMDEVICE);
5999                         rxdp->Host_Control = (unsigned long) (*skb);
6000
6001                         /* Buffer-1 will be dummy buffer not used */
6002                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6003                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6004                                                PCI_DMA_FROMDEVICE);
6005                 }
6006         } else if ((rxdp->Host_Control == 0)) {
6007                 /* Three buffer mode */
6008                 if (*skb) {
6009                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0;
6010                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1;
6011                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2;
6012                 } else {
6013                         *skb = dev_alloc_skb(size);
6014                         if (!(*skb)) {
6015                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6016                                           dev->name);
6017                                 return -ENOMEM;
6018                         }
6019                         ((RxD3_t*)rxdp)->Buffer0_ptr = *temp0 =
6020                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6021                                                PCI_DMA_FROMDEVICE);
6022                         /* Buffer-1 receives L3/L4 headers */
6023                         ((RxD3_t*)rxdp)->Buffer1_ptr = *temp1 =
6024                                 pci_map_single( sp->pdev, (*skb)->data,
6025                                                 l3l4hdr_size + 4,
6026                                                 PCI_DMA_FROMDEVICE);
6027                         /*
6028                          * skb_shinfo(skb)->frag_list will have L4
6029                          * data payload
6030                          */
6031                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6032                                                                    ALIGN_SIZE);
6033                         if (skb_shinfo(*skb)->frag_list == NULL) {
6034                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6035                                           failed\n ", dev->name);
6036                                 return -ENOMEM ;
6037                         }
6038                         frag_list = skb_shinfo(*skb)->frag_list;
6039                         frag_list->next = NULL;
6040                         /*
6041                          * Buffer-2 receives L4 data payload
6042                          */
6043                         ((RxD3_t*)rxdp)->Buffer2_ptr = *temp2 =
6044                                 pci_map_single( sp->pdev, frag_list->data,
6045                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6046                 }
6047         }
6048         return 0;
6049 }
6050 static void set_rxd_buffer_size(nic_t *sp, RxD_t *rxdp, int size)
6051 {
6052         struct net_device *dev = sp->dev;
6053         if (sp->rxd_mode == RXD_MODE_1) {
6054                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6055         } else if (sp->rxd_mode == RXD_MODE_3B) {
6056                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6057                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6058                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6059         } else {
6060                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6061                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6062                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6063         }
6064 }
6065
6066 static  int rxd_owner_bit_reset(nic_t *sp)
6067 {
6068         int i, j, k, blk_cnt = 0, size;
6069         mac_info_t * mac_control = &sp->mac_control;
6070         struct config_param *config = &sp->config;
6071         struct net_device *dev = sp->dev;
6072         RxD_t *rxdp = NULL;
6073         struct sk_buff *skb = NULL;
6074         buffAdd_t *ba = NULL;
6075         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6076
6077         /* Calculate the size based on ring mode */
6078         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6079                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6080         if (sp->rxd_mode == RXD_MODE_1)
6081                 size += NET_IP_ALIGN;
6082         else if (sp->rxd_mode == RXD_MODE_3B)
6083                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6084         else
6085                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6086
6087         for (i = 0; i < config->rx_ring_num; i++) {
6088                 blk_cnt = config->rx_cfg[i].num_rxd /
6089                         (rxd_count[sp->rxd_mode] +1);
6090
6091                 for (j = 0; j < blk_cnt; j++) {
6092                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6093                                 rxdp = mac_control->rings[i].
6094                                         rx_blocks[j].rxds[k].virt_addr;
6095                                 if(sp->rxd_mode >= RXD_MODE_3A)
6096                                         ba = &mac_control->rings[i].ba[j][k];
6097                                 set_rxd_buffer_pointer(sp, rxdp, ba,
6098                                                        &skb,(u64 *)&temp0_64,
6099                                                        (u64 *)&temp1_64,
6100                                                        (u64 *)&temp2_64, size);
6101
6102                                 set_rxd_buffer_size(sp, rxdp, size);
6103                                 wmb();
6104                                 /* flip the Ownership bit to Hardware */
6105                                 rxdp->Control_1 |= RXD_OWN_XENA;
6106                         }
6107                 }
6108         }
6109         return 0;
6110
6111 }
6112
6113 static int s2io_add_isr(nic_t * sp)
6114 {
6115         int ret = 0;
6116         struct net_device *dev = sp->dev;
6117         int err = 0;
6118
6119         if (sp->intr_type == MSI)
6120                 ret = s2io_enable_msi(sp);
6121         else if (sp->intr_type == MSI_X)
6122                 ret = s2io_enable_msi_x(sp);
6123         if (ret) {
6124                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6125                 sp->intr_type = INTA;
6126         }
6127
6128         /* Store the values of the MSIX table in the nic_t structure */
6129         store_xmsi_data(sp);
6130
6131         /* After proper initialization of H/W, register ISR */
6132         if (sp->intr_type == MSI) {
6133                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6134                         IRQF_SHARED, sp->name, dev);
6135                 if (err) {
6136                         pci_disable_msi(sp->pdev);
6137                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6138                                   dev->name);
6139                         return -1;
6140                 }
6141         }
6142         if (sp->intr_type == MSI_X) {
6143                 int i;
6144
6145                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6146                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6147                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6148                                         dev->name, i);
6149                                 err = request_irq(sp->entries[i].vector,
6150                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6151                                                   sp->s2io_entries[i].arg);
6152                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6153                                 (unsigned long long)sp->msix_info[i].addr);
6154                         } else {
6155                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6156                                         dev->name, i);
6157                                 err = request_irq(sp->entries[i].vector,
6158                                           s2io_msix_ring_handle, 0, sp->desc[i],
6159                                                   sp->s2io_entries[i].arg);
6160                                 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6161                                 (unsigned long long)sp->msix_info[i].addr);
6162                         }
6163                         if (err) {
