Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling unit.
23  *
24  * This unit is responsible for wear-leveling. It works in terms of physical
25  * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26  * volumes, etc. From this unit's perspective all physical eraseblocks are of
27  * two types - used and free. Used physical eraseblocks are those that were
28  * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29  * those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only 0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL unit by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL unit.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44  * an "optimal" physical eraseblock. For example, when it is known that the
45  * physical eraseblock will be "put" soon because it contains short-term data,
46  * the WL unit may pick a free physical eraseblock with low erase counter, and
47  * so forth.
48  *
49  * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
50  *
51  * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52  * physical eraseblock, it has to be moved. Technically this is the same as
53  * moving it for wear-leveling reasons.
54  *
55  * As it was said, for the UBI unit all physical eraseblocks are either "free"
56  * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57  * eraseblocks are kept in a set of different RB-trees: @wl->used,
58  * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
59  *
60  * Note, in this implementation, we keep a small in-RAM object for each physical
61  * eraseblock. This is surely not a scalable solution. But it appears to be good
62  * enough for moderately large flashes and it is simple. In future, one may
63  * re-work this unit and make it more scalable.
64  *
65  * At the moment this unit does not utilize the sequence number, which was
66  * introduced relatively recently. But it would be wise to do this because the
67  * sequence number of a logical eraseblock characterizes how old is it. For
68  * example, when we move a PEB with low erase counter, and we need to pick the
69  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70  * pick target PEB with an average EC if our PEB is not very "old". This is a
71  * room for future re-works of the WL unit.
72  *
73  * FIXME: looks too complex, should be simplified (later).
74  */
75
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/freezer.h>
79 #include <linux/kthread.h>
80 #include "ubi.h"
81
82 /* Number of physical eraseblocks reserved for wear-leveling purposes */
83 #define WL_RESERVED_PEBS 1
84
85 /*
86  * How many erase cycles are short term, unknown, and long term physical
87  * eraseblocks protected.
88  */
89 #define ST_PROTECTION 16
90 #define U_PROTECTION  10
91 #define LT_PROTECTION 4
92
93 /*
94  * Maximum difference between two erase counters. If this threshold is
95  * exceeded, the WL unit starts moving data from used physical eraseblocks with
96  * low erase counter to free physical eraseblocks with high erase counter.
97  */
98 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
99
100 /*
101  * When a physical eraseblock is moved, the WL unit has to pick the target
102  * physical eraseblock to move to. The simplest way would be just to pick the
103  * one with the highest erase counter. But in certain workloads this could lead
104  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
105  * situation when the picked physical eraseblock is constantly erased after the
106  * data is written to it. So, we have a constant which limits the highest erase
107  * counter of the free physical eraseblock to pick. Namely, the WL unit does
108  * not pick eraseblocks with erase counter greater then the lowest erase
109  * counter plus %WL_FREE_MAX_DIFF.
110  */
111 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
112
113 /*
114  * Maximum number of consecutive background thread failures which is enough to
115  * switch to read-only mode.
116  */
117 #define WL_MAX_FAILURES 32
118
119 /**
120  * struct ubi_wl_prot_entry - PEB protection entry.
121  * @rb_pnum: link in the @wl->prot.pnum RB-tree
122  * @rb_aec: link in the @wl->prot.aec RB-tree
123  * @abs_ec: the absolute erase counter value when the protection ends
124  * @e: the wear-leveling entry of the physical eraseblock under protection
125  *
126  * When the WL unit returns a physical eraseblock, the physical eraseblock is
127  * protected from being moved for some "time". For this reason, the physical
128  * eraseblock is not directly moved from the @wl->free tree to the @wl->used
129  * tree. There is one more tree in between where this physical eraseblock is
130  * temporarily stored (@wl->prot).
131  *
132  * All this protection stuff is needed because:
133  *  o we don't want to move physical eraseblocks just after we have given them
134  *    to the user; instead, we first want to let users fill them up with data;
135  *
136  *  o there is a chance that the user will put the physical eraseblock very
137  *    soon, so it makes sense not to move it for some time, but wait; this is
138  *    especially important in case of "short term" physical eraseblocks.
139  *
140  * Physical eraseblocks stay protected only for limited time. But the "time" is
141  * measured in erase cycles in this case. This is implemented with help of the
142  * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
143  * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
144  * the @wl->used tree.
145  *
146  * Protected physical eraseblocks are searched by physical eraseblock number
147  * (when they are put) and by the absolute erase counter (to check if it is
148  * time to move them to the @wl->used tree). So there are actually 2 RB-trees
149  * storing the protected physical eraseblocks: @wl->prot.pnum and
150  * @wl->prot.aec. They are referred to as the "protection" trees. The
151  * first one is indexed by the physical eraseblock number. The second one is
152  * indexed by the absolute erase counter. Both trees store
153  * &struct ubi_wl_prot_entry objects.
154  *
155  * Each physical eraseblock has 2 main states: free and used. The former state
156  * corresponds to the @wl->free tree. The latter state is split up on several
157  * sub-states:
158  * o the WL movement is allowed (@wl->used tree);
159  * o the WL movement is temporarily prohibited (@wl->prot.pnum and
160  * @wl->prot.aec trees);
161  * o scrubbing is needed (@wl->scrub tree).
162  *
163  * Depending on the sub-state, wear-leveling entries of the used physical
164  * eraseblocks may be kept in one of those trees.
165  */
166 struct ubi_wl_prot_entry {
167         struct rb_node rb_pnum;
168         struct rb_node rb_aec;
169         unsigned long long abs_ec;
170         struct ubi_wl_entry *e;
171 };
172
173 /**
174  * struct ubi_work - UBI work description data structure.
175  * @list: a link in the list of pending works
176  * @func: worker function
177  * @priv: private data of the worker function
178  *
179  * @e: physical eraseblock to erase
180  * @torture: if the physical eraseblock has to be tortured
181  *
182  * The @func pointer points to the worker function. If the @cancel argument is
183  * not zero, the worker has to free the resources and exit immediately. The
184  * worker has to return zero in case of success and a negative error code in
185  * case of failure.
186  */
187 struct ubi_work {
188         struct list_head list;
189         int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
190         /* The below fields are only relevant to erasure works */
191         struct ubi_wl_entry *e;
192         int torture;
193 };
194
195 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
196 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
197 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
198                                      struct rb_root *root);
199 #else
200 #define paranoid_check_ec(ubi, pnum, ec) 0
201 #define paranoid_check_in_wl_tree(e, root)
202 #endif
203
204 /**
205  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
206  * @e: the wear-leveling entry to add
207  * @root: the root of the tree
208  *
209  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
210  * the @ubi->used and @ubi->free RB-trees.
