dmaengine: kill some dubious WARN_ONCEs
[linux-2.6] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         __be16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141         512, 1024, 2048, 4096,  4096,  4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157                  "Maximum number of partially received fragmented datagrams "
158                  "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162                             unsigned short type, const void *daddr,
163                             const void *saddr, unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(const struct sk_buff *skb,
166                                   unsigned char *haddr);
167 static int ether1394_header_cache(const struct neighbour *neigh,
168                                   struct hh_cache *hh);
169 static void ether1394_header_cache_update(struct hh_cache *hh,
170                                           const struct net_device *dev,
171                                           const unsigned char *haddr);
172 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
174
175 static struct ethtool_ops ethtool_ops;
176
177 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
178                            quadlet_t *data, u64 addr, size_t len, u16 flags);
179 static void ether1394_add_host(struct hpsb_host *host);
180 static void ether1394_remove_host(struct hpsb_host *host);
181 static void ether1394_host_reset(struct hpsb_host *host);
182
183 /* Function for incoming 1394 packets */
184 const static struct hpsb_address_ops addr_ops = {
185         .write =        ether1394_write,
186 };
187
188 /* Ieee1394 highlevel driver functions */
189 static struct hpsb_highlevel eth1394_highlevel = {
190         .name =         driver_name,
191         .add_host =     ether1394_add_host,
192         .remove_host =  ether1394_remove_host,
193         .host_reset =   ether1394_host_reset,
194 };
195
196 static int ether1394_recv_init(struct eth1394_priv *priv)
197 {
198         unsigned int iso_buf_size;
199
200         /* FIXME: rawiso limits us to PAGE_SIZE */
201         iso_buf_size = min((unsigned int)PAGE_SIZE,
202                            2 * (1U << (priv->host->csr.max_rec + 1)));
203
204         priv->iso = hpsb_iso_recv_init(priv->host,
205                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
206                                        ETHER1394_GASP_BUFFERS,
207                                        priv->broadcast_channel,
208                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
209                                        1, ether1394_iso);
210         if (priv->iso == NULL) {
211                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
212                 priv->bc_state = ETHER1394_BC_ERROR;
213                 return -EAGAIN;
214         }
215
216         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
217                 priv->bc_state = ETHER1394_BC_STOPPED;
218         else
219                 priv->bc_state = ETHER1394_BC_RUNNING;
220         return 0;
221 }
222
223 /* This is called after an "ifup" */
224 static int ether1394_open(struct net_device *dev)
225 {
226         struct eth1394_priv *priv = netdev_priv(dev);
227         int ret;
228
229         if (priv->bc_state == ETHER1394_BC_ERROR) {
230                 ret = ether1394_recv_init(priv);
231                 if (ret)
232                         return ret;
233         }
234         netif_start_queue(dev);
235         return 0;
236 }
237
238 /* This is called after an "ifdown" */
239 static int ether1394_stop(struct net_device *dev)
240 {
241         /* flush priv->wake */
242         flush_scheduled_work();
243
244         netif_stop_queue(dev);
245         return 0;
246 }
247
248 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
249  * so that's what we do. Should we increment the stat counters too?  */
250 static void ether1394_tx_timeout(struct net_device *dev)
251 {
252         struct hpsb_host *host =
253                         ((struct eth1394_priv *)netdev_priv(dev))->host;
254
255         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
256         ether1394_host_reset(host);
257 }
258
259 static inline int ether1394_max_mtu(struct hpsb_host* host)
260 {
261         return (1 << (host->csr.max_rec + 1))
262                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
263 }
264
265 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
266 {
267         int max_mtu;
268
269         if (new_mtu < 68)
270                 return -EINVAL;
271
272         max_mtu = ether1394_max_mtu(
273                         ((struct eth1394_priv *)netdev_priv(dev))->host);
274         if (new_mtu > max_mtu) {
275                 ETH1394_PRINT(KERN_INFO, dev->name,
276                               "Local node constrains MTU to %d\n", max_mtu);
277                 return -ERANGE;
278         }
279
280         dev->mtu = new_mtu;
281         return 0;
282 }
283
284 static void purge_partial_datagram(struct list_head *old)
285 {
286         struct partial_datagram *pd;
287         struct list_head *lh, *n;
288         struct fragment_info *fi;
289
290         pd = list_entry(old, struct partial_datagram, list);
291
292         list_for_each_safe(lh, n, &pd->frag_info) {
293                 fi = list_entry(lh, struct fragment_info, list);
294                 list_del(lh);
295                 kfree(fi);
296         }
297         list_del(old);
298         kfree_skb(pd->skb);
299         kfree(pd);
300 }
301
302 /******************************************
303  * 1394 bus activity functions
304  ******************************************/
305
306 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
307                                                   struct unit_directory *ud)
308 {
309         struct eth1394_node_ref *node;
310
311         list_for_each_entry(node, inl, list)
312                 if (node->ud == ud)
313                         return node;
314
315         return NULL;
316 }
317
318 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
319                                                        u64 guid)
320 {
321         struct eth1394_node_ref *node;
322
323         list_for_each_entry(node, inl, list)
324                 if (node->ud->ne->guid == guid)
325                         return node;
326
327         return NULL;
328 }
329
330 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
331                                                          nodeid_t nodeid)
332 {
333         struct eth1394_node_ref *node;
334
335         list_for_each_entry(node, inl, list)
336                 if (node->ud->ne->nodeid == nodeid)
337                         return node;
338
339         return NULL;
340 }
341
342 static int eth1394_new_node(struct eth1394_host_info *hi,
343                             struct unit_directory *ud)
344 {
345         struct eth1394_priv *priv;
346         struct eth1394_node_ref *new_node;
347         struct eth1394_node_info *node_info;
348
349         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
350         if (!new_node)
351                 return -ENOMEM;
352
353         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
354         if (!node_info) {
355                 kfree(new_node);
356                 return -ENOMEM;
357         }
358
359         spin_lock_init(&node_info->pdg.lock);