6164                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6165                                           "failed\n", dev->name, i);
6166                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6167                                 return -1;
6168                         }
6169                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6170                 }
6171         }
6172         if (sp->intr_type == INTA) {
6173                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6174                                 sp->name, dev);
6175                 if (err) {
6176                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6177                                   dev->name);
6178                         return -1;
6179                 }
6180         }
6181         return 0;
6182 }
6183 static void s2io_rem_isr(nic_t * sp)
6184 {
6185         int cnt = 0;
6186         struct net_device *dev = sp->dev;
6187
6188         if (sp->intr_type == MSI_X) {
6189                 int i;
6190                 u16 msi_control;
6191
6192                 for (i=1; (sp->s2io_entries[i].in_use ==
6193                         MSIX_REGISTERED_SUCCESS); i++) {
6194                         int vector = sp->entries[i].vector;
6195                         void *arg = sp->s2io_entries[i].arg;
6196
6197                         free_irq(vector, arg);
6198                 }
6199                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6200                 msi_control &= 0xFFFE; /* Disable MSI */
6201                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6202
6203                 pci_disable_msix(sp->pdev);
6204         } else {
6205                 free_irq(sp->pdev->irq, dev);
6206                 if (sp->intr_type == MSI) {
6207                         u16 val;
6208
6209                         pci_disable_msi(sp->pdev);
6210                         pci_read_config_word(sp->pdev, 0x4c, &val);
6211                         val ^= 0x1;
6212                         pci_write_config_word(sp->pdev, 0x4c, val);
6213                 }
6214         }
6215         /* Waiting till all Interrupt handlers are complete */
6216         cnt = 0;
6217         do {
6218                 msleep(10);
6219                 if (!atomic_read(&sp->isr_cnt))
6220                         break;
6221                 cnt++;
6222         } while(cnt < 5);
6223 }
6224
6225 static void s2io_card_down(nic_t * sp)
6226 {
6227         int cnt = 0;
6228         XENA_dev_config_t __iomem *bar0 = sp->bar0;
6229         unsigned long flags;
6230         register u64 val64 = 0;
6231
6232         del_timer_sync(&sp->alarm_timer);
6233         /* If s2io_set_link task is executing, wait till it completes. */
6234         while (test_and_set_bit(0, &(sp->link_state))) {
6235                 msleep(50);
6236         }
6237         atomic_set(&sp->card_state, CARD_DOWN);
6238
6239         /* disable Tx and Rx traffic on the NIC */
6240         stop_nic(sp);
6241
6242         s2io_rem_isr(sp);
6243
6244         /* Kill tasklet. */
6245         tasklet_kill(&sp->task);
6246
6247         /* Check if the device is Quiescent and then Reset the NIC */
6248         do {
6249                 /* As per the HW requirement we need to replenish the
6250                  * receive buffer to avoid the ring bump. Since there is
6251                  * no intention of processing the Rx frame at this pointwe are
6252                  * just settting the ownership bit of rxd in Each Rx
6253                  * ring to HW and set the appropriate buffer size
6254                  * based on the ring mode
6255                  */
6256                 rxd_owner_bit_reset(sp);
6257
6258                 val64 = readq(&bar0->adapter_status);
6259                 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
6260                         break;
6261                 }
6262
6263                 msleep(50);
6264                 cnt++;
6265                 if (cnt == 10) {
6266                         DBG_PRINT(ERR_DBG,
6267                                   "s2io_close:Device not Quiescent ");
6268                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6269                                   (unsigned long long) val64);
6270                         break;
6271                 }
6272         } while (1);
6273         s2io_reset(sp);
6274
6275         spin_lock_irqsave(&sp->tx_lock, flags);
6276         /* Free all Tx buffers */
6277         free_tx_buffers(sp);
6278         spin_unlock_irqrestore(&sp->tx_lock, flags);
6279
6280         /* Free all Rx buffers */
6281         spin_lock_irqsave(&sp->rx_lock, flags);
6282         free_rx_buffers(sp);
6283         spin_unlock_irqrestore(&sp->rx_lock, flags);
6284
6285         clear_bit(0, &(sp->link_state));
6286 }
6287
6288 static int s2io_card_up(nic_t * sp)
6289 {
6290         int i, ret = 0;
6291         mac_info_t *mac_control;
6292         struct config_param *config;
6293         struct net_device *dev = (struct net_device *) sp->dev;
6294         u16 interruptible;
6295
6296         /* Initialize the H/W I/O registers */
6297         if (init_nic(sp) != 0) {
6298                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6299                           dev->name);
6300                 s2io_reset(sp);
6301                 return -ENODEV;
6302         }
6303
6304         /*
6305          * Initializing the Rx buffers. For now we are considering only 1
6306          * Rx ring and initializing buffers into 30 Rx blocks
6307          */
6308         mac_control = &sp->mac_control;
6309         config = &sp->config;
6310
6311         for (i = 0; i < config->rx_ring_num; i++) {
6312                 if ((ret = fill_rx_buffers(sp, i))) {
6313                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6314                                   dev->name);
6315                         s2io_reset(sp);
6316                         free_rx_buffers(sp);
6317                         return -ENOMEM;
6318                 }
6319                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6320                           atomic_read(&sp->rx_bufs_left[i]));
6321         }
6322
6323         /* Setting its receive mode */
6324         s2io_set_multicast(dev);
6325
6326         if (sp->lro) {
6327                 /* Initialize max aggregatable pkts per session based on MTU */
6328                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6329                 /* Check if we can use(if specified) user provided value */
6330                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6331                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6332         }
6333
6334         /* Enable Rx Traffic and interrupts on the NIC */
6335         if (start_nic(sp)) {
6336                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6337                 s2io_reset(sp);
6338                 free_rx_buffers(sp);
6339                 return -ENODEV;
6340         }
6341
6342         /* Add interrupt service routine */
6343         if (s2io_add_isr(sp) != 0) {
6344                 if (sp->intr_type == MSI_X)
6345                         s2io_rem_isr(sp);
6346                 s2io_reset(sp);
6347                 free_rx_buffers(sp);
6348                 return -ENODEV;
6349         }
6350
6351         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6352
6353         /* Enable tasklet for the device */
6354         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6355
6356         /*  Enable select interrupts */
6357         if (sp->intr_type != INTA)
6358                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6359         else {
6360                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6361                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6362                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6363                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6364         }
6365
6366
6367         atomic_set(&sp->card_state, CARD_UP);
6368         return 0;
6369 }
6370
6371 /**
6372  * s2io_restart_nic - Resets the NIC.
6373  * @data : long pointer to the device private structure
6374  * Description:
6375  * This function is scheduled to be run by the s2io_tx_watchdog
6376  * function after 0.5 secs to reset the NIC. The idea is to reduce
6377  * the run time of the watch dog routine which is run holding a
6378  * spin lock.