211  */
212 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
213 {
214         struct rb_node **p, *parent = NULL;
215
216         p = &root->rb_node;
217         while (*p) {
218                 struct ubi_wl_entry *e1;
219
220                 parent = *p;
221                 e1 = rb_entry(parent, struct ubi_wl_entry, rb);
222
223                 if (e->ec < e1->ec)
224                         p = &(*p)->rb_left;
225                 else if (e->ec > e1->ec)
226                         p = &(*p)->rb_right;
227                 else {
228                         ubi_assert(e->pnum != e1->pnum);
229                         if (e->pnum < e1->pnum)
230                                 p = &(*p)->rb_left;
231                         else
232                                 p = &(*p)->rb_right;
233                 }
234         }
235
236         rb_link_node(&e->rb, parent, p);
237         rb_insert_color(&e->rb, root);
238 }
239
240 /**
241  * do_work - do one pending work.
242  * @ubi: UBI device description object
243  *
244  * This function returns zero in case of success and a negative error code in
245  * case of failure.
246  */
247 static int do_work(struct ubi_device *ubi)
248 {
249         int err;
250         struct ubi_work *wrk;
251
252         cond_resched();
253
254         /*
255          * @ubi->work_sem is used to synchronize with the workers. Workers take
256          * it in read mode, so many of them may be doing works at a time. But
257          * the queue flush code has to be sure the whole queue of works is
258          * done, and it takes the mutex in write mode.
259          */
260         down_read(&ubi->work_sem);
261         spin_lock(&ubi->wl_lock);
262         if (list_empty(&ubi->works)) {
263                 spin_unlock(&ubi->wl_lock);
264                 up_read(&ubi->work_sem);
265                 return 0;
266         }
267
268         wrk = list_entry(ubi->works.next, struct ubi_work, list);
269         list_del(&wrk->list);
270         ubi->works_count -= 1;
271         ubi_assert(ubi->works_count >= 0);
272         spin_unlock(&ubi->wl_lock);
273
274         /*
275          * Call the worker function. Do not touch the work structure
276          * after this call as it will have been freed or reused by that
277          * time by the worker function.
278          */
279         err = wrk->func(ubi, wrk, 0);
280         if (err)
281                 ubi_err("work failed with error code %d", err);
282         up_read(&ubi->work_sem);
283
284         return err;
285 }
286
287 /**
288  * produce_free_peb - produce a free physical eraseblock.
289  * @ubi: UBI device description object
290  *
291  * This function tries to make a free PEB by means of synchronous execution of
292  * pending works. This may be needed if, for example the background thread is
293  * disabled. Returns zero in case of success and a negative error code in case
294  * of failure.
295  */
296 static int produce_free_peb(struct ubi_device *ubi)
297 {
298         int err;
299
300         spin_lock(&ubi->wl_lock);
301         while (!ubi->free.rb_node) {
302                 spin_unlock(&ubi->wl_lock);
303
304                 dbg_wl("do one work synchronously");
305                 err = do_work(ubi);
306                 if (err)
307                         return err;
308
309                 spin_lock(&ubi->wl_lock);
310         }
311         spin_unlock(&ubi->wl_lock);
312
313         return 0;
314 }
315
316 /**
317  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
318  * @e: the wear-leveling entry to check
319  * @root: the root of the tree
320  *
321  * This function returns non-zero if @e is in the @root RB-tree and zero if it
322  * is not.
323  */
324 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
325 {
326         struct rb_node *p;
327
328         p = root->rb_node;
329         while (p) {
330                 struct ubi_wl_entry *e1;
331
332                 e1 = rb_entry(p, struct ubi_wl_entry, rb);
333
334                 if (e->pnum == e1->pnum) {
335                         ubi_assert(e == e1);
336                         return 1;
337                 }
338
339                 if (e->ec < e1->ec)
340                         p = p->rb_left;
341                 else if (e->ec > e1->ec)
342                         p = p->rb_right;
343                 else {
344                         ubi_assert(e->pnum != e1->pnum);
345                         if (e->pnum < e1->pnum)
346                                 p = p->rb_left;
347                         else
348                                 p = p->rb_right;
349                 }
350         }
351
352         return 0;
353 }
354
355 /**
356  * prot_tree_add - add physical eraseblock to protection trees.
357  * @ubi: UBI device description object
358  * @e: the physical eraseblock to add
359  * @pe: protection entry object to use
360  * @abs_ec: absolute erase counter value when this physical eraseblock has
361  * to be removed from the protection trees.
362  *
363  * @wl->lock has to be locked.
364  */
365 static void prot_tree_add(struct ubi_device *ubi, struct ubi_wl_entry *e,
366                           struct ubi_wl_prot_entry *pe, int abs_ec)
367 {
368         struct rb_node **p, *parent = NULL;
369         struct ubi_wl_prot_entry *pe1;
370
371         pe->e = e;
372         pe->abs_ec = ubi->abs_ec + abs_ec;
373
374         p = &ubi->prot.pnum.rb_node;
375         while (*p) {
376                 parent = *p;
377                 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_pnum);
378
379                 if (e->pnum < pe1->e->pnum)
380                         p = &(*p)->rb_left;
381                 else
382                         p = &(*p)->rb_right;
383         }
384         rb_link_node(&pe->rb_pnum, parent, p);
385         rb_insert_color(&pe->rb_pnum, &ubi->prot.pnum);
386
387         p = &ubi->prot.aec.rb_node;
388         parent = NULL;
389         while (*p) {
390                 parent = *p;
391                 pe1 = rb_entry(parent, struct ubi_wl_prot_entry, rb_aec);
392
393                 if (pe->abs_ec < pe1->abs_ec)
394                         p = &(*p)->rb_left;
395                 else
396                         p = &(*p)->rb_right;
397         }
398         rb_link_node(&pe->rb_aec, parent, p);
399         rb_insert_color(&pe->rb_aec, &ubi->prot.aec);
400 }
401
402 /**
403  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
404  * @root: the RB-tree where to look for
405  * @max: highest possible erase counter
406  *
407  * This function looks for a wear leveling entry with erase counter closest to
408  * @max and less then @max.
409  */
410 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
411 {
412         struct rb_node *p;
413         struct ubi_wl_entry *e;
414
415         e = rb_entry(rb_first(root), struct ubi_wl_entry, rb);
416         max += e->ec;
417
418         p = root->rb_node;
419         while (p) {
420                 struct ubi_wl_entry *e1;
421
422                 e1 = rb_entry(p, struct ubi_wl_entry, rb);
423                 if (e1->ec >= max)
424                         p = p->rb_left;
425                 else {
426                         p = p->rb_right;
427                         e = e1;
428                 }
429         }
430
431         return e;
432 }
433
434 /**
435  * ubi_wl_get_peb - get a physical eraseblock.