360         INIT_LIST_HEAD(&node_info->pdg.list);
361         node_info->pdg.sz = 0;
362         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
363
364         ud->device.driver_data = node_info;
365         new_node->ud = ud;
366
367         priv = netdev_priv(hi->dev);
368         list_add_tail(&new_node->list, &priv->ip_node_list);
369         return 0;
370 }
371
372 static int eth1394_probe(struct device *dev)
373 {
374         struct unit_directory *ud;
375         struct eth1394_host_info *hi;
376
377         ud = container_of(dev, struct unit_directory, device);
378         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
379         if (!hi)
380                 return -ENOENT;
381
382         return eth1394_new_node(hi, ud);
383 }
384
385 static int eth1394_remove(struct device *dev)
386 {
387         struct unit_directory *ud;
388         struct eth1394_host_info *hi;
389         struct eth1394_priv *priv;
390         struct eth1394_node_ref *old_node;
391         struct eth1394_node_info *node_info;
392         struct list_head *lh, *n;
393         unsigned long flags;
394
395         ud = container_of(dev, struct unit_directory, device);
396         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
397         if (!hi)
398                 return -ENOENT;
399
400         priv = netdev_priv(hi->dev);
401
402         old_node = eth1394_find_node(&priv->ip_node_list, ud);
403         if (!old_node)
404                 return 0;
405
406         list_del(&old_node->list);
407         kfree(old_node);
408
409         node_info = (struct eth1394_node_info*)ud->device.driver_data;
410
411         spin_lock_irqsave(&node_info->pdg.lock, flags);
412         /* The partial datagram list should be empty, but we'll just
413          * make sure anyway... */
414         list_for_each_safe(lh, n, &node_info->pdg.list)
415                 purge_partial_datagram(lh);
416         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
417
418         kfree(node_info);
419         ud->device.driver_data = NULL;
420         return 0;
421 }
422
423 static int eth1394_update(struct unit_directory *ud)
424 {
425         struct eth1394_host_info *hi;
426         struct eth1394_priv *priv;
427         struct eth1394_node_ref *node;
428
429         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
430         if (!hi)
431                 return -ENOENT;
432
433         priv = netdev_priv(hi->dev);
434         node = eth1394_find_node(&priv->ip_node_list, ud);
435         if (node)
436                 return 0;
437
438         return eth1394_new_node(hi, ud);
439 }
440
441 static struct ieee1394_device_id eth1394_id_table[] = {
442         {
443                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
444                                 IEEE1394_MATCH_VERSION),
445                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
446                 .version = ETHER1394_GASP_VERSION,
447         },
448         {}
449 };
450
451 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
452
453 static struct hpsb_protocol_driver eth1394_proto_driver = {
454         .name           = driver_name,
455         .id_table       = eth1394_id_table,
456         .update         = eth1394_update,
457         .driver         = {
458                 .probe          = eth1394_probe,
459                 .remove         = eth1394_remove,
460         },
461 };
462
463 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
464 {
465         unsigned long flags;
466         int i;
467         struct eth1394_priv *priv = netdev_priv(dev);
468         struct hpsb_host *host = priv->host;
469         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
470         int max_speed = IEEE1394_SPEED_MAX;
471
472         spin_lock_irqsave(&priv->lock, flags);
473
474         memset(priv->ud_list, 0, sizeof(priv->ud_list));
475         priv->bc_maxpayload = 512;
476
477         /* Determine speed limit */
478         /* FIXME: This is broken for nodes with link speed < PHY speed,
479          * and it is suboptimal for S200B...S800B hardware.
480          * The result of nodemgr's speed probe should be used somehow. */
481         for (i = 0; i < host->node_count; i++) {
482                 /* take care of S100B...S400B PHY ports */
483                 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
484                         max_speed = IEEE1394_SPEED_100;
485                         break;
486                 }
487                 if (max_speed > host->speed[i])
488                         max_speed = host->speed[i];
489         }
490         priv->bc_sspd = max_speed;
491
492         if (set_mtu) {
493                 /* Use the RFC 2734 default 1500 octets or the maximum payload
494                  * as initial MTU */
495                 dev->mtu = min(1500, ether1394_max_mtu(host));
496
497                 /* Set our hardware address while we're at it */
498                 memcpy(dev->dev_addr, &guid, sizeof(u64));
499                 memset(dev->broadcast, 0xff, sizeof(u64));
500         }
501
502         spin_unlock_irqrestore(&priv->lock, flags);
503 }
504
505 static const struct header_ops ether1394_header_ops = {
506         .create         = ether1394_header,
507         .rebuild        = ether1394_rebuild_header,
508         .cache          = ether1394_header_cache,
509         .cache_update   = ether1394_header_cache_update,
510         .parse          = ether1394_header_parse,
511 };
512
513 static const struct net_device_ops ether1394_netdev_ops = {
514         .ndo_open       = ether1394_open,
515         .ndo_stop       = ether1394_stop,
516         .ndo_start_xmit = ether1394_tx,
517         .ndo_tx_timeout = ether1394_tx_timeout,
518         .ndo_change_mtu = ether1394_change_mtu,
519 };
520
521 static void ether1394_init_dev(struct net_device *dev)
522 {
523
524         dev->header_ops         = &ether1394_header_ops;
525         dev->netdev_ops         = &ether1394_netdev_ops;
526
527         SET_ETHTOOL_OPS(dev, &ethtool_ops);
528
529         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
530         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
531         dev->features           = NETIF_F_HIGHDMA;
532         dev->addr_len           = ETH1394_ALEN;
533         dev->hard_header_len    = ETH1394_HLEN;
534         dev->type               = ARPHRD_IEEE1394;
535
536         /* FIXME: This value was copied from ether_setup(). Is it too much? */
537         dev->tx_queue_len       = 1000;
538 }
539
540 /*
541  * Wake the queue up after commonly encountered transmit failure conditions are
542  * hopefully over.  Currently only tlabel exhaustion is accounted for.
543  */
544 static void ether1394_wake_queue(struct work_struct *work)
545 {
546         struct eth1394_priv *priv;
547         struct hpsb_packet *packet;
548
549         priv = container_of(work, struct eth1394_priv, wake);
550         packet = hpsb_alloc_packet(0);
551
552         /* This is really bad, but unjam the queue anyway. */
553         if (!packet)
554                 goto out;
555
556         packet->host = priv->host;
557         packet->node_id = priv->wake_node;
558         /*
559          * A transaction label is all we really want.  If we get one, it almost
560          * always means we can get a lot more because the ieee1394 core recycled
561          * a whole batch of tlabels, at last.
