[IA64] Fix simscsi for new SCSI midlayer
[linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50 static mdk_personality_t raid1_personality;
51
52 static void unplug_slaves(mddev_t *mddev);
53
54
55 static void * r1bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
56 {
57         struct pool_info *pi = data;
58         r1bio_t *r1_bio;
59         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
60
61         /* allocate a r1bio with room for raid_disks entries in the bios array */
62         r1_bio = kmalloc(size, gfp_flags);
63         if (r1_bio)
64                 memset(r1_bio, 0, size);
65         else
66                 unplug_slaves(pi->mddev);
67
68         return r1_bio;
69 }
70
71 static void r1bio_pool_free(void *r1_bio, void *data)
72 {
73         kfree(r1_bio);
74 }
75
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
81
82 static void * r1buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
83 {
84         struct pool_info *pi = data;
85         struct page *page;
86         r1bio_t *r1_bio;
87         struct bio *bio;
88         int i, j;
89
90         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91         if (!r1_bio) {
92                 unplug_slaves(pi->mddev);
93                 return NULL;
94         }
95
96         /*
97          * Allocate bios : 1 for reading, n-1 for writing
98          */
99         for (j = pi->raid_disks ; j-- ; ) {
100                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101                 if (!bio)
102                         goto out_free_bio;
103                 r1_bio->bios[j] = bio;
104         }
105         /*
106          * Allocate RESYNC_PAGES data pages and attach them to
107          * the first bio;
108          */
109         bio = r1_bio->bios[0];
110         for (i = 0; i < RESYNC_PAGES; i++) {
111                 page = alloc_page(gfp_flags);
112                 if (unlikely(!page))
113                         goto out_free_pages;
114
115                 bio->bi_io_vec[i].bv_page = page;
116         }
117
118         r1_bio->master_bio = NULL;
119
120         return r1_bio;
121
122 out_free_pages:
123         for ( ; i > 0 ; i--)
124                 __free_page(bio->bi_io_vec[i-1].bv_page);
125 out_free_bio:
126         while ( ++j < pi->raid_disks )
127                 bio_put(r1_bio->bios[j]);
128         r1bio_pool_free(r1_bio, data);
129         return NULL;
130 }
131
132 static void r1buf_pool_free(void *__r1_bio, void *data)
133 {
134         struct pool_info *pi = data;
135         int i;
136         r1bio_t *r1bio = __r1_bio;
137         struct bio *bio = r1bio->bios[0];
138
139         for (i = 0; i < RESYNC_PAGES; i++) {
140                 __free_page(bio->bi_io_vec[i].bv_page);
141                 bio->bi_io_vec[i].bv_page = NULL;
142         }
143         for (i=0 ; i < pi->raid_disks; i++)
144                 bio_put(r1bio->bios[i]);
145
146         r1bio_pool_free(r1bio, data);
147 }
148
149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
150 {
151         int i;
152
153         for (i = 0; i < conf->raid_disks; i++) {
154                 struct bio **bio = r1_bio->bios + i;
155                 if (*bio)
156                         bio_put(*bio);
157                 *bio = NULL;
158         }
159 }
160
161 static inline void free_r1bio(r1bio_t *r1_bio)
162 {
163         unsigned long flags;
164
165         conf_t *conf = mddev_to_conf(r1_bio->mddev);
166
167         /*
168          * Wake up any possible resync thread that waits for the device
169          * to go idle.
170          */
171         spin_lock_irqsave(&conf->resync_lock, flags);
172         if (!--conf->nr_pending) {
173                 wake_up(&conf->wait_idle);
174                 wake_up(&conf->wait_resume);
175         }
176         spin_unlock_irqrestore(&conf->resync_lock, flags);
177
178         put_all_bios(conf, r1_bio);
179         mempool_free(r1_bio, conf->r1bio_pool);
180 }
181
182 static inline void put_buf(r1bio_t *r1_bio)
183 {
184         conf_t *conf = mddev_to_conf(r1_bio->mddev);
185         unsigned long flags;
186
187         mempool_free(r1_bio, conf->r1buf_pool);
188
189         spin_lock_irqsave(&conf->resync_lock, flags);
190         if (!conf->barrier)
191                 BUG();
192         --conf->barrier;
193         wake_up(&conf->wait_resume);
194         wake_up(&conf->wait_idle);
195
196         if (!--conf->nr_pending) {
197                 wake_up(&conf->wait_idle);
198                 wake_up(&conf->wait_resume);
199         }
200         spin_unlock_irqrestore(&conf->resync_lock, flags);
201 }
202
203 static void reschedule_retry(r1bio_t *r1_bio)
204 {
205         unsigned long flags;
206         mddev_t *mddev = r1_bio->mddev;
207         conf_t *conf = mddev_to_conf(mddev);
208
209         spin_lock_irqsave(&conf->device_lock, flags);
210         list_add(&r1_bio->retry_list, &conf->retry_list);
211         spin_unlock_irqrestore(&conf->device_lock, flags);
212
213         md_wakeup_thread(mddev->thread);
214 }
215
216 /*
217  * raid_end_bio_io() is called when we have finished servicing a mirrored
218  * operation and are ready to return a success/failure code to the buffer
219  * cache layer.
220  */
221 static void raid_end_bio_io(r1bio_t *r1_bio)
222 {
223         struct bio *bio = r1_bio->master_bio;
224
225         /* if nobody has done the final endio yet, do it now */
226         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
227                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
228                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
229                         (unsigned long long) bio->bi_sector,
230                         (unsigned long long) bio->bi_sector +
231                                 (bio->bi_size >> 9) - 1);
232
233                 bio_endio(bio, bio->bi_size,
234                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
235         }
236         free_r1bio(r1_bio);
237 }
238
239 /*
240  * Update disk head position estimator based on IRQ completion info.
241  */
242 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
243 {
244         conf_t *conf = mddev_to_conf(r1_bio->mddev);
245
246         conf->mirrors[disk].head_position =
247                 r1_bio->sector + (r1_bio->sectors);
248 }
249
250 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
251 {
252         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
253         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
254         int mirror;
255         conf_t *conf = mddev_to_conf(r1_bio->mddev);
256
257         if (bio->bi_size)
258                 return 1;
259         
260         mirror = r1_bio->read_disk;
261         /*
262          * this branch is our 'one mirror IO has finished' event handler:
263          */
264         if (!uptodate)
265                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
266         else
267                 /*
268                  * Set R1BIO_Uptodate in our master bio, so that
269                  * we will return a good error code for to the higher
270                  * levels even if IO on some other mirrored buffer fails.
271                  *
272                  * The 'master' represents the composite IO operation to
273                  * user-side. So if something waits for IO, then it will
274                  * wait for the 'master' bio.
