2 * linux/arch/arm/kernel/setup.c
4 * Copyright (C) 1995-2001 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/init.h>
22 #include <linux/root_dev.h>
23 #include <linux/cpu.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
29 #include <asm/cputype.h>
31 #include <asm/procinfo.h>
32 #include <asm/sections.h>
33 #include <asm/setup.h>
34 #include <asm/mach-types.h>
35 #include <asm/cacheflush.h>
36 #include <asm/cachetype.h>
37 #include <asm/tlbflush.h>
39 #include <asm/mach/arch.h>
40 #include <asm/mach/irq.h>
41 #include <asm/mach/time.h>
42 #include <asm/traps.h>
43 #include <asm/unwind.h>
49 #define MEM_SIZE (16*1024*1024)
52 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
55 static int __init fpe_setup(char *line)
57 memcpy(fpe_type, line, 8);
61 __setup("fpe=", fpe_setup);
64 extern void paging_init(struct machine_desc *desc);
65 extern void reboot_setup(char *str);
67 unsigned int processor_id;
68 EXPORT_SYMBOL(processor_id);
69 unsigned int __machine_arch_type;
70 EXPORT_SYMBOL(__machine_arch_type);
72 EXPORT_SYMBOL(cacheid);
74 unsigned int __atags_pointer __initdata;
76 unsigned int system_rev;
77 EXPORT_SYMBOL(system_rev);
79 unsigned int system_serial_low;
80 EXPORT_SYMBOL(system_serial_low);
82 unsigned int system_serial_high;
83 EXPORT_SYMBOL(system_serial_high);
85 unsigned int elf_hwcap;
86 EXPORT_SYMBOL(elf_hwcap);
90 struct processor processor;
93 struct cpu_tlb_fns cpu_tlb;
96 struct cpu_user_fns cpu_user;
99 struct cpu_cache_fns cpu_cache;
101 #ifdef CONFIG_OUTER_CACHE
102 struct outer_cache_fns outer_cache;
109 } ____cacheline_aligned;
111 static struct stack stacks[NR_CPUS];
113 char elf_platform[ELF_PLATFORM_SIZE];
114 EXPORT_SYMBOL(elf_platform);
116 static const char *cpu_name;
117 static const char *machine_name;
118 static char __initdata command_line[COMMAND_LINE_SIZE];
120 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
121 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
122 #define ENDIANNESS ((char)endian_test.l)
124 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
127 * Standard memory resources
129 static struct resource mem_res[] = {
134 .flags = IORESOURCE_MEM
137 .name = "Kernel text",
140 .flags = IORESOURCE_MEM
143 .name = "Kernel data",
146 .flags = IORESOURCE_MEM
150 #define video_ram mem_res[0]
151 #define kernel_code mem_res[1]
152 #define kernel_data mem_res[2]
154 static struct resource io_res[] = {
159 .flags = IORESOURCE_IO | IORESOURCE_BUSY
165 .flags = IORESOURCE_IO | IORESOURCE_BUSY
171 .flags = IORESOURCE_IO | IORESOURCE_BUSY
175 #define lp0 io_res[0]
176 #define lp1 io_res[1]
177 #define lp2 io_res[2]
179 static const char *proc_arch[] = {
199 int cpu_architecture(void)
203 if ((read_cpuid_id() & 0x0008f000) == 0) {
204 cpu_arch = CPU_ARCH_UNKNOWN;
205 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
206 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
207 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
208 cpu_arch = (read_cpuid_id() >> 16) & 7;
210 cpu_arch += CPU_ARCH_ARMv3;
211 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
214 /* Revised CPUID format. Read the Memory Model Feature
215 * Register 0 and check for VMSAv7 or PMSAv7 */
216 asm("mrc p15, 0, %0, c0, c1, 4"
218 if ((mmfr0 & 0x0000000f) == 0x00000003 ||
219 (mmfr0 & 0x000000f0) == 0x00000030)
220 cpu_arch = CPU_ARCH_ARMv7;
221 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
222 (mmfr0 & 0x000000f0) == 0x00000020)
223 cpu_arch = CPU_ARCH_ARMv6;
225 cpu_arch = CPU_ARCH_UNKNOWN;
227 cpu_arch = CPU_ARCH_UNKNOWN;
232 static void __init cacheid_init(void)
234 unsigned int cachetype = read_cpuid_cachetype();
235 unsigned int arch = cpu_architecture();
237 if (arch >= CPU_ARCH_ARMv6) {
238 if ((cachetype & (7 << 29)) == 4 << 29) {
239 /* ARMv7 register format */
240 cacheid = CACHEID_VIPT_NONALIASING;
241 if ((cachetype & (3 << 14)) == 1 << 14)
242 cacheid |= CACHEID_ASID_TAGGED;
243 } else if (cachetype & (1 << 23))
244 cacheid = CACHEID_VIPT_ALIASING;
246 cacheid = CACHEID_VIPT_NONALIASING;
248 cacheid = CACHEID_VIVT;
251 printk("CPU: %s data cache, %s instruction cache\n",
252 cache_is_vivt() ? "VIVT" :
253 cache_is_vipt_aliasing() ? "VIPT aliasing" :
254 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
255 cache_is_vivt() ? "VIVT" :
256 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
257 cache_is_vipt_aliasing() ? "VIPT aliasing" :
258 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
262 * These functions re-use the assembly code in head.S, which
263 * already provide the required functionality.