562          */
563         if (hpsb_get_tlabel(packet) == 0)
564                 hpsb_free_tlabel(packet);
565
566         hpsb_free_packet(packet);
567 out:
568         netif_wake_queue(priv->wake_dev);
569 }
570
571 /*
572  * This function is called every time a card is found. It is generally called
573  * when the module is installed. This is where we add all of our ethernet
574  * devices. One for each host.
575  */
576 static void ether1394_add_host(struct hpsb_host *host)
577 {
578         struct eth1394_host_info *hi = NULL;
579         struct net_device *dev = NULL;
580         struct eth1394_priv *priv;
581         u64 fifo_addr;
582
583         if (hpsb_config_rom_ip1394_add(host) != 0) {
584                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
585                 return;
586         }
587
588         fifo_addr = hpsb_allocate_and_register_addrspace(
589                         &eth1394_highlevel, host, &addr_ops,
590                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
591                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
592         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
593                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
594                 hpsb_config_rom_ip1394_remove(host);
595                 return;
596         }
597
598         dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
599         if (dev == NULL) {
600                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
601                 goto out;
602         }
603
604         SET_NETDEV_DEV(dev, &host->device);
605
606         priv = netdev_priv(dev);
607         INIT_LIST_HEAD(&priv->ip_node_list);
608         spin_lock_init(&priv->lock);
609         priv->host = host;
610         priv->local_fifo = fifo_addr;
611         INIT_WORK(&priv->wake, ether1394_wake_queue);
612         priv->wake_dev = dev;
613
614         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
615         if (hi == NULL) {
616                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
617                 goto out;
618         }
619
620         ether1394_reset_priv(dev, 1);
621
622         if (register_netdev(dev)) {
623                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
624                 goto out;
625         }
626
627         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
628                       host->id);
629
630         hi->host = host;
631         hi->dev = dev;
632
633         /* Ignore validity in hopes that it will be set in the future.  It'll
634          * be checked when the eth device is opened. */
635         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
636
637         ether1394_recv_init(priv);
638         return;
639 out:
640         if (dev)
641                 free_netdev(dev);
642         if (hi)
643                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
644         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
645         hpsb_config_rom_ip1394_remove(host);
646 }
647
648 /* Remove a card from our list */
649 static void ether1394_remove_host(struct hpsb_host *host)
650 {
651         struct eth1394_host_info *hi;
652         struct eth1394_priv *priv;
653
654         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
655         if (!hi)
656                 return;
657         priv = netdev_priv(hi->dev);
658         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
659         hpsb_config_rom_ip1394_remove(host);
660         if (priv->iso)
661                 hpsb_iso_shutdown(priv->iso);
662         unregister_netdev(hi->dev);
663         free_netdev(hi->dev);
664 }
665
666 /* A bus reset happened */
667 static void ether1394_host_reset(struct hpsb_host *host)
668 {
669         struct eth1394_host_info *hi;
670         struct eth1394_priv *priv;
671         struct net_device *dev;
672         struct list_head *lh, *n;
673         struct eth1394_node_ref *node;
674         struct eth1394_node_info *node_info;
675         unsigned long flags;
676
677         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
678
679         /* This can happen for hosts that we don't use */
680         if (!hi)
681                 return;
682
683         dev = hi->dev;
684         priv = netdev_priv(dev);
685
686         /* Reset our private host data, but not our MTU */
687         netif_stop_queue(dev);
688         ether1394_reset_priv(dev, 0);
689
690         list_for_each_entry(node, &priv->ip_node_list, list) {
691                 node_info = node->ud->device.driver_data;
692
693                 spin_lock_irqsave(&node_info->pdg.lock, flags);
694
695                 list_for_each_safe(lh, n, &node_info->pdg.list)
696                         purge_partial_datagram(lh);
697
698                 INIT_LIST_HEAD(&(node_info->pdg.list));
699                 node_info->pdg.sz = 0;
700
701                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
702         }
703
704         netif_wake_queue(dev);
705 }
706
707 /******************************************
708  * HW Header net device functions
709  ******************************************/
710 /* These functions have been adapted from net/ethernet/eth.c */
711
712 /* Create a fake MAC header for an arbitrary protocol layer.
713  * saddr=NULL means use device source address
714  * daddr=NULL means leave destination address (eg unresolved arp). */
715 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
716                             unsigned short type, const void *daddr,
717                             const void *saddr, unsigned len)
718 {
719         struct eth1394hdr *eth =
720                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
721
722         eth->h_proto = htons(type);
723
724         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
725                 memset(eth->h_dest, 0, dev->addr_len);
726                 return dev->hard_header_len;
727         }
728
729         if (daddr) {
730                 memcpy(eth->h_dest, daddr, dev->addr_len);
731                 return dev->hard_header_len;
732         }
733
734         return -dev->hard_header_len;
735 }
736
737 /* Rebuild the faked MAC header. This is called after an ARP
738  * (or in future other address resolution) has completed on this
739  * sk_buff. We now let ARP fill in the other fields.
740  *
741  * This routine CANNOT use cached dst->neigh!
742  * Really, it is used only when dst->neigh is wrong.