6379  */
6380
6381 static void s2io_restart_nic(struct work_struct *work)
6382 {
6383         nic_t *sp = container_of(work, nic_t, rst_timer_task);
6384         struct net_device *dev = sp->dev;
6385
6386         s2io_card_down(sp);
6387         if (s2io_card_up(sp)) {
6388                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6389                           dev->name);
6390         }
6391         netif_wake_queue(dev);
6392         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6393                   dev->name);
6394
6395 }
6396
6397 /**
6398  *  s2io_tx_watchdog - Watchdog for transmit side.
6399  *  @dev : Pointer to net device structure
6400  *  Description:
6401  *  This function is triggered if the Tx Queue is stopped
6402  *  for a pre-defined amount of time when the Interface is still up.
6403  *  If the Interface is jammed in such a situation, the hardware is
6404  *  reset (by s2io_close) and restarted again (by s2io_open) to
6405  *  overcome any problem that might have been caused in the hardware.
6406  *  Return value:
6407  *  void
6408  */
6409
6410 static void s2io_tx_watchdog(struct net_device *dev)
6411 {
6412         nic_t *sp = dev->priv;
6413
6414         if (netif_carrier_ok(dev)) {
6415                 schedule_work(&sp->rst_timer_task);
6416                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6417         }
6418 }
6419
6420 /**
6421  *   rx_osm_handler - To perform some OS related operations on SKB.
6422  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6423  *   @skb : the socket buffer pointer.
6424  *   @len : length of the packet
6425  *   @cksum : FCS checksum of the frame.
6426  *   @ring_no : the ring from which this RxD was extracted.
6427  *   Description:
6428  *   This function is called by the Rx interrupt serivce routine to perform
6429  *   some OS related operations on the SKB before passing it to the upper
6430  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6431  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6432  *   to the upper layer. If the checksum is wrong, it increments the Rx
6433  *   packet error count, frees the SKB and returns error.
6434  *   Return value:
6435  *   SUCCESS on success and -1 on failure.
6436  */
6437 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
6438 {
6439         nic_t *sp = ring_data->nic;
6440         struct net_device *dev = (struct net_device *) sp->dev;
6441         struct sk_buff *skb = (struct sk_buff *)
6442                 ((unsigned long) rxdp->Host_Control);
6443         int ring_no = ring_data->ring_no;
6444         u16 l3_csum, l4_csum;
6445         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6446         lro_t *lro;
6447
6448         skb->dev = dev;
6449
6450         if (err) {
6451                 /* Check for parity error */
6452                 if (err & 0x1) {
6453                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6454                 }
6455
6456                 /*
6457                 * Drop the packet if bad transfer code. Exception being
6458                 * 0x5, which could be due to unsupported IPv6 extension header.
6459                 * In this case, we let stack handle the packet.
6460                 * Note that in this case, since checksum will be incorrect,
6461                 * stack will validate the same.
6462                 */
6463                 if (err && ((err >> 48) != 0x5)) {
6464                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6465                                 dev->name, err);
6466                         sp->stats.rx_crc_errors++;
6467                         dev_kfree_skb(skb);
6468                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6469                         rxdp->Host_Control = 0;
6470                         return 0;
6471                 }
6472         }
6473
6474         /* Updating statistics */
6475         rxdp->Host_Control = 0;
6476         sp->rx_pkt_count++;
6477         sp->stats.rx_packets++;
6478         if (sp->rxd_mode == RXD_MODE_1) {
6479                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6480
6481                 sp->stats.rx_bytes += len;
6482                 skb_put(skb, len);
6483
6484         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6485                 int get_block = ring_data->rx_curr_get_info.block_index;
6486                 int get_off = ring_data->rx_curr_get_info.offset;
6487                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6488                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6489                 unsigned char *buff = skb_push(skb, buf0_len);
6490
6491                 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6492                 sp->stats.rx_bytes += buf0_len + buf2_len;
6493                 memcpy(buff, ba->ba_0, buf0_len);
6494
6495                 if (sp->rxd_mode == RXD_MODE_3A) {
6496                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6497
6498                         skb_put(skb, buf1_len);
6499                         skb->len += buf2_len;
6500                         skb->data_len += buf2_len;
6501                         skb->truesize += buf2_len;
6502                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6503                         sp->stats.rx_bytes += buf1_len;
6504
6505                 } else
6506                         skb_put(skb, buf2_len);
6507         }
6508
6509         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6510             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6511             (sp->rx_csum)) {
6512                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6513                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6514                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6515                         /*
6516                          * NIC verifies if the Checksum of the received
6517                          * frame is Ok or not and accordingly returns
6518                          * a flag in the RxD.
6519                          */
6520                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6521                         if (sp->lro) {
6522                                 u32 tcp_len;
6523                                 u8 *tcp;
6524                                 int ret = 0;
6525
6526                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6527                                                 &tcp_len, &lro, rxdp, sp);
6528                                 switch (ret) {
6529                                         case 3: /* Begin anew */
6530                                                 lro->parent = skb;
6531                                                 goto aggregate;
6532                                         case 1: /* Aggregate */
6533                                         {
6534                                                 lro_append_pkt(sp, lro,
6535                                                         skb, tcp_len);
6536                                                 goto aggregate;
6537                                         }
6538                                         case 4: /* Flush session */
6539                                         {
6540                                                 lro_append_pkt(sp, lro,
6541                                                         skb, tcp_len);
6542                                                 queue_rx_frame(lro->parent);
6543                                                 clear_lro_session(lro);
6544                                                 sp->mac_control.stats_info->
6545                                                     sw_stat.flush_max_pkts++;
6546                                                 goto aggregate;
6547                                         }
6548                                         case 2: /* Flush both */
6549                                                 lro->parent->data_len =
6550                                                         lro->frags_len;
6551                                                 sp->mac_control.stats_info->
6552                                                      sw_stat.sending_both++;
6553                                                 queue_rx_frame(lro->parent);
6554                                                 clear_lro_session(lro);
6555                                                 goto send_up;
6556                                         case 0: /* sessions exceeded */
6557                                         case -1: /* non-TCP or not
6558                                                   * L2 aggregatable
6559                                                   */
6560                                         case 5: /*
6561                                                  * First pkt in session not
6562                                                  * L3/L4 aggregatable
6563                                                  */
6564                                                 break;
6565                                         default:
6566                                                 DBG_PRINT(ERR_DBG,
6567                                                         "%s: Samadhana!!\n",
6568                                                          __FUNCTION__);
6569                                                 BUG();
6570                                 }
6571                         }
6572                 } else {
6573                         /*
6574                          * Packet with erroneous checksum, let the
6575                          * upper layers deal with it.
