Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / fs / reiserfs / ibalance.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 #include <linux/config.h>
6 #include <asm/uaccess.h>
7 #include <linux/string.h>
8 #include <linux/time.h>
9 #include <linux/reiserfs_fs.h>
10 #include <linux/buffer_head.h>
11
12 /* this is one and only function that is used outside (do_balance.c) */
13 int balance_internal(struct tree_balance *,
14                      int, int, struct item_head *, struct buffer_head **);
15
16 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
17 #define INTERNAL_SHIFT_FROM_S_TO_L 0
18 #define INTERNAL_SHIFT_FROM_R_TO_S 1
19 #define INTERNAL_SHIFT_FROM_L_TO_S 2
20 #define INTERNAL_SHIFT_FROM_S_TO_R 3
21 #define INTERNAL_INSERT_TO_S 4
22 #define INTERNAL_INSERT_TO_L 5
23 #define INTERNAL_INSERT_TO_R 6
24
25 static void internal_define_dest_src_infos(int shift_mode,
26                                            struct tree_balance *tb,
27                                            int h,
28                                            struct buffer_info *dest_bi,
29                                            struct buffer_info *src_bi,
30                                            int *d_key, struct buffer_head **cf)
31 {
32         memset(dest_bi, 0, sizeof(struct buffer_info));
33         memset(src_bi, 0, sizeof(struct buffer_info));
34         /* define dest, src, dest parent, dest position */
35         switch (shift_mode) {
36         case INTERNAL_SHIFT_FROM_S_TO_L:        /* used in internal_shift_left */
37                 src_bi->tb = tb;
38                 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
39                 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
40                 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
41                 dest_bi->tb = tb;
42                 dest_bi->bi_bh = tb->L[h];
43                 dest_bi->bi_parent = tb->FL[h];
44                 dest_bi->bi_position = get_left_neighbor_position(tb, h);
45                 *d_key = tb->lkey[h];
46                 *cf = tb->CFL[h];
47                 break;
48         case INTERNAL_SHIFT_FROM_L_TO_S:
49                 src_bi->tb = tb;
50                 src_bi->bi_bh = tb->L[h];
51                 src_bi->bi_parent = tb->FL[h];
52                 src_bi->bi_position = get_left_neighbor_position(tb, h);
53                 dest_bi->tb = tb;
54                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
55                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
56                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);     /* dest position is analog of dest->b_item_order */
57                 *d_key = tb->lkey[h];
58                 *cf = tb->CFL[h];
59                 break;
60
61         case INTERNAL_SHIFT_FROM_R_TO_S:        /* used in internal_shift_left */
62                 src_bi->tb = tb;
63                 src_bi->bi_bh = tb->R[h];
64                 src_bi->bi_parent = tb->FR[h];
65                 src_bi->bi_position = get_right_neighbor_position(tb, h);
66                 dest_bi->tb = tb;
67                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
68                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
69                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
70                 *d_key = tb->rkey[h];
71                 *cf = tb->CFR[h];
72                 break;
73
74         case INTERNAL_SHIFT_FROM_S_TO_R:
75                 src_bi->tb = tb;
76                 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
77                 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
78                 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
79                 dest_bi->tb = tb;
80                 dest_bi->bi_bh = tb->R[h];
81                 dest_bi->bi_parent = tb->FR[h];
82                 dest_bi->bi_position = get_right_neighbor_position(tb, h);
83                 *d_key = tb->rkey[h];
84                 *cf = tb->CFR[h];
85                 break;
86
87         case INTERNAL_INSERT_TO_L:
88                 dest_bi->tb = tb;
89                 dest_bi->bi_bh = tb->L[h];
90                 dest_bi->bi_parent = tb->FL[h];
91                 dest_bi->bi_position = get_left_neighbor_position(tb, h);
92                 break;
93
94         case INTERNAL_INSERT_TO_S:
95                 dest_bi->tb = tb;
96                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
97                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
98                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
99                 break;
100
101         case INTERNAL_INSERT_TO_R:
102                 dest_bi->tb = tb;
103                 dest_bi->bi_bh = tb->R[h];
104                 dest_bi->bi_parent = tb->FR[h];
105                 dest_bi->bi_position = get_right_neighbor_position(tb, h);
106                 break;
107
108         default:
109                 reiserfs_panic(tb->tb_sb,
110                                "internal_define_dest_src_infos: shift type is unknown (%d)",
111                                shift_mode);
112         }
113 }
114
115 /* Insert count node pointers into buffer cur before position to + 1.
116  * Insert count items into buffer cur before position to.
117  * Items and node pointers are specified by inserted and bh respectively.