436  * @ubi: UBI device description object
437  * @dtype: type of data which will be stored in this physical eraseblock
438  *
439  * This function returns a physical eraseblock in case of success and a
440  * negative error code in case of failure. Might sleep.
441  */
442 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
443 {
444         int err, protect, medium_ec;
445         struct ubi_wl_entry *e, *first, *last;
446         struct ubi_wl_prot_entry *pe;
447
448         ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
449                    dtype == UBI_UNKNOWN);
450
451         pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
452         if (!pe)
453                 return -ENOMEM;
454
455 retry:
456         spin_lock(&ubi->wl_lock);
457         if (!ubi->free.rb_node) {
458                 if (ubi->works_count == 0) {
459                         ubi_assert(list_empty(&ubi->works));
460                         ubi_err("no free eraseblocks");
461                         spin_unlock(&ubi->wl_lock);
462                         kfree(pe);
463                         return -ENOSPC;
464                 }
465                 spin_unlock(&ubi->wl_lock);
466
467                 err = produce_free_peb(ubi);
468                 if (err < 0) {
469                         kfree(pe);
470                         return err;
471                 }
472                 goto retry;
473         }
474
475         switch (dtype) {
476                 case UBI_LONGTERM:
477                         /*
478                          * For long term data we pick a physical eraseblock
479                          * with high erase counter. But the highest erase
480                          * counter we can pick is bounded by the the lowest
481                          * erase counter plus %WL_FREE_MAX_DIFF.
482                          */
483                         e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
484                         protect = LT_PROTECTION;
485                         break;
486                 case UBI_UNKNOWN:
487                         /*
488                          * For unknown data we pick a physical eraseblock with
489                          * medium erase counter. But we by no means can pick a
490                          * physical eraseblock with erase counter greater or
491                          * equivalent than the lowest erase counter plus
492                          * %WL_FREE_MAX_DIFF.
493                          */
494                         first = rb_entry(rb_first(&ubi->free),
495                                          struct ubi_wl_entry, rb);
496                         last = rb_entry(rb_last(&ubi->free),
497                                         struct ubi_wl_entry, rb);
498
499                         if (last->ec - first->ec < WL_FREE_MAX_DIFF)
500                                 e = rb_entry(ubi->free.rb_node,
501                                                 struct ubi_wl_entry, rb);
502                         else {
503                                 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
504                                 e = find_wl_entry(&ubi->free, medium_ec);
505                         }
506                         protect = U_PROTECTION;
507                         break;
508                 case UBI_SHORTTERM:
509                         /*
510                          * For short term data we pick a physical eraseblock
511                          * with the lowest erase counter as we expect it will
512                          * be erased soon.
513                          */
514                         e = rb_entry(rb_first(&ubi->free),
515                                      struct ubi_wl_entry, rb);
516                         protect = ST_PROTECTION;
517                         break;
518                 default:
519                         protect = 0;
520                         e = NULL;
521                         BUG();
522         }
523
524         /*
525          * Move the physical eraseblock to the protection trees where it will
526          * be protected from being moved for some time.
527          */
528         paranoid_check_in_wl_tree(e, &ubi->free);
529         rb_erase(&e->rb, &ubi->free);
530         prot_tree_add(ubi, e, pe, protect);
531
532         dbg_wl("PEB %d EC %d, protection %d", e->pnum, e->ec, protect);
533         spin_unlock(&ubi->wl_lock);
534
535         return e->pnum;
536 }
537
538 /**
539  * prot_tree_del - remove a physical eraseblock from the protection trees
540  * @ubi: UBI device description object
541  * @pnum: the physical eraseblock to remove
542  *
543  * This function returns PEB @pnum from the protection trees and returns zero
544  * in case of success and %-ENODEV if the PEB was not found in the protection
545  * trees.
546  */
547 static int prot_tree_del(struct ubi_device *ubi, int pnum)
548 {
549         struct rb_node *p;
550         struct ubi_wl_prot_entry *pe = NULL;
551
552         p = ubi->prot.pnum.rb_node;
553         while (p) {
554
555                 pe = rb_entry(p, struct ubi_wl_prot_entry, rb_pnum);
556
557                 if (pnum == pe->e->pnum)
558                         goto found;
559
560                 if (pnum < pe->e->pnum)
561                         p = p->rb_left;
562                 else
563                         p = p->rb_right;
564         }
565
566         return -ENODEV;
567
568 found:
569         ubi_assert(pe->e->pnum == pnum);
570         rb_erase(&pe->rb_aec, &ubi->prot.aec);
571         rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
572         kfree(pe);
573         return 0;
574 }
575
576 /**
577  * sync_erase - synchronously erase a physical eraseblock.
578  * @ubi: UBI device description object
579  * @e: the the physical eraseblock to erase
580  * @torture: if the physical eraseblock has to be tortured
581  *
582  * This function returns zero in case of success and a negative error code in
583  * case of failure.
584  */
585 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
586 {
587         int err;
588         struct ubi_ec_hdr *ec_hdr;
589         unsigned long long ec = e->ec;
590
591         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
592
593         err = paranoid_check_ec(ubi, e->pnum, e->ec);
594         if (err > 0)
595                 return -EINVAL;
596
597         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
598         if (!ec_hdr)
599                 return -ENOMEM;
600
601         err = ubi_io_sync_erase(ubi, e->pnum, torture);
602         if (err < 0)
603                 goto out_free;
604
605         ec += err;
606         if (ec > UBI_MAX_ERASECOUNTER) {
607                 /*
608                  * Erase counter overflow. Upgrade UBI and use 64-bit
609                  * erase counters internally.
610                  */
611                 ubi_err("erase counter overflow at PEB %d, EC %llu",
612                         e->pnum, ec);
613                 err = -EINVAL;
614                 goto out_free;
615         }
616
617         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
618
619         ec_hdr->ec = cpu_to_be64(ec);
620
621         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
622         if (err)
623                 goto out_free;
624
625         e->ec = ec;
626         spin_lock(&ubi->wl_lock);
627         if (e->ec > ubi->max_ec)
628                 ubi->max_ec = e->ec;
629         spin_unlock(&ubi->wl_lock);
630
631 out_free:
632         kfree(ec_hdr);
633         return err;
634 }
635
636 /**
637  * check_protection_over - check if it is time to stop protecting some
638  * physical eraseblocks.
639  * @ubi: UBI device description object
640  *
641  * This function is called after each erase operation, when the absolute erase
642  * counter is incremented, to check if some physical eraseblock  have not to be
643  * protected any longer. These physical eraseblocks are moved from the
644  * protection trees to the used tree.