743  */
744 static int ether1394_rebuild_header(struct sk_buff *skb)
745 {
746         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
747
748         if (eth->h_proto == htons(ETH_P_IP))
749                 return arp_find((unsigned char *)&eth->h_dest, skb);
750
751         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
752                       "unable to resolve type %04x addresses\n",
753                       ntohs(eth->h_proto));
754         return 0;
755 }
756
757 static int ether1394_header_parse(const struct sk_buff *skb,
758                                   unsigned char *haddr)
759 {
760         memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
761         return ETH1394_ALEN;
762 }
763
764 static int ether1394_header_cache(const struct neighbour *neigh,
765                                   struct hh_cache *hh)
766 {
767         __be16 type = hh->hh_type;
768         struct net_device *dev = neigh->dev;
769         struct eth1394hdr *eth =
770                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
771
772         if (type == htons(ETH_P_802_3))
773                 return -1;
774
775         eth->h_proto = type;
776         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
777
778         hh->hh_len = ETH1394_HLEN;
779         return 0;
780 }
781
782 /* Called by Address Resolution module to notify changes in address. */
783 static void ether1394_header_cache_update(struct hh_cache *hh,
784                                           const struct net_device *dev,
785                                           const unsigned char * haddr)
786 {
787         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
788 }
789
790 /******************************************
791  * Datagram reception code
792  ******************************************/
793
794 /* Copied from net/ethernet/eth.c */
795 static __be16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
796 {
797         struct eth1394hdr *eth;
798         unsigned char *rawp;
799
800         skb_reset_mac_header(skb);
801         skb_pull(skb, ETH1394_HLEN);
802         eth = eth1394_hdr(skb);
803
804         if (*eth->h_dest & 1) {
805                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
806                         skb->pkt_type = PACKET_BROADCAST;
807 #if 0
808                 else
809                         skb->pkt_type = PACKET_MULTICAST;
810 #endif
811         } else {
812                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
813                         skb->pkt_type = PACKET_OTHERHOST;
814         }
815
816         if (ntohs(eth->h_proto) >= 1536)
817                 return eth->h_proto;
818
819         rawp = skb->data;
820
821         if (*(unsigned short *)rawp == 0xFFFF)
822                 return htons(ETH_P_802_3);
823
824         return htons(ETH_P_802_2);
825 }
826
827 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
828  * We also perform ARP translation here, if need be.  */
829 static __be16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
830                                  nodeid_t srcid, nodeid_t destid,
831                                  __be16 ether_type)
832 {
833         struct eth1394_priv *priv = netdev_priv(dev);
834         __be64 dest_hw;
835         __be16 ret = 0;
836
837         /* Setup our hw addresses. We use these to build the ethernet header. */
838         if (destid == (LOCAL_BUS | ALL_NODES))
839                 dest_hw = ~cpu_to_be64(0);  /* broadcast */
840         else
841                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
842                                       priv->host->csr.guid_lo);
843
844         /* If this is an ARP packet, convert it. First, we want to make
845          * use of some of the fields, since they tell us a little bit
846          * about the sending machine.  */
847         if (ether_type == htons(ETH_P_ARP)) {
848                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
849                 struct arphdr *arp = (struct arphdr *)skb->data;
850                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
851                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
852                                            ntohl(arp1394->fifo_lo);
853                 u8 max_rec = min(priv->host->csr.max_rec,
854                                  (u8)(arp1394->max_rec));
855                 int sspd = arp1394->sspd;
856                 u16 maxpayload;
857                 struct eth1394_node_ref *node;
858                 struct eth1394_node_info *node_info;
859                 __be64 guid;
860
861                 /* Sanity check. MacOSX seems to be sending us 131 in this
862                  * field (atleast on my Panther G5). Not sure why. */
863                 if (sspd > 5 || sspd < 0)
864                         sspd = 0;
865
866                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
867                                  (u16)(1 << (max_rec + 1)));
868
869                 guid = get_unaligned(&arp1394->s_uniq_id);
870                 node = eth1394_find_node_guid(&priv->ip_node_list,
871                                               be64_to_cpu(guid));
872                 if (!node)
873                         return cpu_to_be16(0);
874
875                 node_info =
876                     (struct eth1394_node_info *)node->ud->device.driver_data;
877
878                 /* Update our speed/payload/fifo_offset table */
879                 node_info->maxpayload = maxpayload;
880                 node_info->sspd =       sspd;
881                 node_info->fifo =       fifo_addr;
882
883                 /* Now that we're done with the 1394 specific stuff, we'll
884                  * need to alter some of the data.  Believe it or not, all
885                  * that needs to be done is sender_IP_address needs to be
886                  * moved, the destination hardware address get stuffed
887                  * in and the hardware address length set to 8.
888                  *
889                  * IMPORTANT: The code below overwrites 1394 specific data
890                  * needed above so keep the munging of the data for the
891                  * higher level IP stack last. */
892
893                 arp->ar_hln = 8;
894                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
895                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
896                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
897
898                 if (arp->ar_op == htons(ARPOP_REQUEST))
899                         memset(arp_ptr, 0, sizeof(u64));
900                 else
901                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
902         }
903
904         /* Now add the ethernet header. */
905         if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
906                             skb->len) >= 0)
907                 ret = ether1394_type_trans(skb, dev);
908
909         return ret;
910 }
911
912 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
913 {
914         struct fragment_info *fi;
915         int end = offset + len;
916
917         list_for_each_entry(fi, frag_list, list)
918                 if (offset < fi->offset + fi->len && end > fi->offset)
919                         return 1;
920
921         return 0;
922 }
923
924 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
925 {
926         struct partial_datagram *pd;
927
928         list_for_each_entry(pd, pdgl, list)
929                 if (pd->dgl == dgl)
930                         return &pd->list;
931
932         return NULL;
933 }
934
935 /* Assumes that new fragment does not overlap any existing fragments */
936 static int new_fragment(struct list_head *frag_info, int offset, int len)
937 {
938         struct list_head *lh;
939         struct fragment_info *fi, *fi2, *new;
940
941         list_for_each(lh, frag_info) {
942                 fi = list_entry(lh, struct fragment_info, list);
943                 if (fi->offset + fi->len == offset) {
944                         /* The new fragment can be tacked on to the end */
945                         fi->len += len;
946                         /* Did the new fragment plug a hole? */
947                         fi2 = list_entry(lh->next, struct fragment_info, list);
948                         if (fi->offset + fi->len == fi2->offset) {
949                                 /* glue fragments together */
950                                 fi->len += fi2->len;
951                                 list_del(lh->next);
952                                 kfree(fi2);
953                         }
954                         return 0;
955                 } else if (offset + len == fi->offset) {
956                         /* The new fragment can be tacked on to the beginning */