118  */
119 static void internal_insert_childs(struct buffer_info *cur_bi,
120                                    int to, int count,
121                                    struct item_head *inserted,
122                                    struct buffer_head **bh)
123 {
124         struct buffer_head *cur = cur_bi->bi_bh;
125         struct block_head *blkh;
126         int nr;
127         struct reiserfs_key *ih;
128         struct disk_child new_dc[2];
129         struct disk_child *dc;
130         int i;
131
132         if (count <= 0)
133                 return;
134
135         blkh = B_BLK_HEAD(cur);
136         nr = blkh_nr_item(blkh);
137
138         RFALSE(count > 2, "too many children (%d) are to be inserted", count);
139         RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
140                "no enough free space (%d), needed %d bytes",
141                B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
142
143         /* prepare space for count disk_child */
144         dc = B_N_CHILD(cur, to + 1);
145
146         memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
147
148         /* copy to_be_insert disk children */
149         for (i = 0; i < count; i++) {
150                 put_dc_size(&(new_dc[i]),
151                             MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
152                 put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr);
153         }
154         memcpy(dc, new_dc, DC_SIZE * count);
155
156         /* prepare space for count items  */
157         ih = B_N_PDELIM_KEY(cur, ((to == -1) ? 0 : to));
158
159         memmove(ih + count, ih,
160                 (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
161
162         /* copy item headers (keys) */
163         memcpy(ih, inserted, KEY_SIZE);
164         if (count > 1)
165                 memcpy(ih + 1, inserted + 1, KEY_SIZE);
166
167         /* sizes, item number */
168         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
169         set_blkh_free_space(blkh,
170                             blkh_free_space(blkh) - count * (DC_SIZE +
171                                                              KEY_SIZE));
172
173         do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
174
175         /*&&&&&&&&&&&&&&&&&&&&&&&& */
176         check_internal(cur);
177         /*&&&&&&&&&&&&&&&&&&&&&&&& */
178
179         if (cur_bi->bi_parent) {
180                 struct disk_child *t_dc =
181                     B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
182                 put_dc_size(t_dc,
183                             dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
184                 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
185                                                0);
186
187                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
188                 check_internal(cur_bi->bi_parent);
189                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
190         }
191
192 }
193
194 /* Delete del_num items and node pointers from buffer cur starting from *
195  * the first_i'th item and first_p'th pointers respectively.            */
196 static void internal_delete_pointers_items(struct buffer_info *cur_bi,
197                                            int first_p,
198                                            int first_i, int del_num)
199 {
200         struct buffer_head *cur = cur_bi->bi_bh;
201         int nr;
202         struct block_head *blkh;
203         struct reiserfs_key *key;
204         struct disk_child *dc;
205
206         RFALSE(cur == NULL, "buffer is 0");
207         RFALSE(del_num < 0,
208                "negative number of items (%d) can not be deleted", del_num);
209         RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
210                || first_i < 0,
211                "first pointer order (%d) < 0 or "
212                "no so many pointers (%d), only (%d) or "
213                "first key order %d < 0", first_p, first_p + del_num,
214                B_NR_ITEMS(cur) + 1, first_i);
215         if (del_num == 0)
216                 return;
217
218         blkh = B_BLK_HEAD(cur);
219         nr = blkh_nr_item(blkh);
220
221         if (first_p == 0 && del_num == nr + 1) {
222                 RFALSE(first_i != 0,
223                        "1st deleted key must have order 0, not %d", first_i);
224                 make_empty_node(cur_bi);
225                 return;
226         }
227
228         RFALSE(first_i + del_num > B_NR_ITEMS(cur),
229                "first_i = %d del_num = %d "
230                "no so many keys (%d) in the node (%b)(%z)",
231                first_i, del_num, first_i + del_num, cur, cur);
232
233         /* deleting */
234         dc = B_N_CHILD(cur, first_p);
235
236         memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
237         key = B_N_PDELIM_KEY(cur, first_i);
238         memmove(key, key + del_num,
239                 (nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
240                                                        del_num) * DC_SIZE);
241
242         /* sizes, item number */
243         set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
244         set_blkh_free_space(blkh,
245                             blkh_free_space(blkh) +
246                             (del_num * (KEY_SIZE + DC_SIZE)));
247
248         do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
249         /*&&&&&&&&&&&&&&&&&&&&&&& */
250         check_internal(cur);
251         /*&&&&&&&&&&&&&&&&&&&&&&& */
252
253         if (cur_bi->bi_parent) {
254                 struct disk_child *t_dc;
255                 t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
256                 put_dc_size(t_dc,
257                             dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
258
259                 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
260                                                0);
261                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
262                 check_internal(cur_bi->bi_parent);
263                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
264         }
265 }
266
267 /* delete n node pointers and items starting from given position */
268 static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
269 {
270         int i_from;
271
272         i_from = (from == 0) ? from : from - 1;
273
274         /* delete n pointers starting from `from' position in CUR;
275            delete n keys starting from 'i_from' position in CUR;
276          */
277         internal_delete_pointers_items(cur_bi, from, i_from, n);
278 }
279
280 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
281 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
282  * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest 
283  */
284 static void internal_copy_pointers_items(struct buffer_info *dest_bi,
285                                          struct buffer_head *src,
286                                          int last_first, int cpy_num)
287 {
288         /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
289          * as delimiting key have already inserted to buffer dest.*/
290         struct buffer_head *dest = dest_bi->bi_bh;
291         int nr_dest, nr_src;
292         int dest_order, src_order;
293         struct block_head *blkh;