275                  */
276                 set_bit(R1BIO_Uptodate, &r1_bio->state);
277
278         update_head_pos(mirror, r1_bio);
279
280         /*
281          * we have only one bio on the read side
282          */
283         if (uptodate)
284                 raid_end_bio_io(r1_bio);
285         else {
286                 /*
287                  * oops, read error:
288                  */
289                 char b[BDEVNAME_SIZE];
290                 if (printk_ratelimit())
291                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
292                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
293                 reschedule_retry(r1_bio);
294         }
295
296         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
297         return 0;
298 }
299
300 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
301 {
302         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
303         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
304         int mirror, behind;
305         conf_t *conf = mddev_to_conf(r1_bio->mddev);
306
307         if (bio->bi_size)
308                 return 1;
309
310         for (mirror = 0; mirror < conf->raid_disks; mirror++)
311                 if (r1_bio->bios[mirror] == bio)
312                         break;
313
314         /*
315          * this branch is our 'one mirror IO has finished' event handler:
316          */
317         if (!uptodate) {
318                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
319                 /* an I/O failed, we can't clear the bitmap */
320                 set_bit(R1BIO_Degraded, &r1_bio->state);
321         } else
322                 /*
323                  * Set R1BIO_Uptodate in our master bio, so that
324                  * we will return a good error code for to the higher
325                  * levels even if IO on some other mirrored buffer fails.
326                  *
327                  * The 'master' represents the composite IO operation to
328                  * user-side. So if something waits for IO, then it will
329                  * wait for the 'master' bio.
330                  */
331                 set_bit(R1BIO_Uptodate, &r1_bio->state);
332
333         update_head_pos(mirror, r1_bio);
334
335         behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
336         if (behind) {
337                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
338                         atomic_dec(&r1_bio->behind_remaining);
339
340                 /* In behind mode, we ACK the master bio once the I/O has safely
341                  * reached all non-writemostly disks. Setting the Returned bit
342                  * ensures that this gets done only once -- we don't ever want to
343                  * return -EIO here, instead we'll wait */
344
345                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
346                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
347                         /* Maybe we can return now */
348                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
349                                 struct bio *mbio = r1_bio->master_bio;
350                                 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
351                                        (unsigned long long) mbio->bi_sector,
352                                        (unsigned long long) mbio->bi_sector +
353                                        (mbio->bi_size >> 9) - 1);
354                                 bio_endio(mbio, mbio->bi_size, 0);
355                         }
356                 }
357         }
358         /*
359          *
360          * Let's see if all mirrored write operations have finished
361          * already.
362          */
363         if (atomic_dec_and_test(&r1_bio->remaining)) {
364                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
365                         /* free extra copy of the data pages */
366                         int i = bio->bi_vcnt;
367                         while (i--)
368                                 __free_page(bio->bi_io_vec[i].bv_page);
369                 }
370                 /* clear the bitmap if all writes complete successfully */
371                 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
372                                 r1_bio->sectors,
373                                 !test_bit(R1BIO_Degraded, &r1_bio->state),
374                                 behind);
375                 md_write_end(r1_bio->mddev);
376                 raid_end_bio_io(r1_bio);
377         }
378
379         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
380         return 0;
381 }
382
383
384 /*
385  * This routine returns the disk from which the requested read should
386  * be done. There is a per-array 'next expected sequential IO' sector
387  * number - if this matches on the next IO then we use the last disk.
388  * There is also a per-disk 'last know head position' sector that is
389  * maintained from IRQ contexts, both the normal and the resync IO
390  * completion handlers update this position correctly. If there is no
391  * perfect sequential match then we pick the disk whose head is closest.
392  *
393  * If there are 2 mirrors in the same 2 devices, performance degrades
394  * because position is mirror, not device based.
395  *
396  * The rdev for the device selected will have nr_pending incremented.
397  */
398 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
399 {
400         const unsigned long this_sector = r1_bio->sector;
401         int new_disk = conf->last_used, disk = new_disk;
402         int wonly_disk = -1;
403         const int sectors = r1_bio->sectors;
404         sector_t new_distance, current_distance;
405         mdk_rdev_t *rdev;
406
407         rcu_read_lock();
408         /*
409          * Check if we can balance. We can balance on the whole
410          * device if no resync is going on, or below the resync window.
411          * We take the first readable disk when above the resync window.
412          */
413  retry:
414         if (conf->mddev->recovery_cp < MaxSector &&
415             (this_sector + sectors >= conf->next_resync)) {
416                 /* Choose the first operation device, for consistancy */
417                 new_disk = 0;
418
419                 for (rdev = conf->mirrors[new_disk].rdev;
420                      !rdev || !rdev->in_sync
421                              || test_bit(WriteMostly, &rdev->flags);
422                      rdev = conf->mirrors[++new_disk].rdev) {
423
424                         if (rdev && rdev->in_sync)
425                                 wonly_disk = new_disk;
426
427                         if (new_disk == conf->raid_disks - 1) {
428                                 new_disk = wonly_disk;
429                                 break;
430                         }
431                 }
432                 goto rb_out;
433         }
434
435
436         /* make sure the disk is operational */
437         for (rdev = conf->mirrors[new_disk].rdev;
438              !rdev || !rdev->in_sync ||
439                      test_bit(WriteMostly, &rdev->flags);
440              rdev = conf->mirrors[new_disk].rdev) {
441
442                 if (rdev && rdev->in_sync)
443                         wonly_disk = new_disk;
444
445                 if (new_disk <= 0)
446                         new_disk = conf->raid_disks;
447                 new_disk--;
448                 if (new_disk == disk) {
449                         new_disk = wonly_disk;
450                         break;
451                 }
452         }
453
454         if (new_disk < 0)
455                 goto rb_out;
456
457         disk = new_disk;
458         /* now disk == new_disk == starting point for search */
459
460         /*
461          * Don't change to another disk for sequential reads:
462          */
463         if (conf->next_seq_sect == this_sector)
464                 goto rb_out;