957                         fi->offset = offset;
958                         fi->len += len;
959                         /* Did the new fragment plug a hole? */
960                         fi2 = list_entry(lh->prev, struct fragment_info, list);
961                         if (fi2->offset + fi2->len == fi->offset) {
962                                 /* glue fragments together */
963                                 fi2->len += fi->len;
964                                 list_del(lh);
965                                 kfree(fi);
966                         }
967                         return 0;
968                 } else if (offset > fi->offset + fi->len) {
969                         break;
970                 } else if (offset + len < fi->offset) {
971                         lh = lh->prev;
972                         break;
973                 }
974         }
975
976         new = kmalloc(sizeof(*new), GFP_ATOMIC);
977         if (!new)
978                 return -ENOMEM;
979
980         new->offset = offset;
981         new->len = len;
982
983         list_add(&new->list, lh);
984         return 0;
985 }
986
987 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
988                                 int dgl, int dg_size, char *frag_buf,
989                                 int frag_off, int frag_len)
990 {
991         struct partial_datagram *new;
992
993         new = kmalloc(sizeof(*new), GFP_ATOMIC);
994         if (!new)
995                 return -ENOMEM;
996
997         INIT_LIST_HEAD(&new->frag_info);
998
999         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1000                 kfree(new);
1001                 return -ENOMEM;
1002         }
1003
1004         new->dgl = dgl;
1005         new->dg_size = dg_size;
1006
1007         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1008         if (!new->skb) {
1009                 struct fragment_info *fi = list_entry(new->frag_info.next,
1010                                                       struct fragment_info,
1011                                                       list);
1012                 kfree(fi);
1013                 kfree(new);
1014                 return -ENOMEM;
1015         }
1016
1017         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1018         new->pbuf = skb_put(new->skb, dg_size);
1019         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1020
1021         list_add(&new->list, pdgl);
1022         return 0;
1023 }
1024
1025 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1026                                    char *frag_buf, int frag_off, int frag_len)
1027 {
1028         struct partial_datagram *pd =
1029                         list_entry(lh, struct partial_datagram, list);
1030
1031         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1032                 return -ENOMEM;
1033
1034         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1035
1036         /* Move list entry to beginnig of list so that oldest partial
1037          * datagrams percolate to the end of the list */
1038         list_move(lh, pdgl);
1039         return 0;
1040 }
1041
1042 static int is_datagram_complete(struct list_head *lh, int dg_size)
1043 {
1044         struct partial_datagram *pd;
1045         struct fragment_info *fi;
1046
1047         pd = list_entry(lh, struct partial_datagram, list);
1048         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1049
1050         return (fi->len == dg_size);
1051 }
1052
1053 /* Packet reception. We convert the IP1394 encapsulation header to an
1054  * ethernet header, and fill it with some of our other fields. This is
1055  * an incoming packet from the 1394 bus.  */
1056 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1057                                   char *buf, int len)
1058 {
1059         struct sk_buff *skb;
1060         unsigned long flags;
1061         struct eth1394_priv *priv = netdev_priv(dev);
1062         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1063         __be16 ether_type = cpu_to_be16(0);  /* initialized to clear warning */
1064         int hdr_len;
1065         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1066         struct eth1394_node_info *node_info;
1067
1068         if (!ud) {
1069                 struct eth1394_node_ref *node;
1070                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1071                 if (unlikely(!node)) {
1072                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1073                                    "lookup failure: " NODE_BUS_FMT,
1074                                    NODE_BUS_ARGS(priv->host, srcid));
1075                         dev->stats.rx_dropped++;
1076                         return -1;
1077                 }
1078                 ud = node->ud;
1079
1080                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1081         }
1082
1083         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1084
1085         /* First, did we receive a fragmented or unfragmented datagram? */
1086         hdr->words.word1 = ntohs(hdr->words.word1);
1087
1088         hdr_len = hdr_type_len[hdr->common.lf];
1089
1090         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1091                 /* An unfragmented datagram has been received by the ieee1394
1092                  * bus. Build an skbuff around it so we can pass it to the
1093                  * high level network layer. */
1094
1095                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1096                 if (unlikely(!skb)) {
1097                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1098                         dev->stats.rx_dropped++;
1099                         return -1;
1100                 }
1101                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1102                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1103                        len - hdr_len);
1104                 ether_type = hdr->uf.ether_type;
1105         } else {
1106                 /* A datagram fragment has been received, now the fun begins. */
1107
1108                 struct list_head *pdgl, *lh;
1109                 struct partial_datagram *pd;
1110                 int fg_off;
1111                 int fg_len = len - hdr_len;
1112                 int dg_size;
1113                 int dgl;
1114                 int retval;
1115                 struct pdg_list *pdg = &(node_info->pdg);
1116
1117                 hdr->words.word3 = ntohs(hdr->words.word3);
1118                 /* The 4th header word is reserved so no need to do ntohs() */
1119
1120                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1121                         ether_type = hdr->ff.ether_type;
1122                         dgl = hdr->ff.dgl;
1123                         dg_size = hdr->ff.dg_size + 1;
1124                         fg_off = 0;
1125                 } else {
1126                         hdr->words.word2 = ntohs(hdr->words.word2);
1127                         dgl = hdr->sf.dgl;
1128                         dg_size = hdr->sf.dg_size + 1;
1129                         fg_off = hdr->sf.fg_off;
1130                 }
1131                 spin_lock_irqsave(&pdg->lock, flags);
1132
1133                 pdgl = &(pdg->list);
1134                 lh = find_partial_datagram(pdgl, dgl);
1135
1136                 if (lh == NULL) {
1137                         while (pdg->sz >= max_partial_datagrams) {
1138                                 /* remove the oldest */
1139                                 purge_partial_datagram(pdgl->prev);
1140                                 pdg->sz--;
1141                         }
1142
1143                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1144                                                       buf + hdr_len, fg_off,
1145                                                       fg_len);
1146                         if (retval < 0) {
1147                                 spin_unlock_irqrestore(&pdg->lock, flags);
1148                                 goto bad_proto;
1149                         }
1150                         pdg->sz++;
1151                         lh = find_partial_datagram(pdgl, dgl);
1152                 } else {
1153                         pd = list_entry(lh, struct partial_datagram, list);
1154
1155                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1156                                 /* Overlapping fragments, obliterate old
1157                                  * datagram and start new one. */
1158                                 purge_partial_datagram(lh);
1159                                 retval = new_partial_datagram(dev, pdgl, dgl,
1160                                                               dg_size,
1161                                                               buf + hdr_len,