294         struct reiserfs_key *key;
295         struct disk_child *dc;
296
297         nr_src = B_NR_ITEMS(src);
298
299         RFALSE(dest == NULL || src == NULL,
300                "src (%p) or dest (%p) buffer is 0", src, dest);
301         RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
302                "invalid last_first parameter (%d)", last_first);
303         RFALSE(nr_src < cpy_num - 1,
304                "no so many items (%d) in src (%d)", cpy_num, nr_src);
305         RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
306         RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
307                "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
308                cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
309
310         if (cpy_num == 0)
311                 return;
312
313         /* coping */
314         blkh = B_BLK_HEAD(dest);
315         nr_dest = blkh_nr_item(blkh);
316
317         /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
318         /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
319         (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
320                                          nr_src - cpy_num + 1) : (dest_order =
321                                                                   nr_dest,
322                                                                   src_order =
323                                                                   0);
324
325         /* prepare space for cpy_num pointers */
326         dc = B_N_CHILD(dest, dest_order);
327
328         memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
329
330         /* insert pointers */
331         memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
332
333         /* prepare space for cpy_num - 1 item headers */
334         key = B_N_PDELIM_KEY(dest, dest_order);
335         memmove(key + cpy_num - 1, key,
336                 KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
337                                                                cpy_num));
338
339         /* insert headers */
340         memcpy(key, B_N_PDELIM_KEY(src, src_order), KEY_SIZE * (cpy_num - 1));
341
342         /* sizes, item number */
343         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
344         set_blkh_free_space(blkh,
345                             blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
346                                                      DC_SIZE * cpy_num));
347
348         do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
349
350         /*&&&&&&&&&&&&&&&&&&&&&&&& */
351         check_internal(dest);
352         /*&&&&&&&&&&&&&&&&&&&&&&&& */
353
354         if (dest_bi->bi_parent) {
355                 struct disk_child *t_dc;
356                 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
357                 put_dc_size(t_dc,
358                             dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
359                                              DC_SIZE * cpy_num));
360
361                 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
362                                                0);
363                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
364                 check_internal(dest_bi->bi_parent);
365                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
366         }
367
368 }
369
370 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
371  * Delete cpy_num - del_par items and node pointers from buffer src.
372  * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
373  * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
374  */
375 static void internal_move_pointers_items(struct buffer_info *dest_bi,
376                                          struct buffer_info *src_bi,
377                                          int last_first, int cpy_num,
378                                          int del_par)
379 {
380         int first_pointer;
381         int first_item;
382
383         internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
384                                      cpy_num);
385
386         if (last_first == FIRST_TO_LAST) {      /* shift_left occurs */
387                 first_pointer = 0;
388                 first_item = 0;
389                 /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer, 
390                    for key - with first_item */
391                 internal_delete_pointers_items(src_bi, first_pointer,
392                                                first_item, cpy_num - del_par);
393         } else {                /* shift_right occurs */
394                 int i, j;
395
396                 i = (cpy_num - del_par ==
397                      (j =
398                       B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
399                     del_par;
400
401                 internal_delete_pointers_items(src_bi,
402                                                j + 1 - cpy_num + del_par, i,
403                                                cpy_num - del_par);
404         }
405 }
406
407 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
408 static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_before,  /* insert key before key with n_dest number */
409                                 struct buffer_head *src, int src_position)
410 {
411         struct buffer_head *dest = dest_bi->bi_bh;
412         int nr;
413         struct block_head *blkh;
414         struct reiserfs_key *key;
415
416         RFALSE(dest == NULL || src == NULL,
417                "source(%p) or dest(%p) buffer is 0", src, dest);
418         RFALSE(dest_position_before < 0 || src_position < 0,
419                "source(%d) or dest(%d) key number less than 0",
420                src_position, dest_position_before);
421         RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
422                src_position >= B_NR_ITEMS(src),
423                "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
424                dest_position_before, B_NR_ITEMS(dest),
425                src_position, B_NR_ITEMS(src));
426         RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
427                "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
428
429         blkh = B_BLK_HEAD(dest);
430         nr = blkh_nr_item(blkh);
431
432         /* prepare space for inserting key */
433         key = B_N_PDELIM_KEY(dest, dest_position_before);
434         memmove(key + 1, key,
435                 (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
436
437         /* insert key */
438         memcpy(key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
439
440         /* Change dirt, free space, item number fields. */
441
442         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
443         set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE);
444
445         do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
446
447         if (dest_bi->bi_parent) {
448                 struct disk_child *t_dc;
449                 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
450                 put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
451
452                 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
453                                                0);
454         }
455 }
456
457 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest. 