6576                          */
6577                         skb->ip_summed = CHECKSUM_NONE;
6578                 }
6579         } else {
6580                 skb->ip_summed = CHECKSUM_NONE;
6581         }
6582
6583         if (!sp->lro) {
6584                 skb->protocol = eth_type_trans(skb, dev);
6585 #ifdef CONFIG_S2IO_NAPI
6586                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6587                         /* Queueing the vlan frame to the upper layer */
6588                         vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6589                                 RXD_GET_VLAN_TAG(rxdp->Control_2));
6590                 } else {
6591                         netif_receive_skb(skb);
6592                 }
6593 #else
6594                 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6595                         /* Queueing the vlan frame to the upper layer */
6596                         vlan_hwaccel_rx(skb, sp->vlgrp,
6597                                 RXD_GET_VLAN_TAG(rxdp->Control_2));
6598                 } else {
6599                         netif_rx(skb);
6600                 }
6601 #endif
6602         } else {
6603 send_up:
6604                 queue_rx_frame(skb);
6605         }
6606         dev->last_rx = jiffies;
6607 aggregate:
6608         atomic_dec(&sp->rx_bufs_left[ring_no]);
6609         return SUCCESS;
6610 }
6611
6612 /**
6613  *  s2io_link - stops/starts the Tx queue.
6614  *  @sp : private member of the device structure, which is a pointer to the
6615  *  s2io_nic structure.
6616  *  @link : inidicates whether link is UP/DOWN.
6617  *  Description:
6618  *  This function stops/starts the Tx queue depending on whether the link
6619  *  status of the NIC is is down or up. This is called by the Alarm
6620  *  interrupt handler whenever a link change interrupt comes up.
6621  *  Return value:
6622  *  void.
6623  */
6624
6625 static void s2io_link(nic_t * sp, int link)
6626 {
6627         struct net_device *dev = (struct net_device *) sp->dev;
6628
6629         if (link != sp->last_link_state) {
6630                 if (link == LINK_DOWN) {
6631                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6632                         netif_carrier_off(dev);
6633                 } else {
6634                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6635                         netif_carrier_on(dev);
6636                 }
6637         }
6638         sp->last_link_state = link;
6639 }
6640
6641 /**
6642  *  get_xena_rev_id - to identify revision ID of xena.
6643  *  @pdev : PCI Dev structure
6644  *  Description:
6645  *  Function to identify the Revision ID of xena.
6646  *  Return value:
6647  *  returns the revision ID of the device.
6648  */
6649
6650 static int get_xena_rev_id(struct pci_dev *pdev)
6651 {
6652         u8 id = 0;
6653         int ret;
6654         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6655         return id;
6656 }
6657
6658 /**
6659  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6660  *  @sp : private member of the device structure, which is a pointer to the
6661  *  s2io_nic structure.
6662  *  Description:
6663  *  This function initializes a few of the PCI and PCI-X configuration registers
6664  *  with recommended values.
6665  *  Return value:
6666  *  void
6667  */
6668
6669 static void s2io_init_pci(nic_t * sp)
6670 {
6671         u16 pci_cmd = 0, pcix_cmd = 0;
6672
6673         /* Enable Data Parity Error Recovery in PCI-X command register. */
6674         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6675                              &(pcix_cmd));
6676         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6677                               (pcix_cmd | 1));
6678         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6679                              &(pcix_cmd));
6680
6681         /* Set the PErr Response bit in PCI command register. */
6682         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6683         pci_write_config_word(sp->pdev, PCI_COMMAND,
6684                               (pci_cmd | PCI_COMMAND_PARITY));
6685         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6686 }
6687
6688 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6689 {
6690         if ( tx_fifo_num > 8) {
6691                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6692                          "supported\n");
6693                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6694                 tx_fifo_num = 8;
6695         }
6696         if ( rx_ring_num > 8) {
6697                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6698                          "supported\n");
6699                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6700                 rx_ring_num = 8;
6701         }
6702 #ifdef CONFIG_S2IO_NAPI
6703         if (*dev_intr_type != INTA) {
6704                 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6705                           "MSI/MSI-X is enabled. Defaulting to INTA\n");
6706                 *dev_intr_type = INTA;
6707         }
6708 #endif
6709 #ifndef CONFIG_PCI_MSI
6710         if (*dev_intr_type != INTA) {
6711                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6712                           "MSI/MSI-X. Defaulting to INTA\n");
6713                 *dev_intr_type = INTA;
6714         }
6715 #else
6716         if (*dev_intr_type > MSI_X) {
6717                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6718                           "Defaulting to INTA\n");
6719                 *dev_intr_type = INTA;
6720         }
6721 #endif
6722         if ((*dev_intr_type == MSI_X) &&
6723                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6724                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6725                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6726                                         "Defaulting to INTA\n");
6727                 *dev_intr_type = INTA;
6728         }
6729         if (rx_ring_mode > 3) {
6730                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6731                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6732                 rx_ring_mode = 3;
6733         }
6734         return SUCCESS;
6735 }
6736
6737 /**
6738  *  s2io_init_nic - Initialization of the adapter .
6739  *  @pdev : structure containing the PCI related information of the device.
6740  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6741  *  Description:
6742  *  The function initializes an adapter identified by the pci_dec structure.
6743  *  All OS related initialization including memory and device structure and
6744  *  initlaization of the device private variable is done. Also the swapper
6745  *  control register is initialized to enable read and write into the I/O
6746  *  registers of the device.
6747  *  Return value:
6748  *  returns 0 on success and negative on failure.