1162                                                               fg_off, fg_len);
1163                                 if (retval < 0) {
1164                                         pdg->sz--;
1165                                         spin_unlock_irqrestore(&pdg->lock, flags);
1166                                         goto bad_proto;
1167                                 }
1168                         } else {
1169                                 retval = update_partial_datagram(pdgl, lh,
1170                                                                  buf + hdr_len,
1171                                                                  fg_off, fg_len);
1172                                 if (retval < 0) {
1173                                         /* Couldn't save off fragment anyway
1174                                          * so might as well obliterate the
1175                                          * datagram now. */
1176                                         purge_partial_datagram(lh);
1177                                         pdg->sz--;
1178                                         spin_unlock_irqrestore(&pdg->lock, flags);
1179                                         goto bad_proto;
1180                                 }
1181                         } /* fragment overlap */
1182                 } /* new datagram or add to existing one */
1183
1184                 pd = list_entry(lh, struct partial_datagram, list);
1185
1186                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1187                         pd->ether_type = ether_type;
1188
1189                 if (is_datagram_complete(lh, dg_size)) {
1190                         ether_type = pd->ether_type;
1191                         pdg->sz--;
1192                         skb = skb_get(pd->skb);
1193                         purge_partial_datagram(lh);
1194                         spin_unlock_irqrestore(&pdg->lock, flags);
1195                 } else {
1196                         /* Datagram is not complete, we're done for the
1197                          * moment. */
1198                         spin_unlock_irqrestore(&pdg->lock, flags);
1199                         return 0;
1200                 }
1201         } /* unframgented datagram or fragmented one */
1202
1203         /* Write metadata, and then pass to the receive level */
1204         skb->dev = dev;
1205         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1206
1207         /* Parse the encapsulation header. This actually does the job of
1208          * converting to an ethernet frame header, aswell as arp
1209          * conversion if needed. ARP conversion is easier in this
1210          * direction, since we are using ethernet as our backend.  */
1211         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1212                                               ether_type);
1213
1214         spin_lock_irqsave(&priv->lock, flags);
1215
1216         if (!skb->protocol) {
1217                 dev->stats.rx_errors++;
1218                 dev->stats.rx_dropped++;
1219                 dev_kfree_skb_any(skb);
1220         } else if (netif_rx(skb) == NET_RX_DROP) {
1221                 dev->stats.rx_errors++;
1222                 dev->stats.rx_dropped++;
1223         } else {
1224                 dev->stats.rx_packets++;
1225                 dev->stats.rx_bytes += skb->len;
1226         }
1227
1228         spin_unlock_irqrestore(&priv->lock, flags);
1229
1230 bad_proto:
1231         if (netif_queue_stopped(dev))
1232                 netif_wake_queue(dev);
1233
1234         return 0;
1235 }
1236
1237 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1238                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1239 {
1240         struct eth1394_host_info *hi;
1241
1242         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1243         if (unlikely(!hi)) {
1244                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1245                                 host->id);
1246                 return RCODE_ADDRESS_ERROR;
1247         }
1248
1249         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1250                 return RCODE_ADDRESS_ERROR;
1251         else
1252                 return RCODE_COMPLETE;
1253 }
1254
1255 static void ether1394_iso(struct hpsb_iso *iso)
1256 {
1257         __be32 *data;
1258         char *buf;
1259         struct eth1394_host_info *hi;
1260         struct net_device *dev;
1261         struct eth1394_priv *priv;
1262         unsigned int len;
1263         u32 specifier_id;
1264         u16 source_id;
1265         int i;
1266         int nready;
1267
1268         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1269         if (unlikely(!hi)) {
1270                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1271                                 iso->host->id);
1272                 return;
1273         }
1274
1275         dev = hi->dev;
1276
1277         nready = hpsb_iso_n_ready(iso);
1278         for (i = 0; i < nready; i++) {
1279                 struct hpsb_iso_packet_info *info =
1280                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1281                 data = (__be32 *)(iso->data_buf.kvirt + info->offset);
1282
1283                 /* skip over GASP header */
1284                 buf = (char *)data + 8;
1285                 len = info->len - 8;
1286
1287                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1288                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1289                 source_id = be32_to_cpu(data[0]) >> 16;
1290
1291                 priv = netdev_priv(dev);
1292
1293                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1294                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1295                         /* This packet is not for us */
1296                         continue;
1297                 }
1298                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1299                                        buf, len);
1300         }
1301
1302         hpsb_iso_recv_release_packets(iso, i);
1303
1304         dev->last_rx = jiffies;
1305 }
1306
1307 /******************************************
1308  * Datagram transmission code
1309  ******************************************/
1310
1311 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1312  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1313  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1314  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1315  * judge.
1316  *
1317  * Now that the EUI is used for the hardware address all we need to do to make
1318  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1319  * speed, and unicast FIFO address information between the sender_unique_id
1320  * and the IP addresses.
1321  */
1322 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1323                                      struct net_device *dev)
1324 {
1325         struct eth1394_priv *priv = netdev_priv(dev);
1326         struct arphdr *arp = (struct arphdr *)skb->data;
1327         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1328         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1329
1330         arp1394->hw_addr_len    = 16;
1331         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1332         arp1394->max_rec        = priv->host->csr.max_rec;
1333         arp1394->sspd           = priv->host->csr.lnk_spd;
1334         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1335         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1336 }
1337
1338 /* We need to encapsulate the standard header with our own. We use the
1339  * ethernet header's proto for our own. */
1340 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1341                                                __be16 proto,
1342                                                union eth1394_hdr *hdr,
1343                                                u16 dg_size, u16 dgl)
1344 {
1345         unsigned int adj_max_payload =
1346                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1347
1348         /* Does it all fit in one packet? */
1349         if (dg_size <= adj_max_payload) {
1350                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1351                 hdr->uf.ether_type = proto;
1352         } else {
1353                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1354                 hdr->ff.ether_type = proto;
1355                 hdr->ff.dg_size = dg_size - 1;
1356                 hdr->ff.dgl = dgl;
1357                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1358         }
1359         return DIV_ROUND_UP(dg_size, adj_max_payload);
1360 }
1361