458  * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
459  * Replace  d_key'th key in buffer cfl.
460  * Delete pointer_amount items and node pointers from buffer src.
461  */
462 /* this can be invoked both to shift from S to L and from R to S */
463 static void internal_shift_left(int mode,       /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
464                                 struct tree_balance *tb,
465                                 int h, int pointer_amount)
466 {
467         struct buffer_info dest_bi, src_bi;
468         struct buffer_head *cf;
469         int d_key_position;
470
471         internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
472                                        &d_key_position, &cf);
473
474         /*printk("pointer_amount = %d\n",pointer_amount); */
475
476         if (pointer_amount) {
477                 /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
478                 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
479                                     d_key_position);
480
481                 if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
482                         if (src_bi.bi_position /*src->b_item_order */  == 0)
483                                 replace_key(tb, cf, d_key_position,
484                                             src_bi.
485                                             bi_parent /*src->b_parent */ , 0);
486                 } else
487                         replace_key(tb, cf, d_key_position, src_bi.bi_bh,
488                                     pointer_amount - 1);
489         }
490         /* last parameter is del_parameter */
491         internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
492                                      pointer_amount, 0);
493
494 }
495
496 /* Insert delimiting key to L[h].
497  * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
498  * Delete n - 1 items and node pointers from buffer S[h].
499  */
500 /* it always shifts from S[h] to L[h] */
501 static void internal_shift1_left(struct tree_balance *tb,
502                                  int h, int pointer_amount)
503 {
504         struct buffer_info dest_bi, src_bi;
505         struct buffer_head *cf;
506         int d_key_position;
507
508         internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
509                                        &dest_bi, &src_bi, &d_key_position, &cf);
510
511         if (pointer_amount > 0) /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
512                 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
513                                     d_key_position);
514         /*            internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */
515
516         /* last parameter is del_parameter */
517         internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
518                                      pointer_amount, 1);
519         /*    internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
520 }
521
522 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest. 
523  * Copy n node pointers and n - 1 items from buffer src to buffer dest.
524  * Replace  d_key'th key in buffer cfr.
525  * Delete n items and node pointers from buffer src.
526  */
527 static void internal_shift_right(int mode,      /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
528                                  struct tree_balance *tb,
529                                  int h, int pointer_amount)
530 {
531         struct buffer_info dest_bi, src_bi;
532         struct buffer_head *cf;
533         int d_key_position;
534         int nr;
535
536         internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
537                                        &d_key_position, &cf);
538
539         nr = B_NR_ITEMS(src_bi.bi_bh);
540
541         if (pointer_amount > 0) {
542                 /* insert delimiting key from common father of dest and src to dest node into position 0 */
543                 internal_insert_key(&dest_bi, 0, cf, d_key_position);
544                 if (nr == pointer_amount - 1) {
545                         RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
546                                dest_bi.bi_bh != tb->R[h],
547                                "src (%p) must be == tb->S[h](%p) when it disappears",
548                                src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
549                         /* when S[h] disappers replace left delemiting key as well */
550                         if (tb->CFL[h])
551                                 replace_key(tb, cf, d_key_position, tb->CFL[h],
552                                             tb->lkey[h]);
553                 } else
554                         replace_key(tb, cf, d_key_position, src_bi.bi_bh,
555                                     nr - pointer_amount);
556         }
557
558         /* last parameter is del_parameter */
559         internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
560                                      pointer_amount, 0);
561 }
562
563 /* Insert delimiting key to R[h].
564  * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
565  * Delete n - 1 items and node pointers from buffer S[h].