265 extern struct proc_info_list *lookup_processor_type(unsigned int);
266 extern struct machine_desc *lookup_machine_type(unsigned int);
268 static void __init setup_processor(void)
270 struct proc_info_list *list;
273 * locate processor in the list of supported processor
274 * types. The linker builds this table for us from the
275 * entries in arch/arm/mm/proc-*.S
277 list = lookup_processor_type(read_cpuid_id());
279 printk("CPU configuration botched (ID %08x), unable "
280 "to continue.\n", read_cpuid_id());
284 cpu_name = list->cpu_name;
287 processor = *list->proc;
290 cpu_tlb = *list->tlb;
293 cpu_user = *list->user;
296 cpu_cache = *list->cache;
299 printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
300 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
301 proc_arch[cpu_architecture()], cr_alignment);
303 sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
304 sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
305 elf_hwcap = list->elf_hwcap;
306 #ifndef CONFIG_ARM_THUMB
307 elf_hwcap &= ~HWCAP_THUMB;
315 * cpu_init - initialise one CPU.
317 * cpu_init sets up the per-CPU stacks.
321 unsigned int cpu = smp_processor_id();
322 struct stack *stk = &stacks[cpu];
324 if (cpu >= NR_CPUS) {
325 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
330 * setup stacks for re-entrant exception handlers
342 "I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
343 "I" (offsetof(struct stack, irq[0])),
344 "I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
345 "I" (offsetof(struct stack, abt[0])),
346 "I" (PSR_F_BIT | PSR_I_BIT | UND_MODE),
347 "I" (offsetof(struct stack, und[0])),
348 "I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
352 static struct machine_desc * __init setup_machine(unsigned int nr)
354 struct machine_desc *list;
357 * locate machine in the list of supported machines.
359 list = lookup_machine_type(nr);
361 printk("Machine configuration botched (nr %d), unable "
362 "to continue.\n", nr);
366 printk("Machine: %s\n", list->name);
371 static int __init arm_add_memory(unsigned long start, unsigned long size)
373 struct membank *bank = &meminfo.bank[meminfo.nr_banks];
375 if (meminfo.nr_banks >= NR_BANKS) {
376 printk(KERN_CRIT "NR_BANKS too low, "
377 "ignoring memory at %#lx\n", start);
382 * Ensure that start/size are aligned to a page boundary.
383 * Size is appropriately rounded down, start is rounded up.
385 size -= start & ~PAGE_MASK;
386 bank->start = PAGE_ALIGN(start);
387 bank->size = size & PAGE_MASK;
388 bank->node = PHYS_TO_NID(start);
391 * Check whether this memory region has non-zero size or
392 * invalid node number.
394 if (bank->size == 0 || bank->node >= MAX_NUMNODES)
402 * Pick out the memory size. We look for mem=size@start,
403 * where start and size are "size[KkMm]"
405 static void __init early_mem(char **p)
407 static int usermem __initdata = 0;
408 unsigned long size, start;
411 * If the user specifies memory size, we
412 * blow away any automatically generated
417 meminfo.nr_banks = 0;
421 size = memparse(*p, p);
423 start = memparse(*p + 1, p);
425 arm_add_memory(start, size);
427 __early_param("mem=", early_mem);
430 * Initial parsing of the command line.