1362 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1363                                           unsigned int max_payload,
1364                                           union eth1394_hdr *hdr)
1365 {
1366         union eth1394_hdr *bufhdr;
1367         int ftype = hdr->common.lf;
1368         int hdrsz = hdr_type_len[ftype];
1369         unsigned int adj_max_payload = max_payload - hdrsz;
1370
1371         switch (ftype) {
1372         case ETH1394_HDR_LF_UF:
1373                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1374                 bufhdr->words.word1 = htons(hdr->words.word1);
1375                 bufhdr->words.word2 = hdr->words.word2;
1376                 break;
1377
1378         case ETH1394_HDR_LF_FF:
1379                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1380                 bufhdr->words.word1 = htons(hdr->words.word1);
1381                 bufhdr->words.word2 = hdr->words.word2;
1382                 bufhdr->words.word3 = htons(hdr->words.word3);
1383                 bufhdr->words.word4 = 0;
1384
1385                 /* Set frag type here for future interior fragments */
1386                 hdr->common.lf = ETH1394_HDR_LF_IF;
1387                 hdr->sf.fg_off = 0;
1388                 break;
1389
1390         default:
1391                 hdr->sf.fg_off += adj_max_payload;
1392                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1393                 if (max_payload >= skb->len)
1394                         hdr->common.lf = ETH1394_HDR_LF_LF;
1395                 bufhdr->words.word1 = htons(hdr->words.word1);
1396                 bufhdr->words.word2 = htons(hdr->words.word2);
1397                 bufhdr->words.word3 = htons(hdr->words.word3);
1398                 bufhdr->words.word4 = 0;
1399         }
1400         return min(max_payload, skb->len);
1401 }
1402
1403 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1404 {
1405         struct hpsb_packet *p;
1406
1407         p = hpsb_alloc_packet(0);
1408         if (p) {
1409                 p->host = host;
1410                 p->generation = get_hpsb_generation(host);
1411                 p->type = hpsb_async;
1412         }
1413         return p;
1414 }
1415
1416 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1417                                        struct hpsb_host *host, nodeid_t node,
1418                                        u64 addr, void *data, int tx_len)
1419 {
1420         p->node_id = node;
1421
1422         if (hpsb_get_tlabel(p))
1423                 return -EAGAIN;
1424
1425         p->tcode = TCODE_WRITEB;
1426         p->header_size = 16;
1427         p->expect_response = 1;
1428         p->header[0] =
1429                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1430         p->header[1] = host->node_id << 16 | addr >> 32;
1431         p->header[2] = addr & 0xffffffff;
1432         p->header[3] = tx_len << 16;
1433         p->data_size = (tx_len + 3) & ~3;
1434         p->data = data;
1435
1436         return 0;
1437 }
1438
1439 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1440                                        struct eth1394_priv *priv,
1441                                        struct sk_buff *skb, int length)
1442 {
1443         p->header_size = 4;
1444         p->tcode = TCODE_STREAM_DATA;
1445
1446         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1447                        TCODE_STREAM_DATA << 4;
1448         p->data_size = length;
1449         p->data = (quadlet_t *)skb->data - 2;
1450         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1451                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1452         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1453                                  ETHER1394_GASP_VERSION);
1454
1455         p->speed_code = priv->bc_sspd;
1456
1457         /* prevent hpsb_send_packet() from overriding our speed code */
1458         p->node_id = LOCAL_BUS | ALL_NODES;
1459 }
1460
1461 static void ether1394_free_packet(struct hpsb_packet *packet)
1462 {
1463         if (packet->tcode != TCODE_STREAM_DATA)
1464                 hpsb_free_tlabel(packet);
1465         hpsb_free_packet(packet);
1466 }
1467
1468 static void ether1394_complete_cb(void *__ptask);
1469
1470 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1471 {
1472         struct eth1394_priv *priv = ptask->priv;
1473         struct hpsb_packet *packet = NULL;
1474
1475         packet = ether1394_alloc_common_packet(priv->host);
1476         if (!packet)
1477                 return -ENOMEM;
1478
1479         if (ptask->tx_type == ETH1394_GASP) {
1480                 int length = tx_len + 2 * sizeof(quadlet_t);
1481
1482                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1483         } else if (ether1394_prep_write_packet(packet, priv->host,
1484                                                ptask->dest_node,
1485                                                ptask->addr, ptask->skb->data,
1486                                                tx_len)) {
1487                 hpsb_free_packet(packet);
1488                 return -EAGAIN;
1489         }
1490
1491         ptask->packet = packet;
1492         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1493                                       ptask);
1494
1495         if (hpsb_send_packet(packet) < 0) {
1496                 ether1394_free_packet(packet);
1497                 return -EIO;
1498         }
1499
1500         return 0;
1501 }
1502
1503 /* Task function to be run when a datagram transmission is completed */
1504 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1505 {
1506         struct sk_buff *skb = ptask->skb;
1507         struct net_device *dev = skb->dev;
1508         struct eth1394_priv *priv = netdev_priv(dev);
1509         unsigned long flags;
1510
1511         /* Statistics */
1512         spin_lock_irqsave(&priv->lock, flags);
1513         if (fail) {
1514                 dev->stats.tx_dropped++;
1515                 dev->stats.tx_errors++;
1516         } else {
1517                 dev->stats.tx_bytes += skb->len;
1518                 dev->stats.tx_packets++;
1519         }
1520         spin_unlock_irqrestore(&priv->lock, flags);
1521
1522         dev_kfree_skb_any(skb);
1523         kmem_cache_free(packet_task_cache, ptask);
1524 }
1525
1526 /* Callback for when a packet has been sent and the status of that packet is
1527  * known */
1528 static void ether1394_complete_cb(void *__ptask)
1529 {
1530         struct packet_task *ptask = (struct packet_task *)__ptask;
1531         struct hpsb_packet *packet = ptask->packet;
1532         int fail = 0;
1533
1534         if (packet->tcode != TCODE_STREAM_DATA)
1535                 fail = hpsb_packet_success(packet);
1536
1537         ether1394_free_packet(packet);
1538
1539         ptask->outstanding_pkts--;
1540         if (ptask->outstanding_pkts > 0 && !fail) {
1541                 int tx_len, err;
1542
1543                 /* Add the encapsulation header to the fragment */
1544                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1545                                                &ptask->hdr);
1546                 err = ether1394_send_packet(ptask, tx_len);
1547                 if (err) {
1548                         if (err == -EAGAIN)
1549                                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1550
1551                         ether1394_dg_complete(ptask, 1);
1552                 }
1553         } else {
1554                 ether1394_dg_complete(ptask, fail);
1555         }
1556 }
1557
1558 /* Transmit a packet (called by kernel) */
1559 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1560 {
1561         struct eth1394hdr hdr_buf;
1562         struct eth1394_priv *priv = netdev_priv(dev);
1563         __be16 proto;
1564         unsigned long flags;
1565         nodeid_t dest_node;
1566         eth1394_tx_type tx_type;
1567         unsigned int tx_len;
1568         unsigned int max_payload;
1569         u16 dg_size;
1570         u16 dgl;
1571         struct packet_task *ptask;
1572         struct eth1394_node_ref *node;
1573         struct eth1394_node_info *node_info = NULL;
1574
1575         ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1576         if (ptask == NULL)
1577                 goto fail;
1578
1579         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1580          * it does not set our validity bit. We need to compensate for
1581          * that somewhere else, but not in eth1394. */
1582 #if 0
1583         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1584                 goto fail;
1585 #endif
1586
1587         skb = skb_share_check(skb, GFP_ATOMIC);
1588         if (!skb)
1589                 goto fail;
1590
1591         /* Get rid of the fake eth1394 header, but first make a copy.