566  */
567 /* it always shift from S[h] to R[h] */
568 static void internal_shift1_right(struct tree_balance *tb,
569                                   int h, int pointer_amount)
570 {
571         struct buffer_info dest_bi, src_bi;
572         struct buffer_head *cf;
573         int d_key_position;
574
575         internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
576                                        &dest_bi, &src_bi, &d_key_position, &cf);
577
578         if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
579                 internal_insert_key(&dest_bi, 0, cf, d_key_position);
580         /*            internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */
581
582         /* last parameter is del_parameter */
583         internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
584                                      pointer_amount, 1);
585         /*    internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */
586 }
587
588 /* Delete insert_num node pointers together with their left items
589  * and balance current node.*/
590 static void balance_internal_when_delete(struct tree_balance *tb,
591                                          int h, int child_pos)
592 {
593         int insert_num;
594         int n;
595         struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
596         struct buffer_info bi;
597
598         insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
599
600         /* delete child-node-pointer(s) together with their left item(s) */
601         bi.tb = tb;
602         bi.bi_bh = tbSh;
603         bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
604         bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
605
606         internal_delete_childs(&bi, child_pos, -insert_num);
607
608         RFALSE(tb->blknum[h] > 1,
609                "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
610
611         n = B_NR_ITEMS(tbSh);
612
613         if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
614                 if (tb->blknum[h] == 0) {
615                         /* node S[h] (root of the tree) is empty now */
616                         struct buffer_head *new_root;
617
618                         RFALSE(n
619                                || B_FREE_SPACE(tbSh) !=
620                                MAX_CHILD_SIZE(tbSh) - DC_SIZE,
621                                "buffer must have only 0 keys (%d)", n);
622                         RFALSE(bi.bi_parent, "root has parent (%p)",
623                                bi.bi_parent);
624
625                         /* choose a new root */
626                         if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
627                                 new_root = tb->R[h - 1];
628                         else
629                                 new_root = tb->L[h - 1];
630                         /* switch super block's tree root block number to the new value */
631                         PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
632                         //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
633                         PUT_SB_TREE_HEIGHT(tb->tb_sb,
634                                            SB_TREE_HEIGHT(tb->tb_sb) - 1);
635
636                         do_balance_mark_sb_dirty(tb,
637                                                  REISERFS_SB(tb->tb_sb)->s_sbh,
638                                                  1);
639                         /*&&&&&&&&&&&&&&&&&&&&&& */
640                         if (h > 1)
641                                 /* use check_internal if new root is an internal node */
642                                 check_internal(new_root);
643                         /*&&&&&&&&&&&&&&&&&&&&&& */
644
645                         /* do what is needed for buffer thrown from tree */
646                         reiserfs_invalidate_buffer(tb, tbSh);
647                         return;
648                 }
649                 return;
650         }
651
652         if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {     /* join S[h] with L[h] */
653
654                 RFALSE(tb->rnum[h] != 0,
655                        "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
656                        h, tb->rnum[h]);
657
658                 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
659                 reiserfs_invalidate_buffer(tb, tbSh);
660
661                 return;
662         }
663
664         if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {     /* join S[h] with R[h] */
665                 RFALSE(tb->lnum[h] != 0,
666                        "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
667                        h, tb->lnum[h]);
668
669                 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
670
671                 reiserfs_invalidate_buffer(tb, tbSh);
672                 return;
673         }
674
675         if (tb->lnum[h] < 0) {  /* borrow from left neighbor L[h] */
676                 RFALSE(tb->rnum[h] != 0,
677                        "wrong tb->rnum[%d]==%d when borrow from L[h]", h,
678                        tb->rnum[h]);
679                 /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */
680                 internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
681                                      -tb->lnum[h]);
682                 return;
683         }
684
685         if (tb->rnum[h] < 0) {  /* borrow from right neighbor R[h] */
686                 RFALSE(tb->lnum[h] != 0,
687                        "invalid tb->lnum[%d]==%d when borrow from R[h]",
688                        h, tb->lnum[h]);
689                 internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);   /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
690                 return;
691         }
692
693         if (tb->lnum[h] > 0) {  /* split S[h] into two parts and put them into neighbors */
694                 RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
695                        "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
696                        h, tb->lnum[h], h, tb->rnum[h], n);
697
698                 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);    /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
699                 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
700                                      tb->rnum[h]);
701
702                 reiserfs_invalidate_buffer(tb, tbSh);
703
704                 return;
705         }
706         reiserfs_panic(tb->tb_sb,
707                        "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
708                        h, tb->lnum[h], h, tb->rnum[h]);
709 }
710
711 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
712 static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
713 {
714         RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
715                "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
716                tb->L[h], tb->CFL[h]);
717
718         if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
719                 return;
720
721         memcpy(B_N_PDELIM_KEY(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
722
723         do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
724 }
725
726 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
727 static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
728 {
729         RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
730                "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
731                tb->R[h], tb->CFR[h]);
732         RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
733                "R[h] can not be empty if it exists (item number=%d)",
734                B_NR_ITEMS(tb->R[h]));
735
736         memcpy(B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
737
738         do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
739 }
740
741 int balance_internal(struct tree_balance *tb,   /* tree_balance structure               */
742                      int h,     /* level of the tree                    */
743                      int child_pos, struct item_head *insert_key,       /* key for insertion on higher level    */
744                      struct buffer_head **insert_ptr    /* node for insertion on higher level */
745     )
746     /* if inserting/pasting
747        {
748        child_pos is the position of the node-pointer in S[h] that        *
749        pointed to S[h-1] before balancing of the h-1 level;              *
750        this means that new pointers and items must be inserted AFTER *
751        child_pos
752        }
753        else 
754        {
755        it is the position of the leftmost pointer that must be deleted (together with
756        its corresponding key to the left of the pointer)
757        as a result of the previous level's balancing.