6749  */
6750
6751 static int __devinit
6752 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6753 {
6754         nic_t *sp;
6755         struct net_device *dev;
6756         int i, j, ret;
6757         int dma_flag = FALSE;
6758         u32 mac_up, mac_down;
6759         u64 val64 = 0, tmp64 = 0;
6760         XENA_dev_config_t __iomem *bar0 = NULL;
6761         u16 subid;
6762         mac_info_t *mac_control;
6763         struct config_param *config;
6764         int mode;
6765         u8 dev_intr_type = intr_type;
6766
6767         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6768                 return ret;
6769
6770         if ((ret = pci_enable_device(pdev))) {
6771                 DBG_PRINT(ERR_DBG,
6772                           "s2io_init_nic: pci_enable_device failed\n");
6773                 return ret;
6774         }
6775
6776         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
6777                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6778                 dma_flag = TRUE;
6779                 if (pci_set_consistent_dma_mask
6780                     (pdev, DMA_64BIT_MASK)) {
6781                         DBG_PRINT(ERR_DBG,
6782                                   "Unable to obtain 64bit DMA for \
6783                                         consistent allocations\n");
6784                         pci_disable_device(pdev);
6785                         return -ENOMEM;
6786                 }
6787         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
6788                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6789         } else {
6790                 pci_disable_device(pdev);
6791                 return -ENOMEM;
6792         }
6793         if (dev_intr_type != MSI_X) {
6794                 if (pci_request_regions(pdev, s2io_driver_name)) {
6795                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6796                         pci_disable_device(pdev);
6797                         return -ENODEV;
6798                 }
6799         }
6800         else {
6801                 if (!(request_mem_region(pci_resource_start(pdev, 0),
6802                          pci_resource_len(pdev, 0), s2io_driver_name))) {
6803                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6804                         pci_disable_device(pdev);
6805                         return -ENODEV;
6806                 }
6807                 if (!(request_mem_region(pci_resource_start(pdev, 2),
6808                          pci_resource_len(pdev, 2), s2io_driver_name))) {
6809                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6810                         release_mem_region(pci_resource_start(pdev, 0),
6811                                    pci_resource_len(pdev, 0));
6812                         pci_disable_device(pdev);
6813                         return -ENODEV;
6814                 }
6815         }
6816
6817         dev = alloc_etherdev(sizeof(nic_t));
6818         if (dev == NULL) {
6819                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6820                 pci_disable_device(pdev);
6821                 pci_release_regions(pdev);
6822                 return -ENODEV;
6823         }
6824
6825         pci_set_master(pdev);
6826         pci_set_drvdata(pdev, dev);
6827         SET_MODULE_OWNER(dev);
6828         SET_NETDEV_DEV(dev, &pdev->dev);
6829
6830         /*  Private member variable initialized to s2io NIC structure */
6831         sp = dev->priv;
6832         memset(sp, 0, sizeof(nic_t));
6833         sp->dev = dev;
6834         sp->pdev = pdev;
6835         sp->high_dma_flag = dma_flag;
6836         sp->device_enabled_once = FALSE;
6837         if (rx_ring_mode == 1)
6838                 sp->rxd_mode = RXD_MODE_1;
6839         if (rx_ring_mode == 2)
6840                 sp->rxd_mode = RXD_MODE_3B;
6841         if (rx_ring_mode == 3)
6842                 sp->rxd_mode = RXD_MODE_3A;
6843
6844         sp->intr_type = dev_intr_type;
6845
6846         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6847                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6848                 sp->device_type = XFRAME_II_DEVICE;
6849         else
6850                 sp->device_type = XFRAME_I_DEVICE;
6851
6852         sp->lro = lro;
6853
6854         /* Initialize some PCI/PCI-X fields of the NIC. */
6855         s2io_init_pci(sp);
6856
6857         /*
6858          * Setting the device configuration parameters.
6859          * Most of these parameters can be specified by the user during
6860          * module insertion as they are module loadable parameters. If
6861          * these parameters are not not specified during load time, they
6862          * are initialized with default values.
6863          */
6864         mac_control = &sp->mac_control;
6865         config = &sp->config;
6866
6867         /* Tx side parameters. */
6868         config->tx_fifo_num = tx_fifo_num;
6869         for (i = 0; i < MAX_TX_FIFOS; i++) {
6870                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6871                 config->tx_cfg[i].fifo_priority = i;
6872         }
6873
6874         /* mapping the QoS priority to the configured fifos */
6875         for (i = 0; i < MAX_TX_FIFOS; i++)
6876                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6877
6878         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6879         for (i = 0; i < config->tx_fifo_num; i++) {
6880                 config->tx_cfg[i].f_no_snoop =
6881                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6882                 if (config->tx_cfg[i].fifo_len < 65) {
6883                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6884                         break;
6885                 }
6886         }
6887         /* + 2 because one Txd for skb->data and one Txd for UFO */
6888         config->max_txds = MAX_SKB_FRAGS + 2;
6889
6890         /* Rx side parameters. */
6891         config->rx_ring_num = rx_ring_num;
6892         for (i = 0; i < MAX_RX_RINGS; i++) {
6893                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
6894                     (rxd_count[sp->rxd_mode] + 1);
6895                 config->rx_cfg[i].ring_priority = i;
6896         }
6897
6898         for (i = 0; i < rx_ring_num; i++) {
6899                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6900                 config->rx_cfg[i].f_no_snoop =
6901                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6902         }
6903
6904         /*  Setting Mac Control parameters */
6905         mac_control->rmac_pause_time = rmac_pause_time;
6906         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6907         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6908
6909
6910         /* Initialize Ring buffer parameters. */
6911         for (i = 0; i < config->rx_ring_num; i++)
6912                 atomic_set(&sp->rx_bufs_left[i], 0);
6913
6914         /* Initialize the number of ISRs currently running */
6915         atomic_set(&sp->isr_cnt, 0);
6916
6917         /*  initialize the shared memory used by the NIC and the host */
6918         if (init_shared_mem(sp)) {
6919                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
6920                           dev->name);
6921                 ret = -ENOMEM;
6922                 goto mem_alloc_failed;
6923         }
6924
6925         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6926                                      pci_resource_len(pdev, 0));
6927         if (!sp->bar0) {
6928                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6929                           dev->name);
6930                 ret = -ENOMEM;
6931                 goto bar0_remap_failed;
6932         }
6933
6934         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6935                                      pci_resource_len(pdev, 2));
6936         if (!sp->bar1) {
6937                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6938                           dev->name);
6939                 ret = -ENOMEM;
6940                 goto bar1_remap_failed;
6941         }
6942
6943         dev->irq = pdev->irq;
6944         dev->base_addr = (unsigned long) sp->bar0;
6945
6946         /* Initializing the BAR1 address as the start of the FIFO pointer. */
6947         for (j = 0; j < MAX_TX_FIFOS; j++) {
6948                 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6949                     (sp->bar1 + (j * 0x00020000));
6950         }
6951
6952         /*  Driver entry points */
6953         dev->open = &s2io_open;
6954         dev->stop = &s2io_close;
6955         dev->hard_start_xmit = &s2io_xmit;
6956         dev->get_stats = &s2io_get_stats;
6957         dev->set_multicast_list = &s2io_set_multicast;