645  */
646 static void check_protection_over(struct ubi_device *ubi)
647 {
648         struct ubi_wl_prot_entry *pe;
649
650         /*
651          * There may be several protected physical eraseblock to remove,
652          * process them all.
653          */
654         while (1) {
655                 spin_lock(&ubi->wl_lock);
656                 if (!ubi->prot.aec.rb_node) {
657                         spin_unlock(&ubi->wl_lock);
658                         break;
659                 }
660
661                 pe = rb_entry(rb_first(&ubi->prot.aec),
662                               struct ubi_wl_prot_entry, rb_aec);
663
664                 if (pe->abs_ec > ubi->abs_ec) {
665                         spin_unlock(&ubi->wl_lock);
666                         break;
667                 }
668
669                 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
670                        pe->e->pnum, ubi->abs_ec, pe->abs_ec);
671                 rb_erase(&pe->rb_aec, &ubi->prot.aec);
672                 rb_erase(&pe->rb_pnum, &ubi->prot.pnum);
673                 wl_tree_add(pe->e, &ubi->used);
674                 spin_unlock(&ubi->wl_lock);
675
676                 kfree(pe);
677                 cond_resched();
678         }
679 }
680
681 /**
682  * schedule_ubi_work - schedule a work.
683  * @ubi: UBI device description object
684  * @wrk: the work to schedule
685  *
686  * This function enqueues a work defined by @wrk to the tail of the pending
687  * works list.
688  */
689 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
690 {
691         spin_lock(&ubi->wl_lock);
692         list_add_tail(&wrk->list, &ubi->works);
693         ubi_assert(ubi->works_count >= 0);
694         ubi->works_count += 1;
695         if (ubi->thread_enabled)
696                 wake_up_process(ubi->bgt_thread);
697         spin_unlock(&ubi->wl_lock);
698 }
699
700 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
701                         int cancel);
702
703 /**
704  * schedule_erase - schedule an erase work.
705  * @ubi: UBI device description object
706  * @e: the WL entry of the physical eraseblock to erase
707  * @torture: if the physical eraseblock has to be tortured
708  *
709  * This function returns zero in case of success and a %-ENOMEM in case of
710  * failure.
711  */
712 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
713                           int torture)
714 {
715         struct ubi_work *wl_wrk;
716
717         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
718                e->pnum, e->ec, torture);
719
720         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
721         if (!wl_wrk)
722                 return -ENOMEM;
723
724         wl_wrk->func = &erase_worker;
725         wl_wrk->e = e;
726         wl_wrk->torture = torture;
727
728         schedule_ubi_work(ubi, wl_wrk);
729         return 0;
730 }
731
732 /**
733  * wear_leveling_worker - wear-leveling worker function.
734  * @ubi: UBI device description object
735  * @wrk: the work object
736  * @cancel: non-zero if the worker has to free memory and exit
737  *
738  * This function copies a more worn out physical eraseblock to a less worn out
739  * one. Returns zero in case of success and a negative error code in case of
740  * failure.
741  */
742 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
743                                 int cancel)
744 {
745         int err, put = 0, scrubbing = 0, protect = 0;
746         struct ubi_wl_prot_entry *uninitialized_var(pe);
747         struct ubi_wl_entry *e1, *e2;
748         struct ubi_vid_hdr *vid_hdr;
749
750         kfree(wrk);
751
752         if (cancel)
753                 return 0;
754
755         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
756         if (!vid_hdr)
757                 return -ENOMEM;
758
759         mutex_lock(&ubi->move_mutex);
760         spin_lock(&ubi->wl_lock);
761         ubi_assert(!ubi->move_from && !ubi->move_to);
762         ubi_assert(!ubi->move_to_put);
763
764         if (!ubi->free.rb_node ||
765             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
766                 /*
767                  * No free physical eraseblocks? Well, they must be waiting in
768                  * the queue to be erased. Cancel movement - it will be
769                  * triggered again when a free physical eraseblock appears.
770                  *
771                  * No used physical eraseblocks? They must be temporarily
772                  * protected from being moved. They will be moved to the
773                  * @ubi->used tree later and the wear-leveling will be
774                  * triggered again.
775                  */
776                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
777                        !ubi->free.rb_node, !ubi->used.rb_node);
778                 goto out_cancel;
779         }
780
781         if (!ubi->scrub.rb_node) {
782                 /*
783                  * Now pick the least worn-out used physical eraseblock and a
784                  * highly worn-out free physical eraseblock. If the erase
785                  * counters differ much enough, start wear-leveling.
786                  */
787                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
788                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
789
790                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
791                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
792                                e1->ec, e2->ec);
793                         goto out_cancel;
794                 }
795                 paranoid_check_in_wl_tree(e1, &ubi->used);
796                 rb_erase(&e1->rb, &ubi->used);
797                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
798                        e1->pnum, e1->ec, e2->pnum, e2->ec);
799         } else {
800                 /* Perform scrubbing */
801                 scrubbing = 1;
802                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, rb);
803                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
804                 paranoid_check_in_wl_tree(e1, &ubi->scrub);
805                 rb_erase(&e1->rb, &ubi->scrub);
806                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
807         }
808
809         paranoid_check_in_wl_tree(e2, &ubi->free);
810         rb_erase(&e2->rb, &ubi->free);
811         ubi->move_from = e1;
812         ubi->move_to = e2;
813         spin_unlock(&ubi->wl_lock);
814
815         /*
816          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
817          * We so far do not know which logical eraseblock our physical
818          * eraseblock (@e1) belongs to. We have to read the volume identifier
819          * header first.
820          *
821          * Note, we are protected from this PEB being unmapped and erased. The
822          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
823          * which is being moved was unmapped.
824          */
825
826         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
827         if (err && err != UBI_IO_BITFLIPS) {
828                 if (err == UBI_IO_PEB_FREE) {
829                         /*
830                          * We are trying to move PEB without a VID header. UBI
831                          * always write VID headers shortly after the PEB was
832                          * given, so we have a situation when it did not have
833                          * chance to write it down because it was preempted.
834                          * Just re-schedule the work, so that next time it will
835                          * likely have the VID header in place.
836                          */
837                         dbg_wl("PEB %d has no VID header", e1->pnum);
838                         goto out_not_moved;
839                 }
840
841                 ubi_err("error %d while reading VID header from PEB %d",
842                         err, e1->pnum);
843                 if (err > 0)
844                         err = -EIO;
845                 goto out_error;
846         }
847
848         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
849         if (err) {
850
851                 if (err < 0)
852                         goto out_error;
853                 if (err == 1)
854                         goto out_not_moved;
855
856                 /*
857                  * For some reason the LEB was not moved - it might be because
858                  * the volume is being deleted. We should prevent this PEB from
859                  * being selected for wear-levelling movement for some "time",
860                  * so put it to the protection tree.