465         if (this_sector == conf->mirrors[new_disk].head_position)
466                 goto rb_out;
467
468         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
469
470         /* Find the disk whose head is closest */
471
472         do {
473                 if (disk <= 0)
474                         disk = conf->raid_disks;
475                 disk--;
476
477                 rdev = conf->mirrors[disk].rdev;
478
479                 if (!rdev ||
480                     !rdev->in_sync ||
481                     test_bit(WriteMostly, &rdev->flags))
482                         continue;
483
484                 if (!atomic_read(&rdev->nr_pending)) {
485                         new_disk = disk;
486                         break;
487                 }
488                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
489                 if (new_distance < current_distance) {
490                         current_distance = new_distance;
491                         new_disk = disk;
492                 }
493         } while (disk != conf->last_used);
494
495  rb_out:
496
497
498         if (new_disk >= 0) {
499                 rdev = conf->mirrors[new_disk].rdev;
500                 if (!rdev)
501                         goto retry;
502                 atomic_inc(&rdev->nr_pending);
503                 if (!rdev->in_sync) {
504                         /* cannot risk returning a device that failed
505                          * before we inc'ed nr_pending
506                          */
507                         atomic_dec(&rdev->nr_pending);
508                         goto retry;
509                 }
510                 conf->next_seq_sect = this_sector + sectors;
511                 conf->last_used = new_disk;
512         }
513         rcu_read_unlock();
514
515         return new_disk;
516 }
517
518 static void unplug_slaves(mddev_t *mddev)
519 {
520         conf_t *conf = mddev_to_conf(mddev);
521         int i;
522
523         rcu_read_lock();
524         for (i=0; i<mddev->raid_disks; i++) {
525                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
526                 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
527                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
528
529                         atomic_inc(&rdev->nr_pending);
530                         rcu_read_unlock();
531
532                         if (r_queue->unplug_fn)
533                                 r_queue->unplug_fn(r_queue);
534
535                         rdev_dec_pending(rdev, mddev);
536                         rcu_read_lock();
537                 }
538         }
539         rcu_read_unlock();
540 }
541
542 static void raid1_unplug(request_queue_t *q)
543 {
544         mddev_t *mddev = q->queuedata;
545
546         unplug_slaves(mddev);
547         md_wakeup_thread(mddev->thread);
548 }
549
550 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
551                              sector_t *error_sector)
552 {
553         mddev_t *mddev = q->queuedata;
554         conf_t *conf = mddev_to_conf(mddev);
555         int i, ret = 0;
556
557         rcu_read_lock();
558         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
559                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
560                 if (rdev && !rdev->faulty) {
561                         struct block_device *bdev = rdev->bdev;
562                         request_queue_t *r_queue = bdev_get_queue(bdev);
563
564                         if (!r_queue->issue_flush_fn)
565                                 ret = -EOPNOTSUPP;
566                         else {
567                                 atomic_inc(&rdev->nr_pending);
568                                 rcu_read_unlock();
569                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
570                                                               error_sector);
571                                 rdev_dec_pending(rdev, mddev);
572                                 rcu_read_lock();
573                         }
574                 }
575         }
576         rcu_read_unlock();
577         return ret;
578 }
579
580 /*
581  * Throttle resync depth, so that we can both get proper overlapping of
582  * requests, but are still able to handle normal requests quickly.
583  */
584 #define RESYNC_DEPTH 32
585
586 static void device_barrier(conf_t *conf, sector_t sect)
587 {
588         spin_lock_irq(&conf->resync_lock);
589         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
590                             conf->resync_lock, raid1_unplug(conf->mddev->queue));
591         
592         if (!conf->barrier++) {
593                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
594                                     conf->resync_lock, raid1_unplug(conf->mddev->queue));
595                 if (conf->nr_pending)
596                         BUG();
597         }
598         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
599                             conf->resync_lock, raid1_unplug(conf->mddev->queue));
600         conf->next_resync = sect;
601         spin_unlock_irq(&conf->resync_lock);
602 }
603
604 /* duplicate the data pages for behind I/O */
605 static struct page **alloc_behind_pages(struct bio *bio)
606 {
607         int i;
608         struct bio_vec *bvec;
609         struct page **pages = kmalloc(bio->bi_vcnt * sizeof(struct page *),
610                                         GFP_NOIO);
611         if (unlikely(!pages))
612                 goto do_sync_io;
613
614         memset(pages, 0, bio->bi_vcnt * sizeof(struct page *));
615
616         bio_for_each_segment(bvec, bio, i) {
617                 pages[i] = alloc_page(GFP_NOIO);
618                 if (unlikely(!pages[i]))
619                         goto do_sync_io;
620                 memcpy(kmap(pages[i]) + bvec->bv_offset,
621                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
622                 kunmap(pages[i]);
623                 kunmap(bvec->bv_page);
624         }
625
626         return pages;
627
628 do_sync_io:
629         if (pages)
630                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
631                         __free_page(pages[i]);
632         kfree(pages);
633         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
634         return NULL;
635 }
636
637 static int make_request(request_queue_t *q, struct bio * bio)
638 {
639         mddev_t *mddev = q->queuedata;
640         conf_t *conf = mddev_to_conf(mddev);
641         mirror_info_t *mirror;
642         r1bio_t *r1_bio;
643         struct bio *read_bio;
644         int i, targets = 0, disks;
645         mdk_rdev_t *rdev;
646         struct bitmap *bitmap = mddev->bitmap;
647         unsigned long flags;
648         struct bio_list bl;
649         struct page **behind_pages = NULL;
650
651         if (unlikely(bio_barrier(bio))) {
652                 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
653                 return 0;
654         }
655
656         /*
657          * Register the new request and wait if the reconstruction
658          * thread has put up a bar for new requests.
659          * Continue immediately if no resync is active currently.
660          */
661         md_write_start(mddev, bio); /* wait on superblock update early */
662
663         spin_lock_irq(&conf->resync_lock);
664         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
665         conf->nr_pending++;
666         spin_unlock_irq(&conf->resync_lock);
667
668         if (bio_data_dir(bio)==WRITE) {
669                 disk_stat_inc(mddev->gendisk, writes);
670                 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
671         } else {
672                 disk_stat_inc(mddev->gendisk, reads);
673                 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
674         }
675
676         /*
677          * make_request() can abort the operation when READA is being
678          * used and no empty request is available.