6958         dev->do_ioctl = &s2io_ioctl;
6959         dev->change_mtu = &s2io_change_mtu;
6960         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6961         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6962         dev->vlan_rx_register = s2io_vlan_rx_register;
6963         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6964
6965         /*
6966          * will use eth_mac_addr() for  dev->set_mac_address
6967          * mac address will be set every time dev->open() is called
6968          */
6969 #if defined(CONFIG_S2IO_NAPI)
6970         dev->poll = s2io_poll;
6971         dev->weight = 32;
6972 #endif
6973
6974 #ifdef CONFIG_NET_POLL_CONTROLLER
6975         dev->poll_controller = s2io_netpoll;
6976 #endif
6977
6978         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6979         if (sp->high_dma_flag == TRUE)
6980                 dev->features |= NETIF_F_HIGHDMA;
6981 #ifdef NETIF_F_TSO
6982         dev->features |= NETIF_F_TSO;
6983 #endif
6984 #ifdef NETIF_F_TSO6
6985         dev->features |= NETIF_F_TSO6;
6986 #endif
6987         if (sp->device_type & XFRAME_II_DEVICE) {
6988                 dev->features |= NETIF_F_UFO;
6989                 dev->features |= NETIF_F_HW_CSUM;
6990         }
6991
6992         dev->tx_timeout = &s2io_tx_watchdog;
6993         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6994         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6995         INIT_WORK(&sp->set_link_task, s2io_set_link);
6996
6997         pci_save_state(sp->pdev);
6998
6999         /* Setting swapper control on the NIC, for proper reset operation */
7000         if (s2io_set_swapper(sp)) {
7001                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7002                           dev->name);
7003                 ret = -EAGAIN;
7004                 goto set_swap_failed;
7005         }
7006
7007         /* Verify if the Herc works on the slot its placed into */
7008         if (sp->device_type & XFRAME_II_DEVICE) {
7009                 mode = s2io_verify_pci_mode(sp);
7010                 if (mode < 0) {
7011                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7012                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7013                         ret = -EBADSLT;
7014                         goto set_swap_failed;
7015                 }
7016         }
7017
7018         /* Not needed for Herc */
7019         if (sp->device_type & XFRAME_I_DEVICE) {
7020                 /*
7021                  * Fix for all "FFs" MAC address problems observed on
7022                  * Alpha platforms
7023                  */
7024                 fix_mac_address(sp);
7025                 s2io_reset(sp);
7026         }
7027
7028         /*
7029          * MAC address initialization.
7030          * For now only one mac address will be read and used.
7031          */
7032         bar0 = sp->bar0;
7033         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7034             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7035         writeq(val64, &bar0->rmac_addr_cmd_mem);
7036         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7037                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
7038         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7039         mac_down = (u32) tmp64;
7040         mac_up = (u32) (tmp64 >> 32);
7041
7042         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7043
7044         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7045         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7046         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7047         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7048         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7049         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7050
7051         /*  Set the factory defined MAC address initially   */
7052         dev->addr_len = ETH_ALEN;
7053         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7054
7055         /* reset Nic and bring it to known state */
7056         s2io_reset(sp);
7057
7058         /*
7059          * Initialize the tasklet status and link state flags
7060          * and the card state parameter
7061          */
7062         atomic_set(&(sp->card_state), 0);
7063         sp->tasklet_status = 0;
7064         sp->link_state = 0;
7065
7066         /* Initialize spinlocks */
7067         spin_lock_init(&sp->tx_lock);
7068 #ifndef CONFIG_S2IO_NAPI
7069         spin_lock_init(&sp->put_lock);
7070 #endif
7071         spin_lock_init(&sp->rx_lock);
7072
7073         /*
7074          * SXE-002: Configure link and activity LED to init state
7075          * on driver load.
7076          */
7077         subid = sp->pdev->subsystem_device;
7078         if ((subid & 0xFF) >= 0x07) {
7079                 val64 = readq(&bar0->gpio_control);
7080                 val64 |= 0x0000800000000000ULL;
7081                 writeq(val64, &bar0->gpio_control);
7082                 val64 = 0x0411040400000000ULL;
7083                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7084                 val64 = readq(&bar0->gpio_control);
7085         }
7086
7087         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7088
7089         if (register_netdev(dev)) {
7090                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7091                 ret = -ENODEV;
7092                 goto register_failed;
7093         }
7094         s2io_vpd_read(sp);
7095         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
7096         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7097                   sp->product_name, get_xena_rev_id(sp->pdev));
7098         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7099                   s2io_driver_version);
7100         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7101                           "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
7102                           sp->def_mac_addr[0].mac_addr[0],
7103                           sp->def_mac_addr[0].mac_addr[1],
7104                           sp->def_mac_addr[0].mac_addr[2],
7105                           sp->def_mac_addr[0].mac_addr[3],
7106                           sp->def_mac_addr[0].mac_addr[4],
7107                           sp->def_mac_addr[0].mac_addr[5]);
7108         if (sp->device_type & XFRAME_II_DEVICE) {
7109                 mode = s2io_print_pci_mode(sp);
7110                 if (mode < 0) {
7111                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7112                         ret = -EBADSLT;
7113                         unregister_netdev(dev);
7114                         goto set_swap_failed;
7115                 }
7116         }
7117         switch(sp->rxd_mode) {
7118                 case RXD_MODE_1:
7119                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7120                                                 dev->name);
7121                     break;
7122                 case RXD_MODE_3B:
7123                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7124                                                 dev->name);
7125                     break;
7126                 case RXD_MODE_3A:
7127                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7128                                                 dev->name);
7129                     break;
7130         }
7131 #ifdef CONFIG_S2IO_NAPI
7132         DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7133 #endif
7134         switch(sp->intr_type) {
7135                 case INTA:
7136                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7137                     break;
7138                 case MSI:
7139                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7140                     break;
7141                 case MSI_X:
7142                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7143                     break;
7144         }
7145         if (sp->lro)
7146                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7147                           dev->name);
7148
7149         /* Initialize device name */
7150         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7151
7152         /* Initialize bimodal Interrupts */
7153         sp->config.bimodal = bimodal;
7154         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7155                 sp->config.bimodal = 0;
7156                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7157                         dev->name);
7158         }
7159
7160         /*
7161          * Make Link state as off at this point, when the Link change
7162          * interrupt comes the state will be automatically changed to
7163          * the right state.