1592          * We might need to rebuild the header on tx failure. */
1593         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1594         skb_pull(skb, ETH1394_HLEN);
1595
1596         proto = hdr_buf.h_proto;
1597         dg_size = skb->len;
1598
1599         /* Set the transmission type for the packet.  ARP packets and IP
1600          * broadcast packets are sent via GASP. */
1601         if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1602             proto == htons(ETH_P_ARP) ||
1603             (proto == htons(ETH_P_IP) &&
1604              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1605                 tx_type = ETH1394_GASP;
1606                 dest_node = LOCAL_BUS | ALL_NODES;
1607                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1608                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1609                 dgl = priv->bc_dgl;
1610                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1611                         priv->bc_dgl++;
1612         } else {
1613                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1614
1615                 node = eth1394_find_node_guid(&priv->ip_node_list,
1616                                               be64_to_cpu(guid));
1617                 if (!node)
1618                         goto fail;
1619
1620                 node_info =
1621                     (struct eth1394_node_info *)node->ud->device.driver_data;
1622                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1623                         goto fail;
1624
1625                 dest_node = node->ud->ne->nodeid;
1626                 max_payload = node_info->maxpayload;
1627                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1628
1629                 dgl = node_info->dgl;
1630                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1631                         node_info->dgl++;
1632                 tx_type = ETH1394_WRREQ;
1633         }
1634
1635         /* If this is an ARP packet, convert it */
1636         if (proto == htons(ETH_P_ARP))
1637                 ether1394_arp_to_1394arp(skb, dev);
1638
1639         ptask->hdr.words.word1 = 0;
1640         ptask->hdr.words.word2 = 0;
1641         ptask->hdr.words.word3 = 0;
1642         ptask->hdr.words.word4 = 0;
1643         ptask->skb = skb;
1644         ptask->priv = priv;
1645         ptask->tx_type = tx_type;
1646
1647         if (tx_type != ETH1394_GASP) {
1648                 u64 addr;
1649
1650                 spin_lock_irqsave(&priv->lock, flags);
1651                 addr = node_info->fifo;
1652                 spin_unlock_irqrestore(&priv->lock, flags);
1653
1654                 ptask->addr = addr;
1655                 ptask->dest_node = dest_node;
1656         }
1657
1658         ptask->tx_type = tx_type;
1659         ptask->max_payload = max_payload;
1660         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1661                                         proto, &ptask->hdr, dg_size, dgl);
1662
1663         /* Add the encapsulation header to the fragment */
1664         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1665         dev->trans_start = jiffies;
1666         if (ether1394_send_packet(ptask, tx_len)) {
1667                 if (dest_node == (LOCAL_BUS | ALL_NODES))
1668                         goto fail;
1669
1670                 /* At this point we want to restore the packet.  When we return
1671                  * here with NETDEV_TX_BUSY we will get another entrance in this
1672                  * routine with the same skb and we need it to look the same.
1673                  * So we pull 4 more bytes, then build the header again. */
1674                 skb_pull(skb, 4);
1675                 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1676                                  hdr_buf.h_dest, NULL, 0);
1677
1678                 /* Most failures of ether1394_send_packet are recoverable. */
1679                 netif_stop_queue(dev);
1680                 priv->wake_node = dest_node;
1681                 schedule_work(&priv->wake);
1682                 kmem_cache_free(packet_task_cache, ptask);
1683                 return NETDEV_TX_BUSY;
1684         }
1685
1686         return NETDEV_TX_OK;
1687 fail:
1688         if (ptask)
1689                 kmem_cache_free(packet_task_cache, ptask);
1690
1691         if (skb != NULL)
1692                 dev_kfree_skb(skb);
1693
1694         spin_lock_irqsave(&priv->lock, flags);
1695         dev->stats.tx_dropped++;
1696         dev->stats.tx_errors++;
1697         spin_unlock_irqrestore(&priv->lock, flags);
1698
1699         /*
1700          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1701          * causes serious problems" here, allegedly.  Before that patch,
1702          * -ERRNO was returned which is not appropriate under Linux 2.6.
1703          * Perhaps more needs to be done?  Stop the queue in serious
1704          * conditions and restart it elsewhere?
1705          */
1706         /* return NETDEV_TX_BUSY; */
1707         return NETDEV_TX_OK;
1708 }
1709
1710 static void ether1394_get_drvinfo(struct net_device *dev,
1711                                   struct ethtool_drvinfo *info)
1712 {
1713         strcpy(info->driver, driver_name);
1714         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1715 }
1716
1717 static struct ethtool_ops ethtool_ops = {
1718         .get_drvinfo = ether1394_get_drvinfo
1719 };
1720
1721 static int __init ether1394_init_module(void)
1722 {
1723         int err;
1724
1725         packet_task_cache = kmem_cache_create("packet_task",
1726                                               sizeof(struct packet_task),
1727                                               0, 0, NULL);
1728         if (!packet_task_cache)
1729                 return -ENOMEM;
1730
1731         hpsb_register_highlevel(&eth1394_highlevel);
1732         err = hpsb_register_protocol(&eth1394_proto_driver);
1733         if (err) {
1734                 hpsb_unregister_highlevel(&eth1394_highlevel);
1735                 kmem_cache_destroy(packet_task_cache);
1736         }
1737         return err;
1738 }
1739
1740 static void __exit ether1394_exit_module(void)
1741 {
1742         hpsb_unregister_protocol(&eth1394_proto_driver);
1743         hpsb_unregister_highlevel(&eth1394_highlevel);
1744         kmem_cache_destroy(packet_task_cache);
1745 }
1746
1747 module_init(ether1394_init_module);
1748 module_exit(ether1394_exit_module);