758        }
759      */
760 {
761         struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
762         struct buffer_info bi;
763         int order;              /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
764         int insert_num, n, k;
765         struct buffer_head *S_new;
766         struct item_head new_insert_key;
767         struct buffer_head *new_insert_ptr = NULL;
768         struct item_head *new_insert_key_addr = insert_key;
769
770         RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
771
772         PROC_INFO_INC(tb->tb_sb, balance_at[h]);
773
774         order =
775             (tbSh) ? PATH_H_POSITION(tb->tb_path,
776                                      h + 1) /*tb->S[h]->b_item_order */ : 0;
777
778         /* Using insert_size[h] calculate the number insert_num of items
779            that must be inserted to or deleted from S[h]. */
780         insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
781
782         /* Check whether insert_num is proper * */
783         RFALSE(insert_num < -2 || insert_num > 2,
784                "incorrect number of items inserted to the internal node (%d)",
785                insert_num);
786         RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
787                "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
788                insert_num, h);
789
790         /* Make balance in case insert_num < 0 */
791         if (insert_num < 0) {
792                 balance_internal_when_delete(tb, h, child_pos);
793                 return order;
794         }
795
796         k = 0;
797         if (tb->lnum[h] > 0) {
798                 /* shift lnum[h] items from S[h] to the left neighbor L[h].
799                    check how many of new items fall into L[h] or CFL[h] after
800                    shifting */
801                 n = B_NR_ITEMS(tb->L[h]);       /* number of items in L[h] */
802                 if (tb->lnum[h] <= child_pos) {
803                         /* new items don't fall into L[h] or CFL[h] */
804                         internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
805                                             tb->lnum[h]);
806                         /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */
807                         child_pos -= tb->lnum[h];
808                 } else if (tb->lnum[h] > child_pos + insert_num) {
809                         /* all new items fall into L[h] */
810                         internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
811                                             tb->lnum[h] - insert_num);
812                         /*                  internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
813                            tb->lnum[h]-insert_num);
814                          */
815                         /* insert insert_num keys and node-pointers into L[h] */
816                         bi.tb = tb;
817                         bi.bi_bh = tb->L[h];
818                         bi.bi_parent = tb->FL[h];
819                         bi.bi_position = get_left_neighbor_position(tb, h);
820                         internal_insert_childs(&bi,
821                                                /*tb->L[h], tb->S[h-1]->b_next */
822                                                n + child_pos + 1,
823                                                insert_num, insert_key,
824                                                insert_ptr);
825
826                         insert_num = 0;
827                 } else {
828                         struct disk_child *dc;
829
830                         /* some items fall into L[h] or CFL[h], but some don't fall */
831                         internal_shift1_left(tb, h, child_pos + 1);
832                         /* calculate number of new items that fall into L[h] */
833                         k = tb->lnum[h] - child_pos - 1;
834                         bi.tb = tb;
835                         bi.bi_bh = tb->L[h];
836                         bi.bi_parent = tb->FL[h];
837                         bi.bi_position = get_left_neighbor_position(tb, h);
838                         internal_insert_childs(&bi,
839                                                /*tb->L[h], tb->S[h-1]->b_next, */
840                                                n + child_pos + 1, k,
841                                                insert_key, insert_ptr);
842
843                         replace_lkey(tb, h, insert_key + k);
844
845                         /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
846                         dc = B_N_CHILD(tbSh, 0);
847                         put_dc_size(dc,
848                                     MAX_CHILD_SIZE(insert_ptr[k]) -
849                                     B_FREE_SPACE(insert_ptr[k]));
850                         put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
851
852                         do_balance_mark_internal_dirty(tb, tbSh, 0);
853
854                         k++;
855                         insert_key += k;
856                         insert_ptr += k;
857                         insert_num -= k;
858                         child_pos = 0;
859                 }
860         }
861         /* tb->lnum[h] > 0 */
862         if (tb->rnum[h] > 0) {
863                 /*shift rnum[h] items from S[h] to the right neighbor R[h] */
864                 /* check how many of new items fall into R or CFR after shifting */
865                 n = B_NR_ITEMS(tbSh);   /* number of items in S[h] */
866                 if (n - tb->rnum[h] >= child_pos)
867                         /* new items fall into S[h] */
868                         /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */
869                         internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