7164          */
7165         netif_carrier_off(dev);
7166
7167         return 0;
7168
7169       register_failed:
7170       set_swap_failed:
7171         iounmap(sp->bar1);
7172       bar1_remap_failed:
7173         iounmap(sp->bar0);
7174       bar0_remap_failed:
7175       mem_alloc_failed:
7176         free_shared_mem(sp);
7177         pci_disable_device(pdev);
7178         if (dev_intr_type != MSI_X)
7179                 pci_release_regions(pdev);
7180         else {
7181                 release_mem_region(pci_resource_start(pdev, 0),
7182                         pci_resource_len(pdev, 0));
7183                 release_mem_region(pci_resource_start(pdev, 2),
7184                         pci_resource_len(pdev, 2));
7185         }
7186         pci_set_drvdata(pdev, NULL);
7187         free_netdev(dev);
7188
7189         return ret;
7190 }
7191
7192 /**
7193  * s2io_rem_nic - Free the PCI device
7194  * @pdev: structure containing the PCI related information of the device.
7195  * Description: This function is called by the Pci subsystem to release a
7196  * PCI device and free up all resource held up by the device. This could
7197  * be in response to a Hot plug event or when the driver is to be removed
7198  * from memory.
7199  */
7200
7201 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7202 {
7203         struct net_device *dev =
7204             (struct net_device *) pci_get_drvdata(pdev);
7205         nic_t *sp;
7206
7207         if (dev == NULL) {
7208                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7209                 return;
7210         }
7211
7212         sp = dev->priv;
7213         unregister_netdev(dev);
7214
7215         free_shared_mem(sp);
7216         iounmap(sp->bar0);
7217         iounmap(sp->bar1);
7218         pci_disable_device(pdev);
7219         if (sp->intr_type != MSI_X)
7220                 pci_release_regions(pdev);
7221         else {
7222                 release_mem_region(pci_resource_start(pdev, 0),
7223                         pci_resource_len(pdev, 0));
7224                 release_mem_region(pci_resource_start(pdev, 2),
7225                         pci_resource_len(pdev, 2));
7226         }
7227         pci_set_drvdata(pdev, NULL);
7228         free_netdev(dev);
7229 }
7230
7231 /**
7232  * s2io_starter - Entry point for the driver
7233  * Description: This function is the entry point for the driver. It verifies
7234  * the module loadable parameters and initializes PCI configuration space.
7235  */
7236
7237 int __init s2io_starter(void)
7238 {
7239         return pci_register_driver(&s2io_driver);
7240 }
7241
7242 /**
7243  * s2io_closer - Cleanup routine for the driver
7244  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7245  */
7246
7247 static void s2io_closer(void)
7248 {
7249         pci_unregister_driver(&s2io_driver);
7250         DBG_PRINT(INIT_DBG, "cleanup done\n");
7251 }
7252
7253 module_init(s2io_starter);
7254 module_exit(s2io_closer);
7255
7256 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7257                 struct tcphdr **tcp, RxD_t *rxdp)
7258 {
7259         int ip_off;
7260         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7261
7262         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7263                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7264                           __FUNCTION__);
7265                 return -1;
7266         }
7267
7268         /* TODO:
7269          * By default the VLAN field in the MAC is stripped by the card, if this
7270          * feature is turned off in rx_pa_cfg register, then the ip_off field
7271          * has to be shifted by a further 2 bytes
7272          */
7273         switch (l2_type) {
7274                 case 0: /* DIX type */
7275                 case 4: /* DIX type with VLAN */
7276                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7277                         break;
7278                 /* LLC, SNAP etc are considered non-mergeable */
7279                 default:
7280                         return -1;
7281         }
7282
7283         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7284         ip_len = (u8)((*ip)->ihl);
7285         ip_len <<= 2;
7286         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7287
7288         return 0;
7289 }
7290
7291 static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7292                                   struct tcphdr *tcp)
7293 {
7294         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7295         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7296            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7297                 return -1;
7298         return 0;
7299 }
7300
7301 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7302 {
7303         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7304 }
7305
7306 static void initiate_new_session(lro_t *lro, u8 *l2h,
7307                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7308 {
7309         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7310         lro->l2h = l2h;
7311         lro->iph = ip;
7312         lro->tcph = tcp;
7313         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7314         lro->tcp_ack = ntohl(tcp->ack_seq);
7315         lro->sg_num = 1;
7316         lro->total_len = ntohs(ip->tot_len);
7317         lro->frags_len = 0;
7318         /*
7319          * check if we saw TCP timestamp. Other consistency checks have
7320          * already been done.
7321          */
7322         if (tcp->doff == 8) {
7323                 u32 *ptr;
7324                 ptr = (u32 *)(tcp+1);
7325                 lro->saw_ts = 1;
7326                 lro->cur_tsval = *(ptr+1);
7327                 lro->cur_tsecr = *(ptr+2);
7328         }
7329         lro->in_use = 1;
7330 }
7331
7332 static void update_L3L4_header(nic_t *sp, lro_t *lro)
7333 {
7334         struct iphdr *ip = lro->iph;
7335         struct tcphdr *tcp = lro->tcph;
7336         u16 nchk;
7337         StatInfo_t *statinfo = sp->mac_control.stats_info;
7338         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7339
7340         /* Update L3 header */
7341         ip->tot_len = htons(lro->total_len);
7342         ip->check = 0;
7343         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7344         ip->check = nchk;
7345
7346         /* Update L4 header */
7347         tcp->ack_seq = lro->tcp_ack;
7348         tcp->window = lro->window;
7349
7350         /* Update tsecr field if this session has timestamps enabled */
7351         if (lro->saw_ts) {
7352                 u32 *ptr = (u32 *)(tcp + 1);
7353                 *(ptr+2) = lro->cur_tsecr;
7354         }
7355
7356         /* Update counters required for calculation of
7357          * average no. of packets aggregated.