432 static void __init parse_cmdline(char **cmdline_p, char *from)
434 char c = ' ', *to = command_line;
439 extern struct early_params __early_begin, __early_end;
440 struct early_params *p;
442 for (p = &__early_begin; p < &__early_end; p++) {
443 int arglen = strlen(p->arg);
445 if (memcmp(from, p->arg, arglen) == 0) {
446 if (to != command_line)
451 while (*from != ' ' && *from != '\0')
460 if (COMMAND_LINE_SIZE <= ++len)
465 *cmdline_p = command_line;
469 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
471 #ifdef CONFIG_BLK_DEV_RAM
472 extern int rd_size, rd_image_start, rd_prompt, rd_doload;
474 rd_image_start = image_start;
484 request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
486 struct resource *res;
489 kernel_code.start = virt_to_phys(_text);
490 kernel_code.end = virt_to_phys(_etext - 1);
491 kernel_data.start = virt_to_phys(_data);
492 kernel_data.end = virt_to_phys(_end - 1);
494 for (i = 0; i < mi->nr_banks; i++) {
495 if (mi->bank[i].size == 0)
498 res = alloc_bootmem_low(sizeof(*res));
499 res->name = "System RAM";
500 res->start = mi->bank[i].start;
501 res->end = mi->bank[i].start + mi->bank[i].size - 1;
502 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
504 request_resource(&iomem_resource, res);
506 if (kernel_code.start >= res->start &&
507 kernel_code.end <= res->end)
508 request_resource(res, &kernel_code);
509 if (kernel_data.start >= res->start &&
510 kernel_data.end <= res->end)
511 request_resource(res, &kernel_data);
514 if (mdesc->video_start) {
515 video_ram.start = mdesc->video_start;
516 video_ram.end = mdesc->video_end;
517 request_resource(&iomem_resource, &video_ram);
521 * Some machines don't have the possibility of ever
522 * possessing lp0, lp1 or lp2
524 if (mdesc->reserve_lp0)
525 request_resource(&ioport_resource, &lp0);
526 if (mdesc->reserve_lp1)
527 request_resource(&ioport_resource, &lp1);
528 if (mdesc->reserve_lp2)
529 request_resource(&ioport_resource, &lp2);
535 * This is the new way of passing data to the kernel at boot time. Rather
536 * than passing a fixed inflexible structure to the kernel, we pass a list
537 * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
538 * tag for the list to be recognised (to distinguish the tagged list from
539 * a param_struct). The list is terminated with a zero-length tag (this tag
540 * is not parsed in any way).
542 static int __init parse_tag_core(const struct tag *tag)
544 if (tag->hdr.size > 2) {
545 if ((tag->u.core.flags & 1) == 0)
546 root_mountflags &= ~MS_RDONLY;
547 ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
552 __tagtable(ATAG_CORE, parse_tag_core);
554 static int __init parse_tag_mem32(const struct tag *tag)
556 return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
559 __tagtable(ATAG_MEM, parse_tag_mem32);
561 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
562 struct screen_info screen_info = {
563 .orig_video_lines = 30,
564 .orig_video_cols = 80,
565 .orig_video_mode = 0,
566 .orig_video_ega_bx = 0,
567 .orig_video_isVGA = 1,
568 .orig_video_points = 8
571 static int __init parse_tag_videotext(const struct tag *tag)
573 screen_info.orig_x = tag->u.videotext.x;
574 screen_info.orig_y = tag->u.videotext.y;
575 screen_info.orig_video_page = tag->u.videotext.video_page;
576 screen_info.orig_video_mode = tag->u.videotext.video_mode;
577 screen_info.orig_video_cols = tag->u.videotext.video_cols;
578 screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
579 screen_info.orig_video_lines = tag->u.videotext.video_lines;
580 screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
581 screen_info.orig_video_points = tag->u.videotext.video_points;
585 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
588 static int __init parse_tag_ramdisk(const struct tag *tag)
590 setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
591 (tag->u.ramdisk.flags & 2) == 0,
592 tag->u.ramdisk.start, tag->u.ramdisk.size);
596 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
598 static int __init parse_tag_serialnr(const struct tag *tag)
600 system_serial_low = tag->u.serialnr.low;
601 system_serial_high = tag->u.serialnr.high;
605 __tagtable(ATAG_SERIAL, parse_tag_serialnr);
607 static int __init parse_tag_revision(const struct tag *tag)
609 system_rev = tag->u.revision.rev;
613 __tagtable(ATAG_REVISION, parse_tag_revision);
615 static int __init parse_tag_cmdline(const struct tag *tag)
617 strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
621 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
624 * Scan the tag table for this tag, and call its parse function.
625 * The tag table is built by the linker from all the __tagtable
628 static int __init parse_tag(const struct tag *tag)
630 extern struct tagtable __tagtable_begin, __tagtable_end;
633 for (t = &__tagtable_begin; t < &__tagtable_end; t++)
634 if (tag->hdr.tag == t->tag) {
639 return t < &__tagtable_end;
643 * Parse all tags in the list, checking both the global and architecture
644 * specific tag tables.
646 static void __init parse_tags(const struct tag *t)
648 for (; t->hdr.size; t = tag_next(t))
651 "Ignoring unrecognised tag 0x%08x\n",
656 * This holds our defaults.