861                  */
862
863                 dbg_wl("cancelled moving PEB %d", e1->pnum);
864                 pe = kmalloc(sizeof(struct ubi_wl_prot_entry), GFP_NOFS);
865                 if (!pe) {
866                         err = -ENOMEM;
867                         goto out_error;
868                 }
869
870                 protect = 1;
871         }
872
873         ubi_free_vid_hdr(ubi, vid_hdr);
874         spin_lock(&ubi->wl_lock);
875         if (protect)
876                 prot_tree_add(ubi, e1, pe, protect);
877         if (!ubi->move_to_put)
878                 wl_tree_add(e2, &ubi->used);
879         else
880                 put = 1;
881         ubi->move_from = ubi->move_to = NULL;
882         ubi->move_to_put = ubi->wl_scheduled = 0;
883         spin_unlock(&ubi->wl_lock);
884
885         if (put) {
886                 /*
887                  * Well, the target PEB was put meanwhile, schedule it for
888                  * erasure.
889                  */
890                 dbg_wl("PEB %d was put meanwhile, erase", e2->pnum);
891                 err = schedule_erase(ubi, e2, 0);
892                 if (err)
893                         goto out_error;
894         }
895
896         if (!protect) {
897                 err = schedule_erase(ubi, e1, 0);
898                 if (err)
899                         goto out_error;
900         }
901
902
903         dbg_wl("done");
904         mutex_unlock(&ubi->move_mutex);
905         return 0;
906
907         /*
908          * For some reasons the LEB was not moved, might be an error, might be
909          * something else. @e1 was not changed, so return it back. @e2 might
910          * be changed, schedule it for erasure.
911          */
912 out_not_moved:
913         ubi_free_vid_hdr(ubi, vid_hdr);
914         spin_lock(&ubi->wl_lock);
915         if (scrubbing)
916                 wl_tree_add(e1, &ubi->scrub);
917         else
918                 wl_tree_add(e1, &ubi->used);
919         ubi->move_from = ubi->move_to = NULL;
920         ubi->move_to_put = ubi->wl_scheduled = 0;
921         spin_unlock(&ubi->wl_lock);
922
923         err = schedule_erase(ubi, e2, 0);
924         if (err)
925                 goto out_error;
926
927         mutex_unlock(&ubi->move_mutex);
928         return 0;
929
930 out_error:
931         ubi_err("error %d while moving PEB %d to PEB %d",
932                 err, e1->pnum, e2->pnum);
933
934         ubi_free_vid_hdr(ubi, vid_hdr);
935         spin_lock(&ubi->wl_lock);
936         ubi->move_from = ubi->move_to = NULL;
937         ubi->move_to_put = ubi->wl_scheduled = 0;
938         spin_unlock(&ubi->wl_lock);
939
940         kmem_cache_free(ubi_wl_entry_slab, e1);
941         kmem_cache_free(ubi_wl_entry_slab, e2);
942         ubi_ro_mode(ubi);
943
944         mutex_unlock(&ubi->move_mutex);
945         return err;
946
947 out_cancel:
948         ubi->wl_scheduled = 0;
949         spin_unlock(&ubi->wl_lock);
950         mutex_unlock(&ubi->move_mutex);
951         ubi_free_vid_hdr(ubi, vid_hdr);
952         return 0;
953 }
954
955 /**
956  * ensure_wear_leveling - schedule wear-leveling if it is needed.
957  * @ubi: UBI device description object
958  *
959  * This function checks if it is time to start wear-leveling and schedules it
960  * if yes. This function returns zero in case of success and a negative error
961  * code in case of failure.
962  */
963 static int ensure_wear_leveling(struct ubi_device *ubi)
964 {
965         int err = 0;
966         struct ubi_wl_entry *e1;
967         struct ubi_wl_entry *e2;
968         struct ubi_work *wrk;
969
970         spin_lock(&ubi->wl_lock);
971         if (ubi->wl_scheduled)
972                 /* Wear-leveling is already in the work queue */
973                 goto out_unlock;
974
975         /*
976          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
977          * the WL worker has to be scheduled anyway.
978          */
979         if (!ubi->scrub.rb_node) {
980                 if (!ubi->used.rb_node || !ubi->free.rb_node)
981                         /* No physical eraseblocks - no deal */
982                         goto out_unlock;
983
984                 /*
985                  * We schedule wear-leveling only if the difference between the
986                  * lowest erase counter of used physical eraseblocks and a high
987                  * erase counter of free physical eraseblocks is greater then
988                  * %UBI_WL_THRESHOLD.
989                  */
990                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, rb);
991                 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
992
993                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
994                         goto out_unlock;
995                 dbg_wl("schedule wear-leveling");
996         } else
997                 dbg_wl("schedule scrubbing");
998
999         ubi->wl_scheduled = 1;
1000         spin_unlock(&ubi->wl_lock);
1001
1002         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1003         if (!wrk) {
1004                 err = -ENOMEM;
1005                 goto out_cancel;
1006         }
1007
1008         wrk->func = &wear_leveling_worker;
1009         schedule_ubi_work(ubi, wrk);
1010         return err;
1011
1012 out_cancel:
1013         spin_lock(&ubi->wl_lock);
1014         ubi->wl_scheduled = 0;
1015 out_unlock:
1016         spin_unlock(&ubi->wl_lock);
1017         return err;
1018 }
1019
1020 /**
1021  * erase_worker - physical eraseblock erase worker function.
1022  * @ubi: UBI device description object
1023  * @wl_wrk: the work object
1024  * @cancel: non-zero if the worker has to free memory and exit
1025  *
1026  * This function erases a physical eraseblock and perform torture testing if
1027  * needed. It also takes care about marking the physical eraseblock bad if
1028  * needed. Returns zero in case of success and a negative error code in case of
1029  * failure.
1030  */
1031 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1032                         int cancel)
1033 {
1034         struct ubi_wl_entry *e = wl_wrk->e;
1035         int pnum = e->pnum, err, need;
1036
1037         if (cancel) {
1038                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1039                 kfree(wl_wrk);
1040                 kmem_cache_free(ubi_wl_entry_slab, e);
1041                 return 0;
1042         }
1043
1044         dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1045
1046         err = sync_erase(ubi, e, wl_wrk->torture);
1047         if (!err) {
1048                 /* Fine, we've erased it successfully */
1049                 kfree(wl_wrk);
1050
1051                 spin_lock(&ubi->wl_lock);
1052                 ubi->abs_ec += 1;
1053                 wl_tree_add(e, &ubi->free);
1054                 spin_unlock(&ubi->wl_lock);
1055
1056                 /*
1057                  * One more erase operation has happened, take care about protected
1058                  * physical eraseblocks.