7358          */
7359         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7360         statinfo->sw_stat.num_aggregations++;
7361 }
7362
7363 static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7364                 struct tcphdr *tcp, u32 l4_pyld)
7365 {
7366         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7367         lro->total_len += l4_pyld;
7368         lro->frags_len += l4_pyld;
7369         lro->tcp_next_seq += l4_pyld;
7370         lro->sg_num++;
7371
7372         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7373         lro->tcp_ack = tcp->ack_seq;
7374         lro->window = tcp->window;
7375
7376         if (lro->saw_ts) {
7377                 u32 *ptr;
7378                 /* Update tsecr and tsval from this packet */
7379                 ptr = (u32 *) (tcp + 1);
7380                 lro->cur_tsval = *(ptr + 1);
7381                 lro->cur_tsecr = *(ptr + 2);
7382         }
7383 }
7384
7385 static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7386                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7387 {
7388         u8 *ptr;
7389
7390         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7391
7392         if (!tcp_pyld_len) {
7393                 /* Runt frame or a pure ack */
7394                 return -1;
7395         }
7396
7397         if (ip->ihl != 5) /* IP has options */
7398                 return -1;
7399
7400         /* If we see CE codepoint in IP header, packet is not mergeable */
7401         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7402                 return -1;
7403
7404         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7405         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7406                                     tcp->ece || tcp->cwr || !tcp->ack) {
7407                 /*
7408                  * Currently recognize only the ack control word and
7409                  * any other control field being set would result in
7410                  * flushing the LRO session
7411                  */
7412                 return -1;
7413         }
7414
7415         /*
7416          * Allow only one TCP timestamp option. Don't aggregate if
7417          * any other options are detected.
7418          */
7419         if (tcp->doff != 5 && tcp->doff != 8)
7420                 return -1;
7421
7422         if (tcp->doff == 8) {
7423                 ptr = (u8 *)(tcp + 1);
7424                 while (*ptr == TCPOPT_NOP)
7425                         ptr++;
7426                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7427                         return -1;
7428
7429                 /* Ensure timestamp value increases monotonically */
7430                 if (l_lro)
7431                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7432                                 return -1;
7433
7434                 /* timestamp echo reply should be non-zero */
7435                 if (*((u32 *)(ptr+6)) == 0)
7436                         return -1;
7437         }
7438
7439         return 0;
7440 }
7441
7442 static int
7443 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7444                       RxD_t *rxdp, nic_t *sp)
7445 {
7446         struct iphdr *ip;
7447         struct tcphdr *tcph;
7448         int ret = 0, i;
7449
7450         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7451                                          rxdp))) {
7452                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7453                           ip->saddr, ip->daddr);
7454         } else {
7455                 return ret;
7456         }
7457
7458         tcph = (struct tcphdr *)*tcp;
7459         *tcp_len = get_l4_pyld_length(ip, tcph);
7460         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7461                 lro_t *l_lro = &sp->lro0_n[i];
7462                 if (l_lro->in_use) {
7463                         if (check_for_socket_match(l_lro, ip, tcph))
7464                                 continue;
7465                         /* Sock pair matched */
7466                         *lro = l_lro;
7467
7468                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7469                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7470                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7471                                           (*lro)->tcp_next_seq,
7472                                           ntohl(tcph->seq));
7473
7474                                 sp->mac_control.stats_info->
7475                                    sw_stat.outof_sequence_pkts++;
7476                                 ret = 2;
7477                                 break;
7478                         }
7479
7480                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7481                                 ret = 1; /* Aggregate */
7482                         else
7483                                 ret = 2; /* Flush both */
7484                         break;
7485                 }
7486         }
7487
7488         if (ret == 0) {
7489                 /* Before searching for available LRO objects,
7490                  * check if the pkt is L3/L4 aggregatable. If not
7491                  * don't create new LRO session. Just send this
7492                  * packet up.
7493                  */
7494                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7495                         return 5;
7496                 }
7497
7498                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7499                         lro_t *l_lro = &sp->lro0_n[i];
7500                         if (!(l_lro->in_use)) {
7501                                 *lro = l_lro;
7502                                 ret = 3; /* Begin anew */
7503                                 break;
7504                         }
7505                 }
7506         }
7507
7508         if (ret == 0) { /* sessions exceeded */
7509                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7510                           __FUNCTION__);
7511                 *lro = NULL;
7512                 return ret;
7513         }
7514
7515         switch (ret) {
7516                 case 3:
7517                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7518                         break;
7519                 case 2:
7520                         update_L3L4_header(sp, *lro);
7521                         break;
7522                 case 1:
7523                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7524                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7525                                 update_L3L4_header(sp, *lro);
7526                                 ret = 4; /* Flush the LRO */
7527                         }
7528                         break;
7529                 default:
7530                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7531                                 __FUNCTION__);
7532                         break;
7533         }
7534
7535         return ret;
7536 }
7537
7538 static void clear_lro_session(lro_t *lro)
7539 {
7540         static u16 lro_struct_size = sizeof(lro_t);
7541
7542         memset(lro, 0, lro_struct_size);
7543 }
7544
7545 static void queue_rx_frame(struct sk_buff *skb)
7546 {
7547         struct net_device *dev = skb->dev;
7548
7549         skb->protocol = eth_type_trans(skb, dev);
7550 #ifdef CONFIG_S2IO_NAPI
7551         netif_receive_skb(skb);
7552 #else
7553         netif_rx(skb);
7554 #endif
7555 }
7556
7557 static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7558                            u32 tcp_len)
7559 {
7560         struct sk_buff *first = lro->parent;
7561
7562         first->len += tcp_len;
7563         first->data_len = lro->frags_len;
7564         skb_pull(skb, (skb->len - tcp_len));
7565         if (skb_shinfo(first)->frag_list)
7566                 lro->last_frag->next = skb;
7567         else
7568                 skb_shinfo(first)->frag_list = skb;
7569         lro->last_frag = skb;
7570         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7571         return;
7572 }