658 static struct init_tags {
659 struct tag_header hdr1;
660 struct tag_core core;
661 struct tag_header hdr2;
662 struct tag_mem32 mem;
663 struct tag_header hdr3;
664 } init_tags __initdata = {
665 { tag_size(tag_core), ATAG_CORE },
666 { 1, PAGE_SIZE, 0xff },
667 { tag_size(tag_mem32), ATAG_MEM },
668 { MEM_SIZE, PHYS_OFFSET },
672 static void (*init_machine)(void) __initdata;
674 static int __init customize_machine(void)
676 /* customizes platform devices, or adds new ones */
681 arch_initcall(customize_machine);
683 void __init setup_arch(char **cmdline_p)
685 struct tag *tags = (struct tag *)&init_tags;
686 struct machine_desc *mdesc;
687 char *from = default_command_line;
692 mdesc = setup_machine(machine_arch_type);
693 machine_name = mdesc->name;
695 if (mdesc->soft_reboot)
699 tags = phys_to_virt(__atags_pointer);
700 else if (mdesc->boot_params)
701 tags = phys_to_virt(mdesc->boot_params);
704 * If we have the old style parameters, convert them to
707 if (tags->hdr.tag != ATAG_CORE)
708 convert_to_tag_list(tags);
709 if (tags->hdr.tag != ATAG_CORE)
710 tags = (struct tag *)&init_tags;
713 mdesc->fixup(mdesc, tags, &from, &meminfo);
715 if (tags->hdr.tag == ATAG_CORE) {
716 if (meminfo.nr_banks != 0)
717 squash_mem_tags(tags);
722 init_mm.start_code = (unsigned long) _text;
723 init_mm.end_code = (unsigned long) _etext;
724 init_mm.end_data = (unsigned long) _edata;
725 init_mm.brk = (unsigned long) _end;
727 memcpy(boot_command_line, from, COMMAND_LINE_SIZE);
728 boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
729 parse_cmdline(cmdline_p, from);
731 request_standard_resources(&meminfo, mdesc);
740 * Set up various architecture-specific pointers
742 init_arch_irq = mdesc->init_irq;
743 system_timer = mdesc->timer;
744 init_machine = mdesc->init_machine;
747 #if defined(CONFIG_VGA_CONSOLE)
748 conswitchp = &vga_con;
749 #elif defined(CONFIG_DUMMY_CONSOLE)
750 conswitchp = &dummy_con;
757 static int __init topology_init(void)
761 for_each_possible_cpu(cpu) {
762 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
763 cpuinfo->cpu.hotpluggable = 1;
764 register_cpu(&cpuinfo->cpu, cpu);
770 subsys_initcall(topology_init);
772 static const char *hwcap_str[] = {
791 static int c_show(struct seq_file *m, void *v)
795 seq_printf(m, "Processor\t: %s rev %d (%s)\n",
796 cpu_name, read_cpuid_id() & 15, elf_platform);
798 #if defined(CONFIG_SMP)
799 for_each_online_cpu(i) {
801 * glibc reads /proc/cpuinfo to determine the number of
802 * online processors, looking for lines beginning with
803 * "processor". Give glibc what it expects.
805 seq_printf(m, "processor\t: %d\n", i);
806 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
807 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
808 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
810 #else /* CONFIG_SMP */
811 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
812 loops_per_jiffy / (500000/HZ),
813 (loops_per_jiffy / (5000/HZ)) % 100);
816 /* dump out the processor features */
817 seq_puts(m, "Features\t: ");
819 for (i = 0; hwcap_str[i]; i++)
820 if (elf_hwcap & (1 << i))
821 seq_printf(m, "%s ", hwcap_str[i]);
823 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
824 seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
826 if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
828 seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
830 if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
832 seq_printf(m, "CPU variant\t: 0x%02x\n",
833 (read_cpuid_id() >> 16) & 127);
836 seq_printf(m, "CPU variant\t: 0x%x\n",
837 (read_cpuid_id() >> 20) & 15);
839 seq_printf(m, "CPU part\t: 0x%03x\n",
840 (read_cpuid_id() >> 4) & 0xfff);
842 seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
846 seq_printf(m, "Hardware\t: %s\n", machine_name);
847 seq_printf(m, "Revision\t: %04x\n", system_rev);
848 seq_printf(m, "Serial\t\t: %08x%08x\n",
849 system_serial_high, system_serial_low);
854 static void *c_start(struct seq_file *m, loff_t *pos)
856 return *pos < 1 ? (void *)1 : NULL;
859 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
865 static void c_stop(struct seq_file *m, void *v)
869 const struct seq_operations cpuinfo_op = {