1059                  */
1060                 check_protection_over(ubi);
1061
1062                 /* And take care about wear-leveling */
1063                 err = ensure_wear_leveling(ubi);
1064                 return err;
1065         }
1066
1067         ubi_err("failed to erase PEB %d, error %d", pnum, err);
1068         kfree(wl_wrk);
1069         kmem_cache_free(ubi_wl_entry_slab, e);
1070
1071         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1072             err == -EBUSY) {
1073                 int err1;
1074
1075                 /* Re-schedule the LEB for erasure */
1076                 err1 = schedule_erase(ubi, e, 0);
1077                 if (err1) {
1078                         err = err1;
1079                         goto out_ro;
1080                 }
1081                 return err;
1082         } else if (err != -EIO) {
1083                 /*
1084                  * If this is not %-EIO, we have no idea what to do. Scheduling
1085                  * this physical eraseblock for erasure again would cause
1086                  * errors again and again. Well, lets switch to RO mode.
1087                  */
1088                 goto out_ro;
1089         }
1090
1091         /* It is %-EIO, the PEB went bad */
1092
1093         if (!ubi->bad_allowed) {
1094                 ubi_err("bad physical eraseblock %d detected", pnum);
1095                 goto out_ro;
1096         }
1097
1098         spin_lock(&ubi->volumes_lock);
1099         need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1100         if (need > 0) {
1101                 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1102                 ubi->avail_pebs -= need;
1103                 ubi->rsvd_pebs += need;
1104                 ubi->beb_rsvd_pebs += need;
1105                 if (need > 0)
1106                         ubi_msg("reserve more %d PEBs", need);
1107         }
1108
1109         if (ubi->beb_rsvd_pebs == 0) {
1110                 spin_unlock(&ubi->volumes_lock);
1111                 ubi_err("no reserved physical eraseblocks");
1112                 goto out_ro;
1113         }
1114
1115         spin_unlock(&ubi->volumes_lock);
1116         ubi_msg("mark PEB %d as bad", pnum);
1117
1118         err = ubi_io_mark_bad(ubi, pnum);
1119         if (err)
1120                 goto out_ro;
1121
1122         spin_lock(&ubi->volumes_lock);
1123         ubi->beb_rsvd_pebs -= 1;
1124         ubi->bad_peb_count += 1;
1125         ubi->good_peb_count -= 1;
1126         ubi_calculate_reserved(ubi);
1127         if (ubi->beb_rsvd_pebs == 0)
1128                 ubi_warn("last PEB from the reserved pool was used");
1129         spin_unlock(&ubi->volumes_lock);
1130
1131         return err;
1132
1133 out_ro:
1134         ubi_ro_mode(ubi);
1135         return err;
1136 }
1137
1138 /**
1139  * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling unit.
1140  * @ubi: UBI device description object
1141  * @pnum: physical eraseblock to return
1142  * @torture: if this physical eraseblock has to be tortured
1143  *
1144  * This function is called to return physical eraseblock @pnum to the pool of
1145  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1146  * occurred to this @pnum and it has to be tested. This function returns zero
1147  * in case of success, and a negative error code in case of failure.
1148  */
1149 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1150 {
1151         int err;
1152         struct ubi_wl_entry *e;
1153
1154         dbg_wl("PEB %d", pnum);
1155         ubi_assert(pnum >= 0);
1156         ubi_assert(pnum < ubi->peb_count);
1157
1158 retry:
1159         spin_lock(&ubi->wl_lock);
1160         e = ubi->lookuptbl[pnum];
1161         if (e == ubi->move_from) {
1162                 /*
1163                  * User is putting the physical eraseblock which was selected to
1164                  * be moved. It will be scheduled for erasure in the
1165                  * wear-leveling worker.
1166                  */
1167                 dbg_wl("PEB %d is being moved, wait", pnum);
1168                 spin_unlock(&ubi->wl_lock);
1169
1170                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1171                 mutex_lock(&ubi->move_mutex);
1172                 mutex_unlock(&ubi->move_mutex);
1173                 goto retry;
1174         } else if (e == ubi->move_to) {
1175                 /*
1176                  * User is putting the physical eraseblock which was selected
1177                  * as the target the data is moved to. It may happen if the EBA
1178                  * unit already re-mapped the LEB in 'ubi_eba_copy_leb()' but
1179                  * the WL unit has not put the PEB to the "used" tree yet, but
1180                  * it is about to do this. So we just set a flag which will
1181                  * tell the WL worker that the PEB is not needed anymore and
1182                  * should be scheduled for erasure.
1183                  */
1184                 dbg_wl("PEB %d is the target of data moving", pnum);
1185                 ubi_assert(!ubi->move_to_put);
1186                 ubi->move_to_put = 1;
1187                 spin_unlock(&ubi->wl_lock);
1188                 return 0;
1189         } else {
1190                 if (in_wl_tree(e, &ubi->used)) {
1191                         paranoid_check_in_wl_tree(e, &ubi->used);
1192                         rb_erase(&e->rb, &ubi->used);
1193                 } else if (in_wl_tree(e, &ubi->scrub)) {
1194                         paranoid_check_in_wl_tree(e, &ubi->scrub);
1195                         rb_erase(&e->rb, &ubi->scrub);
1196                 } else {
1197                         err = prot_tree_del(ubi, e->pnum);
1198                         if (err) {
1199                                 ubi_err("PEB %d not found", pnum);
1200                                 ubi_ro_mode(ubi);
1201                                 spin_unlock(&ubi->wl_lock);
1202                                 return err;
1203                         }
1204                 }
1205         }
1206         spin_unlock(&ubi->wl_lock);
1207
1208         err = schedule_erase(ubi, e, torture);
1209         if (err) {
1210                 spin_lock(&ubi->wl_lock);
1211                 wl_tree_add(e, &ubi->used);
1212                 spin_unlock(&ubi->wl_lock);
1213         }
1214
1215         return err;
1216 }
1217
1218 /**
1219  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1220  * @ubi: UBI device description object
1221  * @pnum: the physical eraseblock to schedule
1222  *
1223  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1224  * needs scrubbing. This function schedules a physical eraseblock for
1225  * scrubbing which is done in background. This function returns zero in case of
1226  * success and a negative error code in case of failure.