870                                              tb->rnum[h]);
871                 else if (n + insert_num - tb->rnum[h] < child_pos) {
872                         /* all new items fall into R[h] */
873                         /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
874                            tb->rnum[h] - insert_num); */
875                         internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
876                                              tb->rnum[h] - insert_num);
877
878                         /* insert insert_num keys and node-pointers into R[h] */
879                         bi.tb = tb;
880                         bi.bi_bh = tb->R[h];
881                         bi.bi_parent = tb->FR[h];
882                         bi.bi_position = get_right_neighbor_position(tb, h);
883                         internal_insert_childs(&bi,
884                                                /*tb->R[h],tb->S[h-1]->b_next */
885                                                child_pos - n - insert_num +
886                                                tb->rnum[h] - 1,
887                                                insert_num, insert_key,
888                                                insert_ptr);
889                         insert_num = 0;
890                 } else {
891                         struct disk_child *dc;
892
893                         /* one of the items falls into CFR[h] */
894                         internal_shift1_right(tb, h, n - child_pos + 1);
895                         /* calculate number of new items that fall into R[h] */
896                         k = tb->rnum[h] - n + child_pos - 1;
897                         bi.tb = tb;
898                         bi.bi_bh = tb->R[h];
899                         bi.bi_parent = tb->FR[h];
900                         bi.bi_position = get_right_neighbor_position(tb, h);
901                         internal_insert_childs(&bi,
902                                                /*tb->R[h], tb->R[h]->b_child, */
903                                                0, k, insert_key + 1,
904                                                insert_ptr + 1);
905
906                         replace_rkey(tb, h, insert_key + insert_num - k - 1);
907
908                         /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */
909                         dc = B_N_CHILD(tb->R[h], 0);
910                         put_dc_size(dc,
911                                     MAX_CHILD_SIZE(insert_ptr
912                                                    [insert_num - k - 1]) -
913                                     B_FREE_SPACE(insert_ptr
914                                                  [insert_num - k - 1]));
915                         put_dc_block_number(dc,
916                                             insert_ptr[insert_num - k -
917                                                        1]->b_blocknr);
918
919                         do_balance_mark_internal_dirty(tb, tb->R[h], 0);
920
921                         insert_num -= (k + 1);
922                 }
923         }
924
925     /** Fill new node that appears instead of S[h] **/
926         RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
927         RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
928
929         if (!tb->blknum[h]) {   /* node S[h] is empty now */
930                 RFALSE(!tbSh, "S[h] is equal NULL");
931
932                 /* do what is needed for buffer thrown from tree */
933                 reiserfs_invalidate_buffer(tb, tbSh);
934                 return order;
935         }
936
937         if (!tbSh) {
938                 /* create new root */
939                 struct disk_child *dc;
940                 struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
941                 struct block_head *blkh;
942
943                 if (tb->blknum[h] != 1)
944                         reiserfs_panic(NULL,
945                                        "balance_internal: One new node required for creating the new root");
946                 /* S[h] = empty buffer from the list FEB. */
947                 tbSh = get_FEB(tb);
948                 blkh = B_BLK_HEAD(tbSh);
949                 set_blkh_level(blkh, h + 1);
950
951                 /* Put the unique node-pointer to S[h] that points to S[h-1]. */
952
953                 dc = B_N_CHILD(tbSh, 0);
954                 put_dc_block_number(dc, tbSh_1->b_blocknr);
955                 put_dc_size(dc,
956                             (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
957
958                 tb->insert_size[h] -= DC_SIZE;
959                 set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE);
960
961                 do_balance_mark_internal_dirty(tb, tbSh, 0);
962
963                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
964                 check_internal(tbSh);
965                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
966
967                 /* put new root into path structure */
968                 PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) =
969                     tbSh;
970
971                 /* Change root in structure super block. */
972                 PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
973                 PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1);
974                 do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
975         }
976
977         if (tb->blknum[h] == 2) {
978                 int snum;
979                 struct buffer_info dest_bi, src_bi;
980
981                 /* S_new = free buffer from list FEB */
982                 S_new = get_FEB(tb);
983
984                 set_blkh_level(B_BLK_HEAD(S_new), h + 1);
985
986                 dest_bi.tb = tb;
987                 dest_bi.bi_bh = S_new;
988                 dest_bi.bi_parent = NULL;
989                 dest_bi.bi_position = 0;
990                 src_bi.tb = tb;
991                 src_bi.bi_bh = tbSh;
992                 src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
993                 src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
994
995                 n = B_NR_ITEMS(tbSh);   /* number of items in S[h] */
996                 snum = (insert_num + n + 1) / 2;
997                 if (n - snum >= child_pos) {
998                         /* new items don't fall into S_new */
999                         /*  store the delimiting key for the next level */
1000                         /* new_insert_key = (n - snum)'th key in S[h] */
1001                         memcpy(&new_insert_key, B_N_PDELIM_KEY(tbSh, n - snum),
1002                                KEY_SIZE);
1003                         /* last parameter is del_par */
1004                         internal_move_pointers_items(&dest_bi, &src_bi,
1005                                                      LAST_TO_FIRST, snum, 0);
1006                         /*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */
1007                 } else if (n + insert_num - snum < child_pos) {
1008                         /* all new items fall into S_new */
1009                         /*  store the delimiting key for the next level */
1010                         /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
1011                         memcpy(&new_insert_key,
1012                                B_N_PDELIM_KEY(tbSh, n + insert_num - snum),
1013                                KEY_SIZE);
1014                         /* last parameter is del_par */
1015                         internal_move_pointers_items(&dest_bi, &src_bi,
1016                                                      LAST_TO_FIRST,
1017                                                      snum - insert_num, 0);
1018                         /*                  internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */
1019
1020                         /* insert insert_num keys and node-pointers into S_new */
1021                         internal_insert_childs(&dest_bi,
1022                                                /*S_new,tb->S[h-1]->b_next, */
1023                                                child_pos - n - insert_num +
1024                                                snum - 1,
1025                                                insert_num, insert_key,
1026                                                insert_ptr);
1027
1028                         insert_num = 0;
1029                 } else {
1030                         struct disk_child *dc;
1031
1032                         /* some items fall into S_new, but some don't fall */
1033                         /* last parameter is del_par */
1034                         internal_move_pointers_items(&dest_bi, &src_bi,
1035                                                      LAST_TO_FIRST,
1036                                                      n - child_pos + 1, 1);
1037                         /*                  internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */
1038                         /* calculate number of new items that fall into S_new */
1039                         k = snum - n + child_pos - 1;
1040
1041                         internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
1042                                                insert_key + 1, insert_ptr + 1);
1043
1044                         /* new_insert_key = insert_key[insert_num - k - 1] */
1045                         memcpy(&new_insert_key, insert_key + insert_num - k - 1,
1046                                KEY_SIZE);
1047                         /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1048
1049                         dc = B_N_CHILD(S_new, 0);
1050                         put_dc_size(dc,
1051                                     (MAX_CHILD_SIZE
1052                                      (insert_ptr[insert_num - k - 1]) -
1053                                      B_FREE_SPACE(insert_ptr
1054                                                   [insert_num - k - 1])));
1055                         put_dc_block_number(dc,
1056                                             insert_ptr[insert_num - k -
1057                                                        1]->b_blocknr);
1058
1059                         do_balance_mark_internal_dirty(tb, S_new, 0);
1060
1061                         insert_num -= (k + 1);
1062                 }
1063                 /* new_insert_ptr = node_pointer to S_new */
1064                 new_insert_ptr = S_new;
1065
1066                 RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
1067                        || buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
1068                        S_new);
1069
1070                 // S_new is released in unfix_nodes
1071         }
1072
1073         n = B_NR_ITEMS(tbSh);   /*number of items in S[h] */
1074
1075         if (0 <= child_pos && child_pos <= n && insert_num > 0) {
1076                 bi.tb = tb;
1077                 bi.bi_bh = tbSh;
1078                 bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
1079                 bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
1080                 internal_insert_childs(&bi,     /*tbSh, */
1081                                        /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next, */
1082                                        child_pos, insert_num, insert_key,
1083                                        insert_ptr);
1084         }
1085
1086         memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
1087         insert_ptr[0] = new_insert_ptr;
1088
1089         return order;
1090 }