679          *
680          */
681         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
682
683         r1_bio->master_bio = bio;
684         r1_bio->sectors = bio->bi_size >> 9;
685         r1_bio->state = 0;
686         r1_bio->mddev = mddev;
687         r1_bio->sector = bio->bi_sector;
688
689         if (bio_data_dir(bio) == READ) {
690                 /*
691                  * read balancing logic:
692                  */
693                 int rdisk = read_balance(conf, r1_bio);
694
695                 if (rdisk < 0) {
696                         /* couldn't find anywhere to read from */
697                         raid_end_bio_io(r1_bio);
698                         return 0;
699                 }
700                 mirror = conf->mirrors + rdisk;
701
702                 r1_bio->read_disk = rdisk;
703
704                 read_bio = bio_clone(bio, GFP_NOIO);
705
706                 r1_bio->bios[rdisk] = read_bio;
707
708                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
709                 read_bio->bi_bdev = mirror->rdev->bdev;
710                 read_bio->bi_end_io = raid1_end_read_request;
711                 read_bio->bi_rw = READ;
712                 read_bio->bi_private = r1_bio;
713
714                 generic_make_request(read_bio);
715                 return 0;
716         }
717
718         /*
719          * WRITE:
720          */
721         /* first select target devices under spinlock and
722          * inc refcount on their rdev.  Record them by setting
723          * bios[x] to bio
724          */
725         disks = conf->raid_disks;
726 #if 0
727         { static int first=1;
728         if (first) printk("First Write sector %llu disks %d\n",
729                           (unsigned long long)r1_bio->sector, disks);
730         first = 0;
731         }
732 #endif
733         rcu_read_lock();
734         for (i = 0;  i < disks; i++) {
735                 if ((rdev=conf->mirrors[i].rdev) != NULL &&
736                     !rdev->faulty) {
737                         atomic_inc(&rdev->nr_pending);
738                         if (rdev->faulty) {
739                                 atomic_dec(&rdev->nr_pending);
740                                 r1_bio->bios[i] = NULL;
741                         } else
742                                 r1_bio->bios[i] = bio;
743                         targets++;
744                 } else
745                         r1_bio->bios[i] = NULL;
746         }
747         rcu_read_unlock();
748
749         BUG_ON(targets == 0); /* we never fail the last device */
750
751         if (targets < conf->raid_disks) {
752                 /* array is degraded, we will not clear the bitmap
753                  * on I/O completion (see raid1_end_write_request) */
754                 set_bit(R1BIO_Degraded, &r1_bio->state);
755         }
756
757         /* do behind I/O ? */
758         if (bitmap &&
759             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
760             (behind_pages = alloc_behind_pages(bio)) != NULL)
761                 set_bit(R1BIO_BehindIO, &r1_bio->state);
762
763         atomic_set(&r1_bio->remaining, 0);
764         atomic_set(&r1_bio->behind_remaining, 0);
765
766         bio_list_init(&bl);
767         for (i = 0; i < disks; i++) {
768                 struct bio *mbio;
769                 if (!r1_bio->bios[i])
770                         continue;
771
772                 mbio = bio_clone(bio, GFP_NOIO);
773                 r1_bio->bios[i] = mbio;
774
775                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
776                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
777                 mbio->bi_end_io = raid1_end_write_request;
778                 mbio->bi_rw = WRITE;
779                 mbio->bi_private = r1_bio;
780
781                 if (behind_pages) {
782                         struct bio_vec *bvec;
783                         int j;
784
785                         /* Yes, I really want the '__' version so that
786                          * we clear any unused pointer in the io_vec, rather
787                          * than leave them unchanged.  This is important
788                          * because when we come to free the pages, we won't
789                          * know the originial bi_idx, so we just free
790                          * them all
791                          */
792                         __bio_for_each_segment(bvec, mbio, j, 0)
793                                 bvec->bv_page = behind_pages[j];
794                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
795                                 atomic_inc(&r1_bio->behind_remaining);
796                 }
797
798                 atomic_inc(&r1_bio->remaining);
799
800                 bio_list_add(&bl, mbio);
801         }
802         kfree(behind_pages); /* the behind pages are attached to the bios now */
803
804         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
805                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
806         spin_lock_irqsave(&conf->device_lock, flags);
807         bio_list_merge(&conf->pending_bio_list, &bl);
808         bio_list_init(&bl);
809
810         blk_plug_device(mddev->queue);
811         spin_unlock_irqrestore(&conf->device_lock, flags);
812
813 #if 0
814         while ((bio = bio_list_pop(&bl)) != NULL)
815                 generic_make_request(bio);
816 #endif
817
818         return 0;
819 }
820
821 static void status(struct seq_file *seq, mddev_t *mddev)
822 {
823         conf_t *conf = mddev_to_conf(mddev);
824         int i;
825
826         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
827                                                 conf->working_disks);
828         for (i = 0; i < conf->raid_disks; i++)
829                 seq_printf(seq, "%s",
830                               conf->mirrors[i].rdev &&
831                               conf->mirrors[i].rdev->in_sync ? "U" : "_");
832         seq_printf(seq, "]");
833 }
834
835
836 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
837 {
838         char b[BDEVNAME_SIZE];
839         conf_t *conf = mddev_to_conf(mddev);
840
841         /*
842          * If it is not operational, then we have already marked it as dead
843          * else if it is the last working disks, ignore the error, let the
844          * next level up know.
845          * else mark the drive as failed
846          */
847         if (rdev->in_sync
848             && conf->working_disks == 1)
849                 /*
850                  * Don't fail the drive, act as though we were just a
851                  * normal single drive
852                  */
853                 return;
854         if (rdev->in_sync) {
855                 mddev->degraded++;
856                 conf->working_disks--;
857                 /*
858                  * if recovery is running, make sure it aborts.
859                  */
860                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
861         }
862         rdev->in_sync = 0;
863         rdev->faulty = 1;
864         mddev->sb_dirty = 1;
865         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
866                 "       Operation continuing on %d devices\n",
867                 bdevname(rdev->bdev,b), conf->working_disks);
868 }
869
870 static void print_conf(conf_t *conf)
871 {
872         int i;
873         mirror_info_t *tmp;
874
875         printk("RAID1 conf printout:\n");
876         if (!conf) {
877                 printk("(!conf)\n");
878                 return;
879         }
880         printk(" --- wd:%d rd:%d\n", conf->working_disks,
881                 conf->raid_disks);
882
883         for (i = 0; i < conf->raid_disks; i++) {
884                 char b[BDEVNAME_SIZE];
885                 tmp = conf->mirrors + i;
886                 if (tmp->rdev)
887                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
888                                 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
889                                 bdevname(tmp->rdev->bdev,b));
890         }
891 }
892
893 static void close_sync(conf_t *conf)
894 {
895         spin_lock_irq(&conf->resync_lock);
896         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
897                             conf->resync_lock,  raid1_unplug(conf->mddev->queue));
898         spin_unlock_irq(&conf->resync_lock);
899
900         if (conf->barrier) BUG();
901         if (waitqueue_active(&conf->wait_idle)) BUG();
902
903         mempool_destroy(conf->r1buf_pool);
904         conf->r1buf_pool = NULL;
905 }
906
907 static int raid1_spare_active(mddev_t *mddev)
908 {
909         int i;
910         conf_t *conf = mddev->private;
911         mirror_info_t *tmp;
912
913         /*
914          * Find all failed disks within the RAID1 configuration 
915          * and mark them readable
916          */
917         for (i = 0; i < conf->raid_disks; i++) {
918                 tmp = conf->mirrors + i;
919                 if (tmp->rdev 
920                     && !tmp->rdev->faulty
921                     && !tmp->rdev->in_sync) {
922                         conf->working_disks++;
923                         mddev->degraded--;
924                         tmp->rdev->in_sync = 1;
925                 }
926         }
927
928         print_conf(conf);
929         return 0;
930 }
931
932
933 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
934 {
935         conf_t *conf = mddev->private;
936         int found = 0;
937         int mirror = 0;
938         mirror_info_t *p;
939
940         if (rdev->saved_raid_disk >= 0 &&
941             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
942                 mirror = rdev->saved_raid_disk;
943         for (mirror=0; mirror < mddev->raid_disks; mirror++)
944                 if ( !(p=conf->mirrors+mirror)->rdev) {
945
946                         blk_queue_stack_limits(mddev->queue,
947                                                rdev->bdev->bd_disk->queue);
948                         /* as we don't honour merge_bvec_fn, we must never risk
949                          * violating it, so limit ->max_sector to one PAGE, as
950                          * a one page request is never in violation.
951                          */
952                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
953                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
954                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
955
956                         p->head_position = 0;
957                         rdev->raid_disk = mirror;
958                         found = 1;
959                         if (rdev->saved_raid_disk != mirror)
960                                 conf->fullsync = 1;
961                         p->rdev = rdev;
962                         break;
963                 }
964
965         print_conf(conf);
966         return found;
967 }
968
969 static int raid1_remove_disk(mddev_t *mddev, int number)
970 {
971         conf_t *conf = mddev->private;
972         int err = 0;
973         mdk_rdev_t *rdev;
974         mirror_info_t *p = conf->mirrors+ number;
975
976         print_conf(conf);
977         rdev = p->rdev;
978         if (rdev) {
979                 if (rdev->in_sync ||
980                     atomic_read(&rdev->nr_pending)) {
981                         err = -EBUSY;
982                         goto abort;
983                 }
984                 p->rdev = NULL;
985                 synchronize_rcu();
986                 if (atomic_read(&rdev->nr_pending)) {
987                         /* lost the race, try later */
988                         err = -EBUSY;
989                         p->rdev = rdev;
990                 }
991         }
992 abort:
993
994         print_conf(conf);
995         return err;
996 }
997
998
999 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1000 {
1001         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1002         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1003         conf_t *conf = mddev_to_conf(r1_bio->mddev);
1004
1005         if (bio->bi_size)
1006                 return 1;
1007
1008         if (r1_bio->bios[r1_bio->read_disk] != bio)
1009                 BUG();
1010         update_head_pos(r1_bio->read_disk, r1_bio);
1011         /*
1012          * we have read a block, now it needs to be re-written,
1013          * or re-read if the read failed.
1014          * We don't do much here, just schedule handling by raid1d
1015          */
1016         if (!uptodate) {
1017                 md_error(r1_bio->mddev,
1018                          conf->mirrors[r1_bio->read_disk].rdev);
1019         } else
1020                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1021         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
1022         reschedule_retry(r1_bio);
1023         return 0;
1024 }
1025
1026 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1027 {
1028         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1029         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1030         mddev_t *mddev = r1_bio->mddev;
1031         conf_t *conf = mddev_to_conf(mddev);
1032         int i;
1033         int mirror=0;
1034
1035         if (bio->bi_size)
1036                 return 1;
1037
1038         for (i = 0; i < conf->raid_disks; i++)
1039                 if (r1_bio->bios[i] == bio) {
1040                         mirror = i;
1041                         break;
1042                 }
1043         if (!uptodate)
1044                 md_error(mddev, conf->mirrors[mirror].rdev);
1045
1046         update_head_pos(mirror, r1_bio);
1047
1048         if (atomic_dec_and_test(&r1_bio->remaining)) {
1049                 md_done_sync(mddev, r1_bio->sectors, uptodate);
1050                 put_buf(r1_bio);
1051         }
1052         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1053         return 0;
1054 }
1055
1056 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1057 {
1058         conf_t *conf = mddev_to_conf(mddev);
1059         int i;
1060         int disks = conf->raid_disks;
1061         struct bio *bio, *wbio;
1062
1063         bio = r1_bio->bios[r1_bio->read_disk];
1064
1065 /*
1066         if (r1_bio->sector == 0) printk("First sync write startss\n");
1067 */
1068         /*
1069          * schedule writes
1070          */
1071         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1072                 /*
1073                  * There is no point trying a read-for-reconstruct as
1074                  * reconstruct is about to be aborted
1075                  */
1076                 char b[BDEVNAME_SIZE];
1077                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1078                         " for block %llu\n",
1079                         bdevname(bio->bi_bdev,b), 
1080                         (unsigned long long)r1_bio->sector);
1081                 md_done_sync(mddev, r1_bio->sectors, 0);
1082                 put_buf(r1_bio);
1083                 return;
1084         }
1085
1086         atomic_set(&r1_bio->remaining, 1);
1087         for (i = 0; i < disks ; i++) {
1088                 wbio = r1_bio->bios[i];
1089                 if (wbio->bi_end_io != end_sync_write)
1090                         continue;
1091
1092                 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
1093                 atomic_inc(&r1_bio->remaining);
1094                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1095
1096                 generic_make_request(wbio);
1097         }
1098
1099         if (atomic_dec_and_test(&r1_bio->remaining)) {
1100                 /* if we're here, all write(s) have completed, so clean up */
1101                 md_done_sync(mddev, r1_bio->sectors, 1);
1102                 put_buf(r1_bio);
1103         }
1104 }
1105
1106 /*
1107  * This is a kernel thread which:
1108  *
1109  *      1.      Retries failed read operations on working mirrors.
1110  *      2.      Updates the raid superblock when problems encounter.
1111  *      3.      Performs writes following reads for array syncronising.
1112  */
1113
1114 static void raid1d(mddev_t *mddev)
1115 {
1116         r1bio_t *r1_bio;
1117         struct bio *bio;
1118         unsigned long flags;
1119         conf_t *conf = mddev_to_conf(mddev);
1120         struct list_head *head = &conf->retry_list;
1121         int unplug=0;
1122         mdk_rdev_t *rdev;
1123
1124         md_check_recovery(mddev);
1125         
1126         for (;;) {
1127                 char b[BDEVNAME_SIZE];
1128                 spin_lock_irqsave(&conf->device_lock, flags);
1129
1130                 if (conf->pending_bio_list.head) {
1131                         bio = bio_list_get(&conf->pending_bio_list);
1132                         blk_remove_plug(mddev->queue);
1133                         spin_unlock_irqrestore(&conf->device_lock, flags);
1134                         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1135                         if (bitmap_unplug(mddev->bitmap) != 0)
1136                                 printk("%s: bitmap file write failed!\n", mdname(mddev));
1137
1138                         while (bio) { /* submit pending writes */
1139                                 struct bio *next = bio->bi_next;
1140                                 bio->bi_next = NULL;
1141                                 generic_make_request(bio);
1142                                 bio = next;
1143                         }
1144                         unplug = 1;
1145
1146                         continue;
1147                 }
1148
1149                 if (list_empty(head))
1150                         break;
1151                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1152                 list_del(head->prev);
1153                 spin_unlock_irqrestore(&conf->device_lock, flags);
1154
1155                 mddev = r1_bio->mddev;
1156                 conf = mddev_to_conf(mddev);
1157                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1158                         sync_request_write(mddev, r1_bio);
1159                         unplug = 1;
1160                 } else {
1161                         int disk;
1162                         bio = r1_bio->bios[r1_bio->read_disk];
1163                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1164                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1165                                        " read error for block %llu\n",
1166                                        bdevname(bio->bi_bdev,b),
1167                                        (unsigned long long)r1_bio->sector);
1168                                 raid_end_bio_io(r1_bio);
1169                         } else {
1170                                 r1_bio->bios[r1_bio->read_disk] = NULL;
1171                                 r1_bio->read_disk = disk;
1172                                 bio_put(bio);
1173                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1174                                 r1_bio->bios[r1_bio->read_disk] = bio;
1175                                 rdev = conf->mirrors[disk].rdev;
1176                                 if (printk_ratelimit())
1177                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1178                                                " another mirror\n",
1179                                                bdevname(rdev->bdev,b),
1180                                                (unsigned long long)r1_bio->sector);
1181                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1182                                 bio->bi_bdev = rdev->bdev;
1183                                 bio->bi_end_io = raid1_end_read_request;
1184                                 bio->bi_rw = READ;
1185                                 bio->bi_private = r1_bio;
1186                                 unplug = 1;
1187                                 generic_make_request(bio);
1188                         }
1189                 }
1190         }
1191         spin_unlock_irqrestore(&conf->device_lock, flags);
1192         if (unplug)
1193                 unplug_slaves(mddev);
1194 }
1195
1196
1197 static int init_resync(conf_t *conf)
1198 {
1199         int buffs;
1200
1201         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1202         if (conf->r1buf_pool)
1203                 BUG();
1204         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1205                                           conf->poolinfo);
1206         if (!conf->r1buf_pool)
1207                 return -ENOMEM;
1208         conf->next_resync = 0;
1209         return 0;
1210 }
1211
1212 /*
1213  * perform a "sync" on one "block"
1214  *
1215  * We need to make sure that no normal I/O request - particularly write
1216  * requests - conflict with active sync requests.
1217  *
1218  * This is achieved by tracking pending requests and a 'barrier' concept
1219  * that can be installed to exclude normal IO requests.
1220  */
1221
1222 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1223 {
1224         conf_t *conf = mddev_to_conf(mddev);
1225         mirror_info_t *mirror;
1226         r1bio_t *r1_bio;
1227         struct bio *bio;
1228         sector_t max_sector, nr_sectors;
1229         int disk;
1230         int i;
1231         int wonly;
1232         int write_targets = 0;
1233         int sync_blocks;
1234         int still_degraded = 0;
1235
1236         if (!conf->r1buf_pool)
1237         {
1238 /*
1239                 printk("sync start - bitmap %p\n", mddev->bitmap);
1240 */
1241                 if (init_resync(conf))
1242                         return 0;
1243         }
1244
1245         max_sector = mddev->size << 1;
1246         if (sector_nr >= max_sector) {
1247                 /* If we aborted, we need to abort the
1248                  * sync on the 'current' bitmap chunk (there will
1249                  * only be one in raid1 resync.
1250                  * We can find the current addess in mddev->curr_resync
1251                  */
1252                 if (mddev->curr_resync < max_sector) /* aborted */
1253                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1254                                                 &sync_blocks, 1);
1255                 else /* completed sync */
1256                         conf->fullsync = 0;
1257
1258                 bitmap_close_sync(mddev->bitmap);
1259                 close_sync(conf);
1260                 return 0;
1261         }
1262
1263         /* before building a request, check if we can skip these blocks..
1264          * This call the bitmap_start_sync doesn't actually record anything
1265          */
1266         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1267             !conf->fullsync) {
1268                 /* We can skip this block, and probably several more */
1269                 *skipped = 1;
1270                 return sync_blocks;
1271         }
1272         /*
1273          * If there is non-resync activity waiting for us then
1274          * put in a delay to throttle resync.
1275          */
1276         if (!go_faster && waitqueue_active(&conf->wait_resume))
1277                 msleep_interruptible(1000);
1278         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1279
1280         /*
1281          * If reconstructing, and >1 working disc,
1282          * could dedicate one to rebuild and others to
1283          * service read requests ..
1284          */
1285         disk = conf->last_used;
1286         /* make sure disk is operational */
1287         wonly = disk;
1288         while (conf->mirrors[disk].rdev == NULL ||
1289                !conf->mirrors[disk].rdev->in_sync ||
1290                test_bit(WriteMostly, &conf->mirrors[disk].rdev->flags)
1291                 ) {
1292                 if (conf->mirrors[disk].rdev  &&
1293                     conf->mirrors[disk].rdev->in_sync)
1294                         wonly = disk;
1295                 if (disk <= 0)
1296                         disk = conf->raid_disks;
1297                 disk--;
1298                 if (disk == conf->last_used) {
1299                         disk = wonly;
1300                         break;
1301                 }
1302         }
1303         conf->last_used = disk;
1304         atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1305
1306
1307         mirror = conf->mirrors + disk;
1308
1309         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1310
1311         spin_lock_irq(&conf->resync_lock);
1312         conf->nr_pending++;
1313         spin_unlock_irq(&conf->resync_lock);
1314
1315         r1_bio->mddev = mddev;
1316         r1_bio->sector = sector_nr;
1317         r1_bio->state = 0;
1318         set_bit(R1BIO_IsSync, &r1_bio->state);
1319         r1_bio->read_disk = disk;
1320
1321         for (i=0; i < conf->raid_disks; i++) {
1322                 bio = r1_bio->bios[i];
1323
1324                 /* take from bio_init */
1325                 bio->bi_next = NULL;
1326                 bio->bi_flags |= 1 << BIO_UPTODATE;
1327                 bio->bi_rw = 0;
1328                 bio->bi_vcnt = 0;
1329                 bio->bi_idx = 0;
1330                 bio->bi_phys_segments = 0;
1331                 bio->bi_hw_segments = 0;
1332                 bio->bi_size = 0;
1333                 bio->bi_end_io = NULL;
1334                 bio->bi_private = NULL;
1335
1336                 if (i == disk) {
1337                         bio->bi_rw = READ;
1338                         bio->bi_end_io = end_sync_read;
1339                 } else if (conf->mirrors[i].rdev == NULL ||
1340                            conf->mirrors[i].rdev->faulty) {
1341                         still_degraded = 1;
1342                         continue;
1343                 } else if (!conf->mirrors[i].rdev->in_sync ||
1344                            sector_nr + RESYNC_SECTORS > mddev->recovery_cp) {
1345                         bio->bi_rw = WRITE;
1346                         bio->bi_end_io = end_sync_write;
1347                         write_targets ++;
1348                 } else
1349                         /* no need to read or write here */
1350                         continue;
1351                 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1352                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1353                 bio->bi_private = r1_bio;
1354         }
1355
1356         if (write_targets == 0) {
1357                 /* There is nowhere to write, so all non-sync
1358                  * drives must be failed - so we are finished
1359                  */
1360                 sector_t rv = max_sector - sector_nr;
1361                 *skipped = 1;
1362                 put_buf(r1_bio);
1363                 rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1364                 return rv;
1365         }
1366
1367         nr_sectors = 0;
1368         sync_blocks = 0;
1369         do {
1370                 struct page *page;
1371                 int len = PAGE_SIZE;
1372                 if (sector_nr + (len>>9) > max_sector)
1373                         len = (max_sector - sector_nr) << 9;
1374                 if (len == 0)
1375                         break;
1376                 if (sync_blocks == 0) {
1377                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1378                                         &sync_blocks, still_degraded) &&
1379                                         !conf->fullsync)
1380                                 break;
1381                         if (sync_blocks < (PAGE_SIZE>>9))
1382                                 BUG();
1383                         if (len > (sync_blocks<<9))
1384                                 len = sync_blocks<<9;
1385                 }
1386
1387                 for (i=0 ; i < conf->raid_disks; i++) {
1388                         bio = r1_bio->bios[i];
1389                         if (bio->bi_end_io) {
1390                                 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1391                                 if (bio_add_page(bio, page, len, 0) == 0) {
1392                                         /* stop here */
1393                                         r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1394                                         while (i > 0) {
1395                                                 i--;
1396                                                 bio = r1_bio->bios[i];
1397                                                 if (bio->bi_end_io==NULL)
1398                                                         continue;
1399                                                 /* remove last page from this bio */
1400                                                 bio->bi_vcnt--;
1401                                                 bio->bi_size -= len;
1402                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1403                                         }
1404                                         goto bio_full;
1405                                 }
1406                         }
1407                 }
1408                 nr_sectors += len>>9;
1409                 sector_nr += len>>9;
1410                 sync_blocks -= (len>>9);
1411         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1412  bio_full:
1413         bio = r1_bio->bios[disk];
1414         r1_bio->sectors = nr_sectors;
1415
1416         md_sync_acct(mirror->rdev->bdev, nr_sectors);
1417
1418         generic_make_request(bio);
1419
1420         return nr_sectors;
1421 }
1422
1423 static int run(mddev_t *mddev)
1424 {
1425         conf_t *conf;
1426         int i, j, disk_idx;
1427         mirror_info_t *disk;
1428         mdk_rdev_t *rdev;
1429         struct list_head *tmp;
1430
1431         if (mddev->level != 1) {
1432                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1433                        mdname(mddev), mddev->level);
1434                 goto out;
1435         }
1436         /*
1437          * copy the already verified devices into our private RAID1
1438          * bookkeeping area. [whatever we allocate in run(),
1439          * should be freed in stop()]
1440          */
1441         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1442         mddev->private = conf;
1443         if (!conf)
1444                 goto out_no_mem;
1445
1446         memset(conf, 0, sizeof(*conf));
1447         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 
1448                                  GFP_KERNEL);
1449         if (!conf->mirrors)
1450                 goto out_no_mem;
1451
1452         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1453
1454         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1455         if (!conf->poolinfo)
1456                 goto out_no_mem;
1457         conf->poolinfo->mddev = mddev;
1458         conf->poolinfo->raid_disks = mddev->raid_disks;
1459         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1460                                           r1bio_pool_free,
1461                                           conf->poolinfo);
1462         if (!conf->r1bio_pool)
1463                 goto out_no_mem;
1464
1465         ITERATE_RDEV(mddev, rdev, tmp) {
1466                 disk_idx = rdev->raid_disk;
1467                 if (disk_idx >= mddev->raid_disks
1468                     || disk_idx < 0)
1469                         continue;
1470                 disk = conf->mirrors + disk_idx;
1471
1472                 disk->rdev = rdev;
1473
1474                 blk_queue_stack_limits(mddev->queue,
1475                                        rdev->bdev->bd_disk->queue);
1476                 /* as we don't honour merge_bvec_fn, we must never risk
1477                  * violating it, so limit ->max_sector to one PAGE, as
1478                  * a one page request is never in violation.
1479                  */
1480                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1481                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1482                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1483
1484                 disk->head_position = 0;
1485                 if (!rdev->faulty && rdev->in_sync)
1486                         conf->working_disks++;
1487         }
1488         conf->raid_disks = mddev->raid_disks;
1489         conf->mddev = mddev;
1490         spin_lock_init(&conf->device_lock);
1491         INIT_LIST_HEAD(&conf->retry_list);
1492         if (conf->working_disks == 1)
1493                 mddev->recovery_cp = MaxSector;
1494
1495         spin_lock_init(&conf->resync_lock);
1496         init_waitqueue_head(&conf->wait_idle);
1497         init_waitqueue_head(&conf->wait_resume);
1498
1499         bio_list_init(&conf->pending_bio_list);
1500         bio_list_init(&conf->flushing_bio_list);
1501
1502         if (!conf->working_disks) {
1503                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1504                         mdname(mddev));
1505                 goto out_free_conf;
1506         }
1507
1508         mddev->degraded = 0;
1509         for (i = 0; i < conf->raid_disks; i++) {
1510
1511                 disk = conf->mirrors + i;
1512
1513                 if (!disk->rdev) {
1514                         disk->head_position = 0;
1515                         mddev->degraded++;
1516                 }
1517         }
1518
1519         /*
1520          * find the first working one and use it as a starting point
1521          * to read balancing.
1522          */
1523         for (j = 0; j < conf->raid_disks &&
1524                      (!conf->mirrors[j].rdev ||
1525                       !conf->mirrors[j].rdev->in_sync) ; j++)
1526                 /* nothing */;
1527         conf->last_used = j;
1528
1529
1530         mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1531         if (!mddev->thread) {
1532                 printk(KERN_ERR
1533                        "raid1: couldn't allocate thread for %s\n",
1534                        mdname(mddev));
1535                 goto out_free_conf;
1536         }
1537         if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1538
1539         printk(KERN_INFO 
1540                 "raid1: raid set %s active with %d out of %d mirrors\n",
1541                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1542                 mddev->raid_disks);
1543         /*
1544          * Ok, everything is just fine now
1545          */
1546         mddev->array_size = mddev->size;
1547
1548         mddev->queue->unplug_fn = raid1_unplug;
1549         mddev->queue->issue_flush_fn = raid1_issue_flush;
1550
1551         return 0;
1552
1553 out_no_mem:
1554         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1555                mdname(mddev));
1556
1557 out_free_conf:
1558         if (conf) {
1559                 if (conf->r1bio_pool)
1560                         mempool_destroy(conf->r1bio_pool);
1561                 kfree(conf->mirrors);
1562                 kfree(conf->poolinfo);
1563                 kfree(conf);
1564                 mddev->private = NULL;
1565         }
1566 out:
1567         return -EIO;
1568 }
1569
1570 static int stop(mddev_t *mddev)
1571 {
1572         conf_t *conf = mddev_to_conf(mddev);
1573         struct bitmap *bitmap = mddev->bitmap;
1574         int behind_wait = 0;
1575
1576         /* wait for behind writes to complete */
1577         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1578                 behind_wait++;
1579                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1580                 set_current_state(TASK_UNINTERRUPTIBLE);
1581                 schedule_timeout(HZ); /* wait a second */
1582                 /* need to kick something here to make sure I/O goes? */
1583         }
1584
1585         md_unregister_thread(mddev->thread);
1586         mddev->thread = NULL;
1587         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1588         if (conf->r1bio_pool)
1589                 mempool_destroy(conf->r1bio_pool);
1590         kfree(conf->mirrors);
1591         kfree(conf->poolinfo);
1592         kfree(conf);
1593         mddev->private = NULL;
1594         return 0;
1595 }
1596
1597 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1598 {
1599         /* no resync is happening, and there is enough space
1600          * on all devices, so we can resize.