1227  */
1228 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1229 {
1230         struct ubi_wl_entry *e;
1231
1232         ubi_msg("schedule PEB %d for scrubbing", pnum);
1233
1234 retry:
1235         spin_lock(&ubi->wl_lock);
1236         e = ubi->lookuptbl[pnum];
1237         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1238                 spin_unlock(&ubi->wl_lock);
1239                 return 0;
1240         }
1241
1242         if (e == ubi->move_to) {
1243                 /*
1244                  * This physical eraseblock was used to move data to. The data
1245                  * was moved but the PEB was not yet inserted to the proper
1246                  * tree. We should just wait a little and let the WL worker
1247                  * proceed.
1248                  */
1249                 spin_unlock(&ubi->wl_lock);
1250                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1251                 yield();
1252                 goto retry;
1253         }
1254
1255         if (in_wl_tree(e, &ubi->used)) {
1256                 paranoid_check_in_wl_tree(e, &ubi->used);
1257                 rb_erase(&e->rb, &ubi->used);
1258         } else {
1259                 int err;
1260
1261                 err = prot_tree_del(ubi, e->pnum);
1262                 if (err) {
1263                         ubi_err("PEB %d not found", pnum);
1264                         ubi_ro_mode(ubi);
1265                         spin_unlock(&ubi->wl_lock);
1266                         return err;
1267                 }
1268         }
1269
1270         wl_tree_add(e, &ubi->scrub);
1271         spin_unlock(&ubi->wl_lock);
1272
1273         /*
1274          * Technically scrubbing is the same as wear-leveling, so it is done
1275          * by the WL worker.
1276          */
1277         return ensure_wear_leveling(ubi);
1278 }
1279
1280 /**
1281  * ubi_wl_flush - flush all pending works.
1282  * @ubi: UBI device description object
1283  *
1284  * This function returns zero in case of success and a negative error code in
1285  * case of failure.
1286  */
1287 int ubi_wl_flush(struct ubi_device *ubi)
1288 {
1289         int err;
1290
1291         /*
1292          * Erase while the pending works queue is not empty, but not more then
1293          * the number of currently pending works.
1294          */
1295         dbg_wl("flush (%d pending works)", ubi->works_count);
1296         while (ubi->works_count) {
1297                 err = do_work(ubi);
1298                 if (err)
1299                         return err;
1300         }
1301
1302         /*
1303          * Make sure all the works which have been done in parallel are
1304          * finished.
1305          */
1306         down_write(&ubi->work_sem);
1307         up_write(&ubi->work_sem);
1308
1309         /*
1310          * And in case last was the WL worker and it cancelled the LEB
1311          * movement, flush again.
1312          */
1313         while (ubi->works_count) {
1314                 dbg_wl("flush more (%d pending works)", ubi->works_count);
1315                 err = do_work(ubi);
1316                 if (err)
1317                         return err;
1318         }
1319
1320         return 0;
1321 }
1322
1323 /**
1324  * tree_destroy - destroy an RB-tree.
1325  * @root: the root of the tree to destroy
1326  */
1327 static void tree_destroy(struct rb_root *root)
1328 {
1329         struct rb_node *rb;
1330         struct ubi_wl_entry *e;
1331
1332         rb = root->rb_node;
1333         while (rb) {
1334                 if (rb->rb_left)
1335                         rb = rb->rb_left;
1336                 else if (rb->rb_right)
1337                         rb = rb->rb_right;
1338                 else {
1339                         e = rb_entry(rb, struct ubi_wl_entry, rb);
1340
1341                         rb = rb_parent(rb);
1342                         if (rb) {
1343                                 if (rb->rb_left == &e->rb)
1344                                         rb->rb_left = NULL;
1345                                 else
1346                                         rb->rb_right = NULL;
1347                         }
1348
1349                         kmem_cache_free(ubi_wl_entry_slab, e);
1350                 }
1351         }
1352 }
1353
1354 /**
1355  * ubi_thread - UBI background thread.
1356  * @u: the UBI device description object pointer
1357  */
1358 int ubi_thread(void *u)
1359 {
1360         int failures = 0;
1361         struct ubi_device *ubi = u;
1362
1363         ubi_msg("background thread \"%s\" started, PID %d",
1364                 ubi->bgt_name, task_pid_nr(current));
1365
1366         set_freezable();
1367         for (;;) {
1368                 int err;
1369
1370                 if (kthread_should_stop())
1371                         goto out;
1372
1373                 if (try_to_freeze())
1374                         continue;
1375
1376                 spin_lock(&ubi->wl_lock);
1377                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1378                                !ubi->thread_enabled) {
1379                         set_current_state(TASK_INTERRUPTIBLE);
1380                         spin_unlock(&ubi->wl_lock);
1381                         schedule();
1382                         continue;
1383                 }
1384                 spin_unlock(&ubi->wl_lock);
1385
1386                 err = do_work(ubi);
1387                 if (err) {
1388                         ubi_err("%s: work failed with error code %d",
1389                                 ubi->bgt_name, err);
1390                         if (failures++ > WL_MAX_FAILURES) {
1391                                 /*
1392                                  * Too many failures, disable the thread and
1393                                  * switch to read-only mode.
1394                                  */
1395                                 ubi_msg("%s: %d consecutive failures",
1396                                         ubi->bgt_name, WL_MAX_FAILURES);
1397                                 ubi_ro_mode(ubi);
1398                                 break;
1399                         }
1400                 } else
1401                         failures = 0;
1402
1403                 cond_resched();
1404         }
1405
1406 out:
1407         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1408         return 0;
1409 }
1410
1411 /**
1412  * cancel_pending - cancel all pending works.
1413  * @ubi: UBI device description object
1414  */
1415 static void cancel_pending(struct ubi_device *ubi)
1416 {
1417         while (!list_empty(&ubi->works)) {
1418                 struct ubi_work *wrk;
1419
1420                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1421                 list_del(&wrk->list);
1422                 wrk->func(ubi, wrk, 1);
1423                 ubi->works_count -= 1;
1424                 ubi_assert(ubi->works_count >= 0);
1425         }
1426 }
1427
1428 /**
1429  * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1430  * information.
1431  * @ubi: UBI device description object
1432  * @si: scanning information
1433  *
1434  * This function returns zero in case of success, and a negative error code in
1435  * case of failure.
