Merge branch 'linus' into x86/urgent
[linux-2.6] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/vmstat.h>
17 #include <linux/sched.h>
18
19 #ifdef CONFIG_VM_EVENT_COUNTERS
20 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
21 EXPORT_PER_CPU_SYMBOL(vm_event_states);
22
23 static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
24 {
25         int cpu;
26         int i;
27
28         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
29
30         for_each_cpu(cpu, cpumask) {
31                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
32
33                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
34                         ret[i] += this->event[i];
35         }
36 }
37
38 /*
39  * Accumulate the vm event counters across all CPUs.
40  * The result is unavoidably approximate - it can change
41  * during and after execution of this function.
42 */
43 void all_vm_events(unsigned long *ret)
44 {
45         get_online_cpus();
46         sum_vm_events(ret, cpu_online_mask);
47         put_online_cpus();
48 }
49 EXPORT_SYMBOL_GPL(all_vm_events);
50
51 #ifdef CONFIG_HOTPLUG
52 /*
53  * Fold the foreign cpu events into our own.
54  *
55  * This is adding to the events on one processor
56  * but keeps the global counts constant.
57  */
58 void vm_events_fold_cpu(int cpu)
59 {
60         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
61         int i;
62
63         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
64                 count_vm_events(i, fold_state->event[i]);
65                 fold_state->event[i] = 0;
66         }
67 }
68 #endif /* CONFIG_HOTPLUG */
69
70 #endif /* CONFIG_VM_EVENT_COUNTERS */
71
72 /*
73  * Manage combined zone based / global counters
74  *
75  * vm_stat contains the global counters
76  */
77 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
78 EXPORT_SYMBOL(vm_stat);
79
80 #ifdef CONFIG_SMP
81
82 static int calculate_threshold(struct zone *zone)
83 {
84         int threshold;
85         int mem;        /* memory in 128 MB units */
86
87         /*
88          * The threshold scales with the number of processors and the amount
89          * of memory per zone. More memory means that we can defer updates for
90          * longer, more processors could lead to more contention.
91          * fls() is used to have a cheap way of logarithmic scaling.
92          *
93          * Some sample thresholds:
94          *
95          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
96          * ------------------------------------------------------------------
97          * 8            1               1       0.9-1 GB        4
98          * 16           2               2       0.9-1 GB        4
99          * 20           2               2       1-2 GB          5
100          * 24           2               2       2-4 GB          6
101          * 28           2               2       4-8 GB          7
102          * 32           2               2       8-16 GB         8
103          * 4            2               2       <128M           1
104          * 30           4               3       2-4 GB          5
105          * 48           4               3       8-16 GB         8
106          * 32           8               4       1-2 GB          4
107          * 32           8               4       0.9-1GB         4
108          * 10           16              5       <128M           1
109          * 40           16              5       900M            4
110          * 70           64              7       2-4 GB          5
111          * 84           64              7       4-8 GB          6
112          * 108          512             9       4-8 GB          6
113          * 125          1024            10      8-16 GB         8
114          * 125          1024            10      16-32 GB        9
115          */
116
117         mem = zone->present_pages >> (27 - PAGE_SHIFT);
118
119         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
120
121         /*
122          * Maximum threshold is 125
123          */
124         threshold = min(125, threshold);
125
126         return threshold;
127 }
128
129 /*
130  * Refresh the thresholds for each zone.
131  */
132 static void refresh_zone_stat_thresholds(void)
133 {
134         struct zone *zone;
135         int cpu;
136         int threshold;
137
138         for_each_populated_zone(zone) {
139                 threshold = calculate_threshold(zone);
140
141                 for_each_online_cpu(cpu)
142                         zone_pcp(zone, cpu)->stat_threshold = threshold;
143         }
144 }
145
146 /*
147  * For use when we know that interrupts are disabled.
148  */
149 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
150                                 int delta)
151 {
152         struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
153         s8 *p = pcp->vm_stat_diff + item;
154         long x;
155
156         x = delta + *p;
157
158         if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
159                 zone_page_state_add(x, zone, item);
160                 x = 0;
161         }
162         *p = x;
163 }
164 EXPORT_SYMBOL(__mod_zone_page_state);
165
166 /*
167  * For an unknown interrupt state
168  */
169 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
170                                         int delta)
171 {
172         unsigned long flags;
173
174         local_irq_save(flags);
175         __mod_zone_page_state(zone, item, delta);
176         local_irq_restore(flags);
177 }
178 EXPORT_SYMBOL(mod_zone_page_state);
179
180 /*
181  * Optimized increment and decrement functions.
182  *
183  * These are only for a single page and therefore can take a struct page *
184  * argument instead of struct zone *. This allows the inclusion of the code
185  * generated for page_zone(page) into the optimized functions.
186  *
187  * No overflow check is necessary and therefore the differential can be
188  * incremented or decremented in place which may allow the compilers to
189  * generate better code.
190  * The increment or decrement is known and therefore one boundary check can
191  * be omitted.
192  *
193  * NOTE: These functions are very performance sensitive. Change only
194  * with care.
195  *
196  * Some processors have inc/dec instructions that are atomic vs an interrupt.
197  * However, the code must first determine the differential location in a zone
198  * based on the processor number and then inc/dec the counter. There is no
199  * guarantee without disabling preemption that the processor will not change
200  * in between and therefore the atomicity vs. interrupt cannot be exploited
201  * in a useful way here.
202  */
203 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
204 {
205         struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
206         s8 *p = pcp->vm_stat_diff + item;
207
208         (*p)++;
209
210         if (unlikely(*p > pcp->stat_threshold)) {
211                 int overstep = pcp->stat_threshold / 2;
212
213                 zone_page_state_add(*p + overstep, zone, item);
214                 *p = -overstep;
215         }
216 }
217
218 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
219 {
220         __inc_zone_state(page_zone(page), item);
221 }
222 EXPORT_SYMBOL(__inc_zone_page_state);
223
224 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
225 {
226         struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
227         s8 *p = pcp->vm_stat_diff + item;
228
229         (*p)--;
230
231         if (unlikely(*p < - pcp->stat_threshold)) {
232                 int overstep = pcp->stat_threshold / 2;
233
234                 zone_page_state_add(*p - overstep, zone, item);
235                 *p = overstep;
236         }
237 }
238
239 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
240 {
241         __dec_zone_state(page_zone(page), item);
242 }
243 EXPORT_SYMBOL(__dec_zone_page_state);
244
245 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
246 {
247         unsigned long flags;
248
249         local_irq_save(flags);
250         __inc_zone_state(zone, item);
251         local_irq_restore(flags);
252 }
253
254 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
255 {
256         unsigned long flags;
257         struct zone *zone;
258
259         zone = page_zone(page);
260         local_irq_save(flags);
261         __inc_zone_state(zone, item);
262         local_irq_restore(flags);
263 }
264 EXPORT_SYMBOL(inc_zone_page_state);
265
266 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
267 {
268         unsigned long flags;
269
270         local_irq_save(flags);
271         __dec_zone_page_state(page, item);
272         local_irq_restore(flags);
273 }
274 EXPORT_SYMBOL(dec_zone_page_state);
275
276 /*
277  * Update the zone counters for one cpu.
278  *
279  * The cpu specified must be either the current cpu or a processor that
280  * is not online. If it is the current cpu then the execution thread must
281  * be pinned to the current cpu.
282  *
283  * Note that refresh_cpu_vm_stats strives to only access
284  * node local memory. The per cpu pagesets on remote zones are placed
285  * in the memory local to the processor using that pageset. So the
286  * loop over all zones will access a series of cachelines local to
287  * the processor.
288  *
289  * The call to zone_page_state_add updates the cachelines with the
290  * statistics in the remote zone struct as well as the global cachelines
291  * with the global counters. These could cause remote node cache line
292  * bouncing and will have to be only done when necessary.
293  */
294 void refresh_cpu_vm_stats(int cpu)
295 {
296         struct zone *zone;
297         int i;
298         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
299
300         for_each_populated_zone(zone) {
301                 struct per_cpu_pageset *p;
302
303                 p = zone_pcp(zone, cpu);
304
305                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
306                         if (p->vm_stat_diff[i]) {
307                                 unsigned long flags;
308                                 int v;
309
310                                 local_irq_save(flags);
311                                 v = p->vm_stat_diff[i];
312                                 p->vm_stat_diff[i] = 0;
313                                 local_irq_restore(flags);
314                                 atomic_long_add(v, &zone->vm_stat[i]);
315                                 global_diff[i] += v;
316 #ifdef CONFIG_NUMA
317                                 /* 3 seconds idle till flush */
318                                 p->expire = 3;
319 #endif
320                         }
321                 cond_resched();
322 #ifdef CONFIG_NUMA
323                 /*
324                  * Deal with draining the remote pageset of this
325                  * processor
326                  *
327                  * Check if there are pages remaining in this pageset
328                  * if not then there is nothing to expire.
329                  */
330                 if (!p->expire || !p->pcp.count)
331                         continue;
332
333                 /*
334                  * We never drain zones local to this processor.
335                  */
336                 if (zone_to_nid(zone) == numa_node_id()) {
337                         p->expire = 0;
338                         continue;
339                 }
340
341                 p->expire--;
342                 if (p->expire)
343                         continue;
344
345                 if (p->pcp.count)
346                         drain_zone_pages(zone, &p->pcp);
347 #endif
348         }
349
350         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
351                 if (global_diff[i])
352                         atomic_long_add(global_diff[i], &vm_stat[i]);
353 }
354
355 #endif
356
357 #ifdef CONFIG_NUMA
358 /*
359  * zonelist = the list of zones passed to the allocator
360  * z        = the zone from which the allocation occurred.
361  *
362  * Must be called with interrupts disabled.
363  */
364 void zone_statistics(struct zone *preferred_zone, struct zone *z)
365 {
366         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
367                 __inc_zone_state(z, NUMA_HIT);
368         } else {
369                 __inc_zone_state(z, NUMA_MISS);
370                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
371         }
372         if (z->node == numa_node_id())
373                 __inc_zone_state(z, NUMA_LOCAL);
374         else
375                 __inc_zone_state(z, NUMA_OTHER);
376 }
377 #endif
378
379 #ifdef CONFIG_PROC_FS
380 #include <linux/proc_fs.h>
381 #include <linux/seq_file.h>
382
383 static char * const migratetype_names[MIGRATE_TYPES] = {
384         "Unmovable",
385         "Reclaimable",
386         "Movable",
387         "Reserve",
388         "Isolate",
389 };
390
391 static void *frag_start(struct seq_file *m, loff_t *pos)
392 {
393         pg_data_t *pgdat;
394         loff_t node = *pos;
395         for (pgdat = first_online_pgdat();
396              pgdat && node;
397              pgdat = next_online_pgdat(pgdat))
398                 --node;
399
400         return pgdat;
401 }
402
403 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
404 {
405         pg_data_t *pgdat = (pg_data_t *)arg;
406
407         (*pos)++;
408         return next_online_pgdat(pgdat);
409 }
410
411 static void frag_stop(struct seq_file *m, void *arg)
412 {
413 }
414
415 /* Walk all the zones in a node and print using a callback */
416 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
417                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
418 {
419         struct zone *zone;
420         struct zone *node_zones = pgdat->node_zones;
421         unsigned long flags;
422
423         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
424                 if (!populated_zone(zone))
425                         continue;
426
427                 spin_lock_irqsave(&zone->lock, flags);
428                 print(m, pgdat, zone);
429                 spin_unlock_irqrestore(&zone->lock, flags);
430         }
431 }
432
433 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
434                                                 struct zone *zone)
435 {
436         int order;
437
438         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
439         for (order = 0; order < MAX_ORDER; ++order)
440                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
441         seq_putc(m, '\n');
442 }
443
444 /*
445  * This walks the free areas for each zone.
446  */
447 static int frag_show(struct seq_file *m, void *arg)
448 {
449         pg_data_t *pgdat = (pg_data_t *)arg;
450         walk_zones_in_node(m, pgdat, frag_show_print);
451         return 0;
452 }
453
454 static void pagetypeinfo_showfree_print(struct seq_file *m,
455                                         pg_data_t *pgdat, struct zone *zone)
456 {
457         int order, mtype;
458
459         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
460                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
461                                         pgdat->node_id,
462                                         zone->name,
463                                         migratetype_names[mtype]);
464                 for (order = 0; order < MAX_ORDER; ++order) {
465                         unsigned long freecount = 0;
466                         struct free_area *area;
467                         struct list_head *curr;
468
469                         area = &(zone->free_area[order]);
470
471                         list_for_each(curr, &area->free_list[mtype])
472                                 freecount++;
473                         seq_printf(m, "%6lu ", freecount);
474                 }
475                 seq_putc(m, '\n');
476         }
477 }
478
479 /* Print out the free pages at each order for each migatetype */
480 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
481 {
482         int order;
483         pg_data_t *pgdat = (pg_data_t *)arg;
484
485         /* Print header */
486         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
487         for (order = 0; order < MAX_ORDER; ++order)
488                 seq_printf(m, "%6d ", order);
489         seq_putc(m, '\n');
490
491         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
492
493         return 0;
494 }
495
496 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
497                                         pg_data_t *pgdat, struct zone *zone)
498 {
499         int mtype;
500         unsigned long pfn;
501         unsigned long start_pfn = zone->zone_start_pfn;
502         unsigned long end_pfn = start_pfn + zone->spanned_pages;
503         unsigned long count[MIGRATE_TYPES] = { 0, };
504
505         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
506                 struct page *page;
507
508                 if (!pfn_valid(pfn))
509                         continue;
510
511                 page = pfn_to_page(pfn);
512 #ifdef CONFIG_ARCH_FLATMEM_HAS_HOLES
513                 /*
514                  * Ordinarily, memory holes in flatmem still have a valid
515                  * memmap for the PFN range. However, an architecture for
516                  * embedded systems (e.g. ARM) can free up the memmap backing
517                  * holes to save memory on the assumption the memmap is
518                  * never used. The page_zone linkages are then broken even
519                  * though pfn_valid() returns true. Skip the page if the
520                  * linkages are broken. Even if this test passed, the impact
521                  * is that the counters for the movable type are off but
522                  * fragmentation monitoring is likely meaningless on small
523                  * systems.
524                  */
525                 if (page_zone(page) != zone)
526                         continue;
527 #endif
528                 mtype = get_pageblock_migratetype(page);
529
530                 if (mtype < MIGRATE_TYPES)
531                         count[mtype]++;
532         }
533
534         /* Print counts */
535         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
536         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
537                 seq_printf(m, "%12lu ", count[mtype]);
538         seq_putc(m, '\n');
539 }
540
541 /* Print out the free pages at each order for each migratetype */
542 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
543 {
544         int mtype;
545         pg_data_t *pgdat = (pg_data_t *)arg;
546
547         seq_printf(m, "\n%-23s", "Number of blocks type ");
548         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
549                 seq_printf(m, "%12s ", migratetype_names[mtype]);
550         seq_putc(m, '\n');
551         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
552
553         return 0;
554 }
555
556 /*
557  * This prints out statistics in relation to grouping pages by mobility.
558  * It is expensive to collect so do not constantly read the file.
559  */
560 static int pagetypeinfo_show(struct seq_file *m, void *arg)
561 {
562         pg_data_t *pgdat = (pg_data_t *)arg;
563
564         /* check memoryless node */
565         if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
566                 return 0;
567
568         seq_printf(m, "Page block order: %d\n", pageblock_order);
569         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
570         seq_putc(m, '\n');
571         pagetypeinfo_showfree(m, pgdat);
572         pagetypeinfo_showblockcount(m, pgdat);
573
574         return 0;
575 }
576
577 static const struct seq_operations fragmentation_op = {
578         .start  = frag_start,
579         .next   = frag_next,
580         .stop   = frag_stop,
581         .show   = frag_show,
582 };
583
584 static int fragmentation_open(struct inode *inode, struct file *file)
585 {
586         return seq_open(file, &fragmentation_op);
587 }
588
589 static const struct file_operations fragmentation_file_operations = {
590         .open           = fragmentation_open,
591         .read           = seq_read,
592         .llseek         = seq_lseek,
593         .release        = seq_release,
594 };
595
596 static const struct seq_operations pagetypeinfo_op = {
597         .start  = frag_start,
598         .next   = frag_next,
599         .stop   = frag_stop,
600         .show   = pagetypeinfo_show,
601 };
602
603 static int pagetypeinfo_open(struct inode *inode, struct file *file)
604 {
605         return seq_open(file, &pagetypeinfo_op);
606 }
607
608 static const struct file_operations pagetypeinfo_file_ops = {
609         .open           = pagetypeinfo_open,
610         .read           = seq_read,
611         .llseek         = seq_lseek,
612         .release        = seq_release,
613 };
614
615 #ifdef CONFIG_ZONE_DMA
616 #define TEXT_FOR_DMA(xx) xx "_dma",
617 #else
618 #define TEXT_FOR_DMA(xx)
619 #endif
620
621 #ifdef CONFIG_ZONE_DMA32
622 #define TEXT_FOR_DMA32(xx) xx "_dma32",
623 #else
624 #define TEXT_FOR_DMA32(xx)
625 #endif
626
627 #ifdef CONFIG_HIGHMEM
628 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
629 #else
630 #define TEXT_FOR_HIGHMEM(xx)
631 #endif
632
633 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
634                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
635
636 static const char * const vmstat_text[] = {
637         /* Zoned VM counters */
638         "nr_free_pages",
639         "nr_inactive_anon",
640         "nr_active_anon",
641         "nr_inactive_file",
642         "nr_active_file",
643 #ifdef CONFIG_UNEVICTABLE_LRU
644         "nr_unevictable",
645         "nr_mlock",
646 #endif
647         "nr_anon_pages",
648         "nr_mapped",
649         "nr_file_pages",
650         "nr_dirty",
651         "nr_writeback",
652         "nr_slab_reclaimable",
653         "nr_slab_unreclaimable",
654         "nr_page_table_pages",
655         "nr_unstable",
656         "nr_bounce",
657         "nr_vmscan_write",
658         "nr_writeback_temp",
659
660 #ifdef CONFIG_NUMA
661         "numa_hit",
662         "numa_miss",
663         "numa_foreign",
664         "numa_interleave",
665         "numa_local",
666         "numa_other",
667 #endif
668
669 #ifdef CONFIG_VM_EVENT_COUNTERS
670         "pgpgin",
671         "pgpgout",
672         "pswpin",
673         "pswpout",
674
675         TEXTS_FOR_ZONES("pgalloc")
676
677         "pgfree",
678         "pgactivate",
679         "pgdeactivate",
680
681         "pgfault",
682         "pgmajfault",
683
684         TEXTS_FOR_ZONES("pgrefill")
685         TEXTS_FOR_ZONES("pgsteal")
686         TEXTS_FOR_ZONES("pgscan_kswapd")
687         TEXTS_FOR_ZONES("pgscan_direct")
688
689         "pginodesteal",
690         "slabs_scanned",
691         "kswapd_steal",
692         "kswapd_inodesteal",
693         "pageoutrun",
694         "allocstall",
695
696         "pgrotated",
697 #ifdef CONFIG_HUGETLB_PAGE
698         "htlb_buddy_alloc_success",
699         "htlb_buddy_alloc_fail",
700 #endif
701 #ifdef CONFIG_UNEVICTABLE_LRU
702         "unevictable_pgs_culled",
703         "unevictable_pgs_scanned",
704         "unevictable_pgs_rescued",
705         "unevictable_pgs_mlocked",
706         "unevictable_pgs_munlocked",
707         "unevictable_pgs_cleared",
708         "unevictable_pgs_stranded",
709         "unevictable_pgs_mlockfreed",
710 #endif
711 #endif
712 };
713
714 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
715                                                         struct zone *zone)
716 {
717         int i;
718         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
719         seq_printf(m,
720                    "\n  pages free     %lu"
721                    "\n        min      %lu"
722                    "\n        low      %lu"
723                    "\n        high     %lu"
724                    "\n        scanned  %lu (aa: %lu ia: %lu af: %lu if: %lu)"
725                    "\n        spanned  %lu"
726                    "\n        present  %lu",
727                    zone_page_state(zone, NR_FREE_PAGES),
728                    zone->pages_min,
729                    zone->pages_low,
730                    zone->pages_high,
731                    zone->pages_scanned,
732                    zone->lru[LRU_ACTIVE_ANON].nr_scan,
733                    zone->lru[LRU_INACTIVE_ANON].nr_scan,
734                    zone->lru[LRU_ACTIVE_FILE].nr_scan,
735                    zone->lru[LRU_INACTIVE_FILE].nr_scan,
736                    zone->spanned_pages,
737                    zone->present_pages);
738
739         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
740                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
741                                 zone_page_state(zone, i));
742
743         seq_printf(m,
744                    "\n        protection: (%lu",
745                    zone->lowmem_reserve[0]);
746         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
747                 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
748         seq_printf(m,
749                    ")"
750                    "\n  pagesets");
751         for_each_online_cpu(i) {
752                 struct per_cpu_pageset *pageset;
753
754                 pageset = zone_pcp(zone, i);
755                 seq_printf(m,
756                            "\n    cpu: %i"
757                            "\n              count: %i"
758                            "\n              high:  %i"
759                            "\n              batch: %i",
760                            i,
761                            pageset->pcp.count,
762                            pageset->pcp.high,
763                            pageset->pcp.batch);
764 #ifdef CONFIG_SMP
765                 seq_printf(m, "\n  vm stats threshold: %d",
766                                 pageset->stat_threshold);
767 #endif
768         }
769         seq_printf(m,
770                    "\n  all_unreclaimable: %u"
771                    "\n  prev_priority:     %i"
772                    "\n  start_pfn:         %lu"
773                    "\n  inactive_ratio:    %u",
774                            zone_is_all_unreclaimable(zone),
775                    zone->prev_priority,
776                    zone->zone_start_pfn,
777                    zone->inactive_ratio);
778         seq_putc(m, '\n');
779 }
780
781 /*
782  * Output information about zones in @pgdat.
783  */
784 static int zoneinfo_show(struct seq_file *m, void *arg)
785 {
786         pg_data_t *pgdat = (pg_data_t *)arg;
787         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
788         return 0;
789 }
790
791 static const struct seq_operations zoneinfo_op = {
792         .start  = frag_start, /* iterate over all zones. The same as in
793                                * fragmentation. */
794         .next   = frag_next,
795         .stop   = frag_stop,
796         .show   = zoneinfo_show,
797 };
798
799 static int zoneinfo_open(struct inode *inode, struct file *file)
800 {
801         return seq_open(file, &zoneinfo_op);
802 }
803
804 static const struct file_operations proc_zoneinfo_file_operations = {
805         .open           = zoneinfo_open,
806         .read           = seq_read,
807         .llseek         = seq_lseek,
808         .release        = seq_release,
809 };
810
811 static void *vmstat_start(struct seq_file *m, loff_t *pos)
812 {
813         unsigned long *v;
814 #ifdef CONFIG_VM_EVENT_COUNTERS
815         unsigned long *e;
816 #endif
817         int i;
818
819         if (*pos >= ARRAY_SIZE(vmstat_text))
820                 return NULL;
821
822 #ifdef CONFIG_VM_EVENT_COUNTERS
823         v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
824                         + sizeof(struct vm_event_state), GFP_KERNEL);
825 #else
826         v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
827                         GFP_KERNEL);
828 #endif
829         m->private = v;
830         if (!v)
831                 return ERR_PTR(-ENOMEM);
832         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
833                 v[i] = global_page_state(i);
834 #ifdef CONFIG_VM_EVENT_COUNTERS
835         e = v + NR_VM_ZONE_STAT_ITEMS;
836         all_vm_events(e);
837         e[PGPGIN] /= 2;         /* sectors -> kbytes */
838         e[PGPGOUT] /= 2;
839 #endif
840         return v + *pos;
841 }
842
843 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
844 {
845         (*pos)++;
846         if (*pos >= ARRAY_SIZE(vmstat_text))
847                 return NULL;
848         return (unsigned long *)m->private + *pos;
849 }
850
851 static int vmstat_show(struct seq_file *m, void *arg)
852 {
853         unsigned long *l = arg;
854         unsigned long off = l - (unsigned long *)m->private;
855
856         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
857         return 0;
858 }
859
860 static void vmstat_stop(struct seq_file *m, void *arg)
861 {
862         kfree(m->private);
863         m->private = NULL;
864 }
865
866 static const struct seq_operations vmstat_op = {
867         .start  = vmstat_start,
868         .next   = vmstat_next,
869         .stop   = vmstat_stop,
870         .show   = vmstat_show,
871 };
872
873 static int vmstat_open(struct inode *inode, struct file *file)
874 {
875         return seq_open(file, &vmstat_op);
876 }
877
878 static const struct file_operations proc_vmstat_file_operations = {
879         .open           = vmstat_open,
880         .read           = seq_read,
881         .llseek         = seq_lseek,
882         .release        = seq_release,
883 };
884 #endif /* CONFIG_PROC_FS */
885
886 #ifdef CONFIG_SMP
887 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
888 int sysctl_stat_interval __read_mostly = HZ;
889
890 static void vmstat_update(struct work_struct *w)
891 {
892         refresh_cpu_vm_stats(smp_processor_id());
893         schedule_delayed_work(&__get_cpu_var(vmstat_work),
894                 sysctl_stat_interval);
895 }
896
897 static void __cpuinit start_cpu_timer(int cpu)
898 {
899         struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
900
901         INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
902         schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
903 }
904
905 /*
906  * Use the cpu notifier to insure that the thresholds are recalculated
907  * when necessary.
908  */
909 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
910                 unsigned long action,
911                 void *hcpu)
912 {
913         long cpu = (long)hcpu;
914
915         switch (action) {
916         case CPU_ONLINE:
917         case CPU_ONLINE_FROZEN:
918                 start_cpu_timer(cpu);
919                 break;
920         case CPU_DOWN_PREPARE:
921         case CPU_DOWN_PREPARE_FROZEN:
922                 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
923                 per_cpu(vmstat_work, cpu).work.func = NULL;
924                 break;
925         case CPU_DOWN_FAILED:
926         case CPU_DOWN_FAILED_FROZEN:
927                 start_cpu_timer(cpu);
928                 break;
929         case CPU_DEAD:
930         case CPU_DEAD_FROZEN:
931                 refresh_zone_stat_thresholds();
932                 break;
933         default:
934                 break;
935         }
936         return NOTIFY_OK;
937 }
938
939 static struct notifier_block __cpuinitdata vmstat_notifier =
940         { &vmstat_cpuup_callback, NULL, 0 };
941 #endif
942
943 static int __init setup_vmstat(void)
944 {
945 #ifdef CONFIG_SMP
946         int cpu;
947
948         refresh_zone_stat_thresholds();
949         register_cpu_notifier(&vmstat_notifier);
950
951         for_each_online_cpu(cpu)
952                 start_cpu_timer(cpu);
953 #endif
954 #ifdef CONFIG_PROC_FS
955         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
956         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
957         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
958         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
959 #endif
960         return 0;
961 }
962 module_init(setup_vmstat)