1601          * We need to make sure resync covers any new space.
1602          * If the array is shrinking we should possibly wait until
1603          * any io in the removed space completes, but it hardly seems
1604          * worth it.
1605          */
1606         mddev->array_size = sectors>>1;
1607         set_capacity(mddev->gendisk, mddev->array_size << 1);
1608         mddev->changed = 1;
1609         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1610                 mddev->recovery_cp = mddev->size << 1;
1611                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1612         }
1613         mddev->size = mddev->array_size;
1614         mddev->resync_max_sectors = sectors;
1615         return 0;
1616 }
1617
1618 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1619 {
1620         /* We need to:
1621          * 1/ resize the r1bio_pool
1622          * 2/ resize conf->mirrors
1623          *
1624          * We allocate a new r1bio_pool if we can.
1625          * Then raise a device barrier and wait until all IO stops.
1626          * Then resize conf->mirrors and swap in the new r1bio pool.
1627          *
1628          * At the same time, we "pack" the devices so that all the missing
1629          * devices have the higher raid_disk numbers.
1630          */
1631         mempool_t *newpool, *oldpool;
1632         struct pool_info *newpoolinfo;
1633         mirror_info_t *newmirrors;
1634         conf_t *conf = mddev_to_conf(mddev);
1635         int cnt;
1636
1637         int d, d2;
1638
1639         if (raid_disks < conf->raid_disks) {
1640                 cnt=0;
1641                 for (d= 0; d < conf->raid_disks; d++)
1642                         if (conf->mirrors[d].rdev)
1643                                 cnt++;
1644                 if (cnt > raid_disks)
1645                         return -EBUSY;
1646         }
1647
1648         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1649         if (!newpoolinfo)
1650                 return -ENOMEM;
1651         newpoolinfo->mddev = mddev;
1652         newpoolinfo->raid_disks = raid_disks;
1653
1654         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1655                                  r1bio_pool_free, newpoolinfo);
1656         if (!newpool) {
1657                 kfree(newpoolinfo);
1658                 return -ENOMEM;
1659         }
1660         newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1661         if (!newmirrors) {
1662                 kfree(newpoolinfo);
1663                 mempool_destroy(newpool);
1664                 return -ENOMEM;
1665         }
1666         memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1667
1668         spin_lock_irq(&conf->resync_lock);
1669         conf->barrier++;
1670         wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1671                             conf->resync_lock, raid1_unplug(mddev->queue));
1672         spin_unlock_irq(&conf->resync_lock);
1673
1674         /* ok, everything is stopped */
1675         oldpool = conf->r1bio_pool;
1676         conf->r1bio_pool = newpool;
1677
1678         for (d=d2=0; d < conf->raid_disks; d++)
1679                 if (conf->mirrors[d].rdev) {
1680                         conf->mirrors[d].rdev->raid_disk = d2;
1681                         newmirrors[d2++].rdev = conf->mirrors[d].rdev;
1682                 }
1683         kfree(conf->mirrors);
1684         conf->mirrors = newmirrors;
1685         kfree(conf->poolinfo);
1686         conf->poolinfo = newpoolinfo;
1687
1688         mddev->degraded += (raid_disks - conf->raid_disks);
1689         conf->raid_disks = mddev->raid_disks = raid_disks;
1690
1691         conf->last_used = 0; /* just make sure it is in-range */
1692         spin_lock_irq(&conf->resync_lock);
1693         conf->barrier--;
1694         spin_unlock_irq(&conf->resync_lock);
1695         wake_up(&conf->wait_resume);
1696         wake_up(&conf->wait_idle);
1697
1698
1699         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1700         md_wakeup_thread(mddev->thread);
1701
1702         mempool_destroy(oldpool);
1703         return 0;
1704 }
1705
1706 static void raid1_quiesce(mddev_t *mddev, int state)
1707 {
1708         conf_t *conf = mddev_to_conf(mddev);
1709
1710         switch(state) {
1711         case 1:
1712                 spin_lock_irq(&conf->resync_lock);
1713                 conf->barrier++;
1714                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1715                                     conf->resync_lock, raid1_unplug(mddev->queue));
1716                 spin_unlock_irq(&conf->resync_lock);
1717                 break;
1718         case 0:
1719                 spin_lock_irq(&conf->resync_lock);
1720                 conf->barrier--;
1721                 spin_unlock_irq(&conf->resync_lock);
1722                 wake_up(&conf->wait_resume);
1723                 wake_up(&conf->wait_idle);
1724                 break;
1725         }
1726         if (mddev->thread) {
1727                 if (mddev->bitmap)
1728                         mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1729                 else
1730                         mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
1731                 md_wakeup_thread(mddev->thread);
1732         }
1733 }
1734
1735
1736 static mdk_personality_t raid1_personality =
1737 {
1738         .name           = "raid1",
1739         .owner          = THIS_MODULE,
1740         .make_request   = make_request,
1741         .run            = run,
1742         .stop           = stop,
1743         .status         = status,
1744         .error_handler  = error,
1745         .hot_add_disk   = raid1_add_disk,
1746         .hot_remove_disk= raid1_remove_disk,
1747         .spare_active   = raid1_spare_active,
1748         .sync_request   = sync_request,
1749         .resize         = raid1_resize,
1750         .reshape        = raid1_reshape,
1751         .quiesce        = raid1_quiesce,
1752 };
1753
1754 static int __init raid_init(void)
1755 {
1756         return register_md_personality(RAID1, &raid1_personality);
1757 }
1758
1759 static void raid_exit(void)
1760 {
1761         unregister_md_personality(RAID1);
1762 }
1763
1764 module_init(raid_init);
1765 module_exit(raid_exit);
1766 MODULE_LICENSE("GPL");
1767 MODULE_ALIAS("md-personality-3"); /* RAID1 */