1436  */
1437 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1438 {
1439         int err;
1440         struct rb_node *rb1, *rb2;
1441         struct ubi_scan_volume *sv;
1442         struct ubi_scan_leb *seb, *tmp;
1443         struct ubi_wl_entry *e;
1444
1445
1446         ubi->used = ubi->free = ubi->scrub = RB_ROOT;
1447         ubi->prot.pnum = ubi->prot.aec = RB_ROOT;
1448         spin_lock_init(&ubi->wl_lock);
1449         mutex_init(&ubi->move_mutex);
1450         init_rwsem(&ubi->work_sem);
1451         ubi->max_ec = si->max_ec;
1452         INIT_LIST_HEAD(&ubi->works);
1453
1454         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1455
1456         err = -ENOMEM;
1457         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1458         if (!ubi->lookuptbl)
1459                 return err;
1460
1461         list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1462                 cond_resched();
1463
1464                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1465                 if (!e)
1466                         goto out_free;
1467
1468                 e->pnum = seb->pnum;
1469                 e->ec = seb->ec;
1470                 ubi->lookuptbl[e->pnum] = e;
1471                 if (schedule_erase(ubi, e, 0)) {
1472                         kmem_cache_free(ubi_wl_entry_slab, e);
1473                         goto out_free;
1474                 }
1475         }
1476
1477         list_for_each_entry(seb, &si->free, u.list) {
1478                 cond_resched();
1479
1480                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1481                 if (!e)
1482                         goto out_free;
1483
1484                 e->pnum = seb->pnum;
1485                 e->ec = seb->ec;
1486                 ubi_assert(e->ec >= 0);
1487                 wl_tree_add(e, &ubi->free);
1488                 ubi->lookuptbl[e->pnum] = e;
1489         }
1490
1491         list_for_each_entry(seb, &si->corr, u.list) {
1492                 cond_resched();
1493
1494                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1495                 if (!e)
1496                         goto out_free;
1497
1498                 e->pnum = seb->pnum;
1499                 e->ec = seb->ec;
1500                 ubi->lookuptbl[e->pnum] = e;
1501                 if (schedule_erase(ubi, e, 0)) {
1502                         kmem_cache_free(ubi_wl_entry_slab, e);
1503                         goto out_free;
1504                 }
1505         }
1506
1507         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1508                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1509                         cond_resched();
1510
1511                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1512                         if (!e)
1513                                 goto out_free;
1514
1515                         e->pnum = seb->pnum;
1516                         e->ec = seb->ec;
1517                         ubi->lookuptbl[e->pnum] = e;
1518                         if (!seb->scrub) {
1519                                 dbg_wl("add PEB %d EC %d to the used tree",
1520                                        e->pnum, e->ec);
1521                                 wl_tree_add(e, &ubi->used);
1522                         } else {
1523                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1524                                        e->pnum, e->ec);
1525                                 wl_tree_add(e, &ubi->scrub);
1526                         }
1527                 }
1528         }
1529
1530         if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1531                 ubi_err("no enough physical eraseblocks (%d, need %d)",
1532                         ubi->avail_pebs, WL_RESERVED_PEBS);
1533                 goto out_free;
1534         }
1535         ubi->avail_pebs -= WL_RESERVED_PEBS;
1536         ubi->rsvd_pebs += WL_RESERVED_PEBS;
1537
1538         /* Schedule wear-leveling if needed */
1539         err = ensure_wear_leveling(ubi);
1540         if (err)
1541                 goto out_free;
1542
1543         return 0;
1544
1545 out_free:
1546         cancel_pending(ubi);
1547         tree_destroy(&ubi->used);
1548         tree_destroy(&ubi->free);
1549         tree_destroy(&ubi->scrub);
1550         kfree(ubi->lookuptbl);
1551         return err;
1552 }
1553
1554 /**
1555  * protection_trees_destroy - destroy the protection RB-trees.
1556  * @ubi: UBI device description object
1557  */
1558 static void protection_trees_destroy(struct ubi_device *ubi)
1559 {
1560         struct rb_node *rb;
1561         struct ubi_wl_prot_entry *pe;
1562
1563         rb = ubi->prot.aec.rb_node;
1564         while (rb) {
1565                 if (rb->rb_left)
1566                         rb = rb->rb_left;
1567                 else if (rb->rb_right)
1568                         rb = rb->rb_right;
1569                 else {
1570                         pe = rb_entry(rb, struct ubi_wl_prot_entry, rb_aec);
1571
1572                         rb = rb_parent(rb);
1573                         if (rb) {
1574                                 if (rb->rb_left == &pe->rb_aec)
1575                                         rb->rb_left = NULL;
1576                                 else
1577                                         rb->rb_right = NULL;
1578                         }
1579
1580                         kmem_cache_free(ubi_wl_entry_slab, pe->e);
1581                         kfree(pe);
1582                 }
1583         }
1584 }
1585
1586 /**
1587  * ubi_wl_close - close the wear-leveling unit.
1588  * @ubi: UBI device description object
1589  */
1590 void ubi_wl_close(struct ubi_device *ubi)
1591 {
1592         dbg_wl("close the UBI wear-leveling unit");
1593
1594         cancel_pending(ubi);
1595         protection_trees_destroy(ubi);
1596         tree_destroy(&ubi->used);
1597         tree_destroy(&ubi->free);
1598         tree_destroy(&ubi->scrub);
1599         kfree(ubi->lookuptbl);
1600 }
1601
1602 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1603
1604 /**
1605  * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1606  * is correct.
1607  * @ubi: UBI device description object
1608  * @pnum: the physical eraseblock number to check
1609  * @ec: the erase counter to check
1610  *
1611  * This function returns zero if the erase counter of physical eraseblock @pnum
1612  * is equivalent to @ec, %1 if not, and a negative error code if an error
1613  * occurred.
1614  */
1615 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1616 {
1617         int err;
1618         long long read_ec;
1619         struct ubi_ec_hdr *ec_hdr;
1620
1621         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1622         if (!ec_hdr)
1623                 return -ENOMEM;
1624
1625         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1626         if (err && err != UBI_IO_BITFLIPS) {
1627                 /* The header does not have to exist */
1628                 err = 0;
1629                 goto out_free;
1630         }
1631
1632         read_ec = be64_to_cpu(ec_hdr->ec);
1633         if (ec != read_ec) {
1634                 ubi_err("paranoid check failed for PEB %d", pnum);
1635                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1636                 ubi_dbg_dump_stack();
1637                 err = 1;
1638         } else
1639                 err = 0;
1640
1641 out_free:
1642         kfree(ec_hdr);
1643         return err;
1644 }
1645
1646 /**
1647  * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1648  * in a WL RB-tree.
1649  * @e: the wear-leveling entry to check
1650  * @root: the root of the tree
1651  *
1652  * This function returns zero if @e is in the @root RB-tree and %1 if it
1653  * is not.
1654  */
1655 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1656                                      struct rb_root *root)
1657 {
1658         if (in_wl_tree(e, root))
1659                 return 0;
1660
1661         ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1662                 e->pnum, e->ec, root);
1663         ubi_dbg_dump_stack();
1664         return 1;
1665 }
1666
1667 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */